Mercurial > repos > cpt > cpt_intron_detection
comparison cpt_intron_detect/intron_detection.py @ 0:1a19092729be draft
Uploaded
author | cpt |
---|---|
date | Fri, 13 May 2022 05:08:54 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1a19092729be |
---|---|
1 #!/usr/bin/env python | |
2 import sys | |
3 import re | |
4 import itertools | |
5 import argparse | |
6 import hashlib | |
7 import copy | |
8 from CPT_GFFParser import gffParse, gffWrite, gffSeqFeature | |
9 from Bio.Blast import NCBIXML | |
10 from Bio.SeqFeature import SeqFeature, FeatureLocation | |
11 from gff3 import feature_lambda | |
12 from collections import OrderedDict | |
13 import logging | |
14 | |
15 logging.basicConfig(level=logging.DEBUG) | |
16 log = logging.getLogger() | |
17 | |
18 | |
19 def parse_xml(blastxml, thresh): | |
20 """ Parses xml file to get desired info (genes, hits, etc) """ | |
21 blast = [] | |
22 discarded_records = 0 | |
23 totLen = 0 | |
24 for iter_num, blast_record in enumerate(NCBIXML.parse(blastxml), 1): | |
25 blast_gene = [] | |
26 align_num = 0 | |
27 for alignment in blast_record.alignments: | |
28 align_num += 1 | |
29 # hit_gis = alignment.hit_id + alignment.hit_def | |
30 # gi_nos = [str(gi) for gi in re.findall('(?<=gi\|)\d{9,10}', hit_gis)] | |
31 gi_nos = str(alignment.accession) | |
32 | |
33 for hsp in alignment.hsps: | |
34 x = float(hsp.identities - 1) / ((hsp.query_end) - hsp.query_start) | |
35 if x < thresh: | |
36 discarded_records += 1 | |
37 continue | |
38 nice_name = blast_record.query | |
39 | |
40 if " " in nice_name: | |
41 nice_name = nice_name[0 : nice_name.index(" ")] | |
42 | |
43 blast_gene.append( | |
44 { | |
45 "gi_nos": gi_nos, | |
46 "sbjct_length": alignment.length, | |
47 "query_length": blast_record.query_length, | |
48 "sbjct_range": (hsp.sbjct_start, hsp.sbjct_end), | |
49 "query_range": (hsp.query_start, hsp.query_end), | |
50 "name": nice_name, | |
51 "evalue": hsp.expect, | |
52 "identity": hsp.identities, | |
53 "identity_percent": x, | |
54 "hit_num": align_num, | |
55 "iter_num": iter_num, | |
56 "match_id": alignment.title.partition(">")[0], | |
57 } | |
58 ) | |
59 | |
60 blast.append(blast_gene) | |
61 totLen += len(blast_gene) | |
62 log.debug("parse_blastxml %s -> %s", totLen + discarded_records, totLen) | |
63 return blast | |
64 | |
65 | |
66 def filter_lone_clusters(clusters): | |
67 """ Removes all clusters with only one member and those with no hits """ | |
68 filtered_clusters = {} | |
69 for key in clusters: | |
70 if len(clusters[key]) > 1 and len(key) > 0: | |
71 filtered_clusters[key] = clusters[key] | |
72 log.debug("filter_lone_clusters %s -> %s", len(clusters), len(filtered_clusters)) | |
73 return filtered_clusters | |
74 | |
75 | |
76 def test_true(feature, **kwargs): | |
77 return True | |
78 | |
79 | |
80 def parse_gff(gff3): | |
81 """ Extracts strand and start location to be used in cluster filtering """ | |
82 log.debug("parse_gff3") | |
83 gff_info = {} | |
84 _rec = None | |
85 for rec in gffParse(gff3): | |
86 endBase = len(rec.seq) | |
87 | |
88 _rec = rec | |
89 _rec.annotations = {} | |
90 for feat in feature_lambda(rec.features, test_true, {}, subfeatures=False): | |
91 if feat.type == "CDS": | |
92 if "Name" in feat.qualifiers.keys(): | |
93 CDSname = feat.qualifiers["Name"] | |
94 else: | |
95 CDSname = feat.qualifiers["ID"] | |
96 gff_info[feat.id] = { | |
97 "strand": feat.strand, | |
98 "start": feat.location.start, | |
99 "end": feat.location.end, | |
100 "loc": feat.location, | |
101 "feat": feat, | |
102 "name": CDSname, | |
103 } | |
104 | |
105 gff_info = OrderedDict(sorted(gff_info.items(), key=lambda k: k[1]["start"])) | |
106 # endBase = 0 | |
107 for i, feat_id in enumerate(gff_info): | |
108 gff_info[feat_id].update({"index": i}) | |
109 if gff_info[feat_id]["loc"].end > endBase: | |
110 endBase = gff_info[feat_id]["loc"].end | |
111 | |
112 return dict(gff_info), _rec, endBase | |
113 | |
114 | |
115 def all_same(genes_list): | |
116 """ Returns True if all gene names in cluster are identical """ | |
117 return all(gene["name"] == genes_list[0]["name"] for gene in genes_list[1:]) | |
118 | |
119 | |
120 def remove_duplicates(clusters): | |
121 """ Removes clusters with multiple members but only one gene name """ | |
122 filtered_clusters = {} | |
123 for key in clusters: | |
124 if all_same(clusters[key]): | |
125 continue | |
126 else: | |
127 filtered_clusters[key] = clusters[key] | |
128 log.debug("remove_duplicates %s -> %s", len(clusters), len(filtered_clusters)) | |
129 return filtered_clusters | |
130 | |
131 | |
132 class IntronFinder(object): | |
133 """ IntronFinder objects are lists that contain a list of hits for every gene """ | |
134 | |
135 def __init__(self, gff3, blastp, thresh): | |
136 self.blast = [] | |
137 self.clusters = {} | |
138 self.gff_info = {} | |
139 self.length = 0 | |
140 | |
141 (self.gff_info, self.rec, self.length) = parse_gff(gff3) | |
142 self.blast = parse_xml(blastp, thresh) | |
143 | |
144 def create_clusters(self): | |
145 """ Finds 2 or more genes with matching hits """ | |
146 clusters = {} | |
147 for gene in self.blast: | |
148 for hit in gene: | |
149 if " " in hit["gi_nos"]: | |
150 hit["gi_nos"] = hit["gi_nos"][0 : hit["gi_nos"].index(" ")] | |
151 | |
152 nameCheck = hit["gi_nos"] | |
153 if nameCheck == "": | |
154 continue | |
155 name = hashlib.md5((nameCheck).encode()).hexdigest() | |
156 | |
157 if name in clusters: | |
158 if hit not in clusters[name]: | |
159 clusters[name].append(hit) | |
160 else: | |
161 clusters[name] = [hit] | |
162 log.debug("create_clusters %s -> %s", len(self.blast), len(clusters)) | |
163 self.clusters = filter_lone_clusters(clusters) | |
164 | |
165 def check_strand(self): | |
166 """ filters clusters for genes on the same strand """ | |
167 filtered_clusters = {} | |
168 for key in self.clusters: | |
169 pos_strand = [] | |
170 neg_strand = [] | |
171 for gene in self.clusters[key]: | |
172 if self.gff_info[gene["name"]]["strand"] == 1: | |
173 pos_strand.append(gene) | |
174 else: | |
175 neg_strand.append(gene) | |
176 if len(pos_strand) == 0 or len(neg_strand) == 0: | |
177 filtered_clusters[key] = self.clusters[key] | |
178 else: | |
179 if len(pos_strand) > 1: | |
180 filtered_clusters[key + "_+1"] = pos_strand | |
181 if len(neg_strand) > 1: | |
182 filtered_clusters[key + "_-1"] = neg_strand | |
183 | |
184 return filtered_clusters | |
185 | |
186 def check_gene_gap(self, maximum=10000): | |
187 filtered_clusters = {} | |
188 for key in self.clusters: | |
189 hits_lists = [] | |
190 gene_added = False | |
191 for gene in self.clusters[key]: | |
192 for hits in hits_lists: | |
193 for hit in hits: | |
194 lastStart = max( | |
195 self.gff_info[gene["name"]]["start"], | |
196 self.gff_info[hit["name"]]["start"], | |
197 ) | |
198 lastEnd = max( | |
199 self.gff_info[gene["name"]]["end"], | |
200 self.gff_info[hit["name"]]["end"], | |
201 ) | |
202 firstEnd = min( | |
203 self.gff_info[gene["name"]]["end"], | |
204 self.gff_info[hit["name"]]["end"], | |
205 ) | |
206 firstStart = min( | |
207 self.gff_info[gene["name"]]["start"], | |
208 self.gff_info[hit["name"]]["start"], | |
209 ) | |
210 if ( | |
211 lastStart - firstEnd <= maximum | |
212 or self.length - lastEnd + firstStart <= maximum | |
213 ): | |
214 hits.append(gene) | |
215 gene_added = True | |
216 break | |
217 if not gene_added: | |
218 hits_lists.append([gene]) | |
219 | |
220 for i, hits in enumerate(hits_lists): | |
221 if len(hits) >= 2: | |
222 filtered_clusters[key + "_" + str(i)] = hits | |
223 # for i in filtered_clusters: | |
224 # print(i) | |
225 # print(filtered_clusters[i]) | |
226 log.debug("check_gene_gap %s -> %s", len(self.clusters), len(filtered_clusters)) | |
227 | |
228 return remove_duplicates( | |
229 filtered_clusters | |
230 ) # call remove_duplicates somewhere else? | |
231 | |
232 # maybe figure out how to merge with check_gene_gap? | |
233 # def check_seq_gap(): | |
234 | |
235 # also need a check for gap in sequence coverage? | |
236 def check_seq_overlap(self, minimum=-1): | |
237 filtered_clusters = {} | |
238 for key in self.clusters: | |
239 add_cluster = True | |
240 sbjct_ranges = [] | |
241 query_ranges = [] | |
242 for gene in self.clusters[key]: | |
243 sbjct_ranges.append(gene["sbjct_range"]) | |
244 query_ranges.append(gene["query_range"]) | |
245 | |
246 combinations = list(itertools.combinations(sbjct_ranges, 2)) | |
247 | |
248 for pair in combinations: | |
249 overlap = len( | |
250 set(range(pair[0][0], pair[0][1])) | |
251 & set(range(pair[1][0], pair[1][1])) | |
252 ) | |
253 minPair = pair[0] | |
254 maxPair = pair[1] | |
255 | |
256 if minPair[0] > maxPair[0]: | |
257 minPair = pair[1] | |
258 maxPair = pair[0] | |
259 elif minPair[0] == maxPair[0] and minPair[1] > maxPair[1]: | |
260 minPair = pair[1] | |
261 maxPair = pair[0] | |
262 if overlap > 0: | |
263 dist1 = maxPair[0] - minPair[0] | |
264 else: | |
265 dist1 = abs(maxPair[0] - minPair[1]) | |
266 | |
267 if minimum < 0: | |
268 if overlap > (minimum * -1): | |
269 # print("Rejcting: Neg min but too much overlap: " + str(pair)) | |
270 add_cluster = False | |
271 elif minimum == 0: | |
272 if overlap > 0: | |
273 # print("Rejcting: 0 min and overlap: " + str(pair)) | |
274 add_cluster = False | |
275 elif overlap > 0: | |
276 # print("Rejcting: Pos min and overlap: " + str(pair)) | |
277 add_cluster = False | |
278 | |
279 if (dist1 < minimum) and (minimum >= 0): | |
280 # print("Rejcting: Dist failure: " + str(pair) + " D1: " + dist1) | |
281 add_cluster = False | |
282 # if add_cluster: | |
283 # print("Accepted: " + str(pair) + " D1: " + str(dist1) + " Ov: " + str(overlap)) | |
284 if add_cluster: | |
285 | |
286 filtered_clusters[key] = self.clusters[key] | |
287 | |
288 log.debug( | |
289 "check_seq_overlap %s -> %s", len(self.clusters), len(filtered_clusters) | |
290 ) | |
291 # print(self.clusters) | |
292 return filtered_clusters | |
293 | |
294 def cluster_report(self): | |
295 condensed_report = {} | |
296 for key in self.clusters: | |
297 for gene in self.clusters[key]: | |
298 if gene["name"] in condensed_report: | |
299 condensed_report[gene["name"]].append(gene["sbjct_range"]) | |
300 else: | |
301 condensed_report[gene["name"]] = [gene["sbjct_range"]] | |
302 return condensed_report | |
303 | |
304 def cluster_report_2(self): | |
305 condensed_report = {} | |
306 for key in self.clusters: | |
307 gene_names = [] | |
308 for gene in self.clusters[key]: | |
309 gene_names.append((gene["name"]).strip("CPT_phageK_")) | |
310 if ", ".join(gene_names) in condensed_report: | |
311 condensed_report[", ".join(gene_names)] += 1 | |
312 else: | |
313 condensed_report[", ".join(gene_names)] = 1 | |
314 return condensed_report | |
315 | |
316 def cluster_report_3(self): | |
317 condensed_report = {} | |
318 for key in self.clusters: | |
319 gene_names = [] | |
320 gi_nos = [] | |
321 for i, gene in enumerate(self.clusters[key]): | |
322 if i == 0: | |
323 gi_nos = gene["gi_nos"] | |
324 gene_names.append((gene["name"]).strip(".p01").strip("CPT_phageK_gp")) | |
325 if ", ".join(gene_names) in condensed_report: | |
326 condensed_report[", ".join(gene_names)].append(gi_nos) | |
327 else: | |
328 condensed_report[", ".join(gene_names)] = [gi_nos] | |
329 return condensed_report | |
330 | |
331 def output_gff3(self, clusters): | |
332 rec = copy.deepcopy(self.rec) | |
333 rec.features = [] | |
334 for cluster_idx, cluster_id in enumerate(clusters): | |
335 # Get the list of genes in this cluster | |
336 associated_genes = set([x["name"] for x in clusters[cluster_id]]) | |
337 # print(associated_genes) | |
338 # Get the gene locations | |
339 assoc_gene_info = {x: self.gff_info[x]["loc"] for x in associated_genes} | |
340 # Now we construct a gene from the children as a "standard gene model" gene. | |
341 # Get the minimum and maximum locations covered by all of the children genes | |
342 gene_min = min([min(x[1].start, x[1].end) for x in assoc_gene_info.items()]) | |
343 gene_max = max([max(x[1].start, x[1].end) for x in assoc_gene_info.items()]) | |
344 | |
345 evidence_notes = [] | |
346 for cluster_elem in clusters[cluster_id]: | |
347 note = "{name} had {ident}% identity to NCBI Protein ID {pretty_gi}".format( | |
348 pretty_gi=(cluster_elem["gi_nos"]), | |
349 ident=int( | |
350 100 | |
351 * float(cluster_elem["identity"] - 1.00) | |
352 / abs( | |
353 cluster_elem["query_range"][1] | |
354 - cluster_elem["query_range"][0] | |
355 ) | |
356 ), | |
357 **cluster_elem | |
358 ) | |
359 evidence_notes.append(note) | |
360 if gene_max - gene_min > 0.8 * float(self.length): | |
361 evidence_notes.append( | |
362 "Intron is over 80% of the total length of the genome, possible wraparound scenario" | |
363 ) | |
364 # With that we can create the top level gene | |
365 gene = gffSeqFeature( | |
366 location=FeatureLocation(gene_min, gene_max), | |
367 type="gene", | |
368 id=cluster_id, | |
369 qualifiers={ | |
370 "ID": ["gp_%s" % cluster_idx], | |
371 "Percent_Identities": evidence_notes, | |
372 "Note": clusters[cluster_id][0]["match_id"], | |
373 }, | |
374 ) | |
375 | |
376 # Below that we have an mRNA | |
377 mRNA = gffSeqFeature( | |
378 location=FeatureLocation(gene_min, gene_max), | |
379 type="mRNA", | |
380 id=cluster_id + ".mRNA", | |
381 qualifiers={"ID": ["gp_%s.mRNA" % cluster_idx], "note": evidence_notes}, | |
382 ) | |
383 | |
384 # Now come the CDSs. | |
385 cdss = [] | |
386 # We sort them just for kicks | |
387 for idx, gene_name in enumerate( | |
388 sorted(associated_genes, key=lambda x: int(self.gff_info[x]["start"])) | |
389 ): | |
390 # Copy the CDS so we don't muck up a good one | |
391 cds = copy.copy(self.gff_info[gene_name]["feat"]) | |
392 # Get the associated cluster element (used in the Notes above) | |
393 cluster_elem = [ | |
394 x for x in clusters[cluster_id] if x["name"] == gene_name | |
395 ][0] | |
396 | |
397 # Calculate %identity which we'll use to score | |
398 score = int( | |
399 1000 | |
400 * float(cluster_elem["identity"]) | |
401 / abs( | |
402 cluster_elem["query_range"][1] - cluster_elem["query_range"][0] | |
403 ) | |
404 ) | |
405 | |
406 tempLoc = FeatureLocation( | |
407 cds.location.start + (3 * (cluster_elem["query_range"][0] - 1)), | |
408 cds.location.start + (3 * (cluster_elem["query_range"][1])), | |
409 cds.location.strand, | |
410 ) | |
411 cds.location = tempLoc | |
412 # Set the qualifiers appropriately | |
413 cds.qualifiers = { | |
414 "ID": ["gp_%s.CDS.%s" % (cluster_idx, idx)], | |
415 "score": score, | |
416 "Name": self.gff_info[gene_name]["name"], | |
417 "evalue": cluster_elem["evalue"], | |
418 "Identity": cluster_elem["identity_percent"] * 100, | |
419 #'|'.join(cluster_elem['gi_nos']) + "| title goes here." | |
420 } | |
421 # cds.location.start = cds.location.start + | |
422 cdss.append(cds) | |
423 | |
424 # And we attach the things properly. | |
425 mRNA.sub_features = cdss | |
426 mRNA.location = FeatureLocation(mRNA.location.start, mRNA.location.end, cds.location.strand) | |
427 gene.sub_features = [mRNA] | |
428 gene.location = FeatureLocation(gene.location.start, gene.location.end, cds.location.strand) | |
429 | |
430 # And append to our record | |
431 rec.features.append(gene) | |
432 return rec | |
433 | |
434 def output_xml(self, clusters): | |
435 threeLevel = {} | |
436 # print((clusters.viewkeys())) | |
437 # print(type(enumerate(clusters))) | |
438 # print(type(clusters)) | |
439 for cluster_idx, cluster_id in enumerate(clusters): | |
440 # print(type(cluster_id)) | |
441 # print(type(cluster_idx)) | |
442 # print(type(clusters[cluster_id][0]['hit_num'])) | |
443 if not (clusters[cluster_id][0]["iter_num"] in threeLevel.keys): | |
444 threeLevel[clusters[cluster_id][0]["iter_num"]] = {} | |
445 # for cluster_idx, cluster_id in enumerate(clusters): | |
446 # print(type(clusters[cluster_id])) | |
447 # b = {clusters[cluster_id][i]: clusters[cluster_id][i+1] for i in range(0, len(clusters[cluster_id]), 2)} | |
448 # print(type(b))#['name'])) | |
449 # for hspList in clusters: | |
450 # for x, idx in (enumerate(clusters)):#for hsp in hspList: | |
451 # print("In X") | |
452 | |
453 | |
454 if __name__ == "__main__": | |
455 parser = argparse.ArgumentParser(description="Intron detection") | |
456 parser.add_argument("gff3", type=argparse.FileType("r"), help="GFF3 gene calls") | |
457 parser.add_argument( | |
458 "blastp", type=argparse.FileType("r"), help="blast XML protein results" | |
459 ) | |
460 parser.add_argument( | |
461 "--minimum", | |
462 help="Gap minimum (Default -1, set to a negative number to allow overlap)", | |
463 default=-1, | |
464 type=int, | |
465 ) | |
466 parser.add_argument( | |
467 "--maximum", | |
468 help="Gap maximum in genome (Default 10000)", | |
469 default=10000, | |
470 type=int, | |
471 ) | |
472 parser.add_argument( | |
473 "--idThresh", help="ID Percent Threshold", default=0.4, type=float | |
474 ) | |
475 | |
476 args = parser.parse_args() | |
477 | |
478 threshCap = args.idThresh | |
479 if threshCap > 1.00: | |
480 threshCap = 1.00 | |
481 if threshCap < 0: | |
482 threshCap = 0 | |
483 | |
484 # create new IntronFinder object based on user input | |
485 ifinder = IntronFinder(args.gff3, args.blastp, threshCap) | |
486 ifinder.create_clusters() | |
487 ifinder.clusters = ifinder.check_strand() | |
488 ifinder.clusters = ifinder.check_gene_gap(maximum=args.maximum) | |
489 ifinder.clusters = ifinder.check_seq_overlap(minimum=args.minimum) | |
490 # ifinder.output_xml(ifinder.clusters) | |
491 # for x, idx in (enumerate(ifinder.clusters)): | |
492 # print(ifinder.blast) | |
493 | |
494 condensed_report = ifinder.cluster_report() | |
495 rec = ifinder.output_gff3(ifinder.clusters) | |
496 gffWrite([rec], sys.stdout) | |
497 | |
498 # import pprint; pprint.pprint(ifinder.clusters) |