0
|
1 # -*- coding: utf-8 -*-
|
|
2 """
|
|
3 Created on Sat Mar 24 14:00:24 2018
|
|
4
|
|
5 @author: chmaramis
|
|
6 """
|
|
7
|
|
8 from __future__ import division
|
|
9 import numpy as np
|
|
10 from pandas import *
|
|
11 import functools as ft
|
|
12 import sys
|
|
13 import time
|
|
14
|
|
15 frm = lambda x,y: '{r}/{l}'.format(r=x,l=y)
|
|
16
|
|
17 clono_def = {'CDR3': ['AA JUNCTION'],
|
|
18 'VCDR3': ['V-GENE','AA JUNCTION'],
|
|
19 'JCDR3': ['J-GENE','AA JUNCTION'],
|
|
20 'VJCDR3': ['V-GENE','J-GENE','AA JUNCTION'],
|
|
21 'VDJCDR3': ['V-GENE','D-GENE','J-GENE','AA JUNCTION']}
|
|
22
|
|
23
|
|
24 def clonotypeComputation(inp_name, clono, out1, t10n, fname):
|
|
25
|
|
26 clono_comps = clono_def[clono]
|
|
27
|
|
28 frame = DataFrame()
|
|
29 tp = read_csv(inp_name, iterator=True, chunksize=5000,sep='\t', index_col=0 )
|
|
30 frame = concat([chunk for chunk in tp])
|
|
31
|
|
32
|
|
33 grouped = frame.groupby(clono_comps)
|
|
34 x=grouped.size()
|
|
35 x1=DataFrame(list(x.index), columns=clono_comps)
|
|
36 x1['Reads']=x.values
|
|
37 total = sum(x1['Reads'])
|
|
38 #x1['Reads/Total'] = ['{r}/{l}'.format(r=pr , l = total) for pr in x1['Reads']]
|
|
39 x1['Reads/Total'] = x1['Reads'].map(ft.partial(frm, y=total))
|
|
40 x1['Frequency %'] = (100*x1['Reads']/total).map('{:.4f}'.format)
|
|
41
|
|
42 final = x1.sort_values(by = ['Reads'] , ascending = False)
|
|
43
|
|
44 final.index=range(1,len(final)+1)
|
|
45 final.to_csv(out1 , sep = '\t')
|
|
46
|
|
47 numofclono = len(final)
|
|
48 clust = len(final[final['Reads'] > 1])
|
|
49 sing = len (final[final['Reads'] == 1])
|
|
50 top10 = final[clono_comps + ['Frequency %']].head(10)
|
|
51 top10.to_csv(t10n , sep = '\t')
|
|
52
|
|
53 summary = [[clono]]
|
|
54 summary.append([', '.join([top10[c].values[0] for c in clono_comps])])
|
|
55 summary.append([top10['Frequency %'].values[0]])
|
|
56 summary.append([numofclono])
|
|
57 summary.append([clust,'{:.4f}'.format(100*clust/numofclono)])
|
|
58 summary.append([sing,'{:.4f}'.format(100*sing/numofclono)])
|
|
59
|
|
60 ind = ['Clonotype Definition', 'Dominant Clonotype', 'Frequency', 'Number of Clonotypes' , 'Expanding Clonotypes','Singletons']
|
|
61 spl = fname.split('_')
|
|
62 col = [spl[0],'%']
|
|
63
|
|
64 frsum = DataFrame(summary,index = ind, columns = col)
|
|
65
|
|
66 return frsum
|
|
67
|
|
68
|
|
69 if __name__ == '__main__':
|
|
70
|
|
71 start=time.time()
|
|
72
|
|
73 # Parse input arguments
|
|
74 inp_name = sys.argv[1]
|
|
75 clono = sys.argv[2]
|
|
76 out1 = sys.argv[3]
|
|
77 t10n = sys.argv[4]
|
|
78 sname = sys.argv[5]
|
|
79 fname = sys.argv[6]
|
|
80
|
|
81 # Execute basic function
|
|
82 frsum = clonotypeComputation(inp_name, clono, out1, t10n, fname)
|
|
83
|
|
84 # Save output to CSV files
|
|
85 if not frsum.empty:
|
|
86 frsum.to_csv(sname, sep = '\t')
|
|
87
|
|
88 # Print execution time
|
|
89 stop=time.time()
|
|
90 print('Runtime:' + str(stop-start)) |