comparison bubbles_v9_NSAF_natural_log.R @ 3:463a0ca33d7f draft

Uploaded
author bornea
date Tue, 17 Nov 2015 10:57:45 -0500
parents
children 8eb1dd926f6e
comparison
equal deleted inserted replaced
2:d3be2b91e8d4 3:463a0ca33d7f
1 rm(list=ls())
2 ###################################################################################################
3 # R-code: Multi-bubble graph generation from SAINTexpress output
4 # Author: Brent Kuenzi
5 ###################################################################################################
6 library(dplyr); library(tidyr); library(ggplot2)
7 ###################################################################################################
8 ### Run program ###
9
10 ## REQUIRED INPUT ##
11 # 1) listfile: SAINTexpress generated "list.txt" file
12 # 2) preyfile: SAINT pre-processing generated "prey.txt" file used to run SAINTexpress
13 ## OPTIONAL INPUT ##
14 # 3) crapome: raw output from crapome Workflow 1 query (http://www.crapome.org)
15 # 4) color: bubble color (default = "red")
16 # - color= "crapome": color bubbles based on Crapome(%)
17 # - Also recognizes any color within R's built-in colors() vector
18 # 5) label: Adds gene name labels to bubbles within the "zoomed in" graphs (default = FALSE)
19 # 6) cutoff: Saintscore cutoff to be assigned for filtering the "zoomed in" graphs (default = 0.8)
20 ###################################################################################################
21 main <- function(listfile, preyfile , crapome=FALSE, color="red", label=FALSE, cutoff=0.8, type="SC", inc_file = "None", exc_file = "None" ) {
22 cutoff_check(cutoff)
23 listfile <- list_type(listfile, inc_file, exc_file)
24 if(type == "SC") {
25 df <- merge_files_sc(listfile, preyfile, crapome)
26 }
27 if(type == "MQ") {
28 df <- merge_files_mq(listfile, preyfile, crapome)
29 }
30 bubble_NSAF(df,color)
31 bubble_SAINT(df,color)
32 bubble_zoom_SAINT(df, color, label, cutoff)
33 bubble_zoom_NSAF(df, color, label, cutoff)
34 write.table(df,"output.txt",sep="\t",quote=FALSE, row.names=FALSE)
35 }
36
37 list_type <- function(df, inc_file, exc_file) {
38 Saint <- read.delim(df, stringsAsFactors=FALSE)
39 if (inc_file != "None") {
40 if (exc_file == "None"){
41 inc_prots <- read.delim(inc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE)
42 print(inc_prots[,1])
43 print(Saint$Prey)
44 filtered_df = subset(Saint, Saint$Prey == inc_prots[,1])
45 }
46 else {
47 inc_prots <- read.delim(inc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE)
48 exc_prots <- read.delim(exc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE)
49 filtered_df = subset(Saint, Saint$Prey == inc_prots[,1])
50 filtered_df = subset(filtered_df, filtered_df$Prey != exc_prots[,1])
51 }
52 }
53 else if (exc_file != "None") {
54 exc_prots <- read.delim(exc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE)
55 filtered_df = subset(Saint, Saint$Prey != exc_prots[,1])
56 }
57 else {
58 filtered_df = Saint
59 }
60 return(filtered_df)
61
62 }
63 ###################################################################################################
64 # Merge input files and caculate Crapome(%) and NSAF for each protein for each bait
65 ###################################################################################################
66 merge_files_mq <- function(SAINT, prey_DF, crapome=FALSE) {
67 #SAINT <- read.table(SAINT_DF, sep='\t', header=TRUE)
68 prey <- read.table(prey_DF, sep='\t', header=FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene")
69 DF <- merge(SAINT,prey)
70 DF$SpecSum <- log2(DF$SpecSum)
71
72 if(crapome!=FALSE) {
73 crapome <- read.table(crapome, sep='\t', header=TRUE)
74 colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC")
75 DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL;
76 DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL #remove unnecessary columns
77 DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) #replace blank values with 0 / 1
78 DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") #split into 2 columns
79 DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) #calculate crapome %
80 }
81 DF$SAF <- DF$AvgSpec / DF$Length
82 DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF))
83 DF$NSAF = DF2$NSAF
84 return(DF)
85 }
86
87 merge_files_sc <- function(SAINT, prey_DF, crapome=FALSE) {
88 #SAINT <- read.table(SAINT_DF, sep='\t', header=TRUE)
89 prey <- read.table(prey_DF, sep='\t', header=FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene")
90 DF <- merge(SAINT,prey)
91
92 if(crapome!=FALSE) {
93 crapome <- read.table(crapome, sep='\t', header=TRUE)
94 colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC")
95 DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL;
96 DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL #remove unnecessary columns
97 DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) #replace blank values with 0 / 1
98 DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") #split into 2 columns
99 DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) #calculate crapome %
100 }
101 DF$SAF <- DF$AvgSpec / DF$Length
102 DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF))
103 DF$NSAF = DF2$NSAF
104 return(DF)
105 }
106 ###################################################################################################
107 # Plot all proteins for each bait by x=ln(NSAF), y=Log2(FoldChange)
108 ###################################################################################################
109 bubble_NSAF <- function(data, color) {
110 if(color=="crapome") {
111 a <- subset(data, CrapomePCT <80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait))
112 b <- subset(data, CrapomePCT>=80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait))
113 p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + scale_size(range=c(1,10)) +
114 geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a)
115 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} # multiple graphs if multiple baits
116 p <- p + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) +
117 scale_colour_gradient(limits=c(80, 100), low="tan", high="red") +
118 labs(colour="CRAPome Probability \nof Specific Interaction (%)", x="ln(NSAF)") +
119 geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b)
120 return(ggsave(p, width=8,height=4,filename = "bubble_NSAF.png"))
121 }
122 if(color != "crapome") {
123 p <- qplot(x=log(NSAF), y=log2(FoldChange), data=data, colour=I(color),size=SpecSum) + scale_size(range=c(1,10)) +
124 geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=data) + # add bubble outlines
125 labs(x="ln(NSAF)")
126 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")}
127 return(ggsave(p, width=8,height=4,filename = "bubble_NSAF.png"))
128 }
129 }
130 ###################################################################################################
131 # Plot all proteins for each bait by x=Saintscore, y=Log2(FoldChange)
132 ###################################################################################################
133 bubble_SAINT <- function(data, color) {
134 if(color=="crapome") {
135 a <- subset(data, CrapomePCT <80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) #filter on CRAPome
136 b <- subset(data, CrapomePCT >=80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait))
137 p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) +
138 scale_size(range=c(1,10)) + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a)
139 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")}
140 p <- p + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) +
141 scale_colour_gradient(limits=c(80, 100), low="tan", high="red") +
142 labs(colour="CRAPome Probability \nof Specific Interaction (%)") +
143 geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b)
144 return(ggsave(p, width=8,height=4,filename = "bubble_SAINT.png"))
145 }
146 if(color != "crapome") {
147 p <- qplot(x=SaintScore, y=log2(FoldChange), data=data, colour=I(color),size=SpecSum) +
148 scale_size(range=c(1,10)) + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=data)
149 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")}
150 return(ggsave(p, width=8,height=4,filename = "bubble_SAINT.png"))
151 }
152 }
153 ###################################################################################################
154 # Filter proteins on Saintscore cutoff and plot for each bait x=Saintscore, y=Log2(FoldChange)
155 ###################################################################################################
156 bubble_zoom_SAINT <- function(data, color, label=FALSE, cutoff=0.8) {
157 if(color=="crapome") {
158 a <- subset(data, CrapomePCT <80 & SaintScore>=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
159 b <- subset(data, CrapomePCT >=80 & SaintScore >=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
160 p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) +
161 scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score")+geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a)
162 if(label==TRUE & length(a$NSAF!=0)) {
163 p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black")
164 }
165 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")}
166 p <- p + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) +
167 scale_colour_gradient(limits=c(80, 100), low="tan", high="red") +
168 labs(colour="CRAPome Probability \nof Specific Interaction (%)") +
169 geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b)
170 if(label==TRUE & length(b$NSAF!=0)) {
171 p <- p + geom_text(data=b, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE)
172 }
173 return(ggsave(p, width=8,height=4,filename = "bubble_zoom_SAINT.png"))
174 }
175 if(color != "crapome") {
176 a <- subset(data, SaintScore>=cutoff, select = c(NSAF,SpecSum, FoldChange, SaintScore, Bait, PreyGene))
177 p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I(color),size=SpecSum) +
178 scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") +
179 geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a)
180 if(label==TRUE & length(a$NSAF!=0)) {
181 p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE)
182 }
183 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")}
184 return(ggsave(p, width=8,height=4,filename = "bubble_zoom_SAINT.png"))
185 }
186 }
187 ###################################################################################################
188 # Filter proteins on Saintscore cutoff and plot for each bait x=log(NSAF), y=Log2(FoldChange)
189 ###################################################################################################
190 bubble_zoom_NSAF <- function(data, color, label=FALSE, cutoff=0.8) {
191 if(color=="crapome") {
192 a <- subset(data, CrapomePCT <80 & SaintScore>=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
193 b <- subset(data, CrapomePCT >=80 & SaintScore >=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
194 p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) +
195 scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") +
196 geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a)
197 if(label==TRUE & length(a$NSAF!=0)) {
198 p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black")
199 }
200 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")}
201 p <- p + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) +
202 scale_colour_gradient(limits=c(80, 100), low="tan", high="red") +
203 labs(colour="CRAPome Probability \nof Specific Interaction (%)", x="ln(NSAF)") +
204 geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b)
205 if(label==TRUE & length(b$NSAF!=0)) {
206 p <- p + geom_text(data=b, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE)
207 }
208 return(ggsave(p, width=8,height=4,filename = "bubble_zoom_NSAF.png"))
209 }
210 if(color != "crapome") {
211 a <- subset(data, SaintScore>=cutoff, select = c(NSAF,SpecSum, FoldChange, SaintScore, Bait, PreyGene))
212 p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I(color), size=SpecSum) +
213 scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") +
214 geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) +
215 labs(x="ln(NSAF)")
216 if(label==TRUE & length(a$NSAF!=0)) {
217 p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE)
218 }
219 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")}
220 return(ggsave(p, width=8,height=4,filename = "bubble_zoom_NSAF.png"))
221 }
222 }
223 ###################################################################################################
224 # Check Saintscore cutoff and stop program if not between 0 and 1
225 ###################################################################################################
226 cutoff_check <- function(cutoff){
227 if( any(cutoff < 0 | cutoff > 1) ) stop('SAINT score cutoff not between 0 and 1. Please correct and try again')
228 }
229
230 #args <- commandArgs(trailingOnly = TRUE)
231 #main(args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9])
232
233 #main("test_list.txt", "preytest.txt", crapome="craptest.txt", color="crapome", label=TRUE)
234 #main("Crizo_list.txt", "prey_cr.txt", crapome = "crizo_crap.txt", color="crapome", label=TRUE, cutoff=0.7)
235 #main("test_list.txt", "preytest.txt", crapome=FALSE, color="magenta", label=FALSE, cutoff=1.1)