changeset 2:1a7fef71aee3 draft

Uploaded
author cpt
date Fri, 17 Jun 2022 12:40:59 +0000
parents a02deaec6462
children fd70980a516b
files cpt_find_spanins/cpt-macros.xml cpt_find_spanins/cpt.py cpt_find_spanins/findSpanin.py cpt_find_spanins/findSpanin.xml cpt_find_spanins/macros.xml cpt_find_spanins/spaninFuncs.py
diffstat 6 files changed, 1509 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt_find_spanins/cpt-macros.xml	Fri Jun 17 12:40:59 2022 +0000
@@ -0,0 +1,115 @@
+<?xml version="1.0"?>
+<macros>
+	<xml name="gff_requirements">
+		<requirements>
+			<requirement type="package" version="2.7">python</requirement>
+			<requirement type="package" version="1.65">biopython</requirement>
+			<requirement type="package" version="2.12.1">requests</requirement>
+			<yield/>
+		</requirements>
+		<version_command>
+		<![CDATA[
+			cd $__tool_directory__ && git rev-parse HEAD
+		]]>
+		</version_command>
+	</xml>
+	<xml name="citation/mijalisrasche">
+		<citation type="doi">10.1371/journal.pcbi.1008214</citation>
+		<citation type="bibtex">@unpublished{galaxyTools,
+		author = {E. Mijalis, H. Rasche},
+		title = {CPT Galaxy Tools},
+		year = {2013-2017},
+		note = {https://github.com/tamu-cpt/galaxy-tools/}
+		}
+		</citation>
+	</xml>
+	<xml name="citations">
+		<citations>
+			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
+			<citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {E. Mijalis, H. Rasche},
+				title = {CPT Galaxy Tools},
+				year = {2013-2017},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation> 
+		<yield/>
+		</citations>
+	</xml>
+    	<xml name="citations-crr">
+		<citations>
+			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
+			<citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {C. Ross},
+				title = {CPT Galaxy Tools},
+				year = {2020-},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+		<yield/>
+		</citations>
+	</xml>
+        <xml name="citations-2020">
+		<citations>
+			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
+			<citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {E. Mijalis, H. Rasche},
+				title = {CPT Galaxy Tools},
+				year = {2013-2017},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+                        <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {A. Criscione},
+				title = {CPT Galaxy Tools},
+				year = {2019-2021},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+                        </citation>
+                        <yield/>
+		</citations>
+	</xml>
+        <xml name="citations-2020-AJC-solo">
+		<citations>
+			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
+                        <citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {A. Criscione},
+				title = {CPT Galaxy Tools},
+				year = {2019-2021},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+                        </citation>
+                        <yield/>
+		</citations>
+	</xml>
+        <xml name="citations-clm">
+		<citations>
+			<citation type="doi">10.1371/journal.pcbi.1008214</citation>
+			<citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {C. Maughmer},
+				title = {CPT Galaxy Tools},
+				year = {2017-2020},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+                        <yield/>
+		</citations>
+	</xml>
+        <xml name="sl-citations-clm">
+			<citation type="bibtex">
+			@unpublished{galaxyTools,
+				author = {C. Maughmer},
+				title = {CPT Galaxy Tools},
+				year = {2017-2020},
+				note = {https://github.com/tamu-cpt/galaxy-tools/}
+			}
+			</citation>
+                        <yield/>
+	</xml>
+</macros>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt_find_spanins/cpt.py	Fri Jun 17 12:40:59 2022 +0000
@@ -0,0 +1,341 @@
+#!/usr/bin/env python
+from Bio.Seq import Seq, reverse_complement, translate
+from Bio.SeqRecord import SeqRecord
+from Bio import SeqIO
+from Bio.Data import CodonTable
+import logging
+
+logging.basicConfig()
+log = logging.getLogger()
+
+PHAGE_IN_MIDDLE = re.compile("^(?P<host>.*)\s*phage (?P<phage>.*)$")
+BACTERIOPHAGE_IN_MIDDLE = re.compile("^(?P<host>.*)\s*bacteriophage (?P<phage>.*)$")
+STARTS_WITH_PHAGE = re.compile(
+    "^(bacterio|vibrio|Bacterio|Vibrio|)?[Pp]hage (?P<phage>.*)$"
+)
+NEW_STYLE_NAMES = re.compile("(?P<phage>v[A-Z]_[A-Z][a-z]{2}_.*)")
+
+
+def phage_name_parser(name):
+    host = None
+    phage = None
+    name = name.replace(", complete genome.", "")
+    name = name.replace(", complete genome", "")
+
+    m = BACTERIOPHAGE_IN_MIDDLE.match(name)
+    if m:
+        host = m.group("host")
+        phage = m.group("phage")
+        return (host, phage)
+
+    m = PHAGE_IN_MIDDLE.match(name)
+    if m:
+        host = m.group("host")
+        phage = m.group("phage")
+        return (host, phage)
+
+    m = STARTS_WITH_PHAGE.match(name)
+    if m:
+        phage = m.group("phage")
+        return (host, phage)
+
+    m = NEW_STYLE_NAMES.match(name)
+    if m:
+        phage = m.group("phage")
+        return (host, phage)
+
+    return (host, phage)
+
+
+class OrfFinder(object):
+    def __init__(self, table, ftype, ends, min_len, strand):
+        self.table = table
+        self.table_obj = CodonTable.ambiguous_generic_by_id[table]
+        self.ends = ends
+        self.ftype = ftype
+        self.min_len = min_len
+        self.starts = sorted(self.table_obj.start_codons)
+        self.stops = sorted(self.table_obj.stop_codons)
+        self.re_starts = re.compile("|".join(self.starts))
+        self.re_stops = re.compile("|".join(self.stops))
+        self.strand = strand
+
+    def locate(self, fasta_file, out_nuc, out_prot, out_bed, out_gff3):
+        seq_format = "fasta"
+        log.debug("Genetic code table %i" % self.table)
+        log.debug("Minimum length %i aa" % self.min_len)
+
+        out_count = 0
+
+        out_gff3.write("##gff-version 3\n")
+
+        for idx, record in enumerate(SeqIO.parse(fasta_file, seq_format)):
+            for i, (f_start, f_end, f_strand, n, t) in enumerate(
+                self.get_all_peptides(str(record.seq).upper())
+            ):
+                out_count += 1
+
+                descr = "length %i aa, %i bp, from %s..%s[%s] of %s" % (
+                    len(t),
+                    len(n),
+                    f_start,
+                    f_end,
+                    f_strand,
+                    record.description,
+                )
+                fid = record.id + "|%s%i" % (self.ftype, i + 1)
+
+                r = SeqRecord(Seq(n), id=fid, name="", description=descr)
+                t = SeqRecord(Seq(t), id=fid, name="", description=descr)
+
+                SeqIO.write(r, out_nuc, "fasta")
+                SeqIO.write(t, out_prot, "fasta")
+
+                nice_strand = "+" if f_strand == +1 else "-"
+
+                out_bed.write(
+                    "\t".join(
+                        map(str, [record.id, f_start, f_end, fid, 0, nice_strand])
+                    )
+                    + "\n"
+                )
+
+                out_gff3.write(
+                    "\t".join(
+                        map(
+                            str,
+                            [
+                                record.id,
+                                "getOrfsOrCds",
+                                "CDS",
+                                f_start + 1,
+                                f_end,
+                                ".",
+                                nice_strand,
+                                0,
+                                "ID=%s.%s.%s" % (self.ftype, idx, i + 1),
+                            ],
+                        )
+                    )
+                    + "\n"
+                )
+        log.info("Found %i %ss", out_count, self.ftype)
+
+    def start_chop_and_trans(self, s, strict=True):
+        """Returns offset, trimmed nuc, protein."""
+        if strict:
+            assert s[-3:] in self.stops, s
+        assert len(s) % 3 == 0
+        for match in self.re_starts.finditer(s, overlapped=True):
+            # Must check the start is in frame
+            start = match.start()
+            if start % 3 == 0:
+                n = s[start:]
+                assert len(n) % 3 == 0, "%s is len %i" % (n, len(n))
+                if strict:
+                    t = translate(n, self.table)
+                else:
+                    # Use when missing stop codon,
+                    t = "M" + translate(n[3:], self.table, to_stop=True)
+                yield start, n, t  # Edited by CPT to be a generator
+
+    def break_up_frame(self, s):
+        """Returns offset, nuc, protein."""
+        start = 0
+        for match in self.re_stops.finditer(s, overlapped=True):
+            index = match.start() + 3
+            if index % 3 != 0:
+                continue
+            n = s[start:index]
+            for (offset, n, t) in self.start_chop_and_trans(n):
+                if n and len(t) >= self.min_len:
+                    yield start + offset, n, t
+            start = index
+
+    def putative_genes_in_sequence(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+        Co-ordinates are Python style zero-based.
+        """
+        nuc_seq = nuc_seq.upper()
+        # TODO - Refactor to use a generator function (in start order)
+        # rather than making a list and sorting?
+        answer = []
+        full_len = len(nuc_seq)
+
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                start = frame + offset  # zero based
+                answer.append((start, start + len(n), +1, n, t))
+
+        rc = reverse_complement(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(rc[frame:]):
+                start = full_len - frame - offset  # zero based
+                answer.append((start, start - len(n), -1, n, t))
+        answer.sort()
+        return answer
+
+    def get_all_peptides(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+
+        Co-ordinates are Python style zero-based.
+        """
+        # Refactored into generator by CPT
+        full_len = len(nuc_seq)
+        if self.strand != "reverse":
+            for frame in range(0, 3):
+                for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                    start = frame + offset  # zero based
+                    yield (start, start + len(n), +1, n, t)
+        if self.strand != "forward":
+            rc = reverse_complement(nuc_seq)
+            for frame in range(0, 3):
+                for offset, n, t in self.break_up_frame(rc[frame:]):
+                    start = full_len - frame - offset  # zero based
+                    yield (start - len(n), start, -1, n, t)
+
+
+class MGAFinder(object):
+    def __init__(self, table, ftype, ends, min_len):
+        self.table = table
+        self.table_obj = CodonTable.ambiguous_generic_by_id[table]
+        self.ends = ends
+        self.ftype = ftype
+        self.min_len = min_len
+        self.starts = sorted(self.table_obj.start_codons)
+        self.stops = sorted(self.table_obj.stop_codons)
+        self.re_starts = re.compile("|".join(self.starts))
+        self.re_stops = re.compile("|".join(self.stops))
+
+    def locate(self, fasta_file, out_nuc, out_prot, out_bed, out_gff3):
+        seq_format = "fasta"
+        log.debug("Genetic code table %i" % self.table)
+        log.debug("Minimum length %i aa" % self.min_len)
+
+        out_count = 0
+
+        out_gff3.write("##gff-version 3\n")
+
+        for idx, record in enumerate(SeqIO.parse(fasta_file, seq_format)):
+            for i, (f_start, f_end, f_strand, n, t) in enumerate(
+                self.get_all_peptides(str(record.seq).upper())
+            ):
+                out_count += 1
+
+                descr = "length %i aa, %i bp, from %s..%s[%s] of %s" % (
+                    len(t),
+                    len(n),
+                    f_start,
+                    f_end,
+                    f_strand,
+                    record.description,
+                )
+                fid = record.id + "|%s%i" % (self.ftype, i + 1)
+
+                r = SeqRecord(Seq(n), id=fid, name="", description=descr)
+                t = SeqRecord(Seq(t), id=fid, name="", description=descr)
+
+                SeqIO.write(r, out_nuc, "fasta")
+                SeqIO.write(t, out_prot, "fasta")
+
+                nice_strand = "+" if f_strand == +1 else "-"
+
+                out_bed.write(
+                    "\t".join(
+                        map(str, [record.id, f_start, f_end, fid, 0, nice_strand])
+                    )
+                    + "\n"
+                )
+
+                out_gff3.write(
+                    "\t".join(
+                        map(
+                            str,
+                            [
+                                record.id,
+                                "getOrfsOrCds",
+                                "CDS",
+                                f_start + 1,
+                                f_end,
+                                ".",
+                                nice_strand,
+                                0,
+                                "ID=%s.%s.%s" % (self.ftype, idx, i + 1),
+                            ],
+                        )
+                    )
+                    + "\n"
+                )
+        log.info("Found %i %ss", out_count, self.ftype)
+
+    def start_chop_and_trans(self, s, strict=True):
+        """Returns offset, trimmed nuc, protein."""
+        if strict:
+            assert s[-3:] in self.stops, s
+        assert len(s) % 3 == 0
+        for match in self.re_starts.finditer(s, overlapped=True):
+            # Must check the start is in frame
+            start = match.start()
+            if start % 3 == 0:
+                n = s[start:]
+                assert len(n) % 3 == 0, "%s is len %i" % (n, len(n))
+                if strict:
+                    t = translate(n, self.table)
+                else:
+                    # Use when missing stop codon,
+                    t = "M" + translate(n[3:], self.table, to_stop=True)
+                yield start, n, t
+
+    def break_up_frame(self, s):
+        """Returns offset, nuc, protein."""
+        start = 0
+        for match in self.re_stops.finditer(s, overlapped=True):
+            index = match.start() + 3
+            if index % 3 != 0:
+                continue
+            n = s[start:index]
+            for (offset, n, t) in self.start_chop_and_trans(n):
+                if n and len(t) >= self.min_len:
+                    yield start + offset, n, t
+            start = index
+
+    def putative_genes_in_sequence(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+        Co-ordinates are Python style zero-based.
+        """
+        nuc_seq = nuc_seq.upper()
+        # TODO - Refactor to use a generator function (in start order)
+        # rather than making a list and sorting?
+        answer = []
+        full_len = len(nuc_seq)
+
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                start = frame + offset  # zero based
+                answer.append((start, start + len(n), +1, n, t))
+
+        rc = reverse_complement(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(rc[frame:]):
+                start = full_len - frame - offset  # zero based
+                answer.append((start, start - len(n), -1, n, t))
+        answer.sort()
+        return answer
+
+    def get_all_peptides(self, nuc_seq):
+        """Returns start, end, strand, nucleotides, protein.
+
+        Co-ordinates are Python style zero-based.
+        """
+        # Refactored into generator by CPT
+
+        full_len = len(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(nuc_seq[frame:]):
+                start = frame + offset  # zero based
+                yield (start, start + len(n), +1, n, t)
+        rc = reverse_complement(nuc_seq)
+        for frame in range(0, 3):
+            for offset, n, t in self.break_up_frame(rc[frame:]):
+                start = full_len - frame - offset  # zero based
+                yield (start - len(n), start, -1, n, t)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt_find_spanins/findSpanin.py	Fri Jun 17 12:40:59 2022 +0000
@@ -0,0 +1,477 @@
+##### findSpanin.pl --> findSpanin.py
+######### Much of this code is very "blocked", in the sense that one thing happens...then a function happens on the return...then another function...etc...etc...
+
+import argparse
+import os
+import re # new
+import itertools # new
+from collections import Counter, OrderedDict
+from spaninFuncs import getDescriptions, grabLocs, spaninProximity, splitStrands, tuple_fasta, lineWrapper
+
+### Requirement Inputs
+#### INPUT : putative_isp.fa & putative_osp.fa (in that order)
+#### PARAMETERS :
+
+###############################################################################
+def write_output(candidates):
+    """ output file function...maybe not needed """
+    pass
+
+def reconfigure_dict(spanins):
+    """
+    re organizes dictionary to be more friendly for checks
+    """
+
+    new_spanin_dict = {}
+
+    for each_spanin_type, data_dict in spanins.items():
+        #print(f"{each_spanin_type} == {data_dict}")
+        new_spanin_dict[each_spanin_type] = {}
+        new_spanin_dict[each_spanin_type]['positive'] = {}
+        new_spanin_dict[each_spanin_type]['negative'] = {}
+        new_spanin_dict[each_spanin_type]['positive']['coords'] = []
+        new_spanin_dict[each_spanin_type]['negative']['coords'] = []
+        for outter_orf, inner_data in data_dict.items():
+            list_of_hits = []
+            for data_content in inner_data:
+                #print(data_content)
+                data_content.insert(0, outter_orf)
+                #print(f"new data_content -> {data_content}")
+                #print(data_content)
+                #list_of_hits += [data_content]
+                #new_spanin_dict[each_spanin_type] += [data_content]
+                if data_content[6] == "+":
+                    #print(f"{each_spanin_type} @ POSITIVE")
+                    new_spanin_dict[each_spanin_type]['positive']['coords'] += [data_content]
+                elif data_content[6] == "-":
+                    #print(f"{each_spanin_type} @ NEGATIVE")
+                    new_spanin_dict[each_spanin_type]['negative']['coords'] += [data_content]
+        #print(new_spanin_dict[each_spanin_type])
+            #print(reorganized)
+            #print(f"{outter_orf} => {inner_data}")
+            #print(new_spanin_dict)
+        
+        #print('\n')
+    #for k, v in new_spanin_dict.items():
+        #print(k)
+        #print(v)
+    return new_spanin_dict
+
+
+
+def check_for_uniques(spanins):
+    """
+    Checks for unique spanins based on spanin_type.
+    If the positive strand end site is _the same_ for a i-spanin, we would group that as "1".
+    i.e. if ORF1, ORF2, and ORF3 all ended with location 4231, they would not be unique.
+    """
+    pair_dict = {}
+    pair_dict = {
+        'pairs' : {
+            'location_amount' : [],
+            'pair_number' : {},
+        }
+    }
+    for each_spanin_type, spanin_data in spanins.items():
+        #print(f"{each_spanin_type} ===> {spanin_data}")
+        # early declarations for cases of no results
+        pos_check = [] # end checks
+        pos_uniques = []
+        neg_check = [] # start checks
+        neg_uniques = []
+        unique_ends = []
+        pos_amt_unique = 0
+        neg_amt_unique = 0
+        amt_positive = 0
+        amt_negative = 0
+        spanin_data['uniques'] = 0
+        spanin_data['amount'] = 0
+        #spanin_data['positive']['amt_positive'] = 0
+        #spanin_data['positive']['pos_amt_unique'] = 0
+        #spanin_data['positive']['isp_match'] = []
+        #spanin_data['negative']['amt_negative'] = 0
+        #spanin_data['negative']['neg_amt_unique'] = 0
+        #spanin_data['negative']['isp_match'] = []
+        #print(spanin_data)
+        if spanin_data['positive']['coords']:
+            # do something...
+            #print('in other function')
+            #print(spanin_data['positive']['coords'])
+            for each_hit in spanin_data['positive']['coords']:
+                pos_check.append(each_hit[2])
+                pair_dict['pairs']['location_amount'].append(each_hit[2])
+                pos_uniques = list(set([end_site for end_site in pos_check if pos_check.count(end_site) >= 1]))
+            #print(pos_check)
+            #print(pos_uniques)
+            amt_positive = len(spanin_data['positive']['coords'])
+            pos_amt_unique = len(pos_uniques)
+            if amt_positive:
+                spanin_data['positive']['amt_positive'] = amt_positive
+                spanin_data['positive']['pos_amt_unique'] = pos_amt_unique
+            #pair_dict['pairs']['locations'].extend(pos_uniques)
+        else:
+            spanin_data['positive']['amt_positive'] = 0
+            spanin_data['positive']['pos_amt_unique'] = 0
+        if spanin_data['negative']['coords']:
+
+            # do something else...
+            #print('in other function')
+            #print(spanin_data['negative']['coords'])
+            for each_hit in spanin_data['negative']['coords']:
+                neg_check.append(each_hit[1])
+                pair_dict['pairs']['location_amount'].append(each_hit[1])
+                neg_uniques = list(set([start_site for start_site in neg_check if neg_check.count(start_site) >= 1]))
+            #print(neg_uniques)
+            amt_negative = len(spanin_data['negative']['coords'])
+            neg_amt_unique = len(neg_uniques)
+            if amt_negative:
+                spanin_data['negative']['amt_negative'] = amt_negative
+                spanin_data['negative']['neg_amt_unique'] = neg_amt_unique
+            #pair_dict['pairs']['locations'].extend(neg_uniques)
+        else:
+            spanin_data['negative']['amt_negative'] = 0
+            spanin_data['negative']['neg_amt_unique'] = 0
+        spanin_data['uniques'] += (spanin_data['positive']['pos_amt_unique'] + spanin_data['negative']['neg_amt_unique'])
+        spanin_data['amount'] += (spanin_data['positive']['amt_positive'] + spanin_data['negative']['amt_negative'])
+        #print(spanin_data['uniques'])
+    list(set(pair_dict['pairs']['location_amount']))
+    pair_dict['pairs']['location_amount'] = dict(Counter(pair_dict['pairs']['location_amount']))
+    for data in pair_dict.values():
+        #print(data['locations'])
+        #print(type(data['locations']))
+        v = 0
+        for loc, count in data['location_amount'].items():
+            #data['pair_number'] = {loc
+            v += 1
+            data['pair_number'][loc] = v
+    #print(dict(Counter(pair_dict['pairs']['locations'])))
+    #print(pair_dict)
+    spanins['total_amount'] = spanins['EMBEDDED']['amount'] + spanins['SEPARATED']['amount'] + spanins['OVERLAPPED']['amount']
+    spanins['total_unique'] = spanins['EMBEDDED']['uniques'] + spanins['SEPARATED']['uniques'] + spanins['OVERLAPPED']['uniques']
+    #spanins['total_unique'] = len(pair_dict['pairs']['pair_number'])
+    return spanins, pair_dict
+
+if __name__ == "__main__":
+
+    # Common parameters for both ISP / OSP portion of script
+
+    parser = argparse.ArgumentParser(
+        description="Trim the putative protein candidates and find potential i-spanin / o-spanin pairs"
+    )
+
+    parser.add_argument(
+        "putative_isp_fasta_file",
+        type=argparse.FileType("r"),
+        help='Putative i-spanin FASTA file, output of "generate-putative-isp"',
+    )  # the "input" argument
+
+    parser.add_argument(
+        "putative_osp_fasta_file",
+        type=argparse.FileType("r"),
+        help='Putative o-spanin FASTA file, output of "generate-putative-osp"',
+    )
+
+    parser.add_argument(
+        "--max_isp_osp_distance",
+        dest="max_isp_osp_distance",
+        default=10,
+        type=int,
+        help="max distance from end of i-spanin to start of o-spanin, measured in AAs",
+    )
+
+    parser.add_argument(
+        "--embedded_txt",
+        dest="embedded_txt",
+        type=argparse.FileType("w"),
+        default="_findSpanin_embedded_results.txt",
+        help="Results of potential embedded spanins",
+    )
+    parser.add_argument(
+        "--overlap_txt",
+        dest="overlap_txt",
+        type=argparse.FileType("w"),
+        default="_findSpanin_overlap_results.txt",
+        help="Results of potential overlapping spanins",
+    )
+    parser.add_argument(
+        "--separate_txt",
+        dest="separate_txt",
+        type=argparse.FileType("w"),
+        default="_findSpanin_separated_results.txt",
+        help="Results of potential separated spanins",
+    )
+
+    parser.add_argument(
+        "--summary_txt",
+        dest="summary_txt",
+        type=argparse.FileType("w"),
+        default="_findSpanin_summary.txt",
+        help="Results of potential spanin pairs",
+    )
+    parser.add_argument(
+        "-v", action="version", version="0.3.0"
+    )  # Is this manually updated?
+    args = parser.parse_args()
+
+
+    #### RE-WRITE
+    SPANIN_TYPES = {}
+    SPANIN_TYPES['EMBEDDED'] = {}
+    SPANIN_TYPES['OVERLAPPED'] = {}
+    SPANIN_TYPES['SEPARATED'] = {}
+    #SPANIN_TYPES = {
+    #    'EMBEDDED' : {},
+    #    'OVERLAPPED' : {},
+    #    'SEPARATED' : {},
+    #}
+
+    isp = getDescriptions(args.putative_isp_fasta_file)
+    args.putative_isp_fasta_file = open(args.putative_isp_fasta_file.name, "r")
+    isp_full = tuple_fasta(args.putative_isp_fasta_file)
+
+    osp = getDescriptions(args.putative_osp_fasta_file)
+    args.putative_osp_fasta_file = open(args.putative_osp_fasta_file.name, "r")
+    osp_full = tuple_fasta(args.putative_osp_fasta_file)
+
+    #### location data
+    location_data = {
+        'isp' : [],
+        'osp' : []
+    }
+    spanins = [isp, osp]
+    for idx, each_spanin_type in enumerate(spanins):
+        for description in each_spanin_type:
+            locations = grabLocs(description)
+            if idx == 0: # i-spanin
+                location_data['isp'].append(locations)
+            elif idx == 1: # o-spanin
+                location_data['osp'].append(locations)
+
+    #### Check for types of spanins
+    embedded, overlap, separate = spaninProximity(
+                                        isp=location_data['isp'],
+                                        osp=location_data['osp'], 
+                                        max_dist=args.max_isp_osp_distance * 3
+                                    )
+    
+    SPANIN_TYPES['EMBEDDED'] = embedded
+    SPANIN_TYPES['OVERLAPPED'] = overlap
+    SPANIN_TYPES['SEPARATED'] = separate
+
+    #for spanin_type, spanin in SPANIN_TYPES.items():
+    #    s = 0
+    #    for sequence in spanin.values():
+    #        s += len(sequence)
+    #    SPANIN_TYPES[spanin_type]['amount'] = s
+    #    SPANIN_TYPES[spanin_type]['unique'] = len(spanin.keys())
+    
+    #check_for_unique_spanins(SPANIN_TYPES)
+    spanins = reconfigure_dict(SPANIN_TYPES)
+    spanins, pair_dict = check_for_uniques(spanins)
+    #print(pair_dict)
+    with args.summary_txt as f:
+        for each_spanin_type, spanin_data in spanins.items():
+            try:
+                if each_spanin_type not in ["total_amount","total_unique"]:
+                    #print(each_spanin_type)
+                    #print(each_spanin_type)
+                    f.write("=~~~~~= "+str(each_spanin_type) +" Spanin Candidate Statistics =~~~~~=\n")
+                    f.writelines("Total Candidate Pairs = "+str(spanin_data['amount'])+"\n")
+                    f.writelines("Total Unique Pairs = "+str(spanin_data['uniques'])+"\n")
+                    if each_spanin_type == "EMBEDDED":
+                        for k, v in SPANIN_TYPES['EMBEDDED'].items():
+                            #print(k)
+                            f.writelines(""+str(k)+" ==> Amount of corresponding candidate o-spanins(s): "+str(len(v))+"\n")
+                    if each_spanin_type == "SEPARATED":
+                        for k, v in SPANIN_TYPES['SEPARATED'].items():
+                            f.writelines(""+str(k)+ " ==> Amount of corresponding candidate o-spanins(s): "+str(len(v))+"\n")
+                    if each_spanin_type == "OVERLAPPED":
+                        for k, v in SPANIN_TYPES['OVERLAPPED'].items():
+                            f.writelines(""+str(k)+" ==> Amount of corresponding candidate o-spanins(s): "+str(len(v))+"\n")
+            except TypeError:
+                continue
+        f.write("\n=~~~~~= Tally from ALL spanin types =~~~~~=\n")
+        f.writelines("Total Candidates = "+str(spanins['total_amount'])+"\n")
+        f.writelines("Total Unique Candidate Pairs = "+str(spanins['total_unique'])+"\n")
+
+    args.putative_isp_fasta_file = open(args.putative_isp_fasta_file.name, "r")
+    isp_full = tuple_fasta(args.putative_isp_fasta_file)
+
+    args.putative_osp_fasta_file = open(args.putative_osp_fasta_file.name, "r")
+    osp_full = tuple_fasta(args.putative_osp_fasta_file)
+
+    #print(isp_full)
+    isp_seqs = []
+    osp_seqs = []
+    for isp_tupe in isp_full:
+        #print(isp_tupe)
+        for pisp, posp in embedded.items():
+            #print(f"ISP = searching for {pisp} in {isp_tupe[0]}")
+            if re.search(("("+str(pisp)+")\D"), isp_tupe[0]):
+                #print(isp_tupe[0])
+                #print(peri_count)
+                peri_count = str.split(isp_tupe[0],"~=")[1]
+                isp_seqs.append((pisp,isp_tupe[1],peri_count))
+    #print(isp_seqs)
+    for osp_tupe in osp_full:
+        for pisp, posp in embedded.items():
+            for data in posp:
+                #print(f"OSP = searching for {data[3]} in {osp_tupe[0]}, coming from this object: {data}")
+                if re.search(("("+str(data[3])+")\D"), osp_tupe[0]):
+                    peri_count = str.split(osp_tupe[0],"~=")[1]
+                    osp_seqs.append((data[3],osp_tupe[1],peri_count))
+
+    with args.embedded_txt as f:
+        f.write("================ embedded spanin candidates =================\n")
+        f.write("isp\tisp_start\tisp_end\tosp\tosp_start\tosp_end\tstrand\tpair_number\n")
+        if embedded != {}:
+            #print(embedded)
+            for pisp, posp in embedded.items():
+                #print(f"{pisp} - {posp}")
+                f.write(pisp + "\n")
+                for each_posp in posp:
+                    #print(posp)
+                    f.write(
+                        "\t{}\t{}\t{}\t{}\t{}\t{}\t".format(
+                            each_posp[1],
+                            each_posp[2],
+                            each_posp[3],
+                            each_posp[4],
+                            each_posp[5],
+                            each_posp[6],
+                        )
+                    )
+                    if each_posp[6] == "+":
+                        if each_posp[2] in pair_dict['pairs']['pair_number'].keys():
+                            f.write(""+str(pair_dict['pairs']['pair_number'][each_posp[2]])+"\n")
+                    elif each_posp[6] == "-":
+                        if each_posp[1] in pair_dict['pairs']['pair_number'].keys():
+                            f.write(""+str(pair_dict['pairs']['pair_number'][each_posp[1]])+"\n")
+        else:
+            f.write("nothing found")
+
+    with open(args.embedded_txt.name, "a") as f:
+        f.write("\n================= embedded candidate sequences ================\n")
+        f.write("======================= isp ==========================\n\n")
+        for isp_data in isp_seqs:
+            #print(isp_data)
+            f.write(">isp_orf::{}-peri_count~={}\n{}\n".format(isp_data[0],isp_data[2],lineWrapper(isp_data[1])))
+        f.write("\n======================= osp ========================\n\n")
+        for osp_data in osp_seqs:
+            f.write(">osp_orf::{}-peri_count~={}\n{}\n".format(osp_data[0],osp_data[2],lineWrapper(osp_data[1])))
+
+    args.putative_isp_fasta_file = open(args.putative_isp_fasta_file.name, "r")
+    isp_full = tuple_fasta(args.putative_isp_fasta_file)
+
+    args.putative_osp_fasta_file = open(args.putative_osp_fasta_file.name, "r")
+    osp_full = tuple_fasta(args.putative_osp_fasta_file)
+
+    isp_seqs = []
+    osp_seqs = []
+    for isp_tupe in isp_full:
+        peri_count = str.split(isp_tupe[0],"~=")[1]
+        for pisp, posp in overlap.items():
+            if re.search(("("+str(pisp)+")\D"), isp_tupe[0]):
+                peri_count = str.split(isp_tupe[0],"~=")[1]
+                isp_seqs.append((pisp,isp_tupe[1],peri_count))
+
+    for osp_tupe in osp_full:
+        for pisp, posp in overlap.items():
+            for data in posp:
+                if re.search(("("+str(data[3])+")\D"), osp_tupe[0]):
+                    peri_count = str.split(osp_tupe[0],"~=")[1]
+                    osp_seqs.append((data[3],osp_tupe[1],peri_count))
+
+
+    
+    with args.overlap_txt as f:
+        f.write("================ overlap spanin candidates =================\n")
+        f.write("isp\tisp_start\tisp_end\tosp\tosp_start\tosp_end\tstrand\tpair_number\n")
+        if overlap != {}:
+            for pisp, posp in overlap.items():
+                f.write(pisp + "\n")
+                for each_posp in posp:
+                    f.write(
+                        "\t{}\t{}\t{}\t{}\t{}\t{}\t".format(
+                            each_posp[1],
+                            each_posp[2],
+                            each_posp[3],
+                            each_posp[4],
+                            each_posp[5],
+                            each_posp[6],
+                        )
+                    )
+                    if each_posp[6] == "+":
+                        if each_posp[2] in pair_dict['pairs']['pair_number'].keys():
+                            #print('ovl ; +')
+                            f.write(""+str(pair_dict['pairs']['pair_number'][each_posp[2]])+"\n")
+                    elif each_posp[6] == "-":
+                        if each_posp[1] in pair_dict['pairs']['pair_number'].keys():
+                            f.write(""+str(pair_dict['pairs']['pair_number'][each_posp[1]])+"\n")
+        else:
+            f.write("nothing found")
+
+    with open(args.overlap_txt.name, "a") as f:
+        #print(isp_seqs)
+        f.write("\n================= overlap candidate sequences ================\n")
+        f.write("======================= isp ==========================\n\n")
+        for isp_data in isp_seqs:
+            f.write(">isp_orf::{}-pericount~={}\n{}\n".format(isp_data[0],isp_data[2],lineWrapper(isp_data[1])))
+        f.write("\n======================= osp ========================\n\n")
+        for osp_data in osp_seqs:
+            f.write(">osp_orf::{}-pericount~={}\n{}\n".format(osp_data[0],osp_data[2],lineWrapper(osp_data[1])))
+
+    args.putative_isp_fasta_file = open(args.putative_isp_fasta_file.name, "r")
+    isp_full = tuple_fasta(args.putative_isp_fasta_file)
+    args.putative_osp_fasta_file = open(args.putative_osp_fasta_file.name, "r")
+    osp_full = tuple_fasta(args.putative_osp_fasta_file)
+
+    isp_seqs = []
+    osp_seqs = []
+    for isp_tupe in isp_full:
+        for pisp, posp in separate.items():
+            if re.search(("("+str(pisp)+")\D"), isp_tupe[0]):
+                peri_count = str.split(isp_tupe[0],"~=")[1]
+                isp_seqs.append((pisp,isp_tupe[1],peri_count))
+    #print(isp_seqs)
+    for osp_tupe in osp_full:
+        for pisp, posp in separate.items():
+            for data in posp:
+                if re.search(("("+str(data[3])+")\D"), osp_tupe[0]):
+                    peri_count = str.split(osp_tupe[0],"~=")[1]
+                    osp_seqs.append((data[3],osp_tupe[1],peri_count))
+
+    with args.separate_txt as f:
+        f.write("================ separated spanin candidates =================\n")
+        f.write("isp\tisp_start\tisp_end\tosp\tosp_start\tosp_end\tstrand\tpair_number\n")
+        if separate != {}:
+            for pisp, posp in separate.items():
+                f.write(pisp + "\n")
+                for each_posp in posp:
+                    f.write(
+                        "\t{}\t{}\t{}\t{}\t{}\t{}\t".format(
+                            each_posp[1],
+                            each_posp[2],
+                            each_posp[3],
+                            each_posp[4],
+                            each_posp[5],
+                            each_posp[6],
+                        )
+                    )
+                    if each_posp[6] == "+":
+                        if each_posp[2] in pair_dict['pairs']['pair_number'].keys():
+                            f.write(""+str(pair_dict['pairs']['pair_number'][each_posp[2]])+"\n")
+                    elif each_posp[6] == "-":
+                        if each_posp[1] in pair_dict['pairs']['pair_number'].keys():
+                            f.write(""+str(pair_dict['pairs']['pair_number'][each_posp[1]])+"\n")
+        else:
+            f.write("nothing found")
+
+    with open(args.separate_txt.name, "a") as f:
+        f.write("\n================= separated candidate sequences ================\n")
+        f.write("======================= isp ==========================\n\n")
+        for isp_data in isp_seqs:
+            f.write(">isp_orf::{}-pericount~={}\n{}\n".format(isp_data[0],isp_data[2],lineWrapper(isp_data[1])))
+        f.write("\n======================= osp ========================\n\n")
+        for osp_data in osp_seqs:
+            f.write(">osp_orf::{}-pericount~={}\n{}\n".format(osp_data[0],osp_data[2],lineWrapper(osp_data[1])))
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt_find_spanins/findSpanin.xml	Fri Jun 17 12:40:59 2022 +0000
@@ -0,0 +1,44 @@
+<?xml version="1.1"?>
+<tool id="edu.tamu.cpt2.spanin.findSpanin" name="Find Spanin" version="1.0">
+    <description>With the outputs from the ISP and OSP candidate tools, cull the list down to candidate pairs</description>
+    <macros>
+		<import>macros.xml</import>
+		<import>cpt-macros.xml</import>
+    </macros>
+    <expand macro="requirements">
+    </expand>
+    <command detect_errors="aggressive"><![CDATA[
+python $__tool_directory__/findSpanin.py
+$putative_isp_fasta_file
+$putative_osp_fasta_file
+--max_isp_osp_distance $max_isp_osp_distance
+--embedded_txt $embedded_txt
+--overlap_txt $overlap_txt
+--separate_txt $separate_txt
+--summary_txt $summary_txt
+]]></command>
+    <inputs>
+        <param label="(putative) i-spanin FASTA file" name="putative_isp_fasta_file" type="data" format="fasta"/>
+        <param label="(putative) o-spanin FASTA file" name="putative_osp_fasta_file" type="data" format="fasta"/>
+        <param label="max distance from end of i-spanin to beginning of o-spanin (measured in AAs)" name="max_isp_osp_distance" type="integer" value="10" />
+    </inputs>
+    <outputs>
+          <data format="txt" name="summary_txt" label="FindSpanin_summary.txt"/>
+          <data format="tabular" name="embedded_txt" label="embedded_results.txt"/>
+          <data format="tabular" name="overlap_txt" label="overlap_results.txt"/>
+          <data format="tabular" name="separate_txt" label="separate_results.txt"/>
+    </outputs>
+    <help><![CDATA[
+**What it does**
+Compares the protein FASTA files with candidate i-spanins and o-spanins from a genome and matches them into candidate pairs based on position in a strand-aware fashion.
+
+**INPUT** --> Putative i-spanin and o-spanin protein multiFASTAs (generated from the ISP/OSP Candidate Tools). 
+
+**METHODOLOGY** 
+Does a pairwise comparison between candidate i-spanins and o-spanins based on their genomic location, and classifies them into the known bimolecular spanin genetic architectures. Classes are: embedded, overlapping, separated, or NOT a potential pair.
+
+**OUTPUT** --> File with candidate pairs for each bimolecular spanin class and a basic summary statistics file. 
+
+]]></help>
+        <expand macro="citations-2020" />
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt_find_spanins/macros.xml	Fri Jun 17 12:40:59 2022 +0000
@@ -0,0 +1,63 @@
+<?xml version="1.0"?>
+<macros>
+	<xml name="requirements">
+		<requirements>
+                        <requirement type="package" version="2019.06.05">regex</requirement>
+			<requirement type="package" version="3.6">python</requirement>
+			<requirement type="package" version="1.77">biopython</requirement>
+			<requirement type="package" version="1.1.7">cpt_gffparser</requirement>  
+			<yield/>
+		</requirements>
+	</xml>
+	<token name="@BLAST_TSV@">
+		"$blast_tsv"
+	</token>
+	<xml name="blast_tsv">
+		<param label="Blast Results" help="TSV/tabular (25 Column)"
+			name="blast_tsv" type="data" format="tabular" />
+	</xml>
+
+	<token name="@BLAST_XML@">
+		"$blast_xml"
+	</token>
+	<xml name="blast_xml">
+		<param label="Blast Results" help="XML format"
+			name="blast_xml" type="data" format="blastxml" />
+	</xml>
+	<xml name="gff3_with_fasta">
+	<param label="Genome Sequences" name="fasta" type="data" format="fasta" />
+	<param label="Genome Annotations" name="gff3" type="data" format="gff3" />
+	</xml>
+	<xml name="genome_selector">
+	    <param name="genome_fasta" type="data" format="fasta" label="Source FASTA Sequence"/>
+	</xml>
+	<xml name="gff3_input">
+		<param label="GFF3 Annotations" name="gff3_data" type="data" format="gff3"/>
+	</xml>
+	<xml name="input/gff3+fasta">
+		<expand macro="gff3_input" />
+		<expand macro="genome_selector" />
+	</xml>
+	<token name="@INPUT_GFF@">
+	"$gff3_data"
+	</token>
+	<token name="@INPUT_FASTA@">
+		genomeref.fa
+	</token>
+	<token name="@GENOME_SELECTOR_PRE@">
+		ln -s $genome_fasta genomeref.fa;
+	</token>
+	<token name="@GENOME_SELECTOR@">
+		genomeref.fa
+	</token>
+        <xml name="input/fasta">
+		<param label="Fasta file" name="sequences" type="data" format="fasta"/>
+	</xml>
+
+	<token name="@SEQUENCE@">
+		"$sequences"
+	</token>
+	<xml name="input/fasta/protein">
+		<param label="Protein fasta file" name="sequences" type="data" format="fasta"/>
+	</xml>
+</macros>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cpt_find_spanins/spaninFuncs.py	Fri Jun 17 12:40:59 2022 +0000
@@ -0,0 +1,469 @@
+"""
+PREMISE
+### Functions/Classes that are used in both generate-putative-osp.py and generate-putative-isp.py
+###### Main premise here is to make the above scripts a little more DRY, as well as easily readable for execution.
+###### Documentation will ATTEMPT to be thourough here
+"""
+
+import re
+from Bio import SeqIO
+from Bio import Seq
+from collections import OrderedDict
+
+# Not written in OOP for a LITTLE bit of trying to keep the complication down in case adjustments are needed by someone else.
+# Much of the manipulation is string based; so it should be straightforward as well as moderately quick
+################## GLobal Variables
+Lys = "K"
+
+
+def check_back_end_snorkels(seq, tmsize):
+    """
+        Searches through the backend of a potential TMD snorkel. This is the 2nd part of a TMD snorkel lysine match.
+        --> seq : should be the sequence fed from the "search_region" portion of the sequence
+        --> tmsize : size of the potential TMD being investigated
+    """
+    found = []
+    if seq[tmsize - 4] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 5]):
+        found = "match"
+        return found
+    elif seq[tmsize - 3] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 4]):
+        found = "match"
+        return found
+    elif seq[tmsize - 2] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 3]):
+        found = "match"
+        return found
+    elif seq[tmsize - 1] == Lys and re.search(("[FIWLVMYCATGS]"), seq[tmsize - 2]):
+        found = "match"
+        return found
+    else:
+        found = "NOTmatch"
+        return found
+
+
+def prep_a_gff3(fa, spanin_type, org):
+    """
+        Function parses an input detailed 'fa' file and outputs a 'gff3' file
+        ---> fa = input .fa file
+        ---> output = output a returned list of data, easily portable to a gff3 next
+        ---> spanin_type = 'isp' or 'osp'
+    """
+    with org as f:
+        header = f.readline()
+        orgacc = header.split(" ")
+        orgacc = orgacc[0].split(">")[1].strip()
+    fa_zip = tuple_fasta(fa)
+    data = []
+    for a_pair in fa_zip:
+        # print(a_pair)
+        if re.search(("(\[1\])"), a_pair[0]):
+            strand = "+"
+        elif re.search(("(\[-1\])"), a_pair[0]):
+            strand = "-"  # column 7
+        start = re.search(("[\d]+\.\."), a_pair[0]).group(0).split("..")[0]  # column 4
+        end = re.search(("\.\.[\d]+"), a_pair[0]).group(0).split("..")[1]  # column 5
+        orfid = re.search(("(ORF)[\d]+"), a_pair[0]).group(0)  # column 1
+        if spanin_type == "isp":
+            methodtype = "CDS"  # column 3
+            spanin = "isp"
+        elif spanin_type == "osp":
+            methodtype = "CDS"  # column 3
+            spanin = "osp"
+        elif spanin_type == "usp":
+            methodtype = "CDS"
+            spanin = "usp"
+        else:
+            raise "need to input spanin type"
+        source = "cpt.py|putative-*.py"  # column 2
+        score = "."  # column 6
+        phase = "."  # column 8
+        attributes = "ID=" +orgacc+ "|"+ orfid + ";ALIAS=" + spanin + ";SEQ="+a_pair[1]  # column 9
+        sequence = [[orgacc, source, methodtype, start, end, score, strand, phase, attributes]]
+        data += sequence
+    return data
+
+
+def write_gff3(data, output="results.gff3"):
+    """
+        Parses results from prep_a_gff3 into a gff3 file
+        ---> input : list from prep_a_gff3
+        ---> output : gff3 file
+    """
+    data = data
+    filename = output
+    with filename as f:
+        f.write("#gff-version 3\n")
+        for value in data:
+            f.write(
+                "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(
+                    value[0],
+                    value[1],
+                    value[2],
+                    value[3],
+                    value[4],
+                    value[5],
+                    value[6],
+                    value[7],
+                    value[8],
+                )
+            )
+    f.close()
+
+
+def find_tmd(pair, minimum=10, maximum=30, TMDmin=10, TMDmax=20, isp_mode=False, peri_min=18, peri_max=206):
+    """ 
+        Function that searches for lysine snorkels and then for a spanning hydrophobic region that indicates a potential TMD
+        ---> pair : Input of tuple with description and AA sequence (str)
+        ---> minimum : How close from the initial start codon a TMD can be within
+        ---> maximum : How far from the initial start codon a TMD can be within
+        ---> TMDmin : The minimum size that a transmembrane can be (default = 10)
+        ---> TMDmax : The maximum size tha ta transmembrane can be (default = 20)
+    """
+    # hydrophobicAAs = ['P', 'F', 'I', 'W', 'L', 'V', 'M', 'Y', 'C', 'A', 'T', 'G', 'S']
+    tmd = []
+    s = str(pair[1])  # sequence being analyzed
+    # print(s) # for trouble shooting
+    if maximum > len(s):
+        maximum = len(s)
+    search_region = s[minimum - 1 : maximum + 1]
+    #print(f"this is the search region: {search_region}")
+    # print(search_region) # for trouble shooting
+
+    for tmsize in range(TMDmin, TMDmax+1, 1):
+        #print(f"this is the current tmsize we're trying: {tmsize}")
+        # print('==============='+str(tmsize)+'================') # print for troubleshooting
+        pattern = "[PFIWLVMYCATGS]{"+str(tmsize)+"}"  # searches for these hydrophobic residues tmsize total times
+        #print(pattern)
+        #print(f"sending to regex: {search_region}")
+        if re.search(
+            ("[K]"), search_region[1:8]):  # grabbing one below with search region, so I want to grab one ahead here when I query.
+            store_search = re.search(("[K]"), search_region[1:8])  # storing regex object
+            where_we_are = store_search.start()  # finding where we got the hit
+            if re.search(
+                ("[PFIWLVMYCATGS]"), search_region[where_we_are + 1]
+            ) and re.search(
+                ("[PFIWLVMYCATGS]"), search_region[where_we_are - 1]
+            ):  # hydrophobic neighbor
+                #try:
+                g = re.search(("[PFIWLVMYCATGS]"), search_region[where_we_are + 1]).group()
+                backend = check_back_end_snorkels(search_region, tmsize)
+                if backend == "match":
+                    if isp_mode:
+                        g = re.search((pattern), search_region).group()
+                        end_of_tmd = re.search((g), s).end()+1
+                        amt_peri = len(s) - end_of_tmd
+                        if peri_min <= amt_peri <= peri_max:
+                            pair_desc = pair[0] + ", peri_count~="+str(amt_peri)
+                            new_pair = (pair_desc,pair[1])
+                            tmd.append(new_pair)
+                    else:
+                        tmd.append(pair)
+                else:
+                    continue
+        #else:
+            #print("I'm continuing out of snorkel loop")
+            #print(f"{search_region}")
+            #continue
+        if re.search((pattern), search_region):
+            #print(f"found match: {}")
+            #print("I AM HEREEEEEEEEEEEEEEEEEEEEEEE")
+            #try:
+            if isp_mode:
+                g = re.search((pattern), search_region).group()
+                end_of_tmd = re.search((g), s).end()+1
+                amt_peri = len(s) - end_of_tmd
+                if peri_min <= amt_peri <= peri_max:
+                    pair_desc = pair[0] + ", peri_count~="+str(amt_peri)
+                    new_pair = (pair_desc,pair[1])
+                    tmd.append(new_pair)
+            else:
+                tmd.append(pair)
+        else:
+            continue
+
+        return tmd
+
+
+def find_lipobox(pair, minimum=10, maximum=50, min_after=30, max_after=185, regex=1, osp_mode=False):
+    """
+        Function that takes an input tuple, and will return pairs of sequences to their description that have a lipoobox
+        ---> minimum - min distance from start codon to first AA of lipobox
+        ---> maximum - max distance from start codon to first AA of lipobox
+        ---> regex - option 1 (default) => more strict regular expression ; option 2 => looser selection, imported from LipoRy
+        
+    """
+    if regex == 1:
+        pattern = "[ILMFTV][^REKD][GAS]C"  # regex for Lipobox from findSpanin.pl
+    elif regex == 2:
+        pattern = "[ACGSILMFTV][^REKD][GAS]C"  # regex for Lipobox from LipoRy
+
+    candidates = []
+    s = str(pair[1])
+    # print(s) # trouble shooting
+    search_region = s[minimum-1 : maximum + 5] # properly slice the input... add 4 to catch if it hangs off at max input
+    # print(search_region) # trouble shooting
+    patterns = ["[ILMFTV][^REKD][GAS]C","AW[AGS]C"]
+    for pattern in patterns:
+        #print(pattern)  # trouble shooting
+        if re.search((pattern), search_region):  # lipobox must be WITHIN the range...
+            # searches the sequence with the input RegEx AND omits if
+            g = re.search((pattern), search_region).group() # find the exact group match
+            amt_peri = len(s) - re.search((g), s).end() + 1
+            if min_after <= amt_peri <= max_after: # find the lipobox end region
+                if osp_mode:
+                    pair_desc = pair[0] + ", peri_count~="+str(amt_peri)
+                    new_pair = (pair_desc,pair[1])
+                    candidates.append(new_pair)
+                else:
+                    candidates.append(pair)
+
+                return candidates
+
+
+def tuple_fasta(fasta_file):
+    """
+        #### INPUT: Fasta File
+        #### OUTPUT: zipped (zip) : pairwise relationship of description to sequence
+        #### 
+    """
+    fasta = SeqIO.parse(fasta_file, "fasta")
+    descriptions = []
+    sequences = []
+    for r in fasta:  # iterates and stores each description and sequence
+        description = r.description
+        sequence = str(r.seq)
+        if (
+            sequence[0] != "I"
+        ):  # the translation table currently has I as a potential start codon ==> this will remove all ORFs that start with I
+            descriptions.append(description)
+            sequences.append(sequence)
+        else:
+            continue
+
+    return zip(descriptions, sequences)
+
+
+def lineWrapper(text, charactersize=60):
+
+    if len(text) <= charactersize:
+        return text
+    else:
+        return (
+            text[:charactersize]
+            + "\n"
+            + lineWrapper(text[charactersize:], charactersize)
+        )
+
+
+def getDescriptions(fasta):
+    """
+    Takes an output FASTA file, and parses retrieves the description headers. These headers contain information needed
+    for finding locations of a potential i-spanin and o-spanin proximity to one another.
+    """
+    desc = []
+    with fasta as f:
+        for line in f:
+            if line.startswith(">"):
+                desc.append(line)
+    return desc
+
+
+def splitStrands(text, strand="+"):
+    # positive_strands = []
+    # negative_strands = []
+    if strand == "+":
+        if re.search(("(\[1\])"), text):
+            return text
+    elif strand == "-":
+        if re.search(("(\[-1\])"), text):
+            return text
+    # return positive_strands, negative_strands
+
+
+def parse_a_range(pair, start, end):
+    """
+        Takes an input data tuple from a fasta tuple pair and keeps only those within the input sequence range
+        ---> data : fasta tuple data
+        ---> start : start range to keep
+        ---> end : end range to keep (will need to + 1)
+    """
+    matches = []
+    for each_pair in pair:
+
+        s = re.search(("[\d]+\.\."), each_pair[0]).group(0)  # Start of the sequence
+        s = int(s.split("..")[0])
+        e = re.search(("\.\.[\d]+"), each_pair[0]).group(0)
+        e = int(e.split("..")[1])
+        if start - 1 <= s and e <= end + 1:
+            matches.append(each_pair)
+        else:
+            continue
+    # else:
+    # continue
+    # if matches != []:
+    return matches
+    # else:
+    # print('no candidates within selected range')
+
+
+def grabLocs(text):
+    """
+    Grabs the locations of the spanin based on NT location (seen from ORF). Grabs the ORF name, as per named from the ORF class/module
+    from cpt.py
+    """
+    start = re.search(("[\d]+\.\."), text).group(0)  # Start of the sequence ; looks for [numbers]..
+    end = re.search(("\.\.[\d]+"), text).group(0)  # End of the sequence ; Looks for ..[numbers]
+    orf = re.search(("(ORF)[\d]+"), text).group(0)  # Looks for ORF and the numbers that are after it
+    if re.search(("(\[1\])"), text): # stores strand
+        strand = "+"
+    elif re.search(("(\[-1\])"), text): # stores strand
+        strand = "-"
+    start = int(start.split("..")[0])
+    end = int(end.split("..")[1])
+    vals = [start, end, orf, strand]
+
+    return vals
+
+
+def spaninProximity(isp, osp, max_dist=30):
+    """
+    _NOTE THIS FUNCTION COULD BE MODIFIED TO RETURN SEQUENCES_
+    Compares the locations of i-spanins and o-spanins. max_dist is the distance in NT measurement from i-spanin END site
+    to o-spanin START. The user will be inputting AA distance, so a conversion will be necessary (<user_input> * 3)
+    I modified this on 07.30.2020 to bypass the pick + or - strand. To 
+    INPUT: list of OSP and ISP candidates
+    OUTPUT: Return (improved) candidates for overlapping, embedded, and separate list
+    """
+
+    embedded = {}
+    overlap = {}
+    separate = {}
+    for iseq in isp:
+        embedded[iseq[2]] = []
+        overlap[iseq[2]] = []
+        separate[iseq[2]] = []
+        for oseq in osp:
+            if iseq[3] == "+":
+                if oseq[3] == "+":
+                    if iseq[0] < oseq[0] < iseq[1] and oseq[1] < iseq[1]:
+                        ### EMBEDDED ###
+                        combo = [
+                            iseq[0],
+                            iseq[1],
+                            oseq[2],
+                            oseq[0],
+                            oseq[1],
+                            iseq[3],
+                        ]  # ordering a return for dic
+                        embedded[iseq[2]] += [combo]
+                    elif iseq[0] < oseq[0] <= iseq[1] and oseq[1] > iseq[1]:
+                        ### OVERLAP / SEPARATE ###
+                        if (iseq[1] - oseq[0]) < 6:
+                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
+                            separate[iseq[2]] += [combo]
+                        else:
+                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
+                            overlap[iseq[2]] += [combo]
+                    elif iseq[1] <= oseq[0] <= iseq[1] + max_dist:
+                        combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
+                        separate[iseq[2]] += [combo]
+                    else:
+                        continue
+            if iseq[3] == "-":
+                if oseq[3] == "-":
+                    if iseq[0] <= oseq[1] <= iseq[1] and oseq[0] > iseq[0]:
+                        ### EMBEDDED ###
+                        combo = [
+                            iseq[0],
+                            iseq[1],
+                            oseq[2],
+                            oseq[0],
+                            oseq[1],
+                            iseq[3],
+                        ]  # ordering a return for dict
+                        embedded[iseq[2]] += [combo]
+                    elif iseq[0] <= oseq[1] <= iseq[1] and oseq[0] < iseq[0]:
+                        if (oseq[1] - iseq[0]) < 6:
+                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
+                            separate[iseq[2]] += [combo]
+                        else:
+                            combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
+                            overlap[iseq[2]] += [combo]
+                    elif iseq[0] - 10 < oseq[1] < iseq[0]:
+                        combo = [iseq[0], iseq[1], oseq[2], oseq[0], oseq[1],iseq[3]]
+                        separate[iseq[2]] += [combo]
+                    else:
+                        continue
+
+    embedded = {k: embedded[k] for k in embedded if embedded[k]}
+    overlap = {k: overlap[k] for k in overlap if overlap[k]}
+    separate = {k: separate[k] for k in separate if separate[k]}
+
+    return embedded, overlap, separate
+
+
+def check_for_usp():
+    " pass "
+
+############################################### TEST RANGE #########################################################################
+####################################################################################################################################
+if __name__ == "__main__":
+
+    #### TMD TEST
+    test_desc = ["one", "two", "three", "four", "five"]
+    test_seq = [
+        "XXXXXXXXXXXXXXXFMCFMCFMCFMCFMCXXXXXXXXXXXXXXXXXXXXXXXXXX",
+        "XXXXXXXXAAKKKKKKKKKKKKKKKXXXXXXXXXXXXX",
+        "XXXXXXX",
+        "XXXXXXXXXXXKXXXXXXXXXX",
+        "XXXXXXXXXXAKXXXXXXXXXXAKXXXXXXXX",
+    ]
+    # for l in
+    # combo = zip(test_desc,test_seq)
+    pairs = zip(test_desc, test_seq)
+    tmd = []
+    for each_pair in pairs:
+        # print(each_pair)
+        try:
+            tmd += find_tmd(pair=each_pair)
+        except (IndexError, TypeError):
+            continue
+        # try:s = each_pair[1]
+        # tmd += find_tmd(seq=s, tmsize=15)
+    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
+    # print(tmd)
+    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
+
+    #### tuple-fasta TEST
+    # fasta_file = 'out_isp.fa'
+    # ret = tuple_fasta(fasta_file)
+    # print('=============')
+    # for i in ret:
+    # print(i[1])
+
+    #### LipoBox TEST
+    test_desc = ["one", "two", "three", "four", "five", "six", "seven"]
+    test_seq = [
+        "XXXXXXXXXTGGCXXXXXXXXXXXXXXXX",
+        "XXXXXXXXAAKKKKKKKKKKKKKKKXXXXXXXXXXXXX",
+        "XXXXXXX",
+        "AGGCXXXXXXXXXXXXXXXXXXXXTT",
+        "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTGGC",
+        "XXXXXXXXXXXXXXXXXXXXXXXXXXTGGC",
+        "MSTLRELRLRRALKEQSMRYLLSIKKTLPRWKGALIGLFLICVATISGCASESKLPEPPMVSVDSSLMVEPNLTTEMLNVFSQ*",
+    ]
+    pairs = zip(test_desc, test_seq)
+    lipo = []
+    for each_pair in pairs:
+        #print(each_pair)
+        # try:
+        try:
+            lipo += find_lipobox(pair=each_pair, regex=2)  # , minimum=8)
+        except TypeError:  # catches if something doesnt have the min/max requirements (something is too small)
+            continue
+        # except:
+        # continue
+    # print('\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
+    #############################3
+    # g = prep_a_gff3(fa='putative_isp.fa', spanin_type='isp')
+    # print(g)
+    # write_gff3(data=g)