3
|
1 #!/usr/bin/env Rscript
|
|
2
|
|
3 args <- commandArgs(trailingOnly = TRUE)
|
|
4
|
|
5 library('latticeExtra')
|
|
6 library('colorRamps')
|
|
7
|
|
8 data.file <- read.table("SC_data.txt", sep="\t", header=TRUE, row.names=1) ### import spectral count data
|
|
9 data.file2 <- read.table("FDR_data.txt", sep="\t", header=TRUE, row.names=1) ### import FDR count data
|
|
10 data.file3 <- read.table("clustered_matrix.txt", sep="\t", header=TRUE, row.names=1) ### import clustered matrix
|
|
11 data.file4 <- scan("singletons.txt", what="", sep="\n", strip.white=T) ### import singleton data
|
|
12
|
|
13 #setting parameters
|
|
14
|
|
15 Sfirst=as.numeric(args[1]) #first FDR cutoff
|
|
16 Ssecond=as.numeric(args[2]) #second FDR cutoff
|
|
17 maxp=as.integer(args[3]) #maximum value for a spectral count
|
|
18
|
|
19 #calculate column and row lengths
|
|
20
|
|
21 #determine bait and prey ordering
|
|
22
|
|
23 bait_levels=names(data.file3)
|
|
24 prey_levels=c(rownames(data.file3),data.file4)
|
|
25
|
|
26 x_ord=factor(row.names(data.file),levels=prey_levels)
|
|
27 y_ord=factor(names(data.file),levels=bait_levels)
|
|
28
|
|
29 df<-data.frame(y=rep(y_ord,nrow(data.file))
|
|
30 ,x=rep(x_ord, each=ncol(data.file))
|
|
31 ,z1=as.vector(t(data.file)) # Circle color
|
|
32 ,z2=as.vector(t(data.file/apply(data.file,1,max))) # Circle size
|
|
33 ,z3=as.vector(t(data.file2)) # FDR
|
|
34 )
|
|
35
|
|
36 df$z1[df$z1>maxp] <- maxp #maximum value for spectral count
|
|
37 df$z2[df$z2==0] <- NA
|
|
38 df$z3[df$z3>Ssecond] <- 0.05*maxp
|
|
39 df$z3[df$z3<=Ssecond & df$z3>Sfirst] <- 0.5*maxp
|
|
40 df$z3[df$z3<=Sfirst] <- 1*maxp
|
|
41 df$z4 <- df$z1
|
|
42 df$z4[df$z4==0] <- 0
|
|
43 df$z4[df$z4>0] <- 2.5
|
|
44
|
|
45 # The labeling for the colorkey
|
|
46
|
|
47 labelat = c(0, maxp)
|
|
48 labeltext = c(0, maxp)
|
|
49
|
|
50 # color scheme to use
|
|
51
|
|
52 nmb.colors<-maxp
|
|
53 z.colors<-grey(rev(seq(0,0.9,0.9/nmb.colors))) #grayscale color scale
|
|
54
|
|
55 #plot
|
|
56
|
|
57 pl <- levelplot(z1~x*y, data=df
|
|
58 ,col.regions =z.colors #terrain.colors(100)
|
|
59 ,scales = list(x = list(rot = 90), y=list(cex=0.8), tck=0) # rotates X,Y labels and changes scale
|
|
60 ,colorkey = FALSE
|
|
61 ,xlab="Prey", ylab="Bait"
|
|
62 ,panel=function(x,y,z,...,col.regions){
|
|
63 print(x)
|
|
64 z.c<-df$z1[ (df$x %in% as.character(x)) & (df$y %in% y)]
|
|
65 z.2<-df$z2[ (df$x %in% as.character(x)) & (df$y %in% y)]
|
|
66 z.3<-df$z3
|
|
67 z.4<-df$z4
|
|
68 panel.xyplot(x,y
|
|
69 ,as.table=TRUE
|
|
70 ,pch=21 # point type to use (circles in this case)
|
|
71 ,cex=((z.2-min(z.2,na.rm=TRUE))/(max(z.2,na.rm=TRUE)-min(z.2,na.rm=TRUE)))*3 #circle size
|
|
72 ,fill=z.colors[floor((z.c-min(z.c,na.rm=TRUE))*nmb.colors/(max(z.c,na.rm=TRUE)-min(z.c,na.rm=TRUE)))+1] # circle colors
|
|
73 ,col=z.colors[1+z.3] # border colors
|
|
74 ,lex=z.4 #border thickness
|
|
75 )
|
|
76 }
|
|
77 #,main="Fold change" # graph main title
|
|
78 )
|
|
79 if(ncol(data.file) > 4) ht=3.5+(0.36*((ncol(data.file)-1)-4)) else ht=3.5
|
|
80 if(nrow(data.file) > 20) wd=8.25+(0.29*(nrow(data.file)-20)) else wd=5+(0.28*(nrow(data.file)-10))
|
|
81 pdf("dotplot.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2)
|
|
82 print(pl)
|
|
83 dev.off()
|