comparison cpt_stops/gff3.py @ 0:89c78d269676 draft

Uploaded
author cpt
date Fri, 13 May 2022 05:39:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:89c78d269676
1 import copy
2 import logging
3
4 log = logging.getLogger()
5 log.setLevel(logging.WARN)
6
7
8 def feature_lambda(
9 feature_list,
10 test,
11 test_kwargs,
12 subfeatures=True,
13 parent=None,
14 invert=False,
15 recurse=True,
16 ):
17 """Recursively search through features, testing each with a test function, yielding matches.
18
19 GFF3 is a hierachical data structure, so we need to be able to recursively
20 search through features. E.g. if you're looking for a feature with
21 ID='bob.42', you can't just do a simple list comprehension with a test
22 case. You don't know how deeply burried bob.42 will be in the feature tree. This is where feature_lambda steps in.
23
24 :type feature_list: list
25 :param feature_list: an iterable of features
26
27 :type test: function reference
28 :param test: a closure with the method signature (feature, **kwargs) where
29 the kwargs are those passed in the next argument. This
30 function should return True or False, True if the feature is
31 to be yielded as part of the main feature_lambda function, or
32 False if it is to be ignored. This function CAN mutate the
33 features passed to it (think "apply").
34
35 :type test_kwargs: dictionary
36 :param test_kwargs: kwargs to pass to your closure when it is called.
37
38 :type subfeatures: boolean
39 :param subfeatures: when a feature is matched, should just that feature be
40 yielded to the caller, or should the entire sub_feature
41 tree for that feature be included? subfeatures=True is
42 useful in cases such as searching for a gene feature,
43 and wanting to know what RBS/Shine_Dalgarno_sequences
44 are in the sub_feature tree (which can be accomplished
45 with two feature_lambda calls). subfeatures=False is
46 useful in cases when you want to process (and possibly
47 return) the entire feature tree, such as applying a
48 qualifier to every single feature.
49
50 :type invert: boolean
51 :param invert: Negate/invert the result of the filter.
52
53 :rtype: yielded list
54 :return: Yields a list of matching features.
55 """
56 # Either the top level set of [features] or the subfeature attribute
57 for feature in feature_list:
58 feature._parent = parent
59 if not parent:
60 # Set to self so we cannot go above root.
61 feature._parent = feature
62 test_result = test(feature, **test_kwargs)
63 # if (not invert and test_result) or (invert and not test_result):
64 if invert ^ test_result:
65 if not subfeatures:
66 feature_copy = copy.deepcopy(feature)
67 feature_copy.sub_features = list()
68 yield feature_copy
69 else:
70 yield feature
71
72 if recurse and hasattr(feature, "sub_features"):
73 for x in feature_lambda(
74 feature.sub_features,
75 test,
76 test_kwargs,
77 subfeatures=subfeatures,
78 parent=feature,
79 invert=invert,
80 recurse=recurse,
81 ):
82 yield x
83
84
85 def fetchParent(feature):
86 if not hasattr(feature, "_parent") or feature._parent is None:
87 return feature
88 else:
89 return fetchParent(feature._parent)
90
91
92 def feature_test_true(feature, **kwargs):
93 return True
94
95
96 def feature_test_type(feature, **kwargs):
97 if "type" in kwargs:
98 return str(feature.type).upper() == str(kwargs["type"]).upper()
99 elif "types" in kwargs:
100 for x in kwargs["types"]:
101 if str(feature.type).upper() == str(x).upper():
102 return True
103 return False
104 raise Exception("Incorrect feature_test_type call, need type or types")
105
106
107 def feature_test_qual_value(feature, **kwargs):
108 """Test qualifier values.
109
110 For every feature, check that at least one value in
111 feature.quailfiers(kwargs['qualifier']) is in kwargs['attribute_list']
112 """
113 if isinstance(kwargs["qualifier"], list):
114 for qualifier in kwargs["qualifier"]:
115 for attribute_value in feature.qualifiers.get(qualifier, []):
116 if attribute_value in kwargs["attribute_list"]:
117 return True
118 else:
119 for attribute_value in feature.qualifiers.get(kwargs["qualifier"], []):
120 if attribute_value in kwargs["attribute_list"]:
121 return True
122 return False
123
124
125 def feature_test_location(feature, **kwargs):
126 if "strand" in kwargs:
127 if feature.location.strand != kwargs["strand"]:
128 return False
129
130 return feature.location.start <= kwargs["loc"] <= feature.location.end
131
132
133 def feature_test_quals(feature, **kwargs):
134 """
135 Example::
136
137 a = Feature(qualifiers={'Note': ['Some notes', 'Aasdf']})
138
139 # Check if a contains a Note
140 feature_test_quals(a, {'Note': None}) # Returns True
141 feature_test_quals(a, {'Product': None}) # Returns False
142
143 # Check if a contains a note with specific value
144 feature_test_quals(a, {'Note': ['ome']}) # Returns True
145
146 # Check if a contains a note with specific value
147 feature_test_quals(a, {'Note': ['other']}) # Returns False
148 """
149 for key in kwargs:
150 if key not in feature.qualifiers:
151 return False
152
153 # Key is present, no value specified
154 if kwargs[key] is None:
155 return True
156
157 # Otherwise there is a key value we're looking for.
158 # so we make a list of matches
159 matches = []
160 # And check all of the feature qualifier valuse
161 for value in feature.qualifiers[key]:
162 # For that kwargs[key] value
163 for x in kwargs[key]:
164 matches.append(x in value)
165
166 # If none matched, then we return false.
167 if not any(matches):
168 return False
169
170 return True
171
172
173 def feature_test_contains(feature, **kwargs):
174 if "index" in kwargs:
175 return feature.location.start < kwargs["index"] < feature.location.end
176 elif "range" in kwargs:
177 return (
178 feature.location.start < kwargs["range"]["start"] < feature.location.end
179 and feature.location.start < kwargs["range"]["end"] < feature.location.end
180 )
181 else:
182 raise RuntimeError("Must use index or range keyword")
183
184
185 def get_id(feature=None, parent_prefix=None):
186 result = ""
187 if parent_prefix is not None:
188 result += parent_prefix + "|"
189 if "locus_tag" in feature.qualifiers:
190 result += feature.qualifiers["locus_tag"][0]
191 elif "gene" in feature.qualifiers:
192 result += feature.qualifiers["gene"][0]
193 elif "Gene" in feature.qualifiers:
194 result += feature.qualifiers["Gene"][0]
195 elif "product" in feature.qualifiers:
196 result += feature.qualifiers["product"][0]
197 elif "Product" in feature.qualifiers:
198 result += feature.qualifiers["Product"][0]
199 elif "Name" in feature.qualifiers:
200 result += feature.qualifiers["Name"][0]
201 else:
202 return feature.id
203 # Leaving in case bad things happen.
204 # result += '%s_%s_%s_%s' % (
205 # feature.id,
206 # feature.location.start,
207 # feature.location.end,
208 # feature.location.strand
209 # )
210 return result
211
212
213 def get_gff3_id(gene):
214 return gene.qualifiers.get("Name", [gene.id])[0]
215
216
217 def ensure_location_in_bounds(start=0, end=0, parent_length=0):
218 # This prevents frameshift errors
219 while start < 0:
220 start += 3
221 while end < 0:
222 end += 3
223 while start > parent_length:
224 start -= 3
225 while end > parent_length:
226 end -= 3
227 return (start, end)
228
229
230 def coding_genes(feature_list):
231 for x in genes(feature_list):
232 if (
233 len(
234 list(
235 feature_lambda(
236 x.sub_features,
237 feature_test_type,
238 {"type": "CDS"},
239 subfeatures=False,
240 )
241 )
242 )
243 > 0
244 ):
245 yield x
246
247
248 def genes(feature_list, feature_type="gene", sort=False):
249 """
250 Simple filter to extract gene features from the feature set.
251 """
252
253 if not sort:
254 for x in feature_lambda(
255 feature_list, feature_test_type, {"type": feature_type}, subfeatures=True
256 ):
257 yield x
258 else:
259 data = list(genes(feature_list, feature_type=feature_type, sort=False))
260 data = sorted(data, key=lambda feature: feature.location.start)
261 for x in data:
262 yield x
263
264
265 def wa_unified_product_name(feature):
266 """
267 Try and figure out a name. We gave conflicting instructions, so
268 this isn't as trivial as it should be. Sometimes it will be in
269 'product' or 'Product', othertimes in 'Name'
270 """
271 # Manually applied tags.
272 protein_product = feature.qualifiers.get(
273 "product", feature.qualifiers.get("Product", [None])
274 )[0]
275
276 # If neither of those are available ...
277 if protein_product is None:
278 # And there's a name...
279 if "Name" in feature.qualifiers:
280 if not is_uuid(feature.qualifiers["Name"][0]):
281 protein_product = feature.qualifiers["Name"][0]
282
283 return protein_product
284
285
286 def is_uuid(name):
287 return name.count("-") == 4 and len(name) == 36
288
289
290 def get_rbs_from(gene):
291 # Normal RBS annotation types
292 rbs_rbs = list(
293 feature_lambda(
294 gene.sub_features, feature_test_type, {"type": "RBS"}, subfeatures=False
295 )
296 )
297 rbs_sds = list(
298 feature_lambda(
299 gene.sub_features,
300 feature_test_type,
301 {"type": "Shine_Dalgarno_sequence"},
302 subfeatures=False,
303 )
304 )
305 # Fraking apollo
306 apollo_exons = list(
307 feature_lambda(
308 gene.sub_features, feature_test_type, {"type": "exon"}, subfeatures=False
309 )
310 )
311 apollo_exons = [x for x in apollo_exons if len(x) < 10]
312 # These are more NCBI's style
313 regulatory_elements = list(
314 feature_lambda(
315 gene.sub_features,
316 feature_test_type,
317 {"type": "regulatory"},
318 subfeatures=False,
319 )
320 )
321 rbs_regulatory = list(
322 feature_lambda(
323 regulatory_elements,
324 feature_test_quals,
325 {"regulatory_class": ["ribosome_binding_site"]},
326 subfeatures=False,
327 )
328 )
329 # Here's hoping you find just one ;)
330 return rbs_rbs + rbs_sds + rbs_regulatory + apollo_exons
331
332
333 def nice_name(record):
334 """
335 get the real name rather than NCBI IDs and so on. If fails, will return record.id
336 """
337 name = record.id
338 likely_parental_contig = list(genes(record.features, feature_type="contig"))
339 if len(likely_parental_contig) == 1:
340 name = likely_parental_contig[0].qualifiers.get("organism", [name])[0]
341 return name
342
343
344 def fsort(it):
345 for i in sorted(it, key=lambda x: int(x.location.start)):
346 yield i