comparison gene_computation.py @ 0:0e37e5b73273 draft

Initial commit
author chmaramis
date Fri, 30 Mar 2018 07:22:29 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:0e37e5b73273
1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri Jun 20 14:58:08 2014
4
5 @author: chmaramis
6 """
7
8 from __future__ import division
9 import numpy as np
10 from pandas import *
11 import functools as ft
12 import sys
13 import time
14
15 frm = lambda x,y: '{r}/{l}'.format(r=x,l=y)
16
17 gene_options = {'V': 'V-GENE',
18 'J': 'J-GENE'}
19
20
21 def geneComputation(inp_name, gene, fname):
22
23 gene_full = gene_options[gene]
24
25 df = DataFrame()
26 df = read_csv(inp_name, sep='\t', index_col=0 )
27 #tp = read_csv(inp_name, iterator=True, chunksize=5000,sep='\t', index_col=0 )
28 #df = concat([chunk for chunk in tp])
29
30
31 vgroup = df.groupby([gene_full])
32 vdi = vgroup.size()
33 rep = DataFrame(list(vdi.index), columns=[gene_full])
34 rep['Clonotypes'] = vdi.values
35 #rep['Clonotypes/Total'] = ['{r}/{l}'.format(r=p , l = len(df)) for p in vdi.values]
36 rep['Clonotypes/Total'] = rep['Clonotypes'].map(ft.partial(frm, y=len(df)))
37 rep['Frequency %'] = (100*rep['Clonotypes']/len(df)).map('{:.4f}'.format)
38
39 rep = rep.sort_values(by = ['Clonotypes'] , ascending = False)
40 rep.index = range(1,len(rep)+1)
41
42 su = rep[[gene_full, 'Frequency %']].head(10)
43 spl = fname.split('_')
44 summdf = DataFrame([gene_full,su[gene_full].values[0],su['Frequency %'].values[0]],
45 index = ['Gene Family','Dominant Gene','Frequency'], columns = [spl[0]])
46 summdf['%'] = ''
47
48 return (rep, su, summdf)
49
50
51 if __name__ == '__main__':
52
53 start=time.time()
54
55 # Parse input arguments
56 inp_name = sys.argv[1]
57 gene = sys.argv[2]
58 outrep = sys.argv[3]
59 summ_rep = sys.argv[4]
60 summ_rep2 = sys.argv[5]
61 fname = sys.argv[6]
62
63 # Execute basic function
64 rep, su, summdf = geneComputation(inp_name, gene, fname)
65
66 # Save output to CSV files
67 if not rep.empty:
68 rep.to_csv(outrep, sep = '\t')
69 if not su.empty:
70 su.to_csv(summ_rep, sep = '\t')
71 if not summdf.empty:
72 summdf.to_csv(summ_rep2, sep = '\t')
73
74 # Print execution time
75 stop=time.time()
76 print('Runtime:' + str(stop-start))