3
+ − 1 library(data.table)
+ − 2 library(affy)
+ − 3 library(stringr)
+ − 4 library(mygene)
+ − 5 library(VennDiagram)
+ − 6 #####
+ − 7 #data
+ − 8 main <- function(peptides_file) {
+ − 9 peptides_file = read.delim(peptides_file,header=TRUE,stringsAsFactors=FALSE,fill=TRUE)
+ − 10 peptides_txt = peptides_file
+ − 11 intensity_columns = names(peptides_txt[,str_detect(names(peptides_txt),"Intensity\\.*")]) #Pulls out all lines with Intensity in them.
+ − 12 intensity_columns = intensity_columns[2:length(intensity_columns)] #Removes the first column that does not have a bait.
+ − 13 peptides_txt_mapped = as.data.frame(map_peptides_proteins(peptides_txt)) #This function as below sets every line to a 1 to 1 intensity to each possible protein.
+ − 14 peptides_txt_mapped$Uniprot = str_extract(peptides_txt_mapped$mapped_protein, "[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}") #Pulls out just Uniprot id from the script.
+ − 15 peptides_txt_mapped = subset(peptides_txt_mapped,!is.na(Uniprot)) #removes reverse sequences and any that didn't match a uniprot accession
+ − 16 columns_comb = c("Uniprot", intensity_columns)
+ − 17 peptides_mapped_intensity = subset(peptides_txt_mapped, select = columns_comb) #Subsets out only the needed cloumns for Tukeys (Uniprot IDS and baited intensities)
+ − 18 swissprot_fasta = scan("/home/philip/galaxy/tools/Moffitt_Tools/uniprot_names.txt",what="character")
+ − 19 peptides_txt_mapped_log2 = peptides_mapped_intensity
+ − 20 # Takes the log2 of the intensities.
+ − 21 for (i in intensity_columns) {
+ − 22 peptides_txt_mapped_log2[,i] = log2(subset(peptides_txt_mapped_log2, select = i))
+ − 23 }
+ − 24 #get the minimum from each column while ignoring the -Inf; get the min of these mins for the global min; breaks when there's only one intensity column
+ − 25 global_min = min(apply(peptides_txt_mapped_log2[,2:ncol(peptides_txt_mapped_log2)],2,function(x) {
+ − 26 min(x[x != -Inf])
+ − 27 }))
+ − 28 peptides_txt_mapped_log2[peptides_txt_mapped_log2 == -Inf] <- 0
+ − 29 #uniprot accessions WITHOUT isoforms; it looks like only contaminants contain isoforms anyways
+ − 30 mapped_protein_uniprotonly = str_extract(peptides_txt_mapped_log2$Uniprot,"[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}")
+ − 31 mapped_protein_uniprot_accession = str_extract(peptides_txt_mapped_log2$Uniprot,"[OPQ][0-9][A-Z0-9]{3}[0-9](-[0-9]+)?|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}(-[0-9]+)?|[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}")
+ − 32 peptides_txt_mapped_log2$mapped_protein = mapped_protein_uniprotonly
+ − 33 # Runs the Tukey function returning completed table
+ − 34 peptides_txt_mapped_log2 = subset(peptides_txt_mapped_log2,mapped_protein %in% swissprot_fasta)
+ − 35 protein_intensities_tukeys = get_protein_values(peptides_txt_mapped_log2,intensity_columns)
+ − 36 protein_intensities_tukeys[protein_intensities_tukeys == 1] <- 0
+ − 37 write.table(protein_intensities_tukeys, "./tukeys_output.txt", row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t")
+ − 38
+ − 39 }
+ − 40
+ − 41 map_peptides_proteins = function(peptides_in) {
+ − 42 #reverse sequences are blank but have a razor protein indicating that they are reverse; exclude these for now
+ − 43 peptides_in = subset(peptides_in,peptides_in$Proteins != "")
+ − 44 results_list = list()
+ − 45 k = 1
+ − 46 for (i in 1:nrow(peptides_in)) {
+ − 47 protein_names = peptides_in[i,"Proteins"]
+ − 48 protein_names_split = unlist(strsplit(protein_names,";"))
+ − 49 for (j in 1:length(protein_names_split)) {
+ − 50 peptides_mapped_proteins = data.frame(peptides_in[i,],mapped_protein=protein_names_split[j],stringsAsFactors=FALSE)
+ − 51 results_list[[k]] = peptides_mapped_proteins
+ − 52 k = k+1
+ − 53
+ − 54 }
+ − 55 }
+ − 56 return(rbindlist(results_list))
+ − 57 }
+ − 58
+ − 59 get_protein_values = function(mapped_peptides_in,intensity_columns_list) {
+ − 60 unique_mapped_proteins_list = unique(mapped_peptides_in$mapped_protein) # Gets list of all peptides listed.
+ − 61 # Generates a blank data frame with clomns of Intensities and rows of Uniprots.
+ − 62 Tukeys_df = data.frame(mapped_protein = unique_mapped_proteins_list, stringsAsFactors = FALSE )
+ − 63 for (q in intensity_columns_list) {Tukeys_df[,q] = NA}
+ − 64 for (i in 1:length(unique_mapped_proteins_list)) {
+ − 65 mapped_peptides_unique_subset = subset(mapped_peptides_in, mapped_protein == unique_mapped_proteins_list[i])
+ − 66 #calculate Tukey's Biweight from library(affy); returns a single numeric
+ − 67 #results_list[[i]] = data.frame(Protein=unique_mapped_proteins_list[i],Peptides_per_protein=nrow(mapped_peptides_unique_subset))
+ − 68 for (j in intensity_columns_list) {
+ − 69 #Populates with new Tukeys values.
+ − 70 Tukeys_df[i,j] = 2^(tukey.biweight(mapped_peptides_unique_subset[,j]))
+ − 71 }
+ − 72 }
+ − 73 return(Tukeys_df)
+ − 74 }
+ − 75
+ − 76 args <- commandArgs(trailingOnly = TRUE)
+ − 77 main(args[1])