3
+ − 1 #!/usr/bin/env Rscript
+ − 2
+ − 3 args <- commandArgs(trailingOnly = TRUE)
+ − 4
+ − 5 pheatmapj_loc <- paste(args[6],"pheatmap_j.R",sep="/")
+ − 6 heatmap2j_loc <- paste(args[6],"heatmap_2j.R",sep="/")
+ − 7
+ − 8 library('latticeExtra')
+ − 9 library('RColorBrewer')
+ − 10 library('grid')
+ − 11 library(reshape2)
+ − 12 library('gplots')
+ − 13 library('gtools')
+ − 14 source(pheatmapj_loc)
+ − 15 source(heatmap2j_loc)
+ − 16
+ − 17 data.file <- read.table("SC_data.txt", sep="\t", header=TRUE, row.names=1) ### import spectral count data
+ − 18 data.file2 <- read.table("FDR_data.txt", sep="\t", header=TRUE, row.names=1) ### import FDR count data
+ − 19
+ − 20 #setting parameters
+ − 21
+ − 22 Sfirst=as.numeric(args[1]) #first FDR cutoff
+ − 23 Ssecond=as.numeric(args[2]) #second FDR cutoff
+ − 24 maxp=as.integer(args[3]) #maximum value for a spectral count
+ − 25 methd <- args[4]
+ − 26 dist_methd <- args[5]
+ − 27
+ − 28 #determine bait and prey ordering
+ − 29
+ − 30 dist_bait <- dist(as.matrix(t(data.file)), method= dist_methd) # "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"
+ − 31 dist_prey <- dist(as.matrix(data.file), method= dist_methd)
+ − 32
+ − 33 if(methd == "ward"){
+ − 34 dist_bait <- dist_bait^2 #comment out this line and the next if not using Ward's method of clustering
+ − 35 dist_prey <- dist_prey^2
+ − 36 }
+ − 37
+ − 38 hc_bait <- hclust(dist_bait, method = methd) # method = "average", "single", "complete", "ward", "mcquitty", "median" or "centroid"
+ − 39 hc_prey <- hclust(dist_prey, method = methd)
+ − 40
+ − 41 data.file = data.file[hc_prey$order, , drop = FALSE]
+ − 42 data.file = data.file[, hc_bait$order, drop = FALSE]
+ − 43 data.file2 = data.file2[hc_prey$order, , drop = FALSE]
+ − 44 data.file2 = data.file2[, hc_bait$order, drop = FALSE]
+ − 45
+ − 46 x_ord=factor(row.names(data.file), levels=row.names(data.file))
+ − 47 y_ord=factor(names(data.file[1,]), levels=names(data.file[1,]))
+ − 48
+ − 49 df<-data.frame(y=rep(y_ord, nrow(data.file))
+ − 50 ,x=rep(x_ord, each=ncol(data.file))
+ − 51 ,z1=as.vector(t(data.file)) # Circle color
+ − 52 ,z2=as.vector(t(data.file/apply(data.file,1,max))) # Circle size
+ − 53 ,z3=as.vector(t(data.file2)) # FDR
+ − 54 )
+ − 55
+ − 56 df$z1[df$z1>maxp] <- maxp #maximum value for spectral count
+ − 57 df$z2[df$z2==0] <- NA
+ − 58 df$z3[df$z3>Ssecond] <- 0.05*maxp
+ − 59 df$z3[df$z3<=Ssecond & df$z3>Sfirst] <- 0.5*maxp
+ − 60 df$z3[df$z3<=Sfirst] <- 1*maxp
+ − 61 df$z4 <- df$z1
+ − 62 df$z4[df$z4==0] <- 0
+ − 63 df$z4[df$z4>0] <- 2.5
+ − 64
+ − 65 # The labeling for the colorkey
+ − 66
+ − 67 labelat = c(0, maxp)
+ − 68 labeltext = c(0, maxp)
+ − 69
+ − 70 # color scheme to use
+ − 71
+ − 72 nmb.colors<-maxp
+ − 73 z.colors<-grey(rev(seq(0,0.9,0.9/nmb.colors))) #grayscale color scale
+ − 74
+ − 75 #plot dotplot
+ − 76
+ − 77 pl <- levelplot(z1~x*y, data=df
+ − 78 ,col.regions =z.colors #terrain.colors(100)
+ − 79 ,scales = list(x = list(rot = 90), y=list(cex=0.8), tck=0) # rotates X,Y labels and changes scale
+ − 80 ,colorkey = FALSE
+ − 81 #,colorkey = list(space="bottom", width=1.5, height=0.3, labels=list(at = labelat, labels = labeltext)) #put colorkey at top with my labeling scheme
+ − 82 ,xlab="Prey", ylab="Bait"
+ − 83 ,panel=function(x,y,z,...,col.regions){
+ − 84 print(x)
+ − 85 z.c<-df$z1[ (df$x %in% as.character(x)) & (df$y %in% y)]
+ − 86 z.2<-df$z2[ (df$x %in% as.character(x)) & (df$y %in% y)]
+ − 87 z.3<-df$z3
+ − 88 z.4<-df$z4
+ − 89 panel.xyplot(x,y
+ − 90 ,as.table=TRUE
+ − 91 ,pch=21 # point type to use (circles in this case)
+ − 92 ,cex=((z.2-min(z.2,na.rm=TRUE))/(max(z.2,na.rm=TRUE)-min(z.2,na.rm=TRUE)))*3 #circle size
+ − 93 ,fill=z.colors[floor((z.c-min(z.c,na.rm=TRUE))*nmb.colors/(max(z.c,na.rm=TRUE)-min(z.c,na.rm=TRUE)))+1] # circle colors
+ − 94 ,col=z.colors[1+z.3] # border colors
+ − 95 ,lex=z.4 #border thickness
+ − 96 )
+ − 97 }
+ − 98 #,main="Fold change" # graph main title
+ − 99 )
+ − 100 if(ncol(data.file) > 4) ht=3.5+(0.36*((ncol(data.file)-1)-4)) else ht=3.5
+ − 101 if(nrow(data.file) > 20) wd=8.25+(0.29*(nrow(data.file) -20)) else wd=5.7+(0.28*(nrow(data.file) -10))
+ − 102 pdf("dotplot.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2)
+ − 103 print(pl)
+ − 104 dev.off()
+ − 105
+ − 106 #plot bait vs prey heatmap
+ − 107
+ − 108 heat_df <- acast(df, y~x, value.var="z1")
+ − 109 heat_df <- apply(heat_df, 2, rev)
+ − 110
+ − 111 if(ncol(data.file) > 4) ht=3.5+(0.1*((ncol(data.file)-1)-4)) else ht=3.5
+ − 112 if(nrow(data.file) > 20) wd=8.25+(0.1*(nrow(data.file)-20)) else wd=5+(0.1*(nrow(data.file)-10))
+ − 113 pdf("heatmap_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2)
+ − 114 pheatmap_j(heat_df, scale="none", border_color="black", border_width = 0.1, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100))
+ − 115 dev.off()
+ − 116
+ − 117 pdf("heatmap_no_borders.pdf", onefile = FALSE, paper = "special", height = ht, width = wd, pointsize = 2)
+ − 118 pheatmap_j(heat_df, scale="none", border_color=NA, cluster_rows=FALSE, cluster_cols=FALSE, col=colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100))
+ − 119 dev.off()
+ − 120
+ − 121 #plot bait vs bait heatmap using dist matrix
+ − 122 dist_bait <- dist_bait/max(dist_bait)
+ − 123 pdf("bait2bait.pdf", onefile = FALSE, paper = "special")
+ − 124 heatmap_2j(as.matrix(dist_bait), trace="none", scale="none", density.info="none", col=rev(colorRampPalette(c("#FFFFFF", brewer.pal(9,"Blues")))(100)), xMin=0, xMax=1, margins=c(1.5*max(nchar(rownames(as.matrix(dist_bait)))),1.5*max(nchar(colnames(as.matrix(dist_bait))))))
+ − 125 dev.off()