comparison bubbles_v9_NSAF_natural_log.R @ 25:ab602bbf4ac5 draft

Uploaded
author bornea
date Fri, 29 Jan 2016 09:33:58 -0500
parents
children
comparison
equal deleted inserted replaced
24:64b822045467 25:ab602bbf4ac5
1 rm(list = ls())
2 ###################################################################################################
3 # R-code: Multi-bubble graph generation from SAINTexpress output
4 # Author: Brent Kuenzi
5 ###################################################################################################
6 # This Script generates the bubble graphs based upon Saint output.
7 ###################################################################################################
8 # Copyright (C) Brent Kuenzi.
9 # Permission is granted to copy, distribute and/or modify this document
10 # under the terms of the GNU Free Documentation License, Version 1.3
11 # or any later version published by the Free Software Foundation;
12 # with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
13 # A copy of the license is included in the section entitled "GNU
14 # Free Documentation License".
15 ###################################################################################################
16 ## REQUIRED INPUT ##
17
18 # 1) listfile: SAINTexpress generated "list.txt" file
19 # 2) preyfile: SAINT pre-processing generated "prey.txt" file used to run SAINTexpress
20
21 ## OPTIONAL INPUT ##
22
23 # 3) crapome: raw output from crapome Workflow 1 query (http://www.crapome.org)
24 # 4) color: bubble color (default = "red")
25 # - color = "crapome": color bubbles based on Crapome(%)
26 # - Also recognizes any color within R's built-in colors() vector
27 # 5) label: Adds gene name labels to bubbles within the "zoomed in" graphs (default = FALSE)
28 # 6) cutoff: Saintscore cutoff to be assigned for filtering the "zoomed in" graphs (default = 0.8)
29 # 7) type: Specifies if the data is MaxQuant (MQ) or Scaffold (SC) data (default = "SC")
30 # 8) inc_file: Selects only the uniprot ids in the provided list (default ="None")
31 # 9) exc_file: Removes the proteins in the list (default = "None")
32 ###################################################################################################
33
34
35 ins_check_run <- function(){
36 if ('dplyr' %in% rownames(installed.packages())){}
37 else {
38 install.packages('dplyr', repos = 'http://cran.us.r-project.org')
39 }
40 if ('tidyr' %in% rownames(installed.packages())){}
41 else {
42 install.packages('tidyr', repos = 'http://cran.us.r-project.org')
43 }
44 if ('ggplot2' %in% rownames(installed.packages())){}
45 else {
46 install.packages('ggplot2', repos = 'http://cran.us.r-project.org')
47 }
48 }
49
50 ins_check_run()
51 library(dplyr); library(tidyr); library(ggplot2)
52
53
54 main <- function(listfile, preyfile, crapome = FALSE, color = "red", label = FALSE, cutoff = 0.8, type = "SC", inc_file = "None", exc_file = "None" ) {
55 cutoff_check(cutoff)
56 listfile <- list_type(listfile, inc_file, exc_file)
57 if(type == "SC") {
58 df <- merge_files_sc(listfile, preyfile, crapome)
59 }
60 if(type == "MQ") {
61 df <- merge_files_mq(listfile, preyfile, crapome)
62 }
63 bubble_NSAF(df, color)
64 bubble_SAINT(df, color)
65 bubble_zoom_SAINT(df, color, label, cutoff)
66 bubble_zoom_NSAF(df, color, label, cutoff)
67 write.table(df, "output.txt", sep = "\t", quote = FALSE, row.names = FALSE)
68 }
69 ###################################################################################################
70 # Include and Exclude list filtering
71 ###################################################################################################
72 list_type <- function(df, inc_file, exc_file) {
73 Saint <- read.delim(df, stringsAsFactors = FALSE)
74 if (inc_file != "None") {
75 if (exc_file == "None") {
76 inc_prots <- read.delim(inc_file, sep = '\t', header = FALSE, stringsAsFactors = FALSE)
77 print(inc_prots[, 1])
78 print(Saint$Prey)
79 filtered_df = subset(Saint, Saint$Prey == inc_prots[, 1])
80 }
81 else {
82 inc_prots <- read.delim(inc_file, sep = '\t', header = FALSE, stringsAsFactors = FALSE)
83 exc_prots <- read.delim(exc_file, sep = '\t', header = FALSE, stringsAsFactors = FALSE)
84 filtered_df = subset(Saint, Saint$Prey == inc_prots[, 1])
85 filtered_df = subset(filtered_df, filtered_df$Prey != exc_prots[, 1])
86 }
87 }
88 else if (exc_file != "None") {
89 exc_prots <- read.delim(exc_file, sep = '\t', header = FALSE, stringsAsFactors = FALSE)
90 filtered_df = subset(Saint, Saint$Prey != exc_prots[, 1])
91 }
92 else {
93 filtered_df = Saint
94 }
95 return(filtered_df)
96
97 }
98 ###################################################################################################
99 # Merge input files and caculate Crapome(%) and NSAF for each protein for each bait
100 ###################################################################################################
101 merge_files_mq <- function(SAINT, prey_DF, crapome = FALSE) {
102 #SAINT <- read.table(SAINT_DF, sep = '\t', header = TRUE)
103 #Some of these read.table()'s don't use stringsAsFactors = FALSE. Is this on purpose? Factors give rise to some really weird and unpredictable behavior; suggest always using stringsAsFactors = FALSE
104 prey <- read.table(prey_DF, sep = '\t', header = FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene")
105 DF <- merge(SAINT, prey)
106 DF$SpecSum <- log2(DF$SpecSum)
107
108 if(crapome != FALSE) {
109 crapome <- read.table(crapome, sep = '\t', header = TRUE)
110 colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC")
111 DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL;
112 DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL # Removes unnecessary columns.
113 DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) # Replace blank values with 0 / 1.
114 DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") # Split into 2 columns.
115 DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) # Calculate the crapome %.
116 }
117 DF$SAF <- DF$AvgSpec / DF$Length
118 DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF))
119 DF$NSAF = DF2$NSAF
120 return(DF)
121 }
122
123 merge_files_sc <- function(SAINT, prey_DF, crapome = FALSE) {
124 #SAINT <- read.table(SAINT_DF, sep = '\t', header = TRUE)
125 prey <- read.table(prey_DF, sep = '\t', header = FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene")
126 DF <- merge(SAINT, prey)
127
128 if(crapome != FALSE) {
129 crapome <- read.table(crapome, sep = '\t', header = TRUE)
130 colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC")
131 DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL;
132 DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL # Removes unnecessary columns.
133 DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) # Replace blank values with 0 / 1.
134 DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") # Split into 2 columns.
135 DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) # Calculate the crapome %.
136 }
137 DF$SAF <- DF$AvgSpec / DF$Length
138 DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF))
139 DF$NSAF = DF2$NSAF
140 return(DF)
141 }
142 ###################################################################################################
143 # Plot all proteins for each bait by x = ln(NSAF), y = Log2(FoldChange)
144 ###################################################################################################
145 bubble_NSAF <- function(data, color) {
146 if(color == "crapome") {
147 a <- subset(data, CrapomePCT < 80, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait))
148 b <- subset(data, CrapomePCT >= 80, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait))
149 p <- qplot(x = log(NSAF), y = log2(FoldChange), data = a, colour = I("tan"), size = SpecSum) + scale_size(range = c(1, 10)) +
150 geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = a)
151 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")} # multiple graphs if multiple baits
152 #The text says ln() which is log base e, but the code uses log base 10. Fix code or the axis label.
153 p <- p + geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum, color = CrapomePCT), data = b) +
154 scale_colour_gradient(limits = c(80, 100), low = "tan", high = "red") +
155 labs(colour = "CRAPome Probability \nof Specific Interaction (%)", x = "ln(NSAF)") +
156 geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = b)
157 return(ggsave(p, width = 8, height = 4, filename = "bubble_NSAF.png"))
158 }
159 if(color != "crapome") {
160 p <- qplot(x = log(NSAF), y = log2(FoldChange), data = data, colour = I(color), size = SpecSum) + scale_size(range = c(1, 10)) +
161 geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = data) + # add bubble outlines
162 labs(x = "ln(NSAF)")
163 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")}
164 return(ggsave(p, width = 8, height = 4, filename = "bubble_NSAF.png"))
165 }
166 }
167 ###################################################################################################
168 # Plot all proteins for each bait by x = Saintscore, y = Log2(FoldChange)
169 ###################################################################################################
170 bubble_SAINT <- function(data, color) {
171 if(color == "crapome") {
172 a <- subset(data, CrapomePCT < 80, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) #filter on CRAPome
173 b <- subset(data, CrapomePCT >= 80, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait))
174 p <- qplot(x = SaintScore, y = log2(FoldChange), data = a, colour = I("tan"), size = SpecSum) +
175 scale_size(range = c(1, 10)) + geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = a)
176 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")}
177 p <- p + geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum, color = CrapomePCT), data = b) +
178 scale_colour_gradient(limits = c(80, 100), low = "tan", high = "red") +
179 labs(colour = "CRAPome Probability \nof Specific Interaction (%)") +
180 geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = b)
181 return(ggsave(p, width = 8, height = 4, filename = "bubble_SAINT.png"))
182 }
183 if(color != "crapome") {
184 p <- qplot(x = SaintScore, y = log2(FoldChange), data = data, colour = I(color), size = SpecSum) +
185 scale_size(range = c(1, 10)) + geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = data)
186 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")}
187 return(ggsave(p, width = 8, height = 4, filename = "bubble_SAINT.png"))
188 }
189 }
190 ###################################################################################################
191 # Filter proteins on Saintscore cutoff and plot for each bait x = Saintscore, y = Log2(FoldChange)
192 ###################################################################################################
193 bubble_zoom_SAINT <- function(data, color, label = FALSE, cutoff = 0.8) {
194 if(color == "crapome") {
195 a <- subset(data, CrapomePCT < 80 & SaintScore >= cutoff, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
196 b <- subset(data, CrapomePCT >= 80 & SaintScore >= cutoff, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
197 p <- qplot(x = SaintScore, y = log2(FoldChange), data = a, colour = I("tan"), size = SpecSum) +
198 scale_size(range = c(1, 10)) + ggtitle("Filtered on SAINT score")+geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = a)
199 if(label == TRUE & length(a$NSAF != 0)) {
200 p <- p + geom_text(data = a, aes(label = PreyGene, size = 10, vjust = 0, hjust = 0), colour = "black")
201 }
202 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")}
203 p <- p + geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum, color = CrapomePCT), data = b) +
204 scale_colour_gradient(limits = c(80, 100), low = "tan", high = "red") +
205 labs(colour = "CRAPome Probability \nof Specific Interaction (%)") +
206 geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = b)
207 if(label == TRUE & length(b$NSAF != 0)) {
208 p <- p + geom_text(data = b, aes(label = PreyGene, size = 10, vjust = 0, hjust = 0), colour = "black", show_guide = FALSE)
209 }
210 return(ggsave(p, width = 8, height = 4, filename = "bubble_zoom_SAINT.png"))
211 }
212 if(color != "crapome") {
213 a <- subset(data, SaintScore >= cutoff, select = c(NSAF, SpecSum, FoldChange, SaintScore, Bait, PreyGene))
214 p <- qplot(x = SaintScore, y = log2(FoldChange), data = a, colour = I(color), size = SpecSum) +
215 scale_size(range = c(1, 10)) + ggtitle("Filtered on SAINT score") +
216 geom_point(aes(x = SaintScore, y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = a)
217 if(label == TRUE & length(a$NSAF != 0)) {
218 p <- p + geom_text(data = a, aes(label = PreyGene, size = 10, vjust = 0, hjust = 0), colour = "black", show_guide = FALSE)
219 }
220 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")}
221 return(ggsave(p, width = 8, height = 4, filename = "bubble_zoom_SAINT.png"))
222 }
223 }
224 ###################################################################################################
225 # Filter proteins on Saintscore cutoff and plot for each bait x = log(NSAF), y = Log2(FoldChange)
226 ###################################################################################################
227 bubble_zoom_NSAF <- function(data, color, label = FALSE, cutoff = 0.8) {
228 if(color == "crapome") {
229 a <- subset(data, CrapomePCT < 80 & SaintScore >= cutoff, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
230 b <- subset(data, CrapomePCT >= 80 & SaintScore >= cutoff, select = c(NSAF, SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene))
231 p <- qplot(x = log(NSAF), y = log2(FoldChange), data = a, colour = I("tan"), size = SpecSum) +
232 scale_size(range = c(1, 10)) + ggtitle("Filtered on SAINT score") +
233 geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = a)
234 if(label == TRUE & length(a$NSAF != 0)) {
235 p <- p + geom_text(data = a, aes(label = PreyGene, size = 10, vjust = 0, hjust = 0), colour = "black")
236 }
237 if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")}
238 p <- p + geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum, color = CrapomePCT), data = b) +
239 scale_colour_gradient(limits = c(80, 100), low = "tan", high = "red") +
240 labs(colour = "CRAPome Probability \nof Specific Interaction (%)", x = "ln(NSAF)") +
241 geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = b)
242 if(label == TRUE & length(b$NSAF != 0)) {
243 p <- p + geom_text(data = b, aes(label = PreyGene, size = 10, vjust = 0, hjust = 0), colour = "black", show_guide = FALSE)
244 }
245 return(ggsave(p, width = 8, height = 4, filename = "bubble_zoom_NSAF.png"))
246 }
247 if(color != "crapome") {
248 a <- subset(data, SaintScore >= cutoff, select = c(NSAF, SpecSum, FoldChange, SaintScore, Bait, PreyGene))
249 p <- qplot(x = log(NSAF), y = log2(FoldChange), data = a, colour = I(color), size = SpecSum) +
250 scale_size(range = c(1, 10)) + ggtitle("Filtered on SAINT score") +
251 geom_point(aes(x = log(NSAF), y = log2(FoldChange), size = SpecSum), colour = "black", shape = 21, data = a) +
252 labs(x = "ln(NSAF)")
253 if(label == TRUE & length(a$NSAF != 0)) {
254 p <- p + geom_text(data = a, aes(label = PreyGene, size = 10, vjust = 0, hjust = 0), colour = "black", show_guide = FALSE)
255 }
256 if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales = "free_y")}
257 return(ggsave(p, width = 8, height = 4, filename = "bubble_zoom_NSAF.png"))
258 }
259 }
260 ###################################################################################################
261 # Check Saintscore cutoff and stop program if not between 0 and 1
262 ###################################################################################################
263 cutoff_check <- function(cutoff){
264 if( any(cutoff < 0 | cutoff > 1) ) stop('SAINT score cutoff not between 0 and 1. Please correct and try again')
265 }
266
267 args <- commandArgs(trailingOnly = TRUE)
268 main(args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8], args[9])