comparison pre_process_protein_name_set.R @ 3:945f600f34cb draft

Uploaded
author bornea
date Tue, 15 Mar 2016 15:59:16 -0400
parents
children dbd1af88f060
comparison
equal deleted inserted replaced
2:ddc092714127 3:945f600f34cb
1 #######################################################################################
2 # R-code: Protein Name and Tukey's Normalization
3 # Author: Adam L Borne
4 # Contributers: Paul A Stewart, Brent Kuenzi
5 #######################################################################################
6 # Assigns uniprot id from MaxQuant peptides file. Filters and normalizes the
7 # intensities of each proteins. Resulting in a one to one list of intensities to
8 # uniprot id.
9 #######################################################################################
10 # Copyright (C) Adam Borne.
11 # Permission is granted to copy, distribute and/or modify this document
12 # under the terms of the GNU Free Documentation License, Version 1.3
13 # or any later version published by the Free Software Foundation;
14 # with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
15 # A copy of the license is included in the section entitled "GNU
16 # Free Documentation License".
17 #######################################################################################
18 ## REQUIRED INPUT ##
19
20 # 1) peptides_file: MaxQuant peptides file.
21 #######################################################################################
22
23
24 ins_check_run <- function() {
25 if ("affy" %in% rownames(installed.packages())){}
26 else {
27 source("https://bioconductor.org/biocLite.R")
28 biocLite(c('mygene','affy'))
29 }
30 if ('data.table' %in% rownames(installed.packages())){}
31 else {
32 install.packages('data.table', repos='http://cran.us.r-project.org')
33 }
34 if ('stringr' %in% rownames(installed.packages())){}
35 else {
36 install.packages('stringr', repos='http://cran.us.r-project.org')
37 }
38 if ('VennDiagram' %in% rownames(installed.packages())){}
39 else {
40 install.packages('VennDiagram', repos='http://cran.us.r-project.org')
41 }
42 }
43
44 ins_check_run()
45 library(data.table)
46 library(affy)
47 library(stringr)
48 library(mygene)
49 library(VennDiagram)
50
51
52 main <- function(peptides_file, db_path) {
53 peptides_file = read.delim(peptides_file,header=TRUE,stringsAsFactors=FALSE,fill=TRUE)
54 peptides_txt = peptides_file
55 intensity_columns = names(peptides_txt[,str_detect(names(peptides_txt),"Intensity\\.*")])
56 # Pulls out all lines with Intensity in them.
57 intensity_columns = intensity_columns[2:length(intensity_columns)]
58 # Removes the first column that does not have a bait.
59 peptides_txt_mapped = as.data.frame(map_peptides_proteins(peptides_txt))
60 # This function as below sets every line to a 1 to 1 intensity to each possible protein.
61 peptides_txt_mapped$Uniprot = str_extract(peptides_txt_mapped$mapped_protein, "[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}") #Pulls out just Uniprot id from the script.
62 peptides_txt_mapped = subset(peptides_txt_mapped,!is.na(Uniprot))
63 # Removes reverse sequences and any that didn't match a uniprot accession.
64 columns_comb = c("Uniprot", intensity_columns)
65 peptides_mapped_intensity = subset(peptides_txt_mapped, select = columns_comb)
66 # Subsets out only the needed cloumns for Tukeys (Uniprot IDS and baited intensities)/
67 swissprot_fasta = scan(db_path, what="character")
68 peptides_txt_mapped_log2 = peptides_mapped_intensity
69 # Takes the log2 of the intensities.
70 for (i in intensity_columns) {
71 peptides_txt_mapped_log2[,i] = log2(subset(peptides_txt_mapped_log2, select = i))
72 }
73 # Get the minimum from each column while ignoring the -Inf; get the min of these mins for the
74 # global min; breaks when there's only one intensity column.
75 global_min = min(apply(peptides_txt_mapped_log2[,2:ncol(peptides_txt_mapped_log2)],2,function(x) {
76 min(x[x != -Inf])
77 }))
78 peptides_txt_mapped_log2[peptides_txt_mapped_log2 == -Inf] <- 0
79 #uniprot accessions WITHOUT isoforms; it looks like only contaminants contain isoforms anyways.
80 mapped_protein_uniprotonly = str_extract(peptides_txt_mapped_log2$Uniprot,"[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}")
81 mapped_protein_uniprot_accession = str_extract(peptides_txt_mapped_log2$Uniprot,"[OPQ][0-9][A-Z0-9]{3}[0-9](-[0-9]+)?|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}(-[0-9]+)?|[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}")
82 peptides_txt_mapped_log2$mapped_protein = mapped_protein_uniprotonly
83 # Runs the Tukey function returning completed table.
84 peptides_txt_mapped_log2 = subset(peptides_txt_mapped_log2,mapped_protein %in% swissprot_fasta)
85 protein_intensities_tukeys = get_protein_values(peptides_txt_mapped_log2,intensity_columns)
86 protein_intensities_tukeys[protein_intensities_tukeys == 1] <- 0
87 write.table(protein_intensities_tukeys, "./tukeys_output.txt", row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t")
88
89 }
90
91 map_peptides_proteins = function(peptides_in) {
92 peptides_in = subset(peptides_in,peptides_in$Proteins != "")
93 results_list = list()
94 k = 1
95 for (i in 1:nrow(peptides_in)) {
96 protein_names = peptides_in[i,"Proteins"]
97 protein_names_split = unlist(strsplit(protein_names,";"))
98 for (j in 1:length(protein_names_split)) {
99 peptides_mapped_proteins = data.frame(peptides_in[i,],mapped_protein=protein_names_split[j],stringsAsFactors=FALSE)
100 results_list[[k]] = peptides_mapped_proteins
101 k = k+1
102
103 }
104 }
105 return(rbindlist(results_list))
106 }
107
108 get_protein_values = function(mapped_peptides_in,intensity_columns_list) {
109 unique_mapped_proteins_list = unique(mapped_peptides_in$mapped_protein)
110 # Gets list of all peptides listed.
111 # Generates a blank data frame with clomns of Intensities and rows of Uniprots.
112 Tukeys_df = data.frame(mapped_protein = unique_mapped_proteins_list, stringsAsFactors = FALSE )
113 for (q in intensity_columns_list) {Tukeys_df[,q] = NA}
114 for (i in 1:length(unique_mapped_proteins_list)) {
115 mapped_peptides_unique_subset = subset(mapped_peptides_in, mapped_protein == unique_mapped_proteins_list[i])
116 # Calculate Tukey's Biweight from library(affy); returns a single numeric.
117 # Results_list[[i]] = data.frame(Protein=unique_mapped_proteins_list[i],Peptides_per_protein=nrow(mapped_peptides_unique_subset)).
118 for (j in intensity_columns_list) {
119 # Populates with new Tukeys values.
120 Tukeys_df[i,j] = 2^(tukey.biweight(mapped_peptides_unique_subset[,j]))
121 }
122 }
123 return(Tukeys_df)
124 }
125
126
127 args <- commandArgs(trailingOnly = TRUE)
128 main(args[1], args[2])