0
+ − 1 lo = function(rown, coln, nrow, ncol, cellheight = NA, cellwidth = NA, treeheight_col, treeheight_row, legend, annotation, annotation_colors, annotation_legend, main, fontsize, fontsize_row, fontsize_col, ...){
+ − 2 # Get height of colnames and length of rownames
+ − 3 if(!is.null(coln[1])){
+ − 4 longest_coln = which.max(strwidth(coln, units = 'in'))
+ − 5 gp = list(fontsize = fontsize_col, ...)
+ − 6 coln_height = unit(1, "grobheight", textGrob(coln[longest_coln], rot = 90, gp = do.call(gpar, gp))) + unit(5, "bigpts")
+ − 7 }
+ − 8 else{
+ − 9 coln_height = unit(5, "bigpts")
+ − 10 }
+ − 11
+ − 12 if(!is.null(rown[1])){
+ − 13 longest_rown = which.max(strwidth(rown, units = 'in'))
+ − 14 gp = list(fontsize = fontsize_row, ...)
+ − 15 rown_width = unit(1, "grobwidth", textGrob(rown[longest_rown], gp = do.call(gpar, gp))) + unit(10, "bigpts")
+ − 16 }
+ − 17 else{
+ − 18 rown_width = unit(5, "bigpts")
+ − 19 }
+ − 20
+ − 21 gp = list(fontsize = fontsize, ...)
+ − 22 # Legend position
+ − 23 if(!is.na(legend[1])){
+ − 24 longest_break = which.max(nchar(names(legend)))
+ − 25 longest_break = unit(1.1, "grobwidth", textGrob(as.character(names(legend))[longest_break], gp = do.call(gpar, gp)))
+ − 26 title_length = unit(1.1, "grobwidth", textGrob("Scale", gp = gpar(fontface = "bold", ...)))
+ − 27 legend_width = unit(12, "bigpts") + longest_break * 1.2
+ − 28 legend_width = max(title_length, legend_width)
+ − 29 }
+ − 30 else{
+ − 31 legend_width = unit(0, "bigpts")
+ − 32 }
+ − 33
+ − 34 # Set main title height
+ − 35 if(is.na(main)){
+ − 36 main_height = unit(0, "npc")
+ − 37 }
+ − 38 else{
+ − 39 main_height = unit(1.5, "grobheight", textGrob(main, gp = gpar(fontsize = 1.3 * fontsize, ...)))
+ − 40 }
+ − 41
+ − 42 # Column annotations
+ − 43 if(!is.na(annotation[[1]][1])){
+ − 44 # Column annotation height
+ − 45 annot_height = unit(ncol(annotation) * (8 + 2) + 2, "bigpts")
+ − 46 # Width of the correponding legend
+ − 47 longest_ann = which.max(nchar(as.matrix(annotation)))
+ − 48 annot_legend_width = unit(1.2, "grobwidth", textGrob(as.matrix(annotation)[longest_ann], gp = gpar(...))) + unit(12, "bigpts")
+ − 49 if(!annotation_legend){
+ − 50 annot_legend_width = unit(0, "npc")
+ − 51 }
+ − 52 }
+ − 53 else{
+ − 54 annot_height = unit(0, "bigpts")
+ − 55 annot_legend_width = unit(0, "bigpts")
+ − 56 }
+ − 57
+ − 58 # Tree height
+ − 59 treeheight_col = unit(treeheight_col, "bigpts") + unit(5, "bigpts")
+ − 60 treeheight_row = unit(treeheight_row, "bigpts") + unit(5, "bigpts")
+ − 61
+ − 62 # Set cell sizes
+ − 63 if(is.na(cellwidth)){
+ − 64 matwidth = unit(1, "npc") - rown_width - legend_width - treeheight_row - annot_legend_width
+ − 65 }
+ − 66 else{
+ − 67 matwidth = unit(cellwidth * ncol, "bigpts")
+ − 68 }
+ − 69
+ − 70 if(is.na(cellheight)){
+ − 71 matheight = unit(1, "npc") - main_height - coln_height - treeheight_col - annot_height
+ − 72 }
+ − 73 else{
+ − 74 matheight = unit(cellheight * nrow, "bigpts")
+ − 75 }
+ − 76
+ − 77
+ − 78 # Produce layout()
+ − 79 pushViewport(viewport(layout = grid.layout(nrow = 5, ncol = 5, widths = unit.c(treeheight_row, matwidth, rown_width, legend_width, annot_legend_width), heights = unit.c(main_height, treeheight_col, annot_height, matheight, coln_height)), gp = do.call(gpar, gp)))
+ − 80
+ − 81 # Get cell dimensions
+ − 82 pushViewport(vplayout(4, 2))
+ − 83 cellwidth = convertWidth(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / ncol
+ − 84 cellheight = convertHeight(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / nrow
+ − 85 upViewport()
+ − 86
+ − 87 # Return minimal cell dimension in bigpts to decide if borders are drawn
+ − 88 mindim = min(cellwidth, cellheight)
+ − 89 return(mindim)
+ − 90 }
+ − 91
+ − 92 draw_dendrogram = function(hc, horizontal = T){
+ − 93 h = hc$height / max(hc$height) / 1.05
+ − 94 m = hc$merge
+ − 95 o = hc$order
+ − 96 n = length(o)
+ − 97
+ − 98 m[m > 0] = n + m[m > 0]
+ − 99 m[m < 0] = abs(m[m < 0])
+ − 100
+ − 101 dist = matrix(0, nrow = 2 * n - 1, ncol = 2, dimnames = list(NULL, c("x", "y")))
+ − 102 dist[1:n, 1] = 1 / n / 2 + (1 / n) * (match(1:n, o) - 1)
+ − 103
+ − 104 for(i in 1:nrow(m)){
+ − 105 dist[n + i, 1] = (dist[m[i, 1], 1] + dist[m[i, 2], 1]) / 2
+ − 106 dist[n + i, 2] = h[i]
+ − 107 }
+ − 108
+ − 109 draw_connection = function(x1, x2, y1, y2, y){
+ − 110 grid.lines(x = c(x1, x1), y = c(y1, y))
+ − 111 grid.lines(x = c(x2, x2), y = c(y2, y))
+ − 112 grid.lines(x = c(x1, x2), y = c(y, y))
+ − 113 }
+ − 114
+ − 115 if(horizontal){
+ − 116 for(i in 1:nrow(m)){
+ − 117 draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i])
+ − 118 }
+ − 119 }
+ − 120
+ − 121 else{
+ − 122 gr = rectGrob()
+ − 123 pushViewport(viewport(height = unit(1, "grobwidth", gr), width = unit(1, "grobheight", gr), angle = 90))
+ − 124 dist[, 1] = 1 - dist[, 1]
+ − 125 for(i in 1:nrow(m)){
+ − 126 draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i])
+ − 127 }
+ − 128 upViewport()
+ − 129 }
+ − 130 }
+ − 131
+ − 132 draw_matrix = function(matrix, border_color, border_width, fmat, fontsize_number){
+ − 133 n = nrow(matrix)
+ − 134 m = ncol(matrix)
+ − 135 x = (1:m)/m - 1/2/m
+ − 136 y = 1 - ((1:n)/n - 1/2/n)
+ − 137 for(i in 1:m){
+ − 138 grid.rect(x = x[i], y = y[1:n], width = 1/m, height = 1/n, gp = gpar(fill = matrix[,i], col = border_color, lwd = border_width))
+ − 139 if(attr(fmat, "draw")){
+ − 140 grid.text(x = x[i], y = y[1:n], label = fmat[, i], gp = gpar(col = "grey30", fontsize = fontsize_number))
+ − 141 }
+ − 142 }
+ − 143 }
+ − 144
+ − 145 draw_colnames = function(coln, ...){
+ − 146 m = length(coln)
+ − 147 x = (1:m)/m - 1/2/m
+ − 148 grid.text(coln, x = x, y = unit(0.96, "npc"), just="right", rot = 90, gp = gpar(...))
+ − 149 }
+ − 150
+ − 151 draw_rownames = function(rown, ...){
+ − 152 n = length(rown)
+ − 153 y = 1 - ((1:n)/n - 1/2/n)
+ − 154 grid.text(rown, x = unit(0.04, "npc"), y = y, vjust = 0.5, hjust = 0, gp = gpar(...))
+ − 155 }
+ − 156
+ − 157 draw_legend = function(color, breaks, legend, ...){
+ − 158 height = min(unit(1, "npc"), unit(150, "bigpts"))
+ − 159 pushViewport(viewport(x = 0, y = unit(1, "npc"), just = c(0, 1), height = height))
+ − 160 legend_pos = (legend - min(breaks)) / (max(breaks) - min(breaks))
+ − 161 breaks = (breaks - min(breaks)) / (max(breaks) - min(breaks))
+ − 162 h = breaks[-1] - breaks[-length(breaks)]
+ − 163 grid.rect(x = 0, y = breaks[-length(breaks)], width = unit(10, "bigpts"), height = h, hjust = 0, vjust = 0, gp = gpar(fill = color, col = "#FFFFFF00"))
+ − 164 grid.text(names(legend), x = unit(12, "bigpts"), y = legend_pos, hjust = 0, gp = gpar(...))
+ − 165 upViewport()
+ − 166 }
+ − 167
+ − 168 convert_annotations = function(annotation, annotation_colors){
+ − 169 new = annotation
+ − 170 for(i in 1:ncol(annotation)){
+ − 171 a = annotation[, i]
+ − 172 b = annotation_colors[[colnames(annotation)[i]]]
+ − 173 if(is.character(a) | is.factor(a)){
+ − 174 a = as.character(a)
+ − 175 if(length(setdiff(a, names(b))) > 0){
+ − 176 stop(sprintf("Factor levels on variable %s do not match with annotation_colors", colnames(annotation)[i]))
+ − 177 }
+ − 178 new[, i] = b[a]
+ − 179 }
+ − 180 else{
+ − 181 a = cut(a, breaks = 100)
+ − 182 new[, i] = colorRampPalette(b)(100)[a]
+ − 183 }
+ − 184 }
+ − 185 return(as.matrix(new))
+ − 186 }
+ − 187
+ − 188 draw_annotations = function(converted_annotations, border_color, border_width){
+ − 189 n = ncol(converted_annotations)
+ − 190 m = nrow(converted_annotations)
+ − 191 x = (1:m)/m - 1/2/m
+ − 192 y = cumsum(rep(8, n)) - 4 + cumsum(rep(2, n))
+ − 193 for(i in 1:m){
+ − 194 grid.rect(x = x[i], unit(y[1:n], "bigpts"), width = 1/m, height = unit(8, "bigpts"), gp = gpar(fill = converted_annotations[i, ], col = border_color, lwd = border_width))
+ − 195 }
+ − 196 }
+ − 197
+ − 198 draw_annotation_legend = function(annotation, annotation_colors, border_color, border_width, ...){
+ − 199 y = unit(1, "npc")
+ − 200 text_height = unit(1, "grobheight", textGrob("FGH", gp = gpar(...)))
+ − 201 for(i in names(annotation_colors)){
+ − 202 grid.text(i, x = 0, y = y, vjust = 1, hjust = 0, gp = gpar(fontface = "bold", ...))
+ − 203 y = y - 1.5 * text_height
+ − 204 if(is.character(annotation[, i]) | is.factor(annotation[, i])){
+ − 205 for(j in 1:length(annotation_colors[[i]])){
+ − 206 grid.rect(x = unit(0, "npc"), y = y, hjust = 0, vjust = 1, height = text_height, width = text_height, gp = gpar(col = border_color, lwd = border_width, fill = annotation_colors[[i]][j]))
+ − 207 grid.text(names(annotation_colors[[i]])[j], x = text_height * 1.3, y = y, hjust = 0, vjust = 1, gp = gpar(...))
+ − 208 y = y - 1.5 * text_height
+ − 209 }
+ − 210 }
+ − 211 else{
+ − 212 yy = y - 4 * text_height + seq(0, 1, 0.02) * 4 * text_height
+ − 213 h = 4 * text_height * 0.02
+ − 214 grid.rect(x = unit(0, "npc"), y = yy, hjust = 0, vjust = 1, height = h, width = text_height, gp = gpar(col = "#FFFFFF00", fill = colorRampPalette(annotation_colors[[i]])(50)))
+ − 215 txt = rev(range(grid.pretty(range(annotation[, i], na.rm = TRUE))))
+ − 216 yy = y - c(0, 3) * text_height
+ − 217 grid.text(txt, x = text_height * 1.3, y = yy, hjust = 0, vjust = 1, gp = gpar(...))
+ − 218 y = y - 4.5 * text_height
+ − 219 }
+ − 220 y = y - 1.5 * text_height
+ − 221 }
+ − 222 }
+ − 223
+ − 224 draw_main = function(text, ...){
+ − 225 grid.text(text, gp = gpar(fontface = "bold", ...))
+ − 226 }
+ − 227
+ − 228 vplayout = function(x, y){
+ − 229 return(viewport(layout.pos.row = x, layout.pos.col = y))
+ − 230 }
+ − 231
+ − 232 heatmap_motor = function(matrix, border_color, border_width, cellwidth, cellheight, tree_col, tree_row, treeheight_col, treeheight_row, filename, width, height, breaks, color, legend, annotation, annotation_colors, annotation_legend, main, fontsize, fontsize_row, fontsize_col, fmat, fontsize_number, ...){
+ − 233 grid.newpage()
+ − 234
+ − 235 # Set layout
+ − 236 mindim = lo(coln = colnames(matrix), rown = rownames(matrix), nrow = nrow(matrix), ncol = ncol(matrix), cellwidth = cellwidth, cellheight = cellheight, treeheight_col = treeheight_col, treeheight_row = treeheight_row, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, ...)
+ − 237
+ − 238 if(!is.na(filename)){
+ − 239 pushViewport(vplayout(1:5, 1:5))
+ − 240
+ − 241 if(is.na(height)){
+ − 242 height = convertHeight(unit(0:1, "npc"), "inches", valueOnly = T)[2]
+ − 243 }
+ − 244 if(is.na(width)){
+ − 245 width = convertWidth(unit(0:1, "npc"), "inches", valueOnly = T)[2]
+ − 246 }
+ − 247
+ − 248 # Get file type
+ − 249 r = regexpr("\\.[a-zA-Z]*$", filename)
+ − 250 if(r == -1) stop("Improper filename")
+ − 251 ending = substr(filename, r + 1, r + attr(r, "match.length"))
+ − 252
+ − 253 f = switch(ending,
+ − 254 pdf = function(x, ...) pdf(x, ...),
+ − 255 png = function(x, ...) png(x, units = "in", res = 300, ...),
+ − 256 jpeg = function(x, ...) jpeg(x, units = "in", res = 300, ...),
+ − 257 jpg = function(x, ...) jpeg(x, units = "in", res = 300, ...),
+ − 258 tiff = function(x, ...) tiff(x, units = "in", res = 300, compression = "lzw", ...),
+ − 259 bmp = function(x, ...) bmp(x, units = "in", res = 300, ...),
+ − 260 stop("File type should be: pdf, png, bmp, jpg, tiff")
+ − 261 )
+ − 262
+ − 263 # print(sprintf("height:%f width:%f", height, width))
+ − 264 f(filename, height = height, width = width)
+ − 265 heatmap_motor(matrix, cellwidth = cellwidth, cellheight = cellheight, border_color = border_color, border_width = border_width, tree_col = tree_col, tree_row = tree_row, treeheight_col = treeheight_col, treeheight_row = treeheight_row, breaks = breaks, color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, filename = NA, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number, ...)
+ − 266 dev.off()
+ − 267 upViewport()
+ − 268 return()
+ − 269 }
+ − 270
+ − 271 # Omit border color if cell size is too small
+ − 272 if(mindim < 3) border_color = NA
+ − 273
+ − 274 # Draw title
+ − 275 if(!is.na(main)){
+ − 276 pushViewport(vplayout(1, 2))
+ − 277 draw_main(main, fontsize = 1.3 * fontsize, ...)
+ − 278 upViewport()
+ − 279 }
+ − 280
+ − 281 # Draw tree for the columns
+ − 282 if(!is.na(tree_col[[1]][1]) & treeheight_col != 0){
+ − 283 pushViewport(vplayout(2, 2))
+ − 284 draw_dendrogram(tree_col, horizontal = T)
+ − 285 upViewport()
+ − 286 }
+ − 287
+ − 288 # Draw tree for the rows
+ − 289 if(!is.na(tree_row[[1]][1]) & treeheight_row != 0){
+ − 290 pushViewport(vplayout(4, 1))
+ − 291 draw_dendrogram(tree_row, horizontal = F)
+ − 292 upViewport()
+ − 293 }
+ − 294
+ − 295 # Draw matrix
+ − 296 pushViewport(vplayout(4, 2))
+ − 297 draw_matrix(matrix, border_color, border_width, fmat, fontsize_number)
+ − 298 upViewport()
+ − 299
+ − 300 # Draw colnames
+ − 301 if(length(colnames(matrix)) != 0){
+ − 302 pushViewport(vplayout(5, 2))
+ − 303 pars = list(colnames(matrix), fontsize = fontsize_col, ...)
+ − 304 do.call(draw_colnames, pars)
+ − 305 upViewport()
+ − 306 }
+ − 307
+ − 308 # Draw rownames
+ − 309 if(length(rownames(matrix)) != 0){
+ − 310 pushViewport(vplayout(4, 3))
+ − 311 pars = list(rownames(matrix), fontsize = fontsize_row, ...)
+ − 312 do.call(draw_rownames, pars)
+ − 313 upViewport()
+ − 314 }
+ − 315
+ − 316 # Draw annotation tracks
+ − 317 if(!is.na(annotation[[1]][1])){
+ − 318 pushViewport(vplayout(3, 2))
+ − 319 converted_annotation = convert_annotations(annotation, annotation_colors)
+ − 320 draw_annotations(converted_annotation, border_color, border_width)
+ − 321 upViewport()
+ − 322 }
+ − 323
+ − 324 # Draw annotation legend
+ − 325 if(!is.na(annotation[[1]][1]) & annotation_legend){
+ − 326 if(length(rownames(matrix)) != 0){
+ − 327 pushViewport(vplayout(4:5, 5))
+ − 328 }
+ − 329 else{
+ − 330 pushViewport(vplayout(3:5, 5))
+ − 331 }
+ − 332 draw_annotation_legend(annotation, annotation_colors, border_color, border_width, fontsize = fontsize, ...)
+ − 333 upViewport()
+ − 334 }
+ − 335
+ − 336 # Draw legend
+ − 337 if(!is.na(legend[1])){
+ − 338 length(colnames(matrix))
+ − 339 if(length(rownames(matrix)) != 0){
+ − 340 pushViewport(vplayout(4:5, 4))
+ − 341 }
+ − 342 else{
+ − 343 pushViewport(vplayout(3:5, 4))
+ − 344 }
+ − 345 draw_legend(color, breaks, legend, fontsize = fontsize, ...)
+ − 346 upViewport()
+ − 347 }
+ − 348
+ − 349
+ − 350 }
+ − 351
+ − 352 generate_breaks = function(x, n, center = F){
+ − 353 if(center){
+ − 354 m = max(abs(c(min(x, na.rm = T), max(x, na.rm = T))))
+ − 355 res = seq(-m, m, length.out = n + 1)
+ − 356 }
+ − 357 else{
+ − 358 res = seq(min(x, na.rm = T), max(x, na.rm = T), length.out = n + 1)
+ − 359 }
+ − 360
+ − 361 return(res)
+ − 362 }
+ − 363
+ − 364 scale_vec_colours = function(x, col = rainbow(10), breaks = NA){
+ − 365 return(col[as.numeric(cut(x, breaks = breaks, include.lowest = T))])
+ − 366 }
+ − 367
+ − 368 scale_colours = function(mat, col = rainbow(10), breaks = NA){
+ − 369 mat = as.matrix(mat)
+ − 370 return(matrix(scale_vec_colours(as.vector(mat), col = col, breaks = breaks), nrow(mat), ncol(mat), dimnames = list(rownames(mat), colnames(mat))))
+ − 371 }
+ − 372
+ − 373 cluster_mat = function(mat, distance, method){
+ − 374 if(!(method %in% c("ward", "single", "complete", "average", "mcquitty", "median", "centroid"))){
+ − 375 stop("clustering method has to one form the list: 'ward', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.")
+ − 376 }
+ − 377 if(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) & class(distance) != "dist"){
+ − 378 print(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) | class(distance) != "dist")
+ − 379 stop("distance has to be a dissimilarity structure as produced by dist or one measure form the list: 'correlation', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'")
+ − 380 }
+ − 381 if(distance[1] == "correlation"){
+ − 382 d = as.dist(1 - cor(t(mat)))
+ − 383 }
+ − 384 else{
+ − 385 if(class(distance) == "dist"){
+ − 386 d = distance
+ − 387 }
+ − 388 else{
+ − 389 d = dist(mat, method = distance)
+ − 390 }
+ − 391 }
+ − 392
+ − 393 return(hclust(d, method = method))
+ − 394 }
+ − 395
+ − 396 scale_rows = function(x){
+ − 397 m = apply(x, 1, mean, na.rm = T)
+ − 398 s = apply(x, 1, sd, na.rm = T)
+ − 399 return((x - m) / s)
+ − 400 }
+ − 401
+ − 402 scale_mat = function(mat, scale){
+ − 403 if(!(scale %in% c("none", "row", "column"))){
+ − 404 stop("scale argument shoud take values: 'none', 'row' or 'column'")
+ − 405 }
+ − 406 mat = switch(scale, none = mat, row = scale_rows(mat), column = t(scale_rows(t(mat))))
+ − 407 return(mat)
+ − 408 }
+ − 409
+ − 410 generate_annotation_colours = function(annotation, annotation_colors, drop){
+ − 411 if(is.na(annotation_colors)[[1]][1]){
+ − 412 annotation_colors = list()
+ − 413 }
+ − 414 count = 0
+ − 415 for(i in 1:ncol(annotation)){
+ − 416 if(is.character(annotation[, i]) | is.factor(annotation[, i])){
+ − 417 if (is.factor(annotation[, i]) & !drop){
+ − 418 count = count + length(levels(annotation[, i]))
+ − 419 }
+ − 420 else{
+ − 421 count = count + length(unique(annotation[, i]))
+ − 422 }
+ − 423 }
+ − 424 }
+ − 425
+ − 426 factor_colors = hsv((seq(0, 1, length.out = count + 1)[-1] +
+ − 427 0.2)%%1, 0.7, 0.95)
+ − 428
+ − 429 set.seed(3453)
+ − 430
+ − 431 for(i in 1:ncol(annotation)){
+ − 432 if(!(colnames(annotation)[i] %in% names(annotation_colors))){
+ − 433 if(is.character(annotation[, i]) | is.factor(annotation[, i])){
+ − 434 n = length(unique(annotation[, i]))
+ − 435 if (is.factor(annotation[, i]) & !drop){
+ − 436 n = length(levels(annotation[, i]))
+ − 437 }
+ − 438 ind = sample(1:length(factor_colors), n)
+ − 439 annotation_colors[[colnames(annotation)[i]]] = factor_colors[ind]
+ − 440 l = levels(as.factor(annotation[, i]))
+ − 441 l = l[l %in% unique(annotation[, i])]
+ − 442 if (is.factor(annotation[, i]) & !drop){
+ − 443 l = levels(annotation[, i])
+ − 444 }
+ − 445 names(annotation_colors[[colnames(annotation)[i]]]) = l
+ − 446 factor_colors = factor_colors[-ind]
+ − 447 }
+ − 448 else{
+ − 449 r = runif(1)
+ − 450 annotation_colors[[colnames(annotation)[i]]] = hsv(r, c(0.1, 1), 1)
+ − 451 }
+ − 452 }
+ − 453 }
+ − 454 return(annotation_colors)
+ − 455 }
+ − 456
+ − 457 kmeans_pheatmap = function(mat, k = min(nrow(mat), 150), sd_limit = NA, ...){
+ − 458 # Filter data
+ − 459 if(!is.na(sd_limit)){
+ − 460 s = apply(mat, 1, sd)
+ − 461 mat = mat[s > sd_limit, ]
+ − 462 }
+ − 463
+ − 464 # Cluster data
+ − 465 set.seed(1245678)
+ − 466 km = kmeans(mat, k, iter.max = 100)
+ − 467 mat2 = km$centers
+ − 468
+ − 469 # Compose rownames
+ − 470 t = table(km$cluster)
+ − 471 rownames(mat2) = sprintf("cl%s_size_%d", names(t), t)
+ − 472
+ − 473 # Draw heatmap
+ − 474 pheatmap(mat2, ...)
+ − 475 }
+ − 476
+ − 477 #' A function to draw clustered heatmaps.
+ − 478 #'
+ − 479 #' A function to draw clustered heatmaps where one has better control over some graphical
+ − 480 #' parameters such as cell size, etc.
+ − 481 #'
+ − 482 #' The function also allows to aggregate the rows using kmeans clustering. This is
+ − 483 #' advisable if number of rows is so big that R cannot handle their hierarchical
+ − 484 #' clustering anymore, roughly more than 1000. Instead of showing all the rows
+ − 485 #' separately one can cluster the rows in advance and show only the cluster centers.
+ − 486 #' The number of clusters can be tuned with parameter kmeans_k.
+ − 487 #'
+ − 488 #' @param mat numeric matrix of the values to be plotted.
+ − 489 #' @param color vector of colors used in heatmap.
+ − 490 #' @param kmeans_k the number of kmeans clusters to make, if we want to agggregate the
+ − 491 #' rows before drawing heatmap. If NA then the rows are not aggregated.
+ − 492 #' @param breaks a sequence of numbers that covers the range of values in mat and is one
+ − 493 #' element longer than color vector. Used for mapping values to colors. Useful, if needed
+ − 494 #' to map certain values to certain colors, to certain values. If value is NA then the
+ − 495 #' breaks are calculated automatically.
+ − 496 #' @param border_color color of cell borders on heatmap, use NA if no border should be
+ − 497 #' drawn.
+ − 498 #' @param cellwidth individual cell width in points. If left as NA, then the values
+ − 499 #' depend on the size of plotting window.
+ − 500 #' @param cellheight individual cell height in points. If left as NA,
+ − 501 #' then the values depend on the size of plotting window.
+ − 502 #' @param scale character indicating if the values should be centered and scaled in
+ − 503 #' either the row direction or the column direction, or none. Corresponding values are
+ − 504 #' \code{"row"}, \code{"column"} and \code{"none"}
+ − 505 #' @param cluster_rows boolean values determining if rows should be clustered,
+ − 506 #' @param cluster_cols boolean values determining if columns should be clustered.
+ − 507 #' @param clustering_distance_rows distance measure used in clustering rows. Possible
+ − 508 #' values are \code{"correlation"} for Pearson correlation and all the distances
+ − 509 #' supported by \code{\link{dist}}, such as \code{"euclidean"}, etc. If the value is none
+ − 510 #' of the above it is assumed that a distance matrix is provided.
+ − 511 #' @param clustering_distance_cols distance measure used in clustering columns. Possible
+ − 512 #' values the same as for clustering_distance_rows.
+ − 513 #' @param clustering_method clustering method used. Accepts the same values as
+ − 514 #' \code{\link{hclust}}.
+ − 515 #' @param treeheight_row the height of a tree for rows, if these are clustered.
+ − 516 #' Default value 50 points.
+ − 517 #' @param treeheight_col the height of a tree for columns, if these are clustered.
+ − 518 #' Default value 50 points.
+ − 519 #' @param legend logical to determine if legend should be drawn or not.
+ − 520 #' @param legend_breaks vector of breakpoints for the legend.
+ − 521 #' @param legend_labels vector of labels for the \code{legend_breaks}.
+ − 522 #' @param annotation data frame that specifies the annotations shown on top of the
+ − 523 #' columns. Each row defines the features for a specific column. The columns in the data
+ − 524 #' and rows in the annotation are matched using corresponding row and column names. Note
+ − 525 #' that color schemes takes into account if variable is continuous or discrete.
+ − 526 #' @param annotation_colors list for specifying annotation track colors manually. It is
+ − 527 #' possible to define the colors for only some of the features. Check examples for
+ − 528 #' details.
+ − 529 #' @param annotation_legend boolean value showing if the legend for annotation tracks
+ − 530 #' should be drawn.
+ − 531 #' @param drop_levels logical to determine if unused levels are also shown in the legend
+ − 532 #' @param show_rownames boolean specifying if column names are be shown.
+ − 533 #' @param show_colnames boolean specifying if column names are be shown.
+ − 534 #' @param main the title of the plot
+ − 535 #' @param fontsize base fontsize for the plot
+ − 536 #' @param fontsize_row fontsize for rownames (Default: fontsize)
+ − 537 #' @param fontsize_col fontsize for colnames (Default: fontsize)
+ − 538 #' @param display_numbers logical determining if the numeric values are also printed to
+ − 539 #' the cells.
+ − 540 #' @param number_format format strings (C printf style) of the numbers shown in cells.
+ − 541 #' For example "\code{\%.2f}" shows 2 decimal places and "\code{\%.1e}" shows exponential
+ − 542 #' notation (see more in \code{\link{sprintf}}).
+ − 543 #' @param fontsize_number fontsize of the numbers displayed in cells
+ − 544 #' @param filename file path where to save the picture. Filetype is decided by
+ − 545 #' the extension in the path. Currently following formats are supported: png, pdf, tiff,
+ − 546 #' bmp, jpeg. Even if the plot does not fit into the plotting window, the file size is
+ − 547 #' calculated so that the plot would fit there, unless specified otherwise.
+ − 548 #' @param width manual option for determining the output file width in inches.
+ − 549 #' @param height manual option for determining the output file height in inches.
+ − 550 #' @param \dots graphical parameters for the text used in plot. Parameters passed to
+ − 551 #' \code{\link{grid.text}}, see \code{\link{gpar}}.
+ − 552 #'
+ − 553 #' @return
+ − 554 #' Invisibly a list of components
+ − 555 #' \itemize{
+ − 556 #' \item \code{tree_row} the clustering of rows as \code{\link{hclust}} object
+ − 557 #' \item \code{tree_col} the clustering of columns as \code{\link{hclust}} object
+ − 558 #' \item \code{kmeans} the kmeans clustering of rows if parameter \code{kmeans_k} was
+ − 559 #' specified
+ − 560 #' }
+ − 561 #'
+ − 562 #' @author Raivo Kolde <rkolde@@gmail.com>
+ − 563 #' @examples
+ − 564 #' # Generate some data
+ − 565 #' test = matrix(rnorm(200), 20, 10)
+ − 566 #' test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
+ − 567 #' test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
+ − 568 #' test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
+ − 569 #' colnames(test) = paste("Test", 1:10, sep = "")
+ − 570 #' rownames(test) = paste("Gene", 1:20, sep = "")
+ − 571 #'
+ − 572 #' # Draw heatmaps
+ − 573 #' pheatmap(test)
+ − 574 #' pheatmap(test, kmeans_k = 2)
+ − 575 #' pheatmap(test, scale = "row", clustering_distance_rows = "correlation")
+ − 576 #' pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
+ − 577 #' pheatmap(test, cluster_row = FALSE)
+ − 578 #' pheatmap(test, legend = FALSE)
+ − 579 #' pheatmap(test, display_numbers = TRUE)
+ − 580 #' pheatmap(test, display_numbers = TRUE, number_format = "%.1e")
+ − 581 #' pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0",
+ − 582 #' "1e-4", "1e-3", "1e-2", "1e-1", "1"))
+ − 583 #' pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
+ − 584 #' pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf")
+ − 585 #'
+ − 586 #'
+ − 587 #' # Generate column annotations
+ − 588 #' annotation = data.frame(Var1 = factor(1:10 %% 2 == 0,
+ − 589 #' labels = c("Class1", "Class2")), Var2 = 1:10)
+ − 590 #' annotation$Var1 = factor(annotation$Var1, levels = c("Class1", "Class2", "Class3"))
+ − 591 #' rownames(annotation) = paste("Test", 1:10, sep = "")
+ − 592 #'
+ − 593 #' pheatmap(test, annotation = annotation)
+ − 594 #' pheatmap(test, annotation = annotation, annotation_legend = FALSE)
+ − 595 #' pheatmap(test, annotation = annotation, annotation_legend = FALSE, drop_levels = FALSE)
+ − 596 #'
+ − 597 #' # Specify colors
+ − 598 #' Var1 = c("navy", "darkgreen")
+ − 599 #' names(Var1) = c("Class1", "Class2")
+ − 600 #' Var2 = c("lightgreen", "navy")
+ − 601 #'
+ − 602 #' ann_colors = list(Var1 = Var1, Var2 = Var2)
+ − 603 #'
+ − 604 #' pheatmap(test, annotation = annotation, annotation_colors = ann_colors, main = "Example")
+ − 605 #'
+ − 606 #' # Specifying clustering from distance matrix
+ − 607 #' drows = dist(test, method = "minkowski")
+ − 608 #' dcols = dist(t(test), method = "minkowski")
+ − 609 #' pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)
+ − 610 #'
+ − 611 #' @export
+ − 612 pheatmap_j = function(mat, color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100), kmeans_k = NA, breaks = NA, border_color = "grey60", border_width = 1, cellwidth = NA, cellheight = NA, scale = "none", cluster_rows = TRUE, cluster_cols = TRUE, clustering_distance_rows = "euclidean", clustering_distance_cols = "euclidean", clustering_method = "complete", treeheight_row = ifelse(cluster_rows, 50, 0), treeheight_col = ifelse(cluster_cols, 50, 0), legend = TRUE, legend_breaks = NA, legend_labels = NA, annotation = NA, annotation_colors = NA, annotation_legend = TRUE, drop_levels = TRUE, show_rownames = T, show_colnames = T, main = NA, fontsize = 10, fontsize_row = fontsize, fontsize_col = fontsize, display_numbers = F, number_format = "%.2f", fontsize_number = 0.8 * fontsize, filename = NA, width = NA, height = NA, ...){
+ − 613
+ − 614 # Preprocess matrix
+ − 615 mat = as.matrix(mat)
+ − 616 if(scale != "none"){
+ − 617 mat = scale_mat(mat, scale)
+ − 618 if(is.na(breaks)){
+ − 619 breaks = generate_breaks(mat, length(color), center = T)
+ − 620 }
+ − 621 }
+ − 622
+ − 623
+ − 624 # Kmeans
+ − 625 if(!is.na(kmeans_k)){
+ − 626 # Cluster data
+ − 627 km = kmeans(mat, kmeans_k, iter.max = 100)
+ − 628 mat = km$centers
+ − 629
+ − 630 # Compose rownames
+ − 631 t = table(km$cluster)
+ − 632 rownames(mat) = sprintf("cl%s_size_%d", names(t), t)
+ − 633 }
+ − 634 else{
+ − 635 km = NA
+ − 636 }
+ − 637
+ − 638 # Do clustering
+ − 639 if(cluster_rows){
+ − 640 tree_row = cluster_mat(mat, distance = clustering_distance_rows, method = clustering_method)
+ − 641 mat = mat[tree_row$order, , drop = FALSE]
+ − 642 }
+ − 643 else{
+ − 644 tree_row = NA
+ − 645 treeheight_row = 0
+ − 646 }
+ − 647
+ − 648 if(cluster_cols){
+ − 649 tree_col = cluster_mat(t(mat), distance = clustering_distance_cols, method = clustering_method)
+ − 650 mat = mat[, tree_col$order, drop = FALSE]
+ − 651 }
+ − 652 else{
+ − 653 tree_col = NA
+ − 654 treeheight_col = 0
+ − 655 }
+ − 656
+ − 657 # Format numbers to be displayed in cells
+ − 658 if(display_numbers){
+ − 659 fmat = matrix(sprintf(number_format, mat), nrow = nrow(mat), ncol = ncol(mat))
+ − 660 attr(fmat, "draw") = TRUE
+ − 661 }
+ − 662 else{
+ − 663 fmat = matrix(NA, nrow = nrow(mat), ncol = ncol(mat))
+ − 664 attr(fmat, "draw") = FALSE
+ − 665 }
+ − 666
+ − 667
+ − 668 # Colors and scales
+ − 669 if(!is.na(legend_breaks[1]) & !is.na(legend_labels[1])){
+ − 670 if(length(legend_breaks) != length(legend_labels)){
+ − 671 stop("Lengths of legend_breaks and legend_labels must be the same")
+ − 672 }
+ − 673 }
+ − 674
+ − 675
+ − 676 if(is.na(breaks[1])){
+ − 677 breaks = generate_breaks(as.vector(mat), length(color))
+ − 678 }
+ − 679 if (legend & is.na(legend_breaks[1])) {
+ − 680 legend = grid.pretty(range(as.vector(breaks)))
+ − 681 names(legend) = legend
+ − 682 }
+ − 683 else if(legend & !is.na(legend_breaks[1])){
+ − 684 legend = legend_breaks[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)]
+ − 685
+ − 686 if(!is.na(legend_labels[1])){
+ − 687 legend_labels = legend_labels[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)]
+ − 688 names(legend) = legend_labels
+ − 689 }
+ − 690 else{
+ − 691 names(legend) = legend
+ − 692 }
+ − 693 }
+ − 694 else {
+ − 695 legend = NA
+ − 696 }
+ − 697 mat = scale_colours(mat, col = color, breaks = breaks)
+ − 698
+ − 699 # Preparing annotation colors
+ − 700 if(!is.na(annotation[[1]][1])){
+ − 701 annotation = annotation[colnames(mat), , drop = F]
+ − 702 annotation_colors = generate_annotation_colours(annotation, annotation_colors, drop = drop_levels)
+ − 703 }
+ − 704
+ − 705 if(!show_rownames){
+ − 706 rownames(mat) = NULL
+ − 707 }
+ − 708
+ − 709 if(!show_colnames){
+ − 710 colnames(mat) = NULL
+ − 711 }
+ − 712
+ − 713 # Draw heatmap
+ − 714 heatmap_motor(mat, border_color = border_color, border_width = border_width, cellwidth = cellwidth, cellheight = cellheight, treeheight_col = treeheight_col, treeheight_row = treeheight_row, tree_col = tree_col, tree_row = tree_row, filename = filename, width = width, height = height, breaks = breaks, color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number, ...)
+ − 715
+ − 716 invisible(list(tree_row = tree_row, tree_col = tree_col, kmeans = km))
+ − 717 }
+ − 718
+ − 719