0
+ − 1 #!/usr/bin/env Rscript
+ − 2
+ − 3 args <- commandArgs(trailingOnly = TRUE)
+ − 4
+ − 5 pheatmapj_loc <- paste(args[9],"pheatmap_j.R",sep="/")
+ − 6
+ − 7 library('latticeExtra')
+ − 8 library('RColorBrewer')
+ − 9 library('grid')
+ − 10 library(reshape2)
+ − 11 source(pheatmapj_loc)
+ − 12
+ − 13 data.file <- read.table("SC_data.txt", sep="\t", header=TRUE, row.names=1) ### import spectral count data
+ − 14 data.file2 <- read.table("FDR_data.txt", sep="\t", header=TRUE, row.names=1) ### import FDR count data
+ − 15 bait_l <- scan(args[4], what="") ### import bait list
+ − 16 if(args[5] == 0) prey_l <- scan(args[6], what="") ### import prey list
+ − 17 methd <- args[7]
+ − 18 dist_methd <- args[8]
+ − 19
+ − 20 #setting parameters
+ − 21
+ − 22 Sfirst=as.numeric(args[1]) #first FDR cutoff
+ − 23 Ssecond=as.numeric(args[2]) #second FDR cutoff
+ − 24 maxp=as.integer(args[3]) #maximum value for a spectral count
+ − 25
+ − 26 #extract only needed data
+ − 27
+ − 28 if(args[5] == 0){
+ − 29 remove <- vector()
+ − 30 remove <- prey_l[prey_l %in% row.names(data.file)]
+ − 31 prey_l <- prey_l[prey_l %in% remove]
+ − 32 remove <- bait_l[bait_l %in% names(data.file)]
+ − 33 bait_l <- bait_l[bait_l %in% remove]
+ − 34 data.file <- data.file[prey_l, bait_l]
+ − 35 data.file2 <- data.file2[prey_l, bait_l]
+ − 36 } else{
+ − 37 remove <- vector()
+ − 38 remove <- bait_l[bait_l %in% names(data.file)]
+ − 39 bait_l <- bait_l[bait_l %in% remove]
+ − 40 data.file <- data.file[, bait_l]
+ − 41 data.file2 <- data.file2[, bait_l]
+ − 42 prey_keep = apply(data.file2, 1, function(x) sum(x<=Sfirst) >= 1)
+ − 43 data.file <- data.file[prey_keep,]
+ − 44 data.file2 <- data.file2[prey_keep,]
+ − 45 }
+ − 46
+ − 47 #determine bait and prey ordering
+ − 48
+ − 49 y_ord=factor(names(data.file[1,]),levels=bait_l)
+ − 50
+ − 51 if(args[5] == 0){
+ − 52 x_ord=factor(rownames(data.file),levels=prey_l)
+ − 53 } else {
+ − 54
+ − 55 data.file <- data.file[which(rowSums(data.file) > 0),]
+ − 56 dist_prey <- dist(as.matrix(data.file), method= dist_methd)
+ − 57
+ − 58 if(methd == "ward"){
+ − 59 dist_prey <- dist_prey^2
+ − 60 }
+ − 61
+ − 62 hc_prey <- hclust(dist_prey, method = methd)
+ − 63
+ − 64 data.file = data.file[hc_prey$order, , drop = FALSE]
+ − 65 data.file2 = data.file2[hc_prey$order, , drop = FALSE]
+ − 66
+ − 67 x_ord=factor(row.names(data.file), levels=row.names(data.file))
+ − 68 }
+ − 69
+ − 70 df<-data.frame(y=rep(y_ord, nrow(data.file))
+ − 71 ,x=rep(x_ord, each=ncol(data.file))
+ − 72 ,z1=as.vector(t(data.file)) # Circle color
+ − 73 ,z2=as.vector(t(data.file/apply(data.file,1,max))) # Circle size
+ − 74 ,z3=as.vector(t(data.file2)) # FDR
+ − 75 )
+ − 76
+ − 77 df$z1[df$z1>maxp] <- maxp #maximum value for spectral count
+ − 78 df$z2[df$z2==0] <- NA
+ − 79 df$z3[df$z3>Ssecond] <- 0.05*maxp
+ − 80 df$z3[df$z3<=Ssecond & df$z3>Sfirst] <- 0.5*maxp
+ − 81 df$z3[df$z3<=Sfirst] <- 1*maxp
+ − 82 df$z4 <- df$z1
+ − 83 df$z4[df$z4==0] <- 0
+ − 84 df$z4[df$z4>0] <- 2.5
+ − 85
+ − 86 # The labeling for the colorkey
+ − 87
+ − 88 labelat = c(0, maxp)
+ − 89 labeltext = c(0, maxp)
+ − 90
+ − 91 # color scheme to use
+ − 92
+ − 93 nmb.colors<-maxp
+ − 94 z.colors<-grey(rev(seq(0,0.9,0.9/nmb.colors))) #grayscale color scale
+ − 95
+ − 96 #plot dotplot
+ − 97
+ − 98 pl <- levelplot(z1~x*y, data=df
+ − 99 ,col.regions =z.colors #terrain.colors(100)
+ − 100 ,scales = list(x = list(rot = 90), y=list(cex=0.8), tck=0) # rotates X,Y labels and changes scale
+ − 101 ,colorkey = FALSE
+ − 102 #,colorkey = list(space="bottom", width=1.5, height=0.3, labels=list(at = labelat, labels = labeltext)) #put colorkey at top with my labeling scheme
+ − 103 ,xlab="Prey", ylab="Bait"
+ − 104 ,panel=function(x,y,z,...,col.regions){
+ − 105 print(x)
+ − 106 z.c<-df$z1[ (df$x %in% as.character(x)) & (df$y %in% y)]
+ − 107 z.2<-df$z2[ (df$x %in% as.character(x)) & (df$y %in% y)]
+ − 108 z.3<-df$z3
+ − 109 z.4<-df$z4
+ − 110 panel.xyplot(x,y
+ − 111 ,as.table=TRUE
+ − 112 ,pch=21 # point type to use (circles in this case)
+ − 113 ,cex=((z.2-min(z.2,na.rm=TRUE))/(max(z.2,na.rm=TRUE)-min(z.2,na.rm=TRUE)))*3 #circle size
+ − 114 ,fill=z.colors[floor((z.c-min(z.c,na.rm=TRUE))*nmb.colors/(max(z.c,na.rm=TRUE)-min(z.c,na.rm=TRUE)))+1] # circle colors
+ − 115 ,col=z.colors[1+z.3] # border colors
+ − 116 ,lex=z.4 #border thickness
+ − 117 )
+ − 118 }
+ − 119 #,main="Fold change" # graph main title
+ − 120 )
+ − 121 if(ncol(data.file) > 4) ht=3.5+(0.36*((ncol(data.file)-1)-4)) else ht=3.5
+ − 122 if(nrow(data.file) > 20) wd=8.25+(0.29*(nrow(data.file)-20)) else wd=5.7+(0.28*(nrow(data.file)-10))
+ − 123 pdf("dotplot.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2)
+ − 124 print(pl)
+ − 125 dev.off()
+ − 126
+ − 127 #plot heatmap
+ − 128
+ − 129 heat_df <- acast(df, y~x, value.var="z1")
+ − 130 heat_df <- apply(heat_df, 2, rev)
+ − 131
+ − 132 if(ncol(data.file) > 4) ht=3.5+(0.1*((ncol(data.file)-1)-4)) else ht=3.5
+ − 133 if(nrow(data.file) > 20) wd=8.25+(0.1*(nrow(data.file)-20)) else wd=5+(0.1*(nrow(data.file)-10))
+ − 134 pdf("heatmap_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2)
+ − 135 pheatmap_j(heat_df, scale="none", border_color="black", border_width = 0.1, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100))
+ − 136 dev.off()
+ − 137
+ − 138 pdf("heatmap_no_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2)
+ − 139 pheatmap_j(heat_df, scale="none", border_color=NA, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100))
+ − 140 dev.off()