0
|
1 # -*- coding: utf-8 -*-
|
|
2 """
|
|
3 Created on Thu Apr 14 16:58:05 2016
|
|
4
|
|
5 @author: brentkuenzi
|
|
6 """
|
|
7 ################################################################################
|
8
|
8 ## Dependencies ##
|
|
9 import urllib2
|
|
10 import sys
|
|
11 import numpy
|
|
12 import os
|
|
13 ################################################################################
|
0
|
14 # This program will read in a SAINT formatted 'prey.txt' file or a file
|
|
15 # containing a single column list of uniprot accessions (e.g. "P00533" or
|
|
16 # "EGFR_HUMAN")query the CRAPome database (v1.1), and return a file specifying
|
|
17 # the prevalence of each protein in the CRAPome.
|
|
18 ################################################################################
|
|
19 # Copyright (C) Brent Kuenzi.
|
|
20 # Permission is granted to copy, distribute and/or modify this document
|
|
21 # under the terms of the GNU Free Documentation License, Version 1.3
|
|
22 # or any later version published by the Free Software Foundation;
|
|
23 # with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
|
|
24 # A copy of the license is included in the section entitled "GNU
|
|
25 # Free Documentation License".
|
|
26 ################################################################################
|
|
27 ## REQUIRED INPUT ##
|
|
28 # 1) crappyData: Prey.txt or single column list of Uniprot accessions
|
|
29 crappyData = sys.argv[1] # Prey file or File with single column of accessions
|
|
30 # 2) Species: HUMAN or YEAST
|
|
31 species = sys.argv[2] # HUMAN or YEAST
|
|
32 db_path = sys.argv[4]
|
|
33 ################################################################################
|
|
34 ## Global Variables ##
|
|
35 if species == "HUMAN":
|
3
|
36 database = str(db_path) + "Human_CRAPome_v1-1.txt"
|
0
|
37 if species == "YEAST":
|
3
|
38 database = str(db_path) + "Yeast_CRAPome_v1-1.txt"
|
0
|
39 ################################################################################
|
|
40 ## CRAPomeQuery ##
|
|
41 class ReturnValue1(object):
|
|
42 def __init__(self, uniprot_acc, gene, swissprot):
|
|
43 self.up = uniprot_acc
|
|
44 self.gn = gene
|
|
45 self.sp = swissprot
|
|
46 def get_info(uniprot_accession_in): #get aa lengths and gene name
|
|
47 error = open('error proteins.txt', 'a+')
|
|
48 i=0
|
|
49 while i==0:
|
|
50 try:
|
|
51 data = urllib2.urlopen("http://www.uniprot.org/uniprot/" + uniprot_accession_in + ".fasta")
|
|
52 break
|
|
53 except urllib2.HTTPError, err:
|
|
54 i = i + 1
|
|
55 if i == 50:
|
|
56 sys.exit("More than 50 errors. Check your file or try again later.")
|
|
57 if err.code == 404:
|
|
58 error.write(uniprot_accession_in + '\t' + "Invalid URL. Check protein" + '\n')
|
|
59 seqlength = 'NA'
|
|
60 genename = 'NA'
|
|
61 return ReturnValue1(seqlength, genename)
|
|
62 elif err.code == 302:
|
|
63 sys.exit("Request timed out. Check connection and try again.")
|
|
64 else:
|
|
65 sys.exit("Uniprot had some other error")
|
|
66 lines = data.readlines()
|
|
67 header = lines[0]
|
|
68 lst = header.split('|')
|
|
69 lst2 = lst[2].split(' ')
|
|
70 swissprot = lst2[0]
|
|
71 uniprot_acc = lst[1]
|
|
72 if lines == []:
|
|
73 error.write(uniprot_accession_in + '\t' + "Blank Fasta" + '\n')
|
|
74 error.close
|
|
75 uniprot_acc = 'NA'
|
|
76 genename = 'NA'
|
|
77 return ReturnValue1(uniprot_acc, genename, swissprot)
|
|
78 if lines != []:
|
|
79 seqlength = 0
|
|
80 header = lines[0]
|
|
81 if 'GN=' in header:
|
|
82 lst = header.split('GN=')
|
|
83 lst2 = lst[1].split(' ')
|
|
84 genename = lst2[0]
|
|
85 error.close
|
|
86 return ReturnValue1(uniprot_acc, genename, swissprot)
|
|
87 if 'GN=' not in header:
|
|
88 genename = 'NA'
|
|
89 error.close
|
|
90 return ReturnValue1(uniprot_acc, genename, swissprot)
|
|
91 def readtab(infile): # read in tab-delim text
|
|
92 with open(infile,'r') as x:
|
|
93 output = []
|
|
94 for line in x:
|
|
95 line = line.strip()
|
|
96 temp = line.split('\t')
|
|
97 output.append(temp)
|
|
98 return output
|
|
99 def crapome(infile): # Query CRAPome
|
|
100 data = readtab(infile)
|
|
101 crapome = readtab(database)
|
|
102 filt = []
|
|
103 for i in data: # Filter CRAPome database on our data
|
|
104 flag = 0 # is protein in CRAPome?
|
|
105 ac_flag = 0 # is it _SPECIES or not
|
|
106 unique = 0 # only take first ID in CRAPome
|
|
107 if "_"+species in i[0]:
|
|
108 ac = i[0]
|
|
109 else:
|
|
110 ac = get_info(i[0]).sp # query swissprot if not _SPECIES
|
|
111 ac_flag +=1
|
|
112 for j in crapome:
|
|
113 if ac == j[2]:
|
|
114 if ac_flag == 0: # if _SPECIES
|
|
115 if unique == 0:
|
|
116 filt.append(j)
|
|
117 flag+=1
|
|
118 unique+=1
|
|
119 if ac_flag != 0: # if not _SPECIES
|
|
120 if unique == 0:
|
|
121 unique+=1
|
|
122 j[2] = i[0] # change to user input
|
|
123 filt.append(j)
|
|
124 flag +=1
|
|
125 if flag == 0: # if protein is not present in CRAPome database then add it
|
14
|
126 filt.append(["\t", "\t", i[0], "Invalid identifier / gene not available"])
|
0
|
127 total = 0 # Experiment counter
|
|
128 query = []
|
|
129 for i in filt: # Create CRAPome file as list
|
|
130 temp=[]
|
|
131 if len(i) > 5:
|
|
132 cnt=0
|
|
133 temp.append(i[2]) # append accession
|
|
134 temp.append(i[0]) # append gene name
|
|
135 ave = []
|
|
136 total = len(i[3:]) # calculate total experiments
|
13
|
137 for j in i[3:]:
|
0
|
138 if j != '0':
|
|
139 ave.append(int(j)) # calculate Ave.SC on only experiments with ID
|
|
140 cnt+=1
|
|
141 temp.append(str(cnt) + " / "+str(total)) # format ratio
|
|
142 if ave != []:
|
|
143 temp.append(str(round(numpy.mean(ave),1))) # calculate Ave.SC
|
|
144 temp.append(str(max(ave))) # calculate Max.SC
|
|
145 else:
|
|
146 temp.append(0) # add 0 if has not been ID'd in CRAPome
|
|
147 temp.append(0) # add 0 if has not been ID'd in CRAPome
|
|
148 else:
|
|
149 temp.append(i[2]) # append accession
|
|
150 temp.append(i[3])
|
14
|
151 temp.append("\t")
|
|
152 temp.append("\t")
|
|
153 temp.append("\t")
|
0
|
154 query.append(temp) # final query results
|
|
155
|
|
156 header = ["User Input","Mapped Gene Symbol","Num of Expt. (found/total)","Ave SC","Max SC"]
|
|
157 with open("Crappy Data.txt","wt") as x: # write file
|
|
158 x.write("\t".join(header) + "\n")
|
|
159 for i in query:
|
|
160 x.write("\t".join(i) + "\n")
|
|
161 if __name__ == '__main__':
|
|
162 crapome(crappyData)
|
|
163
|
|
164 os.rename("Crappy Data.txt", sys.argv[3])
|
|
165 ## END ## |