Mercurial > repos > bornea > saint_bubblebeam
view bubbles_v9_NSAF_natural_log.R @ 16:54102aee991e draft
Uploaded
author | bornea |
---|---|
date | Fri, 20 Nov 2015 11:10:04 -0500 |
parents | 7b797749e8c4 |
children |
line wrap: on
line source
rm(list=ls()) ################################################################################################### # R-code: Multi-bubble graph generation from SAINTexpress output # Author: Brent Kuenzi ################################################################################################### ins_check_run <- function(){ if ('dplyr' %in% rownames(installed.packages())){} else { install.packages('dplyr', repos='http://cran.us.r-project.org') } if ('tidyr' %in% rownames(installed.packages())){} else { install.packages('tidyr', repos='http://cran.us.r-project.org') } if ('ggplot2' %in% rownames(installed.packages())){} else { install.packages('ggplot2', repos='http://cran.us.r-project.org') } } ins_check_run() library(dplyr); library(tidyr); library(ggplot2) ################################################################################################### ### Run program ### ## REQUIRED INPUT ## # 1) listfile: SAINTexpress generated "list.txt" file # 2) preyfile: SAINT pre-processing generated "prey.txt" file used to run SAINTexpress ## OPTIONAL INPUT ## # 3) crapome: raw output from crapome Workflow 1 query (http://www.crapome.org) # 4) color: bubble color (default = "red") # - color= "crapome": color bubbles based on Crapome(%) # - Also recognizes any color within R's built-in colors() vector # 5) label: Adds gene name labels to bubbles within the "zoomed in" graphs (default = FALSE) # 6) cutoff: Saintscore cutoff to be assigned for filtering the "zoomed in" graphs (default = 0.8) ################################################################################################### main <- function(listfile, preyfile , crapome=FALSE, color="red", label=FALSE, cutoff=0.8, type="SC", inc_file = "None", exc_file = "None" ) { cutoff_check(cutoff) listfile <- list_type(listfile, inc_file, exc_file) if(type == "SC") { df <- merge_files_sc(listfile, preyfile, crapome) } if(type == "MQ") { df <- merge_files_mq(listfile, preyfile, crapome) } bubble_NSAF(df,color) bubble_SAINT(df,color) bubble_zoom_SAINT(df, color, label, cutoff) bubble_zoom_NSAF(df, color, label, cutoff) write.table(df,"output.txt",sep="\t",quote=FALSE, row.names=FALSE) } list_type <- function(df, inc_file, exc_file) { Saint <- read.delim(df, stringsAsFactors=FALSE) if (inc_file != "None") { if (exc_file == "None"){ inc_prots <- read.delim(inc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) print(inc_prots[,1]) print(Saint$Prey) filtered_df = subset(Saint, Saint$Prey == inc_prots[,1]) } else { inc_prots <- read.delim(inc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) exc_prots <- read.delim(exc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) filtered_df = subset(Saint, Saint$Prey == inc_prots[,1]) filtered_df = subset(filtered_df, filtered_df$Prey != exc_prots[,1]) } } else if (exc_file != "None") { exc_prots <- read.delim(exc_file, sep='\t', header=FALSE, stringsAsFactors=FALSE) filtered_df = subset(Saint, Saint$Prey != exc_prots[,1]) } else { filtered_df = Saint } return(filtered_df) } ################################################################################################### # Merge input files and caculate Crapome(%) and NSAF for each protein for each bait ################################################################################################### merge_files_mq <- function(SAINT, prey_DF, crapome=FALSE) { #SAINT <- read.table(SAINT_DF, sep='\t', header=TRUE) prey <- read.table(prey_DF, sep='\t', header=FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene") DF <- merge(SAINT,prey) DF$SpecSum <- log2(DF$SpecSum) if(crapome!=FALSE) { crapome <- read.table(crapome, sep='\t', header=TRUE) colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC") DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL; DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL #remove unnecessary columns DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) #replace blank values with 0 / 1 DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") #split into 2 columns DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) #calculate crapome % } DF$SAF <- DF$AvgSpec / DF$Length DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF)) DF$NSAF = DF2$NSAF return(DF) } merge_files_sc <- function(SAINT, prey_DF, crapome=FALSE) { #SAINT <- read.table(SAINT_DF, sep='\t', header=TRUE) prey <- read.table(prey_DF, sep='\t', header=FALSE); colnames(prey) <- c("Prey", "Length", "PreyGene") DF <- merge(SAINT,prey) if(crapome!=FALSE) { crapome <- read.table(crapome, sep='\t', header=TRUE) colnames(crapome) <- c("Prey", "Symbol", "Num.of.Exp", "Ave.SC", "Max.SC") DF1 <- merge(DF, crapome); as.character(DF1$Num.of.Exp); DF1$Symbol <- NULL; DF1$Ave.SC <- NULL; DF1$Max.SC <- NULL #remove unnecessary columns DF1$Num.of.Exp <- sub("^$", "0 / 1", DF1$Num.of.Exp ) #replace blank values with 0 / 1 DF <- DF1 %>% separate(Num.of.Exp, c("NumExp", "TotalExp"), " / ") #split into 2 columns DF$CrapomePCT <- 100 - (as.integer(DF$NumExp) / as.integer(DF$TotalExp) * 100) #calculate crapome % } DF$SAF <- DF$AvgSpec / DF$Length DF2 = DF %>% group_by(Bait) %>% mutate(NSAF = SAF/sum(SAF)) DF$NSAF = DF2$NSAF return(DF) } ################################################################################################### # Plot all proteins for each bait by x=ln(NSAF), y=Log2(FoldChange) ################################################################################################### bubble_NSAF <- function(data, color) { if(color=="crapome") { a <- subset(data, CrapomePCT <80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) b <- subset(data, CrapomePCT>=80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + scale_size(range=c(1,10)) + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} # multiple graphs if multiple baits p <- p + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + labs(colour="CRAPome Probability \nof Specific Interaction (%)", x="ln(NSAF)") + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) return(ggsave(p, width=8,height=4,filename = "bubble_NSAF.png")) } if(color != "crapome") { p <- qplot(x=log(NSAF), y=log2(FoldChange), data=data, colour=I(color),size=SpecSum) + scale_size(range=c(1,10)) + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=data) + # add bubble outlines labs(x="ln(NSAF)") if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} return(ggsave(p, width=8,height=4,filename = "bubble_NSAF.png")) } } ################################################################################################### # Plot all proteins for each bait by x=Saintscore, y=Log2(FoldChange) ################################################################################################### bubble_SAINT <- function(data, color) { if(color=="crapome") { a <- subset(data, CrapomePCT <80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) #filter on CRAPome b <- subset(data, CrapomePCT >=80, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait)) p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + scale_size(range=c(1,10)) + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} p <- p + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + labs(colour="CRAPome Probability \nof Specific Interaction (%)") + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) return(ggsave(p, width=8,height=4,filename = "bubble_SAINT.png")) } if(color != "crapome") { p <- qplot(x=SaintScore, y=log2(FoldChange), data=data, colour=I(color),size=SpecSum) + scale_size(range=c(1,10)) + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=data) if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} return(ggsave(p, width=8,height=4,filename = "bubble_SAINT.png")) } } ################################################################################################### # Filter proteins on Saintscore cutoff and plot for each bait x=Saintscore, y=Log2(FoldChange) ################################################################################################### bubble_zoom_SAINT <- function(data, color, label=FALSE, cutoff=0.8) { if(color=="crapome") { a <- subset(data, CrapomePCT <80 & SaintScore>=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) b <- subset(data, CrapomePCT >=80 & SaintScore >=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score")+geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) if(label==TRUE & length(a$NSAF!=0)) { p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black") } if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} p <- p + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + labs(colour="CRAPome Probability \nof Specific Interaction (%)") + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) if(label==TRUE & length(b$NSAF!=0)) { p <- p + geom_text(data=b, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) } return(ggsave(p, width=8,height=4,filename = "bubble_zoom_SAINT.png")) } if(color != "crapome") { a <- subset(data, SaintScore>=cutoff, select = c(NSAF,SpecSum, FoldChange, SaintScore, Bait, PreyGene)) p <- qplot(x=SaintScore, y=log2(FoldChange), data=a, colour=I(color),size=SpecSum) + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") + geom_point(aes(x=SaintScore,y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) if(label==TRUE & length(a$NSAF!=0)) { p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) } if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} return(ggsave(p, width=8,height=4,filename = "bubble_zoom_SAINT.png")) } } ################################################################################################### # Filter proteins on Saintscore cutoff and plot for each bait x=log(NSAF), y=Log2(FoldChange) ################################################################################################### bubble_zoom_NSAF <- function(data, color, label=FALSE, cutoff=0.8) { if(color=="crapome") { a <- subset(data, CrapomePCT <80 & SaintScore>=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) b <- subset(data, CrapomePCT >=80 & SaintScore >=cutoff, select = c(NSAF,SpecSum, CrapomePCT, FoldChange, SaintScore, Bait, PreyGene)) p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I("tan"),size=SpecSum) + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) if(label==TRUE & length(a$NSAF!=0)) { p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black") } if(length(levels(a$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} p <- p + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum, color=CrapomePCT), data=b) + scale_colour_gradient(limits=c(80, 100), low="tan", high="red") + labs(colour="CRAPome Probability \nof Specific Interaction (%)", x="ln(NSAF)") + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=b) if(label==TRUE & length(b$NSAF!=0)) { p <- p + geom_text(data=b, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) } return(ggsave(p, width=8,height=4,filename = "bubble_zoom_NSAF.png")) } if(color != "crapome") { a <- subset(data, SaintScore>=cutoff, select = c(NSAF,SpecSum, FoldChange, SaintScore, Bait, PreyGene)) p <- qplot(x=log(NSAF), y=log2(FoldChange), data=a, colour=I(color), size=SpecSum) + scale_size(range=c(1,10)) + ggtitle("Filtered on SAINT score") + geom_point(aes(x=log(NSAF),y=log2(FoldChange), size=SpecSum), colour="black", shape=21, data=a) + labs(x="ln(NSAF)") if(label==TRUE & length(a$NSAF!=0)) { p <- p + geom_text(data=a, aes(label=PreyGene, size=10, vjust=0, hjust=0),colour="black", show_guide=FALSE) } if(length(levels(data$Bait) > 1)) {p <- p + facet_wrap(~Bait, scales="free_y")} return(ggsave(p, width=8,height=4,filename = "bubble_zoom_NSAF.png")) } } ################################################################################################### # Check Saintscore cutoff and stop program if not between 0 and 1 ################################################################################################### cutoff_check <- function(cutoff){ if( any(cutoff < 0 | cutoff > 1) ) stop('SAINT score cutoff not between 0 and 1. Please correct and try again') } args <- commandArgs(trailingOnly = TRUE) main(args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9]) #main("test_list.txt", "preytest.txt", crapome="craptest.txt", color="crapome", label=TRUE) #main("Crizo_list.txt", "prey_cr.txt", crapome = "crizo_crap.txt", color="crapome", label=TRUE, cutoff=0.7) #main("test_list.txt", "preytest.txt", crapome=FALSE, color="magenta", label=FALSE, cutoff=1.1)