Mercurial > repos > bornea > saint_preproc
diff SAINT_preprocessing_v6_mq_pep.py @ 28:5be5c9c81bda draft
Uploaded
author | bornea |
---|---|
date | Thu, 28 Jan 2016 13:53:14 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SAINT_preprocessing_v6_mq_pep.py Thu Jan 28 13:53:14 2016 -0500 @@ -0,0 +1,268 @@ +####################################################################################### +# Python-code: SAINT pre-processing from MaxQuant "Samples Report" output +# Author: Brent Kuenzi +####################################################################################### +# This program reads in a raw MaxQuant "Samples Report" output and a user generated +# bait file and autoformats it into prey and interaction files for SAINTexpress +# analysis +####################################################################################### +# Copyright (C) Brent Kuenzi. +# Permission is granted to copy, distribute and/or modify this document +# under the terms of the GNU Free Documentation License, Version 1.3 +# or any later version published by the Free Software Foundation; +# with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. +# A copy of the license is included in the section entitled "GNU +# Free Documentation License". +####################################################################################### +## REQUIRED INPUT ## + +# 1) infile: MaxQuant "Samples Report" output +# 2) baitfile: SAINT formatted bait file generated in Galaxy +# 3) fasta_db: fasta database for use (defaults to SwissProt_HUMAN_2014_08.fasta) +# 4) prey: Y or N for generating a prey file +# 5) make_bait: String of bait names, assignment, and test or control boolean +####################################################################################### + + +import sys +import os + + +mq_file = sys.argv[1] +ins_path = sys.argv[8] +names_path = str(ins_path) + r"uniprot_names.txt" +cmd = (r"Rscript "+ str(ins_path) +"pre_process_protein_name_set.R " + str(mq_file) + + " " + str(names_path)) +os.system(cmd) + +infile = "./tukeys_output.txt" +# The MaxQuant "Samples Report" output. +prey = sys.argv[2] +# Y or N boolean from Galaxy. +fasta_db = sys.argv[3] +if fasta_db == "None": + fasta_db = str(ins_path) + "SwissProt_HUMAN_2014_08.fasta" +make_bait = sys.argv[6] +bait_bool = sys.argv[9] + +def bait_create(baits, infile): + # Takes the Bait specified by the user and makes them into a Bait file and includes a + # check to make sure they are using valid baits. + baits = make_bait.split() + i = 0 + bait_file_tmp = open("bait.txt", "w") + order = [] + bait_cache = [] + while i < len(baits): + if baits[i+2] == "true": + T_C = "C" + else: + T_C = "T" + bait_line = baits[i] + "\t" + baits[i+1] + "\t" + T_C + "\n" + read_infile = open(infile, "r") + for input_line in read_infile : + input_line = input_line.replace("\"", "") + input_line = input_line.replace(r"Intensity.", "") + # R coerces "-" into "." changes them back and remove Intensity from the Bait names. + input_line = input_line.replace(r".", r"-") + temp = input_line.split() + if "mapped_protein" in str(temp): + if baits[i] in temp: + number_bait = temp.index(str(baits[i])) + number_bait = number_bait - 9 + bait_cache.append((number_bait, str(bait_line))) + # Locates the Bait names in the column names and then sets the Baits in the + # correct order in the cache thus the - 9 because the baits start at the 9th + # column. + else: + print "Error: bad bait " + str(baits[i]) + sys.exit() + else: + pass + i = i + 3 + # Writes cache to Bait file. + bait_cache.sort() + for line in bait_cache: + bait_file_tmp.write(line[1]) + + bait_file_tmp.close() + + +if bait_bool == 'false': + bait_create(make_bait, infile) + baitfile = "bait.txt" +else: + bait_temp_file = open(sys.argv[10], 'r') + bait_cache = bait_temp_file.readlines() + bait_file_tmp = open("bait.txt", "wr") + for line in bait_cache: + bait_file_tmp.write(line) + bait_file_tmp.close() + baitfile = "bait.txt" + + +class ReturnValue1(object): + def __init__(self, sequence, gene): + self.seqlength = sequence + self.genename = gene +class ReturnValue2(object): + def __init__(self, getdata, getproteins, getheader): + self.data = getdata + self.proteins = getproteins + self.header = getheader + + +def main(MaxQuant_input, make_bait): + #bait_check(baitfile, MaxQuant_input) + make_inter(MaxQuant_input) + if prey == 'true': + make_prey(MaxQuant_input) + no_error_inter(MaxQuant_input) + os.rename('prey.txt', sys.argv[5]) + elif prey == 'false': + if os.path.isfile('error proteins.txt') == True: + no_error_inter(MaxQuant_input) + pass + elif prey != 'true' or 'false': + sys.exit("Invalid Prey Argument: Y or N") + os.rename('inter.txt', sys.argv[4]) + os.rename("bait.txt", sys.argv[7]) + + +def get_info(uniprot_accession_in): + # Get aa lengths and gene name. + error = open('error proteins.txt', 'a+') + data = open(fasta_db, 'r') + data_lines = data.readlines() + db_len = len(data_lines) + seqlength = 0 + count = 0 + for data_line in data_lines: + if ">sp" in data_line: + if uniprot_accession_in == data_line.split("|")[1]: + match = count + 1 + if 'GN=' in data_line: + lst = data_line.split('GN=') + lst2 = lst[1].split(' ') + genename = lst2[0] + if 'GN=' not in data_line: + genename = 'NA' + while ">sp" not in data_lines[match]: + if match <= db_len: + seqlength = seqlength + len(data_lines[match].strip()) + match = match + 1 + else: + break + return ReturnValue1(seqlength, genename) + count = count + 1 + + + if seqlength == 0: + error.write(uniprot_accession_in + '\t' + "Uniprot not in Fasta" + '\n') + error.close + seqlength = 'NA' + genename = 'NA' + return ReturnValue1(seqlength, genename) + + +def readtab(infile): + with open(infile, 'r') as input_file: + # Read in tab-delim text file. + output = [] + for input_line in input_file: + input_line = input_line.strip() + temp = input_line.split('\t') + output.append(temp) + return output + + +def read_MaxQuant(MaxQuant_input): + # Get data, proteins and header from MaxQuant output. + dupes = readtab(MaxQuant_input) + header_start = 0 + header = dupes[header_start] + for var_MQ in header: + var_MQ = var_MQ.replace(r"\"", "") + var_MQ = var_MQ.replace(r"Intensity.", r"") + var_MQ = var_MQ.replace(r".", r"-") + data = dupes[header_start+1:len(dupes)] + # Cut off blank line and END OF FILE. + proteins = [] + for protein in data: + proteins.append(protein[0]) + return ReturnValue2(data, proteins, header) + + +def make_inter(MaxQuant_input): + bait = readtab(baitfile) + data = read_MaxQuant(MaxQuant_input).data + header = read_MaxQuant(MaxQuant_input).header + proteins = read_MaxQuant(MaxQuant_input).proteins + bait_index = [] + for bait_item in bait: + bait_index.append(header.index("mapped_protein") + 1) + # Find just the baits defined in bait file. + with open('inter.txt', 'w') as y: + a = 0; l = 0 + for bb in bait: + for lst in data: + y.write(header[bait_index[l]] + '\t' + bb[1] + '\t' + proteins[a] + '\t' + + lst[bait_index[l]] + '\n') + a += 1 + if a == len(proteins): + a = 0; l += 1 + + +def make_prey(MaxQuant_input): + proteins = read_MaxQuant(MaxQuant_input).proteins + output_file = open("prey.txt", 'w') + for a in proteins: + a = a.replace("\n", "") + # Remove \n for input into function. + a = a.replace("\r", "") + # Ditto for \r. + seq = get_info(a).seqlength + GN = get_info(a).genename + if seq != 'NA': + output_file.write(a+"\t"+str(seq)+ "\t" + str(GN) + "\n") + output_file.close() + + +def no_error_inter(MaxQuant_input): + # Remake inter file without protein errors from Uniprot. + err = readtab("error proteins.txt") + bait = readtab(baitfile) + data = read_MaxQuant(MaxQuant_input).data + header = read_MaxQuant(MaxQuant_input).header + header = [MQ_var.replace(r"\"", "") for MQ_var in header] + header = [MQ_var.replace(r"Intensity.", r"") for MQ_var in header] + header = [MQ_var.replace(r".", r"-") for MQ_var in header] + bait_index = [] + for bait_item in bait: + bait_index.append(header.index(bait_item[0])) + proteins = read_MaxQuant(MaxQuant_input).proteins + errors = [] + for e in err: + errors.append(e[0]) + with open('inter.txt', 'w') as input_file: + l = 0; a = 0 + for bb in bait: + for lst in data: + if proteins[a] not in errors: + input_file.write(header[bait_index[l]] + '\t' + bb[1] + '\t' + proteins[a] + '\t' + + lst[bait_index[l]] + '\n') + a += 1 + if a == len(proteins): + l += 1; a = 0 + + +def bait_check(bait, MaxQuant_input): + # Check that bait names share header titles. + bait_in = readtab(bait) + header = read_MaxQuant(MaxQuant_input).header + for bait in bait_in: + if bait[0] not in header: + sys.exit("Bait must share header titles with MaxQuant output") + +if __name__ == '__main__': + main(infile, make_bait)