Mercurial > repos > bornea > saint_preproc
comparison pre_process_protein_name_set.R @ 31:cb56479f7aca draft
Uploaded
author | bornea |
---|---|
date | Thu, 28 Jan 2016 13:53:56 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
30:6f0ba5a968bc | 31:cb56479f7aca |
---|---|
1 ####################################################################################### | |
2 # R-code: Protein Name and Tukey's Normalization | |
3 # Author: Adam L Borne | |
4 # Contributers: Paul A Stewart, Brent Kuenzi | |
5 ####################################################################################### | |
6 # Assigns uniprot id from MaxQuant peptides file. Filters and normalizes the | |
7 # intensities of each proteins. Resulting in a one to one list of intensities to | |
8 # uniprot id. | |
9 ####################################################################################### | |
10 # Copyright (C) Adam L Borne. | |
11 # Permission is granted to copy, distribute and/or modify this document | |
12 # under the terms of the GNU Free Documentation License, Version 1.3 | |
13 # or any later version published by the Free Software Foundation; | |
14 # with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. | |
15 # A copy of the license is included in the section entitled "GNU | |
16 # Free Documentation License". | |
17 ####################################################################################### | |
18 ## REQUIRED INPUT ## | |
19 | |
20 # 1) peptides_file: MaxQuant peptides file. | |
21 ####################################################################################### | |
22 ins_check_run <- function() { | |
23 if ("affy" %in% rownames(installed.packages())){} | |
24 else { | |
25 source("https://bioconductor.org/biocLite.R") | |
26 biocLite(c('mygene','affy')) | |
27 } | |
28 if ('data.table' %in% rownames(installed.packages())){} | |
29 else { | |
30 install.packages('data.table', repos='http://cran.us.r-project.org') | |
31 } | |
32 if ('stringr' %in% rownames(installed.packages())){} | |
33 else { | |
34 install.packages('stringr', repos='http://cran.us.r-project.org') | |
35 } | |
36 if ('VennDiagram' %in% rownames(installed.packages())){} | |
37 else { | |
38 install.packages('VennDiagram', repos='http://cran.us.r-project.org') | |
39 } | |
40 } | |
41 | |
42 ins_check_run() | |
43 library(data.table) | |
44 library(affy) | |
45 library(stringr) | |
46 library(mygene) | |
47 library(VennDiagram) | |
48 ##### | |
49 #data | |
50 | |
51 #We should chat a bit more about using Tukey's and handling 0's/missing values with Brent. | |
52 #Ask me about some updates for doing a bit more filtering of TMT data. | |
53 | |
54 main <- function(peptides_file, db_path) { | |
55 peptides_file = read.delim(peptides_file,header=TRUE,stringsAsFactors=FALSE,fill=TRUE) | |
56 peptides_txt = peptides_file | |
57 intensity_columns = names(peptides_txt[,str_detect(names(peptides_txt),"Intensity\\.*")]) #Pulls out all lines with Intensity in them. | |
58 intensity_columns = intensity_columns[2:length(intensity_columns)] #Removes the first column that does not have a bait. | |
59 peptides_txt_mapped = as.data.frame(map_peptides_proteins(peptides_txt)) #This function as below sets every line to a 1 to 1 intensity to each possible protein. | |
60 peptides_txt_mapped$Uniprot = str_extract(peptides_txt_mapped$mapped_protein, "[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}") #Pulls out just Uniprot id from the script. | |
61 peptides_txt_mapped = subset(peptides_txt_mapped,!is.na(Uniprot)) #removes reverse sequences and any that didn't match a uniprot accession | |
62 columns_comb = c("Uniprot", intensity_columns) | |
63 peptides_mapped_intensity = subset(peptides_txt_mapped, select = columns_comb) #Subsets out only the needed cloumns for Tukeys (Uniprot IDS and baited intensities) | |
64 swissprot_fasta = scan(db_path, what="character") | |
65 peptides_txt_mapped_log2 = peptides_mapped_intensity | |
66 # Takes the log2 of the intensities. | |
67 for (i in intensity_columns) { | |
68 peptides_txt_mapped_log2[,i] = log2(subset(peptides_txt_mapped_log2, select = i)) | |
69 } | |
70 #get the minimum from each column while ignoring the -Inf; get the min of these mins for the global min; breaks when there's only one intensity column | |
71 global_min = min(apply(peptides_txt_mapped_log2[,2:ncol(peptides_txt_mapped_log2)],2,function(x) { | |
72 min(x[x != -Inf]) | |
73 })) | |
74 peptides_txt_mapped_log2[peptides_txt_mapped_log2 == -Inf] <- 0 | |
75 #uniprot accessions WITHOUT isoforms; it looks like only contaminants contain isoforms anyways | |
76 mapped_protein_uniprotonly = str_extract(peptides_txt_mapped_log2$Uniprot,"[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}") | |
77 mapped_protein_uniprot_accession = str_extract(peptides_txt_mapped_log2$Uniprot,"[OPQ][0-9][A-Z0-9]{3}[0-9](-[0-9]+)?|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}(-[0-9]+)?|[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}") | |
78 peptides_txt_mapped_log2$mapped_protein = mapped_protein_uniprotonly | |
79 # Runs the Tukey function returning completed table | |
80 peptides_txt_mapped_log2 = subset(peptides_txt_mapped_log2,mapped_protein %in% swissprot_fasta) | |
81 protein_intensities_tukeys = get_protein_values(peptides_txt_mapped_log2,intensity_columns) | |
82 protein_intensities_tukeys[protein_intensities_tukeys == 1] <- 0 | |
83 write.table(protein_intensities_tukeys, "./tukeys_output.txt", row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t") | |
84 | |
85 } | |
86 | |
87 map_peptides_proteins = function(peptides_in) { | |
88 #reverse sequences are blank but have a razor protein indicating that they are reverse; exclude these for now | |
89 peptides_in = subset(peptides_in,peptides_in$Proteins != "") | |
90 results_list = list() | |
91 k = 1 | |
92 for (i in 1:nrow(peptides_in)) { | |
93 protein_names = peptides_in[i,"Proteins"] | |
94 protein_names_split = unlist(strsplit(protein_names,";")) | |
95 for (j in 1:length(protein_names_split)) { | |
96 peptides_mapped_proteins = data.frame(peptides_in[i,],mapped_protein=protein_names_split[j],stringsAsFactors=FALSE) | |
97 results_list[[k]] = peptides_mapped_proteins | |
98 k = k+1 | |
99 | |
100 } | |
101 } | |
102 return(rbindlist(results_list)) | |
103 } | |
104 | |
105 get_protein_values = function(mapped_peptides_in,intensity_columns_list) { | |
106 unique_mapped_proteins_list = unique(mapped_peptides_in$mapped_protein) # Gets list of all peptides listed. | |
107 # Generates a blank data frame with clomns of Intensities and rows of Uniprots. | |
108 Tukeys_df = data.frame(mapped_protein = unique_mapped_proteins_list, stringsAsFactors = FALSE ) | |
109 for (q in intensity_columns_list) {Tukeys_df[,q] = NA} | |
110 for (i in 1:length(unique_mapped_proteins_list)) { | |
111 mapped_peptides_unique_subset = subset(mapped_peptides_in, mapped_protein == unique_mapped_proteins_list[i]) | |
112 #calculate Tukey's Biweight from library(affy); returns a single numeric | |
113 #results_list[[i]] = data.frame(Protein=unique_mapped_proteins_list[i],Peptides_per_protein=nrow(mapped_peptides_unique_subset)) | |
114 for (j in intensity_columns_list) { | |
115 #Populates with new Tukeys values. | |
116 Tukeys_df[i,j] = 2^(tukey.biweight(mapped_peptides_unique_subset[,j])) | |
117 } | |
118 } | |
119 return(Tukeys_df) | |
120 } | |
121 | |
122 | |
123 args <- commandArgs(trailingOnly = TRUE) | |
124 main(args[1], args[2]) |