Mercurial > repos > bornea > dotplot_runner
view Dotplot_Release/Step4_biclustering.R @ 5:dc2aed283637 draft
Uploaded
author | bornea |
---|---|
date | Fri, 29 Jan 2016 10:14:36 -0500 |
parents | dfa3436beb67 |
children |
line wrap: on
line source
#!/usr/bin/env Rscript args <- commandArgs(trailingOnly = TRUE) d = read.delim(args[1], header=T, sep="\t", as.is=T, row.names=1) clusters = read.delim("Clusters", header=T, sep="\t", as.is=T)[,-1] clusters = data.frame(Bait=colnames(clusters), Cluster=as.numeric(clusters[1,])) nested.clusters = read.delim("NestedClusters", header=F, sep="\t", as.is=T)[1:dim(d)[1],] nested.phi = read.delim("NestedMu", header=F, sep="\t", as.is=T)[1:dim(d)[1],] nested.phi2 = read.delim("NestedSigma2", header=F, sep="\t", as.is=T)[1:dim(d)[1],] mcmc = read.delim("MCMCparameters", header=F, sep="\t", as.is=T) ### distance between bait using phi (also reorder cluster names) ### report nested clusters with positive counts only ### rearrange rows and columns of the raw data matrix according to the back-tracking algorithm recursivePaste = function(x) { n = length(x) x = x[order(x)] y = x[1] if(n > 1) { for(i in 2:n) y = paste(y, x[i], sep="-") } y } calcDist = function(x, y) { if(length(x) != length(y)) stop("different length\n") else res = sum(abs(x-y)) res } #clusters, nested.clusters, nested.phi, d bcl = clusters pcl = nested.clusters phi = nested.phi phi2 = nested.phi2 dat = d ## bipartite graph make.graphlet = function(b,p,s) { g = NULL g$b = b g$p = p g$s = as.numeric(s) g } make.hub = function(b,p) { g = NULL g$b = b g$p = p g } jaccard = function(x,y) { j = length(intersect(x,y)) / length(union(x,y)) j } merge.graphlets = function(x, y) { g = NULL g$b = union(x$b, y$b) g$p = union(x$p, y$p) g$s1 = rep(0,length(g$p)) g$s2 = rep(0,length(g$p)) g$s1[match(x$p, g$p)] = x$s g$s2[match(y$p, g$p)] = y$s g$s = apply(cbind(g$s1, g$s2), 1, max) g } summarizeDP = function(bcl, pcl, phi, phi2, dat, hub.size=0.5, ...) { pcl = as.matrix(pcl) phi = as.matrix(phi) phi2 = as.matrix(phi2) dat = as.matrix(dat) rownames(phi) = rownames(dat) rownames(phi2) = rownames(dat) ubcl = unique(as.numeric(bcl$Cluster)) n = length(ubcl) pcl = pcl[,ubcl] phi = phi[,ubcl] phi2 = phi2[,ubcl] phi[phi < 0.05] = 0 bcl$Cluster = match(as.numeric(bcl$Cluster), ubcl) colnames(pcl) = colnames(phi) = colnames(phi2) = paste("CL", 1:n, sep="") ## remove non-reproducible mean values nprey = dim(dat)[1]; nbait = dim(dat)[2] preys = rownames(dat); baits = colnames(dat) n = length(unique(bcl$Cluster)) for(j in 1:n) { id = c(1:nbait)[bcl$Cluster == j] for(k in 1:nprey) { do.it = ifelse(mean(as.numeric(dat[k,id]) > 0) <= 0.5,TRUE,FALSE) if(do.it) { phi[k,j] = 0 } } } ## create bipartite graphs (graphlets) gr = NULL for(j in 1:n) { id = c(1:nbait)[bcl$Cluster == j] id2 = c(1:nprey)[phi[,j] > 0] gr[[j]] = make.graphlet(baits[id], preys[id2], phi[id2,j]) } ## intersecting preys between graphlets gr2 = NULL cur = 1 for(i in 1:n) { for(j in 1:n) { if(i != j) { combine = jaccard(gr[[i]]$p, gr[[j]]$p) >= 0.75 if(combine) { gr2[[cur]] = merge.graphlets(gr[[i]], gr[[j]]) cur = cur + 1 } } } } old.phi = phi phi = phi[, bcl$Cluster] phi2 = phi2[, bcl$Cluster] ## find hub preys proceed = apply(old.phi, 1, function(x) sum(x>0) >= 2) h = NULL cur = 1 for(k in 1:nprey) { if(proceed[k]) { id = as.numeric(phi[k,]) > 0 if(mean(id) >= hub.size) { h[[cur]] = make.hub(baits[id], preys[k]) cur = cur + 1 } } } nhub = cur - 1 res = list(data=dat, baitCL=bcl, phi=phi, phi2=phi2, gr = gr, gr2 = gr2, hub = h) res } res = summarizeDP(clusters, nested.clusters, nested.phi, nested.phi2, d) write.table(res$baitCL[order(res$baitCL$Cluster),], "baitClusters", sep="\t", quote=F, row.names=F) write.table(res$data, "clusteredData", sep="\t", quote=F) ##### SOFT library(gplots) tmpd = res$data tmpm = res$phi colnames(tmpm) = paste(colnames(res$data), colnames(tmpm)) pdf("estimated.pdf", height=25, width=8) my.hclust<-hclust(dist(tmpd)) my.dend<-as.dendrogram(my.hclust) tmp.res = heatmap.2(tmpm, Rowv=my.dend, Colv=T, trace="n", col=rev(heat.colors(10)), breaks=seq(0,.5,by=0.05), margins=c(10,10), keysize=0.8, cexRow=0.4) #tmp.res = heatmap.2(tmpm, Rowv=T, Colv=T, trace="n", col=rev(heat.colors(10)), breaks=seq(0,.5,by=0.05), margins=c(10,10), keysize=0.8, cexRow=0.4) tmpd = tmpd[rev(tmp.res$rowInd),tmp.res$colInd] write.table(tmpd, "clustered_matrix.txt", sep="\t", quote=F) heatmap.2(tmpd, Rowv=F, Colv=F, trace="n", col=rev(heat.colors(10)), breaks=seq(0,.5,by=0.05), margins=c(10,10), keysize=0.8, cexRow=0.4) dev.off() ### Statistical Plots dd = dist(1-cor((res$phi), method="pearson")) dend = as.dendrogram(hclust(dd, "ave")) #plot(dend) pdf("bait2bait.pdf") tmp = res$phi colnames(tmp) = paste(colnames(res$phi), res$baitCL$Bait, sep="_") ###dd = cor(tmp[,-26]) ### This line is only for Chris' data (one bait has all zeros in the estimated parameters) dd = cor(tmp) ### This line is only for Chris' data (one bait has all zeros in the estimated parameters) write.table(dd, "bait2bait_matrix.txt", sep="\t", quote=F) heatmap.2(as.matrix(dd), trace="n", breaks=seq(-1,1,by=0.1), col=(greenred(20)), cexRow=0.7, cexCol=0.7) dev.off() tmp = mcmc[,2] ymax = max(tmp) ymin = min(tmp) pdf("stats.pdf", height=12, width=12) plot(mcmc[mcmc[,4]=="G",3], type="s", xlab="Iterations", ylab="Number of Clusters", main="") plot(mcmc[,2], type="l", xlab="Iterations", ylab="Log-Likelihood", main="", ylim=c(ymin,ymax)) dev.off()