Mercurial > repos > chemteam > biomd_rmsd_clustering
view rmsd_clustering.xml @ 2:b9c46dbe9605 draft default tip
"planemo upload for repository https://github.com/galaxycomputationalchemistry/galaxy-tools-compchem/ commit f1c3c88c7395f2e84cbc533199406aadb79c5c07"
author | chemteam |
---|---|
date | Fri, 13 Nov 2020 19:38:57 +0000 |
parents | ee1f38eb220e |
children |
line wrap: on
line source
<tool id="biomd_rmsd_clustering" name="Hierarchical clustering" version="0.@TOOL_VERSION@+galaxy@GALAXY_VERSION@"> <description>from MD RMSD matrix data</description> <macros> <token name="@TOOL_VERSION@">1.5.2</token> <token name="@GALAXY_VERSION@">1</token> </macros> <requirements> <requirement type="package" version="@TOOL_VERSION@">scipy</requirement> <requirement type="package" version="1.19.1">numpy</requirement> <requirement type="package" version="3.3.1">matplotlib</requirement> </requirements> <command detect_errors="aggressive"><![CDATA[ python '$__tool_directory__/rmsd_clustering.py' #if $inp.ext == 'json': --json '$inp' --outp-mat '$outp_mat' #elif $inp.ext == 'tabular': --mat '$inp' #end if --Z '$Z' #if $dendrogram: --dendrogram '$dend' --clustering-method '$clustering_method' #end if #if $heatmap: --heatmap '$hmap' --cmap '$cmap' #end if --start '$start' --end '$end' $normalize ]]></command> <inputs> <param label="JSON or tabular input file" type="data" format="json,tabular" name="inp" argument="--json"/> <param label="First trajectory frame to calculate distance matrix" value="0" type="integer" name="start" argument="--start"/> <param label="Last trajectory frame to calculate distance matrix" value="-1" type="integer" name="end" argument="--end"/> <param label="Normalize the RMSD variation over the trajectories before averaging." checked="false" type="boolean" name="normalize" argument="--normalize" truevalue="--normalize" falsevalue=""/> <param label="Output dendrogram?" type="boolean" name="dendrogram" argument="--dendrogram" /> <param label="Output distance matrix file?" type="boolean" name="heatmap" argument="--heatmap"/> <param label="Method to use for clustering." type="select" name="clustering_method" argument="--clustering-method"> <option selected="true" value="average">average</option> <option value="centroid">centroid</option> <option value="complete">complete</option> <option value="median">median</option> <option value="single">single</option> <option value="ward">ward</option> <option value="weighted">weighted</option> </param> <param label="Matplotlib colormap to use for plotting distance matrix." value="plasma" type="text" name="cmap" argument="--cmap"/> </inputs> <outputs> <data label="Tabular output file" format="tabular" name="outp_mat"> <filter>inp.ext == 'json'</filter> </data> <data label="Dendrogram" format="png" name="dend"> <filter>dendrogram</filter> </data> <data label="Heatmap" format="png" name="hmap"> <filter>heatmap</filter> </data> <data label="File for cluster linkage array" format="tabular" name="Z"/> </outputs> <tests> <test expect_num_outputs="4"> <param name="inp" value="inp.json"/> <param name="dendrogram" value="true"/> <param name="heatmap" value="true"/> <param name="clustering_method" value="average"/> <param name="cmap" value="plasma"/> <param name="start" value="0"/> <param name="end" value="-1"/> <param name="normalize" value="true"/> <output name="outp_mat" value="outp_mat.tabular"/> <output name="dend" value="dendrogram.png"/> <output name="hmap" value="heatmap.png"/> <output name="Z" value="Z.tabular"/> </test> <test expect_num_outputs="2"> <param name="inp" value="inp.json"/> <param name="dendrogram" value="false"/> <param name="heatmap" value="false"/> <param name="clustering_method" value="average"/> <param name="cmap" value="plasma"/> <param name="start" value="0"/> <param name="end" value="-1"/> <param name="normalize" value="false"/> <output name="outp_mat" value="outp_mat_unnormalized.tabular"/> <output name="Z" value="Z_unnormalized.tabular"/> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** This tool takes the three-dimensional tensor file (in JSON format) produced by the 'Extract RMSD distance matrix data' tool and flattens it along the time axix to give a two-dimensional distance matrix. Optionally, it also plots the distance matrix as a heatmap with matplotlib, performs hierarchical clustering with scipy, and plots the corresponding dendrogram. _____ .. class:: infomark **Input** - Three-dimensional tensor (JSON). - User selection of desired outputs, clustering method and other parameters _____ .. class:: infomark **Output** - Tabular file containing a two-dimensional N x N distance matrix, where N is the number of MD trajectories - Optional: a heatmap representing the distance matrix. - Optional: a tabular file containing the cluster linkage array produced by hierarchical clustering of the distance matrix - Optional: A dendrogram representing the hierarchical clustering. ]]></help> <citations> <citation type="doi">10.1038/s41592-019-0686-2</citation> <citation type="doi">{10.1109/MCSE.2007.55</citation> </citations> </tool>