Mercurial > repos > computational-metabolomics > mspurity_createmsp
diff flagRemove.R @ 9:3d92b95cf6c0 draft
planemo upload for repository https://github.com/computational-metabolomics/mspurity-galaxy commit 20a48a1862267264f98b7c514287f9a5cba1143f
author | computational-metabolomics |
---|---|
date | Thu, 13 Jun 2024 11:38:36 +0000 |
parents | b91b9492a4bf |
children |
line wrap: on
line diff
--- a/flagRemove.R Wed Jun 12 16:04:05 2024 +0000 +++ b/flagRemove.R Thu Jun 13 11:38:36 2024 +0000 @@ -1,4 +1,5 @@ library(msPurity) +library(xcms) library(optparse) print(sessionInfo()) option_list <- list( @@ -117,19 +118,25 @@ print(opt) -getxcmsSetObject <- function(xobject) { - # XCMS 1.x - if (class(xobject) == "xcmsSet") { - return(xobject) - } - # XCMS 3.x - if (class(xobject) == "XCMSnExp") { - # Get the legacy xcmsSet object - suppressWarnings(xset <- as(xobject, "xcmsSet")) - xcms::sampclass(xset) <- xset@phenoData$sample_group - return(xset) - } -} +# This R function can handle both XCMS object versions (so following code +# no longer required - kept here for reference) +# getxcmsSetObject <- function(xobject) { +# # XCMS 1.x +# if (class(xobject) == "xcmsSet"){ +# return(xobject) +# } +# # XCMS 3.x +# if (class(xobject) == "XCMSnExp") { +# # Get the legacy xcmsSet object +# suppressWarnings(xset <- as(xobject, "xcmsSet")) +# if (!is.null(xset@phenoData$sample_group)){ +# xcms::sampclass(xset) <- xset@phenoData$sample_group +# }else{ +# xcms::sampclass(xset) <- "." +# } +# return(xset) +# } +# } loadRData <- function(rdata_path, name) { @@ -138,9 +145,9 @@ return(get(ls()[ls() %in% name])) } -xset <- getxcmsSetObject(loadRData(opt$xset_path, c("xset", "xdata"))) +xset <- loadRData(opt$xset_path, c("xset", "xdata")) -print(xset) + if (is.null(opt$samplelist)) { blank_class <- opt$blank_class } else { @@ -157,6 +164,8 @@ } + + if (is.null(opt$multilist)) { ffrm_out <- flag_remove(xset, pol = opt$polarity, @@ -201,15 +210,6 @@ ) } else { # nolint start - # TODO - # xsets <- split(xset, multilist_df$multlist) - # - # mult_grps <- unique(multilist_df$multlist) - # - # for (mgrp in mult_grps){ - # xset_i <- xsets[mgrp] - # xcms::group(xset_i, - # - # } + # TODO - potential for multilist analysis (e) # nolint end }