Mercurial > repos > bornea > saint_bubblebeam
diff bubbles_v9_NSAF_natural_log.R @ 3:463a0ca33d7f draft
Uploaded
author | bornea |
---|---|
date | Tue, 17 Nov 2015 10:57:45 -0500 |
parents | |
children | 8eb1dd926f6e |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bubbles_v9_NSAF_natural_log.R Tue Nov 17 10:57:45 2015 -0500 @@ -0,0 +1,235 @@ +rm(list=ls()) +################################################################################################### +# R-code: Multi-bubble graph generation from SAINTexpress output +# Author: Brent Kuenzi +################################################################################################### +library(dplyr); library(tidyr); library(ggplot2) +################################################################################################### +### Run program ### + +## REQUIRED INPUT ## +# 1) listfile: SAINTexpress generated "list.txt" file +# 2) preyfile: SAINT pre-processing generated "prey.txt" file used to run SAINTexpress +## OPTIONAL INPUT ## +# 3) crapome: raw output from crapome Workflow 1 query (http://www.crapome.org) +# 4) color: bubble color (default = "red") +# - color= "crapome": color bubbles based on Crapome(%) +# - Also recognizes any color within R's built-in colors() vector +# 5) label: Adds gene name labels to bubbles within the "zoomed in" graphs (default = FALSE) +# 6) cutoff: Saintscore cutoff to be assigned for filtering the "zoomed in" graphs (default = 0.8) +################################################################################################### +main <- function(listfile, preyfile , crapome=FALSE, color="red", label=FALSE, cutoff=0.8, type="SC", inc_file = "None", exc_file = "None" ) { + cutoff_check(cutoff) + listfile <- list_type(listfile, inc_file, exc_file) + if(type == "SC") { + df <- merge_files_sc(listfile, preyfile, crapome) + } + if(type == "MQ") { + df <- merge_files_mq(listfile, preyfile, crapome) + } + bubble_NSAF(df,color) + bubble_SAINT(df,color) + bubble_zoom_SAINT(df, color, label, cutoff) + bubble_zoom_NSAF(df, color, label, cutoff) + write.table(df,"output.txt",sep="\t",quote=FALSE, row.names=FALSE) +} + +list_type <- function(df, inc_file, exc_file) { + Saint <- read.delim(df, stringsAsFactors=FALSE) + if (inc_file != "None") { + if (exc_file == "None"){ + inc_prots <- read.delim(inc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) + print(inc_prots[,1]) + print(Saint$Prey) + filtered_df = subset(Saint, Saint$Prey == inc_prots[,1]) + } + else { + inc_prots <- read.delim(inc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) + exc_prots <- read.delim(exc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) + filtered_df = subset(Saint, Saint$Prey == inc_prots[,1]) + filtered_df = subset(filtered_df, filtered_df$Prey != exc_prots[,1]) + } + } + else if (exc_file != "None") { + exc_prots <- read.delim(exc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) + filtered_df = subset(Saint, Saint$Prey != exc_prots[,1]) + } + else { + filtered_df = Saint + } + return(filtered_df) + +} +################################################################################################### +# Merge input files and caculate Crapome(%) and NSAF for each protein for each bait +################################################################################################### +merge_files_mq <- function(SAINT, prey_DF, crapome=FALSE) { + #SAINT <- read.table(SAINT_DF, sep='\t', header=TRUE) + prey <- read.table(prey_DF, sep='\t', header=FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene") + DF <- merge(SAINT,prey) + DF$SpecSum <- log2(DF$SpecSum) + + if(crapome!=FALSE) { + crapome <- read.table(crapome, sep='\t', header=TRUE) + colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC") + DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL; + DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL #remove unnecessary columns + DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) #replace blank values with 0 / 1 + DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") #split into 2 columns + DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) #calculate crapome % + } + DF$SAF <- DF$AvgSpec / DF$Length + DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF)) + DF$NSAF = DF2$NSAF + return(DF) +} + +merge_files_sc <- function(SAINT, prey_DF, crapome=FALSE) { + #SAINT <- read.table(SAINT_DF, sep='\t', header=TRUE) + prey <- read.table(prey_DF, sep='\t', header=FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene") + DF <- merge(SAINT,prey) + + if(crapome!=FALSE) { + crapome <- read.table(crapome, sep='\t', header=TRUE) + colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC") + DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL; + DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL #remove unnecessary columns + DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) #replace blank values with 0 / 1 + DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") #split into 2 columns + DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) #calculate crapome % + } + DF$SAF <- DF$AvgSpec / DF$Length + DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF)) + DF$NSAF = DF2$NSAF + return(DF) +} +################################################################################################### +# Plot all proteins for each bait by x=ln(NSAF), y=Log2(FoldChange) +################################################################################################### +bubble_NSAF <- function(data, color) { + if(color=="crapome") { + a <- subset(data, CrapomePCT <80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) + b <- subset(data, CrapomePCT>=80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) + p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + scale_size(range=c(1,10)) + + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) + if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} # multiple graphs if multiple baits + p <- p + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + + labs(colour="CRAPome Probability \nof Specific Interaction (%)", x="ln(NSAF)") + + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) + return(ggsave(p, width=8,height=4,filename = "bubble_NSAF.png")) + } + if(color != "crapome") { + p <- qplot(x=log(NSAF), y=log2(FoldChange), data=data, colour=I(color),size=SpecSum) + scale_size(range=c(1,10)) + + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=data) + # add bubble outlines + labs(x="ln(NSAF)") + if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} + return(ggsave(p, width=8,height=4,filename = "bubble_NSAF.png")) + } + } +################################################################################################### +# Plot all proteins for each bait by x=Saintscore, y=Log2(FoldChange) +################################################################################################### +bubble_SAINT <- function(data, color) { + if(color=="crapome") { + a <- subset(data, CrapomePCT <80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) #filter on CRAPome + b <- subset(data, CrapomePCT >=80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) + p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + + scale_size(range=c(1,10)) + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) + if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} + p <- p + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + + labs(colour="CRAPome Probability \nof Specific Interaction (%)") + + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) + return(ggsave(p, width=8,height=4,filename = "bubble_SAINT.png")) + } + if(color != "crapome") { + p <- qplot(x=SaintScore, y=log2(FoldChange), data=data, colour=I(color),size=SpecSum) + + scale_size(range=c(1,10)) + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=data) + if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} + return(ggsave(p, width=8,height=4,filename = "bubble_SAINT.png")) + } + } +################################################################################################### +# Filter proteins on Saintscore cutoff and plot for each bait x=Saintscore, y=Log2(FoldChange) +################################################################################################### +bubble_zoom_SAINT <- function(data, color, label=FALSE, cutoff=0.8) { + if(color=="crapome") { + a <- subset(data, CrapomePCT <80 & SaintScore>=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) + b <- subset(data, CrapomePCT >=80 & SaintScore >=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) + p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score")+geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) + if(label==TRUE & length(a$NSAF!=0)) { + p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black") + } + if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} + p <- p + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + + labs(colour="CRAPome Probability \nof Specific Interaction (%)") + + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) + if(label==TRUE & length(b$NSAF!=0)) { + p <- p + geom_text(data=b, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) + } + return(ggsave(p, width=8,height=4,filename = "bubble_zoom_SAINT.png")) + } + if(color != "crapome") { + a <- subset(data, SaintScore>=cutoff, select = c(NSAF,SpecSum, FoldChange, SaintScore, Bait, PreyGene)) + p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I(color),size=SpecSum) + + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") + + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) + if(label==TRUE & length(a$NSAF!=0)) { + p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) + } + if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} + return(ggsave(p, width=8,height=4,filename = "bubble_zoom_SAINT.png")) + } +} +################################################################################################### +# Filter proteins on Saintscore cutoff and plot for each bait x=log(NSAF), y=Log2(FoldChange) +################################################################################################### +bubble_zoom_NSAF <- function(data, color, label=FALSE, cutoff=0.8) { + if(color=="crapome") { + a <- subset(data, CrapomePCT <80 & SaintScore>=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) + b <- subset(data, CrapomePCT >=80 & SaintScore >=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) + p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") + + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) + if(label==TRUE & length(a$NSAF!=0)) { + p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black") + } + if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} + p <- p + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + + labs(colour="CRAPome Probability \nof Specific Interaction (%)", x="ln(NSAF)") + + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) + if(label==TRUE & length(b$NSAF!=0)) { + p <- p + geom_text(data=b, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) + } + return(ggsave(p, width=8,height=4,filename = "bubble_zoom_NSAF.png")) + } + if(color != "crapome") { + a <- subset(data, SaintScore>=cutoff, select = c(NSAF,SpecSum, FoldChange, SaintScore, Bait, PreyGene)) + p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I(color), size=SpecSum) + + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") + + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) + + labs(x="ln(NSAF)") + if(label==TRUE & length(a$NSAF!=0)) { + p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) + } + if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} + return(ggsave(p, width=8,height=4,filename = "bubble_zoom_NSAF.png")) + } +} +################################################################################################### +# Check Saintscore cutoff and stop program if not between 0 and 1 +################################################################################################### +cutoff_check <- function(cutoff){ + if( any(cutoff < 0 | cutoff > 1) ) stop('SAINT score cutoff not between 0 and 1. Please correct and try again') +} + +#args <- commandArgs(trailingOnly = TRUE) +#main(args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9]) + +#main("test_list.txt", "preytest.txt", crapome="craptest.txt", color="crapome", label=TRUE) +#main("Crizo_list.txt", "prey_cr.txt", crapome = "crizo_crap.txt", color="crapome", label=TRUE, cutoff=0.7) +#main("test_list.txt", "preytest.txt", crapome=FALSE, color="magenta", label=FALSE, cutoff=1.1) \ No newline at end of file