Mercurial > repos > chmaramis > testirprofiler
diff cmpb2016/ext_repertoire_V.py @ 0:8be019b173e6 draft
Uploaded included tools
| author | chmaramis |
|---|---|
| date | Sun, 18 Mar 2018 05:54:20 -0400 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cmpb2016/ext_repertoire_V.py Sun Mar 18 05:54:20 2018 -0400 @@ -0,0 +1,69 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Jun 20 14:58:08 2014 + +@author: chmaramis +""" + +from __future__ import division +import numpy as np +from pandas import * +import functools as ft +import sys +import time + +frm = lambda x,y: '{r}/{l}'.format(r=x,l=y) + +def repertoireComputation(inp_name, fname): + + df = DataFrame() + df = read_csv(inp_name, sep='\t', index_col=0 ) + #tp = read_csv(inp_name, iterator=True, chunksize=5000,sep='\t', index_col=0 ) + #df = concat([chunk for chunk in tp]) + + + vgroup = df.groupby(['V-GENE']) + vdi = vgroup.size() + rep = DataFrame(list(vdi.index), columns=['V-GENE']) + rep['Reads'] = vdi.values + #rep['Reads/Total'] = ['{r}/{l}'.format(r=p , l = len(df)) for p in vdi.values] + rep['Reads/Total'] = rep['Reads'].map(ft.partial(frm, y=len(df))) + rep['Frequency %'] = (100*rep['Reads']/len(df)).map('{:.4f}'.format) + + rep = rep.sort_values(by = ['Reads'] , ascending = False) + rep.index = range(1,len(rep)+1) + + su = rep[['V-GENE','Frequency %']].head(10) + spl = fname.split('_') + summdf = DataFrame([su['V-GENE'].values[0],su['Frequency %'].values[0]], + index = ['Dominant V-GENE','Frequency'], columns = [spl[0]]) + summdf['%'] = '' + + return (rep, su, summdf) + + +if __name__ == '__main__': + + start=time.time() + + # Parse input arguments + inp_name = sys.argv[1] + outrep = sys.argv[2] + summ_rep = sys.argv[3] + summ_rep2 = sys.argv[4] + fname = sys.argv[5] + + # Execute basic function + rep, su, summdf = repertoireComputation(inp_name, fname) + + # Save output to CSV files + if not rep.empty: + rep.to_csv(outrep, sep = '\t') + if not su.empty: + su.to_csv(summ_rep, sep = '\t') + if not summdf.empty: + summdf.to_csv(summ_rep2, sep = '\t') + + # Print execution time + stop=time.time() + print('Runtime:' + str(stop-start))
