0
|
1 # -*- coding: utf-8 -*-
|
|
2 """
|
|
3 Created on Fri Jun 20 14:58:08 2014
|
|
4
|
|
5 @author: chmaramis
|
|
6 """
|
|
7
|
|
8 from __future__ import division
|
|
9 import numpy as np
|
|
10 from pandas import *
|
|
11 import functools as ft
|
|
12 import sys
|
|
13 import time
|
|
14
|
|
15 frm = lambda x,y: '{r}/{l}'.format(r=x,l=y)
|
|
16
|
|
17 gene_options = {'V': 'V-GENE',
|
|
18 'J': 'J-GENE'}
|
|
19
|
|
20
|
|
21 def geneComputation(inp_name, gene, fname):
|
|
22
|
|
23 gene_full = gene_options[gene]
|
|
24
|
|
25 df = DataFrame()
|
|
26 df = read_csv(inp_name, sep='\t', index_col=0 )
|
|
27 #tp = read_csv(inp_name, iterator=True, chunksize=5000,sep='\t', index_col=0 )
|
|
28 #df = concat([chunk for chunk in tp])
|
|
29
|
|
30
|
|
31 vgroup = df.groupby([gene_full])
|
|
32 vdi = vgroup.size()
|
|
33 rep = DataFrame(list(vdi.index), columns=[gene_full])
|
|
34 rep['Clonotypes'] = vdi.values
|
|
35 #rep['Clonotypes/Total'] = ['{r}/{l}'.format(r=p , l = len(df)) for p in vdi.values]
|
|
36 rep['Clonotypes/Total'] = rep['Clonotypes'].map(ft.partial(frm, y=len(df)))
|
|
37 rep['Frequency %'] = (100*rep['Clonotypes']/len(df)).map('{:.4f}'.format)
|
|
38
|
|
39 rep = rep.sort_values(by = ['Clonotypes'] , ascending = False)
|
|
40 rep.index = range(1,len(rep)+1)
|
|
41
|
|
42 su = rep[[gene_full, 'Frequency %']].head(10)
|
|
43 spl = fname.split('_')
|
|
44 summdf = DataFrame([gene_full,su[gene_full].values[0],su['Frequency %'].values[0]],
|
|
45 index = ['Gene Family','Dominant Gene','Frequency'], columns = [spl[0]])
|
|
46 summdf['%'] = ''
|
|
47
|
|
48 return (rep, su, summdf)
|
|
49
|
|
50
|
|
51 if __name__ == '__main__':
|
|
52
|
|
53 start=time.time()
|
|
54
|
|
55 # Parse input arguments
|
|
56 inp_name = sys.argv[1]
|
|
57 gene = sys.argv[2]
|
|
58 outrep = sys.argv[3]
|
|
59 summ_rep = sys.argv[4]
|
|
60 summ_rep2 = sys.argv[5]
|
|
61 fname = sys.argv[6]
|
|
62
|
|
63 # Execute basic function
|
|
64 rep, su, summdf = geneComputation(inp_name, gene, fname)
|
|
65
|
|
66 # Save output to CSV files
|
|
67 if not rep.empty:
|
|
68 rep.to_csv(outrep, sep = '\t')
|
|
69 if not su.empty:
|
|
70 su.to_csv(summ_rep, sep = '\t')
|
|
71 if not summdf.empty:
|
|
72 summdf.to_csv(summ_rep2, sep = '\t')
|
|
73
|
|
74 # Print execution time
|
|
75 stop=time.time()
|
|
76 print('Runtime:' + str(stop-start))
|