Mercurial > repos > computational-metabolomics > mspurity_puritya
view dimsPredictPuritySingle.R @ 5:0d73912c7cdc draft
"planemo upload for repository https://github.com/computational-metabolomics/mspurity-galaxy commit b1b879e29d5d6c97fdc3636aa6e900ad03695f9e"
author | computational-metabolomics |
---|---|
date | Fri, 13 Nov 2020 10:00:12 +0000 |
parents | 56cce1a90b73 |
children | aca2eb389ccd |
line wrap: on
line source
library(msPurity) library(optparse) print(sessionInfo()) option_list <- list( make_option(c("--mzML_file"), type="character"), make_option(c("--mzML_files"), type="character"), make_option(c("--mzML_filename"), type="character", default=''), make_option(c("--mzML_galaxy_names"), type="character", default=''), make_option(c("--peaks_file"), type="character"), make_option(c("-o", "--out_dir"), type="character"), make_option("--minoffset", default=0.5), make_option("--maxoffset", default=0.5), make_option("--ilim", default=0.05), make_option("--ppm", default=4), make_option("--dimspy", action="store_true"), make_option("--sim", action="store_true"), make_option("--remove_nas", action="store_true"), make_option("--iwNorm", default="none", type="character"), make_option("--file_num_dimspy", default=1), make_option("--exclude_isotopes", action="store_true"), make_option("--isotope_matrix", type="character") ) # store options opt<- parse_args(OptionParser(option_list=option_list)) print(sessionInfo()) print(opt) print(opt$mzML_files) print(opt$mzML_galaxy_names) str_to_vec <- function(x){ print(x) x <- trimws(strsplit(x, ',')[[1]]) return(x[x != ""]) } find_mzml_file <- function(mzML_files, galaxy_names, mzML_filename){ mzML_filename <- trimws(mzML_filename) mzML_files <- str_to_vec(mzML_files) galaxy_names <- str_to_vec(galaxy_names) if (mzML_filename %in% galaxy_names){ return(mzML_files[galaxy_names==mzML_filename]) }else{ stop(paste("mzML file not found - ", mzML_filename)) } } if (is.null(opt$dimspy)){ df <- read.table(opt$peaks_file, header = TRUE, sep='\t') if (file.exists(opt$mzML_file)){ mzML_file <- opt$mzML_file }else if (!is.null(opt$mzML_files)){ mzML_file <- find_mzml_file(opt$mzML_files, opt$mzML_galaxy_names, opt$mzML_filename) }else{ mzML_file <- file.path(opt$mzML_file, filename) } }else{ indf <- read.table(opt$peaks_file, header = TRUE, sep='\t', stringsAsFactors = FALSE) filename <- colnames(indf)[8:ncol(indf)][opt$file_num_dimspy] print(filename) # check if the data file is mzML or RAW (can only use mzML currently) so # we expect an mzML file of the same name in the same folder indf$i <- indf[,colnames(indf)==filename] indf[,colnames(indf)==filename] <- as.numeric(indf[,colnames(indf)==filename]) filename = sub("raw", "mzML", filename, ignore.case = TRUE) print(filename) if (file.exists(opt$mzML_file)){ mzML_file <- opt$mzML_file }else if (!is.null(opt$mzML_files)){ mzML_file <- find_mzml_file(opt$mzML_files, opt$mzML_galaxy_names, filename) }else{ mzML_file <- file.path(opt$mzML_file, filename) } # Update the dimspy output with the correct information df <- indf[4:nrow(indf),] if ('blank_flag' %in% colnames(df)){ df <- df[df$blank_flag==1,] } colnames(df)[colnames(df)=='m.z'] <- 'mz' if ('nan' %in% df$mz){ df[df$mz=='nan',]$mz <- NA } df$mz <- as.numeric(df$mz) } if (!is.null(opt$remove_nas)){ df <- df[!is.na(df$mz),] } if (is.null(opt$isotope_matrix)){ im <- NULL }else{ im <- read.table(opt$isotope_matrix, header = TRUE, sep='\t', stringsAsFactors = FALSE) } if (is.null(opt$exclude_isotopes)){ isotopes <- FALSE }else{ isotopes <- TRUE } if (is.null(opt$sim)){ sim=FALSE }else{ sim=TRUE } minOffset = as.numeric(opt$minoffset) maxOffset = as.numeric(opt$maxoffset) if (opt$iwNorm=='none'){ iwNorm = FALSE iwNormFun = NULL }else if (opt$iwNorm=='gauss'){ iwNorm = TRUE iwNormFun = msPurity::iwNormGauss(minOff=-minOffset, maxOff=maxOffset) }else if (opt$iwNorm=='rcosine'){ iwNorm = TRUE iwNormFun = msPurity::iwNormRcosine(minOff=-minOffset, maxOff=maxOffset) }else if (opt$iwNorm=='QE5'){ iwNorm = TRUE iwNormFun = msPurity::iwNormQE.5() } print('FIRST ROWS OF PEAK FILE') print(head(df)) print(mzML_file) predicted <- msPurity::dimsPredictPuritySingle(df$mz, filepth=mzML_file, minOffset=minOffset, maxOffset=maxOffset, ppm=opt$ppm, mzML=TRUE, sim = sim, ilim = opt$ilim, isotopes = isotopes, im = im, iwNorm = iwNorm, iwNormFun = iwNormFun ) predicted <- cbind(df, predicted) print(head(predicted)) print(file.path(opt$out_dir, 'dimsPredictPuritySingle_output.tsv')) write.table(predicted, file.path(opt$out_dir, 'dimsPredictPuritySingle_output.tsv'), row.names=FALSE, sep='\t')