Mercurial > repos > cstrittmatter > ss2v110
comparison SeqSero2.egg-info/PKG-INFO @ 2:d0350fe29fdf draft
planemo upload commit c50df40caef2fb97c178d6890961e0e527992324
author | cstrittmatter |
---|---|
date | Mon, 27 Apr 2020 01:11:53 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:9811f8cd313d | 2:d0350fe29fdf |
---|---|
1 Metadata-Version: 1.1 | |
2 Name: SeqSero2 | |
3 Version: 1.1.0 | |
4 Summary: Salmonella serotyping | |
5 Home-page: https://github.com/denglab/SeqSero2/ | |
6 Author: Shaokang Zhang, Hendrik C Den-Bakker and Xiangyu Deng | |
7 Author-email: zskzsk@uga.edu, Hendrik.DenBakker@uga.edu, xdeng@uga.edu | |
8 License: GPLv2 | |
9 Description: # SeqSero2 v1.1.0 | |
10 Salmonella serotype prediction from genome sequencing data. | |
11 | |
12 Online version: http://www.denglab.info/SeqSero2 | |
13 | |
14 # Introduction | |
15 SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies | |
16 | |
17 # Dependencies | |
18 SeqSero2 has three workflows: | |
19 | |
20 (A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing). | |
21 | |
22 Allele micro-assembly workflow depends on: | |
23 | |
24 1. Python 3; | |
25 | |
26 2. Biopython 1.73; | |
27 | |
28 3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/); | |
29 | |
30 4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/); | |
31 | |
32 5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download); | |
33 | |
34 6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software); | |
35 | |
36 7. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades); | |
37 | |
38 8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/); | |
39 | |
40 9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID). | |
41 | |
42 | |
43 (B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants. | |
44 | |
45 Raw reads k-mer workflow (originally SeqSeroK) depends on: | |
46 | |
47 1. Python 3; | |
48 2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files); | |
49 | |
50 | |
51 (C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow | |
52 | |
53 # Installation | |
54 ### Conda | |
55 To install the latest SeqSero2 Conda package (recommended): | |
56 ``` | |
57 conda install -c bioconda seqsero2=1.1.0 | |
58 ``` | |
59 ### Git | |
60 To install the SeqSero2 git repository locally: | |
61 ``` | |
62 git clone https://github.com/denglab/SeqSero2.git | |
63 cd SeqSero2 | |
64 python3 -m pip install --user . | |
65 ``` | |
66 ### Other options | |
67 Third party SeqSero2 installations (may not be the latest version of SeqSero2): \ | |
68 https://github.com/B-UMMI/docker-images/tree/master/seqsero2 \ | |
69 https://github.com/denglab/SeqSero2/issues/13 | |
70 | |
71 | |
72 # Executing the code | |
73 Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions. | |
74 | |
75 Usage: SeqSero2_package.py | |
76 | |
77 -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a) | |
78 | |
79 -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq) | |
80 | |
81 -i <file> (/path/to/input/file) | |
82 | |
83 -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1) | |
84 | |
85 -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode) | |
86 | |
87 -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number) | |
88 | |
89 -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files) | |
90 | |
91 -n <string> (optional, to specify a sample name in the report output) | |
92 | |
93 -s <flag> (if '-s' was flagged, SeqSero2 will not output header in SeqSero_result.tsv) | |
94 | |
95 --check <flag> (use '--check' flag to check the required dependencies) | |
96 | |
97 -v, --version (show program's version number and exit) | |
98 | |
99 | |
100 # Examples | |
101 Allele mode: | |
102 | |
103 # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10") | |
104 SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz | |
105 | |
106 K-mer mode: | |
107 | |
108 # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2") | |
109 SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz | |
110 | |
111 # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k") | |
112 SeqSero2_package.py -m k -t 4 -i assembly.fasta | |
113 | |
114 # Output | |
115 Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'SeqSero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode). | |
116 | |
117 | |
118 # Citation | |
119 Zhang S, Den-Bakker HC, Li S, Dinsmore BA, Lane C, Lauer AC, Fields PI, Deng X. | |
120 SeqSero2: rapid and improved Salmonella serotype determination using whole genome sequencing data. | |
121 **Appl Environ Microbiology. 2019 Sep; 85(23):e01746-19.** [PMID: 31540993](https://aem.asm.org/content/early/2019/09/17/AEM.01746-19.long) | |
122 | |
123 Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X. | |
124 Salmonella serotype determination utilizing high-throughput genome sequencing data. | |
125 **J Clin Microbiol. 2015 May;53(5):1685-92.** [PMID: 25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15) | |
126 | |
127 Keywords: Salmonella serotyping bioinformatics WGS | |
128 Platform: UNKNOWN | |
129 Classifier: Development Status :: 3 - Alpha | |
130 Classifier: License :: OSI Approved :: GNU General Public License v2 (GPLv2) | |
131 Classifier: Programming Language :: Python :: 3 | |
132 Classifier: Topic :: Text Processing :: Linguistic |