diff README.md @ 2:d0350fe29fdf draft

planemo upload commit c50df40caef2fb97c178d6890961e0e527992324
author cstrittmatter
date Mon, 27 Apr 2020 01:11:53 -0400
parents fc22ec8e924e
children e6437d423693
line wrap: on
line diff
--- a/README.md	Tue Apr 21 12:49:07 2020 -0400
+++ b/README.md	Mon Apr 27 01:11:53 2020 -0400
@@ -1,117 +1,51 @@
-# SeqSero2 v1.1.0
-Salmonella serotype prediction from genome sequencing data.
-
-Online version: http://www.denglab.info/SeqSero2
-
-# Introduction 
-SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies
-
-# Dependencies 
-SeqSero2 has three workflows:
-
-(A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing). 
+[![DOI](https://zenodo.org/badge/97020646.svg)](https://zenodo.org/badge/latestdoi/97020646)
 
-Allele micro-assembly workflow depends on:
-
-1. Python 3;
-
-2. Biopython 1.73;
+# SalmID
+Rapid tool to check taxonomic ID of single isolate samples. Currently only IDs Salmonella species and subspecies, and some common contaminants (Listeria, Escherichia).
 
-3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/);
-
-4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/);
-
-5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download);
-
-6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software);
+## Requirements:
+Python 3
 
-7. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades);
-
-8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/);
-
-9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID).
-
-
-(B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants. 
-
-Raw reads k-mer workflow (originally SeqSeroK) depends on:
-
-1. Python 3;
-2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files);
-
+## Installation:
+The easy way with homebrew ([Linux](http://linuxbrew.sh/) or [MacOS](https://brew.sh/)):
+```
+brew install brewsci/bio/salmid
+```
+Big thanks to [Torsten Seemann](https://tseemann.github.io/) for including this in homebrew!
 
-(C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow
+Alternatively download from GitHub:
 
-# Installation
-### Conda
-To install the latest SeqSero2 Conda package (recommended):  
-```
-conda install -c bioconda seqsero2=1.1.0
-```
-### Git
-To install the SeqSero2 git repository locally:
-```
-git clone https://github.com/denglab/SeqSero2.git
-cd SeqSero2
-python3 -m pip install --user .
+```bash
+git clone https://github.com/hcdenbakker/SalmID.git
 ```
-### Other options
-Third party SeqSero2 installations (may not be the latest version of SeqSero2): \
-https://github.com/B-UMMI/docker-images/tree/master/seqsero2 \
-https://github.com/denglab/SeqSero2/issues/13
 
-
-# Executing the code 
-Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions.
+build a wheel using [poetry](https://poetry.eustace.io/):
 
-    Usage: SeqSero2_package.py 
-
-    -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a)
+```bash
+cd SalmID
+poetry build
+```
 
-    -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq)
+and install using `pip`
 
-    -i <file> (/path/to/input/file)
-
-    -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1) 
+```bash
+pip install dist/salmid*.whl
+```
 
-    -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode)
- 
-    -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number)
-	
-    -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files)
-    
-    -n <string> (optional, to specify a sample name in the report output)
-    
-    -s <flag> (if '-s' was flagged, SeqSero2 will not output header in SeqSero_result.tsv)
-		    
-    --check <flag> (use '--check' flag to check the required dependencies)
-    
-    -v, --version (show program's version number and exit)
-	
-
-# Examples
-Allele mode:
+To execute:
+```
+SalmID.py -e .fastq.gz
+```
+This will perform a SalmID run on all fastq.gz files in the current directory.
+```
+SalmID.py -i your_fastq_gz.fastq.gz
+```
+This will perform a SalmID run on an individual file (i.e., your_fastq_gz.fastq.gz)
+```
+SalmID.py -d directory_with_data -e _1.fastq.gz
+```
+This will perform a SalmID run on all files in directory 'directory_with_data' with extension '_1.fastq.gz'
 
-    # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10")
-    SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz
-	
-K-mer mode:
-
-    # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2")
-    SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz
-
-    # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k")
-    SeqSero2_package.py -m k -t 4 -i assembly.fasta
-	
-# Output 
-Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'SeqSero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode).
-
-
-# Citation
-Zhang S, Den-Bakker HC, Li S, Dinsmore BA, Lane C, Lauer AC, Fields PI, Deng X. 
-SeqSero2: rapid and improved Salmonella serotype determination using whole genome sequencing data.
-**Appl Environ Microbiology. 2019 Sep; 85(23):e01746-19.** [PMID: 31540993](https://aem.asm.org/content/early/2019/09/17/AEM.01746-19.long) 
-
-Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X.  
-Salmonella serotype determination utilizing high-throughput genome sequencing data.  
-**J Clin Microbiol. 2015 May;53(5):1685-92.** [PMID: 25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15)
+## Todo's and thoughts for future releases:
+- Provide coverage estimates for genomes in sample based on kmer frequencies
+- Write code to use SalmID on long read (minion, pacbio) platforms