Mercurial > repos > bornea > prohits_dotplot_generator
view Dotplot_Release/pheatmap_j.R @ 15:a6c081fcc0a9 draft
Uploaded
author | bornea |
---|---|
date | Wed, 16 Mar 2016 12:10:35 -0400 |
parents | bc752a05f16d |
children |
line wrap: on
line source
lo = function(rown, coln, nrow, ncol, cellheight = NA, cellwidth = NA, treeheight_col, treeheight_row, legend, annotation, annotation_colors, annotation_legend, main, fontsize, fontsize_row, fontsize_col, ...){ # Get height of colnames and length of rownames if(!is.null(coln[1])){ longest_coln = which.max(strwidth(coln, units = 'in')) gp = list(fontsize = fontsize_col, ...) coln_height = unit(1, "grobheight", textGrob(coln[longest_coln], rot = 90, gp = do.call(gpar, gp))) + unit(5, "bigpts") } else{ coln_height = unit(5, "bigpts") } if(!is.null(rown[1])){ longest_rown = which.max(strwidth(rown, units = 'in')) gp = list(fontsize = fontsize_row, ...) rown_width = unit(1, "grobwidth", textGrob(rown[longest_rown], gp = do.call(gpar, gp))) + unit(10, "bigpts") } else{ rown_width = unit(5, "bigpts") } gp = list(fontsize = fontsize, ...) # Legend position if(!is.na(legend[1])){ longest_break = which.max(nchar(names(legend))) longest_break = unit(1.1, "grobwidth", textGrob(as.character(names(legend))[longest_break], gp = do.call(gpar, gp))) title_length = unit(1.1, "grobwidth", textGrob("Scale", gp = gpar(fontface = "bold", ...))) legend_width = unit(12, "bigpts") + longest_break * 1.2 legend_width = max(title_length, legend_width) } else{ legend_width = unit(0, "bigpts") } # Set main title height if(is.na(main)){ main_height = unit(0, "npc") } else{ main_height = unit(1.5, "grobheight", textGrob(main, gp = gpar(fontsize = 1.3 * fontsize, ...))) } # Column annotations if(!is.na(annotation[[1]][1])){ # Column annotation height annot_height = unit(ncol(annotation) * (8 + 2) + 2, "bigpts") # Width of the correponding legend longest_ann = which.max(nchar(as.matrix(annotation))) annot_legend_width = unit(1.2, "grobwidth", textGrob(as.matrix(annotation)[longest_ann], gp = gpar(...))) + unit(12, "bigpts") if(!annotation_legend){ annot_legend_width = unit(0, "npc") } } else{ annot_height = unit(0, "bigpts") annot_legend_width = unit(0, "bigpts") } # Tree height treeheight_col = unit(treeheight_col, "bigpts") + unit(5, "bigpts") treeheight_row = unit(treeheight_row, "bigpts") + unit(5, "bigpts") # Set cell sizes if(is.na(cellwidth)){ matwidth = unit(1, "npc") - rown_width - legend_width - treeheight_row - annot_legend_width } else{ matwidth = unit(cellwidth * ncol, "bigpts") } if(is.na(cellheight)){ matheight = unit(1, "npc") - main_height - coln_height - treeheight_col - annot_height } else{ matheight = unit(cellheight * nrow, "bigpts") } # Produce layout() pushViewport(viewport(layout = grid.layout(nrow = 5, ncol = 5, widths = unit.c(treeheight_row, matwidth, rown_width, legend_width, annot_legend_width), heights = unit.c(main_height, treeheight_col, annot_height, matheight, coln_height)), gp = do.call(gpar, gp))) # Get cell dimensions pushViewport(vplayout(4, 2)) cellwidth = convertWidth(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / ncol cellheight = convertHeight(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / nrow upViewport() # Return minimal cell dimension in bigpts to decide if borders are drawn mindim = min(cellwidth, cellheight) return(mindim) } draw_dendrogram = function(hc, horizontal = T){ h = hc$height / max(hc$height) / 1.05 m = hc$merge o = hc$order n = length(o) m[m > 0] = n + m[m > 0] m[m < 0] = abs(m[m < 0]) dist = matrix(0, nrow = 2 * n - 1, ncol = 2, dimnames = list(NULL, c("x", "y"))) dist[1:n, 1] = 1 / n / 2 + (1 / n) * (match(1:n, o) - 1) for(i in 1:nrow(m)){ dist[n + i, 1] = (dist[m[i, 1], 1] + dist[m[i, 2], 1]) / 2 dist[n + i, 2] = h[i] } draw_connection = function(x1, x2, y1, y2, y){ grid.lines(x = c(x1, x1), y = c(y1, y)) grid.lines(x = c(x2, x2), y = c(y2, y)) grid.lines(x = c(x1, x2), y = c(y, y)) } if(horizontal){ for(i in 1:nrow(m)){ draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i]) } } else{ gr = rectGrob() pushViewport(viewport(height = unit(1, "grobwidth", gr), width = unit(1, "grobheight", gr), angle = 90)) dist[, 1] = 1 - dist[, 1] for(i in 1:nrow(m)){ draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i]) } upViewport() } } draw_matrix = function(matrix, border_color, border_width, fmat, fontsize_number){ n = nrow(matrix) m = ncol(matrix) x = (1:m)/m - 1/2/m y = 1 - ((1:n)/n - 1/2/n) for(i in 1:m){ grid.rect(x = x[i], y = y[1:n], width = 1/m, height = 1/n, gp = gpar(fill = matrix[,i], col = border_color, lwd = border_width)) if(attr(fmat, "draw")){ grid.text(x = x[i], y = y[1:n], label = fmat[, i], gp = gpar(col = "grey30", fontsize = fontsize_number)) } } } draw_colnames = function(coln, ...){ m = length(coln) x = (1:m)/m - 1/2/m grid.text(coln, x = x, y = unit(0.96, "npc"), just="right", rot = 90, gp = gpar(...)) } draw_rownames = function(rown, ...){ n = length(rown) y = 1 - ((1:n)/n - 1/2/n) grid.text(rown, x = unit(0.04, "npc"), y = y, vjust = 0.5, hjust = 0, gp = gpar(...)) } draw_legend = function(color, breaks, legend, ...){ height = min(unit(1, "npc"), unit(150, "bigpts")) pushViewport(viewport(x = 0, y = unit(1, "npc"), just = c(0, 1), height = height)) legend_pos = (legend - min(breaks)) / (max(breaks) - min(breaks)) breaks = (breaks - min(breaks)) / (max(breaks) - min(breaks)) h = breaks[-1] - breaks[-length(breaks)] grid.rect(x = 0, y = breaks[-length(breaks)], width = unit(10, "bigpts"), height = h, hjust = 0, vjust = 0, gp = gpar(fill = color, col = "#FFFFFF00")) grid.text(names(legend), x = unit(12, "bigpts"), y = legend_pos, hjust = 0, gp = gpar(...)) upViewport() } convert_annotations = function(annotation, annotation_colors){ new = annotation for(i in 1:ncol(annotation)){ a = annotation[, i] b = annotation_colors[[colnames(annotation)[i]]] if(is.character(a) | is.factor(a)){ a = as.character(a) if(length(setdiff(a, names(b))) > 0){ stop(sprintf("Factor levels on variable %s do not match with annotation_colors", colnames(annotation)[i])) } new[, i] = b[a] } else{ a = cut(a, breaks = 100) new[, i] = colorRampPalette(b)(100)[a] } } return(as.matrix(new)) } draw_annotations = function(converted_annotations, border_color, border_width){ n = ncol(converted_annotations) m = nrow(converted_annotations) x = (1:m)/m - 1/2/m y = cumsum(rep(8, n)) - 4 + cumsum(rep(2, n)) for(i in 1:m){ grid.rect(x = x[i], unit(y[1:n], "bigpts"), width = 1/m, height = unit(8, "bigpts"), gp = gpar(fill = converted_annotations[i, ], col = border_color, lwd = border_width)) } } draw_annotation_legend = function(annotation, annotation_colors, border_color, border_width, ...){ y = unit(1, "npc") text_height = unit(1, "grobheight", textGrob("FGH", gp = gpar(...))) for(i in names(annotation_colors)){ grid.text(i, x = 0, y = y, vjust = 1, hjust = 0, gp = gpar(fontface = "bold", ...)) y = y - 1.5 * text_height if(is.character(annotation[, i]) | is.factor(annotation[, i])){ for(j in 1:length(annotation_colors[[i]])){ grid.rect(x = unit(0, "npc"), y = y, hjust = 0, vjust = 1, height = text_height, width = text_height, gp = gpar(col = border_color, lwd = border_width, fill = annotation_colors[[i]][j])) grid.text(names(annotation_colors[[i]])[j], x = text_height * 1.3, y = y, hjust = 0, vjust = 1, gp = gpar(...)) y = y - 1.5 * text_height } } else{ yy = y - 4 * text_height + seq(0, 1, 0.02) * 4 * text_height h = 4 * text_height * 0.02 grid.rect(x = unit(0, "npc"), y = yy, hjust = 0, vjust = 1, height = h, width = text_height, gp = gpar(col = "#FFFFFF00", fill = colorRampPalette(annotation_colors[[i]])(50))) txt = rev(range(grid.pretty(range(annotation[, i], na.rm = TRUE)))) yy = y - c(0, 3) * text_height grid.text(txt, x = text_height * 1.3, y = yy, hjust = 0, vjust = 1, gp = gpar(...)) y = y - 4.5 * text_height } y = y - 1.5 * text_height } } draw_main = function(text, ...){ grid.text(text, gp = gpar(fontface = "bold", ...)) } vplayout = function(x, y){ return(viewport(layout.pos.row = x, layout.pos.col = y)) } heatmap_motor = function(matrix, border_color, border_width, cellwidth, cellheight, tree_col, tree_row, treeheight_col, treeheight_row, filename, width, height, breaks, color, legend, annotation, annotation_colors, annotation_legend, main, fontsize, fontsize_row, fontsize_col, fmat, fontsize_number, ...){ grid.newpage() # Set layout mindim = lo(coln = colnames(matrix), rown = rownames(matrix), nrow = nrow(matrix), ncol = ncol(matrix), cellwidth = cellwidth, cellheight = cellheight, treeheight_col = treeheight_col, treeheight_row = treeheight_row, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, ...) if(!is.na(filename)){ pushViewport(vplayout(1:5, 1:5)) if(is.na(height)){ height = convertHeight(unit(0:1, "npc"), "inches", valueOnly = T)[2] } if(is.na(width)){ width = convertWidth(unit(0:1, "npc"), "inches", valueOnly = T)[2] } # Get file type r = regexpr("\\.[a-zA-Z]*$", filename) if(r == -1) stop("Improper filename") ending = substr(filename, r + 1, r + attr(r, "match.length")) f = switch(ending, pdf = function(x, ...) pdf(x, ...), png = function(x, ...) png(x, units = "in", res = 300, ...), jpeg = function(x, ...) jpeg(x, units = "in", res = 300, ...), jpg = function(x, ...) jpeg(x, units = "in", res = 300, ...), tiff = function(x, ...) tiff(x, units = "in", res = 300, compression = "lzw", ...), bmp = function(x, ...) bmp(x, units = "in", res = 300, ...), stop("File type should be: pdf, png, bmp, jpg, tiff") ) # print(sprintf("height:%f width:%f", height, width)) f(filename, height = height, width = width) heatmap_motor(matrix, cellwidth = cellwidth, cellheight = cellheight, border_color = border_color, border_width = border_width, tree_col = tree_col, tree_row = tree_row, treeheight_col = treeheight_col, treeheight_row = treeheight_row, breaks = breaks, color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, filename = NA, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number, ...) dev.off() upViewport() return() } # Omit border color if cell size is too small if(mindim < 3) border_color = NA # Draw title if(!is.na(main)){ pushViewport(vplayout(1, 2)) draw_main(main, fontsize = 1.3 * fontsize, ...) upViewport() } # Draw tree for the columns if(!is.na(tree_col[[1]][1]) & treeheight_col != 0){ pushViewport(vplayout(2, 2)) draw_dendrogram(tree_col, horizontal = T) upViewport() } # Draw tree for the rows if(!is.na(tree_row[[1]][1]) & treeheight_row != 0){ pushViewport(vplayout(4, 1)) draw_dendrogram(tree_row, horizontal = F) upViewport() } # Draw matrix pushViewport(vplayout(4, 2)) draw_matrix(matrix, border_color, border_width, fmat, fontsize_number) upViewport() # Draw colnames if(length(colnames(matrix)) != 0){ pushViewport(vplayout(5, 2)) pars = list(colnames(matrix), fontsize = fontsize_col, ...) do.call(draw_colnames, pars) upViewport() } # Draw rownames if(length(rownames(matrix)) != 0){ pushViewport(vplayout(4, 3)) pars = list(rownames(matrix), fontsize = fontsize_row, ...) do.call(draw_rownames, pars) upViewport() } # Draw annotation tracks if(!is.na(annotation[[1]][1])){ pushViewport(vplayout(3, 2)) converted_annotation = convert_annotations(annotation, annotation_colors) draw_annotations(converted_annotation, border_color, border_width) upViewport() } # Draw annotation legend if(!is.na(annotation[[1]][1]) & annotation_legend){ if(length(rownames(matrix)) != 0){ pushViewport(vplayout(4:5, 5)) } else{ pushViewport(vplayout(3:5, 5)) } draw_annotation_legend(annotation, annotation_colors, border_color, border_width, fontsize = fontsize, ...) upViewport() } # Draw legend if(!is.na(legend[1])){ length(colnames(matrix)) if(length(rownames(matrix)) != 0){ pushViewport(vplayout(4:5, 4)) } else{ pushViewport(vplayout(3:5, 4)) } draw_legend(color, breaks, legend, fontsize = fontsize, ...) upViewport() } } generate_breaks = function(x, n, center = F){ if(center){ m = max(abs(c(min(x, na.rm = T), max(x, na.rm = T)))) res = seq(-m, m, length.out = n + 1) } else{ res = seq(min(x, na.rm = T), max(x, na.rm = T), length.out = n + 1) } return(res) } scale_vec_colours = function(x, col = rainbow(10), breaks = NA){ return(col[as.numeric(cut(x, breaks = breaks, include.lowest = T))]) } scale_colours = function(mat, col = rainbow(10), breaks = NA){ mat = as.matrix(mat) return(matrix(scale_vec_colours(as.vector(mat), col = col, breaks = breaks), nrow(mat), ncol(mat), dimnames = list(rownames(mat), colnames(mat)))) } cluster_mat = function(mat, distance, method){ if(!(method %in% c("ward", "single", "complete", "average", "mcquitty", "median", "centroid"))){ stop("clustering method has to one form the list: 'ward', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.") } if(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) & class(distance) != "dist"){ print(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) | class(distance) != "dist") stop("distance has to be a dissimilarity structure as produced by dist or one measure form the list: 'correlation', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'") } if(distance[1] == "correlation"){ d = as.dist(1 - cor(t(mat))) } else{ if(class(distance) == "dist"){ d = distance } else{ d = dist(mat, method = distance) } } return(hclust(d, method = method)) } scale_rows = function(x){ m = apply(x, 1, mean, na.rm = T) s = apply(x, 1, sd, na.rm = T) return((x - m) / s) } scale_mat = function(mat, scale){ if(!(scale %in% c("none", "row", "column"))){ stop("scale argument shoud take values: 'none', 'row' or 'column'") } mat = switch(scale, none = mat, row = scale_rows(mat), column = t(scale_rows(t(mat)))) return(mat) } generate_annotation_colours = function(annotation, annotation_colors, drop){ if(is.na(annotation_colors)[[1]][1]){ annotation_colors = list() } count = 0 for(i in 1:ncol(annotation)){ if(is.character(annotation[, i]) | is.factor(annotation[, i])){ if (is.factor(annotation[, i]) & !drop){ count = count + length(levels(annotation[, i])) } else{ count = count + length(unique(annotation[, i])) } } } factor_colors = hsv((seq(0, 1, length.out = count + 1)[-1] + 0.2)%%1, 0.7, 0.95) set.seed(3453) for(i in 1:ncol(annotation)){ if(!(colnames(annotation)[i] %in% names(annotation_colors))){ if(is.character(annotation[, i]) | is.factor(annotation[, i])){ n = length(unique(annotation[, i])) if (is.factor(annotation[, i]) & !drop){ n = length(levels(annotation[, i])) } ind = sample(1:length(factor_colors), n) annotation_colors[[colnames(annotation)[i]]] = factor_colors[ind] l = levels(as.factor(annotation[, i])) l = l[l %in% unique(annotation[, i])] if (is.factor(annotation[, i]) & !drop){ l = levels(annotation[, i]) } names(annotation_colors[[colnames(annotation)[i]]]) = l factor_colors = factor_colors[-ind] } else{ r = runif(1) annotation_colors[[colnames(annotation)[i]]] = hsv(r, c(0.1, 1), 1) } } } return(annotation_colors) } kmeans_pheatmap = function(mat, k = min(nrow(mat), 150), sd_limit = NA, ...){ # Filter data if(!is.na(sd_limit)){ s = apply(mat, 1, sd) mat = mat[s > sd_limit, ] } # Cluster data set.seed(1245678) km = kmeans(mat, k, iter.max = 100) mat2 = km$centers # Compose rownames t = table(km$cluster) rownames(mat2) = sprintf("cl%s_size_%d", names(t), t) # Draw heatmap pheatmap(mat2, ...) } #' A function to draw clustered heatmaps. #' #' A function to draw clustered heatmaps where one has better control over some graphical #' parameters such as cell size, etc. #' #' The function also allows to aggregate the rows using kmeans clustering. This is #' advisable if number of rows is so big that R cannot handle their hierarchical #' clustering anymore, roughly more than 1000. Instead of showing all the rows #' separately one can cluster the rows in advance and show only the cluster centers. #' The number of clusters can be tuned with parameter kmeans_k. #' #' @param mat numeric matrix of the values to be plotted. #' @param color vector of colors used in heatmap. #' @param kmeans_k the number of kmeans clusters to make, if we want to agggregate the #' rows before drawing heatmap. If NA then the rows are not aggregated. #' @param breaks a sequence of numbers that covers the range of values in mat and is one #' element longer than color vector. Used for mapping values to colors. Useful, if needed #' to map certain values to certain colors, to certain values. If value is NA then the #' breaks are calculated automatically. #' @param border_color color of cell borders on heatmap, use NA if no border should be #' drawn. #' @param cellwidth individual cell width in points. If left as NA, then the values #' depend on the size of plotting window. #' @param cellheight individual cell height in points. If left as NA, #' then the values depend on the size of plotting window. #' @param scale character indicating if the values should be centered and scaled in #' either the row direction or the column direction, or none. Corresponding values are #' \code{"row"}, \code{"column"} and \code{"none"} #' @param cluster_rows boolean values determining if rows should be clustered, #' @param cluster_cols boolean values determining if columns should be clustered. #' @param clustering_distance_rows distance measure used in clustering rows. Possible #' values are \code{"correlation"} for Pearson correlation and all the distances #' supported by \code{\link{dist}}, such as \code{"euclidean"}, etc. If the value is none #' of the above it is assumed that a distance matrix is provided. #' @param clustering_distance_cols distance measure used in clustering columns. Possible #' values the same as for clustering_distance_rows. #' @param clustering_method clustering method used. Accepts the same values as #' \code{\link{hclust}}. #' @param treeheight_row the height of a tree for rows, if these are clustered. #' Default value 50 points. #' @param treeheight_col the height of a tree for columns, if these are clustered. #' Default value 50 points. #' @param legend logical to determine if legend should be drawn or not. #' @param legend_breaks vector of breakpoints for the legend. #' @param legend_labels vector of labels for the \code{legend_breaks}. #' @param annotation data frame that specifies the annotations shown on top of the #' columns. Each row defines the features for a specific column. The columns in the data #' and rows in the annotation are matched using corresponding row and column names. Note #' that color schemes takes into account if variable is continuous or discrete. #' @param annotation_colors list for specifying annotation track colors manually. It is #' possible to define the colors for only some of the features. Check examples for #' details. #' @param annotation_legend boolean value showing if the legend for annotation tracks #' should be drawn. #' @param drop_levels logical to determine if unused levels are also shown in the legend #' @param show_rownames boolean specifying if column names are be shown. #' @param show_colnames boolean specifying if column names are be shown. #' @param main the title of the plot #' @param fontsize base fontsize for the plot #' @param fontsize_row fontsize for rownames (Default: fontsize) #' @param fontsize_col fontsize for colnames (Default: fontsize) #' @param display_numbers logical determining if the numeric values are also printed to #' the cells. #' @param number_format format strings (C printf style) of the numbers shown in cells. #' For example "\code{\%.2f}" shows 2 decimal places and "\code{\%.1e}" shows exponential #' notation (see more in \code{\link{sprintf}}). #' @param fontsize_number fontsize of the numbers displayed in cells #' @param filename file path where to save the picture. Filetype is decided by #' the extension in the path. Currently following formats are supported: png, pdf, tiff, #' bmp, jpeg. Even if the plot does not fit into the plotting window, the file size is #' calculated so that the plot would fit there, unless specified otherwise. #' @param width manual option for determining the output file width in inches. #' @param height manual option for determining the output file height in inches. #' @param \dots graphical parameters for the text used in plot. Parameters passed to #' \code{\link{grid.text}}, see \code{\link{gpar}}. #' #' @return #' Invisibly a list of components #' \itemize{ #' \item \code{tree_row} the clustering of rows as \code{\link{hclust}} object #' \item \code{tree_col} the clustering of columns as \code{\link{hclust}} object #' \item \code{kmeans} the kmeans clustering of rows if parameter \code{kmeans_k} was #' specified #' } #' #' @author Raivo Kolde <rkolde@@gmail.com> #' @examples #' # Generate some data #' test = matrix(rnorm(200), 20, 10) #' test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3 #' test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2 #' test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4 #' colnames(test) = paste("Test", 1:10, sep = "") #' rownames(test) = paste("Gene", 1:20, sep = "") #' #' # Draw heatmaps #' pheatmap(test) #' pheatmap(test, kmeans_k = 2) #' pheatmap(test, scale = "row", clustering_distance_rows = "correlation") #' pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50)) #' pheatmap(test, cluster_row = FALSE) #' pheatmap(test, legend = FALSE) #' pheatmap(test, display_numbers = TRUE) #' pheatmap(test, display_numbers = TRUE, number_format = "%.1e") #' pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0", #' "1e-4", "1e-3", "1e-2", "1e-1", "1")) #' pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap") #' pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf") #' #' #' # Generate column annotations #' annotation = data.frame(Var1 = factor(1:10 %% 2 == 0, #' labels = c("Class1", "Class2")), Var2 = 1:10) #' annotation$Var1 = factor(annotation$Var1, levels = c("Class1", "Class2", "Class3")) #' rownames(annotation) = paste("Test", 1:10, sep = "") #' #' pheatmap(test, annotation = annotation) #' pheatmap(test, annotation = annotation, annotation_legend = FALSE) #' pheatmap(test, annotation = annotation, annotation_legend = FALSE, drop_levels = FALSE) #' #' # Specify colors #' Var1 = c("navy", "darkgreen") #' names(Var1) = c("Class1", "Class2") #' Var2 = c("lightgreen", "navy") #' #' ann_colors = list(Var1 = Var1, Var2 = Var2) #' #' pheatmap(test, annotation = annotation, annotation_colors = ann_colors, main = "Example") #' #' # Specifying clustering from distance matrix #' drows = dist(test, method = "minkowski") #' dcols = dist(t(test), method = "minkowski") #' pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols) #' #' @export pheatmap_j = function(mat, color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100), kmeans_k = NA, breaks = NA, border_color = "grey60", border_width = 1, cellwidth = NA, cellheight = NA, scale = "none", cluster_rows = TRUE, cluster_cols = TRUE, clustering_distance_rows = "euclidean", clustering_distance_cols = "euclidean", clustering_method = "complete", treeheight_row = ifelse(cluster_rows, 50, 0), treeheight_col = ifelse(cluster_cols, 50, 0), legend = TRUE, legend_breaks = NA, legend_labels = NA, annotation = NA, annotation_colors = NA, annotation_legend = TRUE, drop_levels = TRUE, show_rownames = T, show_colnames = T, main = NA, fontsize = 10, fontsize_row = fontsize, fontsize_col = fontsize, display_numbers = F, number_format = "%.2f", fontsize_number = 0.8 * fontsize, filename = NA, width = NA, height = NA, ...){ # Preprocess matrix mat = as.matrix(mat) if(scale != "none"){ mat = scale_mat(mat, scale) if(is.na(breaks)){ breaks = generate_breaks(mat, length(color), center = T) } } # Kmeans if(!is.na(kmeans_k)){ # Cluster data km = kmeans(mat, kmeans_k, iter.max = 100) mat = km$centers # Compose rownames t = table(km$cluster) rownames(mat) = sprintf("cl%s_size_%d", names(t), t) } else{ km = NA } # Do clustering if(cluster_rows){ tree_row = cluster_mat(mat, distance = clustering_distance_rows, method = clustering_method) mat = mat[tree_row$order, , drop = FALSE] } else{ tree_row = NA treeheight_row = 0 } if(cluster_cols){ tree_col = cluster_mat(t(mat), distance = clustering_distance_cols, method = clustering_method) mat = mat[, tree_col$order, drop = FALSE] } else{ tree_col = NA treeheight_col = 0 } # Format numbers to be displayed in cells if(display_numbers){ fmat = matrix(sprintf(number_format, mat), nrow = nrow(mat), ncol = ncol(mat)) attr(fmat, "draw") = TRUE } else{ fmat = matrix(NA, nrow = nrow(mat), ncol = ncol(mat)) attr(fmat, "draw") = FALSE } # Colors and scales if(!is.na(legend_breaks[1]) & !is.na(legend_labels[1])){ if(length(legend_breaks) != length(legend_labels)){ stop("Lengths of legend_breaks and legend_labels must be the same") } } if(is.na(breaks[1])){ breaks = generate_breaks(as.vector(mat), length(color)) } if (legend & is.na(legend_breaks[1])) { legend = grid.pretty(range(as.vector(breaks))) names(legend) = legend } else if(legend & !is.na(legend_breaks[1])){ legend = legend_breaks[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)] if(!is.na(legend_labels[1])){ legend_labels = legend_labels[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)] names(legend) = legend_labels } else{ names(legend) = legend } } else { legend = NA } mat = scale_colours(mat, col = color, breaks = breaks) # Preparing annotation colors if(!is.na(annotation[[1]][1])){ annotation = annotation[colnames(mat), , drop = F] annotation_colors = generate_annotation_colours(annotation, annotation_colors, drop = drop_levels) } if(!show_rownames){ rownames(mat) = NULL } if(!show_colnames){ colnames(mat) = NULL } # Draw heatmap heatmap_motor(mat, border_color = border_color, border_width = border_width, cellwidth = cellwidth, cellheight = cellheight, treeheight_col = treeheight_col, treeheight_row = treeheight_row, tree_col = tree_col, tree_row = tree_row, filename = filename, width = width, height = height, breaks = breaks, color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors, annotation_legend = annotation_legend, main = main, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number, ...) invisible(list(tree_row = tree_row, tree_col = tree_col, kmeans = km)) }