Mercurial > repos > cstrittmatter > ss2v110
diff README.md @ 2:d0350fe29fdf draft
planemo upload commit c50df40caef2fb97c178d6890961e0e527992324
author | cstrittmatter |
---|---|
date | Mon, 27 Apr 2020 01:11:53 -0400 |
parents | fc22ec8e924e |
children | e6437d423693 |
line wrap: on
line diff
--- a/README.md Tue Apr 21 12:49:07 2020 -0400 +++ b/README.md Mon Apr 27 01:11:53 2020 -0400 @@ -1,117 +1,51 @@ -# SeqSero2 v1.1.0 -Salmonella serotype prediction from genome sequencing data. - -Online version: http://www.denglab.info/SeqSero2 - -# Introduction -SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies - -# Dependencies -SeqSero2 has three workflows: - -(A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing). +[![DOI](https://zenodo.org/badge/97020646.svg)](https://zenodo.org/badge/latestdoi/97020646) -Allele micro-assembly workflow depends on: - -1. Python 3; - -2. Biopython 1.73; +# SalmID +Rapid tool to check taxonomic ID of single isolate samples. Currently only IDs Salmonella species and subspecies, and some common contaminants (Listeria, Escherichia). -3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/); - -4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/); - -5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download); - -6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software); +## Requirements: +Python 3 -7. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades); - -8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/); - -9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID). - - -(B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants. - -Raw reads k-mer workflow (originally SeqSeroK) depends on: - -1. Python 3; -2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files); - +## Installation: +The easy way with homebrew ([Linux](http://linuxbrew.sh/) or [MacOS](https://brew.sh/)): +``` +brew install brewsci/bio/salmid +``` +Big thanks to [Torsten Seemann](https://tseemann.github.io/) for including this in homebrew! -(C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow +Alternatively download from GitHub: -# Installation -### Conda -To install the latest SeqSero2 Conda package (recommended): -``` -conda install -c bioconda seqsero2=1.1.0 -``` -### Git -To install the SeqSero2 git repository locally: -``` -git clone https://github.com/denglab/SeqSero2.git -cd SeqSero2 -python3 -m pip install --user . +```bash +git clone https://github.com/hcdenbakker/SalmID.git ``` -### Other options -Third party SeqSero2 installations (may not be the latest version of SeqSero2): \ -https://github.com/B-UMMI/docker-images/tree/master/seqsero2 \ -https://github.com/denglab/SeqSero2/issues/13 - -# Executing the code -Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions. +build a wheel using [poetry](https://poetry.eustace.io/): - Usage: SeqSero2_package.py - - -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a) +```bash +cd SalmID +poetry build +``` - -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq) +and install using `pip` - -i <file> (/path/to/input/file) - - -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1) +```bash +pip install dist/salmid*.whl +``` - -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode) - - -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number) - - -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files) - - -n <string> (optional, to specify a sample name in the report output) - - -s <flag> (if '-s' was flagged, SeqSero2 will not output header in SeqSero_result.tsv) - - --check <flag> (use '--check' flag to check the required dependencies) - - -v, --version (show program's version number and exit) - - -# Examples -Allele mode: +To execute: +``` +SalmID.py -e .fastq.gz +``` +This will perform a SalmID run on all fastq.gz files in the current directory. +``` +SalmID.py -i your_fastq_gz.fastq.gz +``` +This will perform a SalmID run on an individual file (i.e., your_fastq_gz.fastq.gz) +``` +SalmID.py -d directory_with_data -e _1.fastq.gz +``` +This will perform a SalmID run on all files in directory 'directory_with_data' with extension '_1.fastq.gz' - # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10") - SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz - -K-mer mode: - - # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2") - SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz - - # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k") - SeqSero2_package.py -m k -t 4 -i assembly.fasta - -# Output -Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'SeqSero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode). - - -# Citation -Zhang S, Den-Bakker HC, Li S, Dinsmore BA, Lane C, Lauer AC, Fields PI, Deng X. -SeqSero2: rapid and improved Salmonella serotype determination using whole genome sequencing data. -**Appl Environ Microbiology. 2019 Sep; 85(23):e01746-19.** [PMID: 31540993](https://aem.asm.org/content/early/2019/09/17/AEM.01746-19.long) - -Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X. -Salmonella serotype determination utilizing high-throughput genome sequencing data. -**J Clin Microbiol. 2015 May;53(5):1685-92.** [PMID: 25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15) +## Todo's and thoughts for future releases: +- Provide coverage estimates for genomes in sample based on kmer frequencies +- Write code to use SalmID on long read (minion, pacbio) platforms