Mercurial > repos > davidecangelosi > pipe_t
diff pipe-t.R @ 12:11393eb1c557 draft
planemo upload for repository https://github.com/igg-molecular-biology-lab/pipe-t.git commit d1be332a7da0e53b3e6451f0aeda0675f190dd64
author | davidecangelosi |
---|---|
date | Thu, 16 May 2019 10:34:26 -0400 |
parents | bc5697f41720 |
children | 969d0bbbf5a9 |
line wrap: on
line diff
--- a/pipe-t.R Wed May 15 06:54:59 2019 -0400 +++ b/pipe-t.R Thu May 16 10:34:26 2019 -0400 @@ -569,7 +569,8 @@ height = 10*300, res = 300, # 300 pixels per inch pointsize = 8) - plotCtBoxes(xFilter, stratify=NULL, xlab = "Samples", ylab="Ct", names=as.character(seq(1, ncol(xFilter), 1))) # smaller font size + par(mar = c(8, 8,8, 8)) + plotCtBoxes(xFilter, cex.lab=3, cex.axis = 2,stratify=NULL, xlab = "Samples", ylab="Ct", names=as.character(seq(1, ncol(xFilter), 1))) # smaller font size dev.off() #write.table(exprs(xFilter), file=x, quote=FALSE, row.names=TRUE, col.names=TRUE,sep = "\t") @@ -724,22 +725,6 @@ # Return the normalised object q } -#library(NormqPCR) - -#delete.na <- function(DF, n=0) { - # DF[rowSums(is.na(DF)) <= n,] -#} - -#user_number=5 -#genorm <- selectHKs(t(delete.na(as.matrix(exprs(xGlico)),0)), method = "geNorm", Symbols = rownames(as.matrix(delete.na(exprs(xGlico),0))), minNrHK = as.numeric(user_number), log = TRUE) -#genorm -#normfinder <- selectHKs(as.matrix(t(delete.na(exprs(xGlico),0))), group= files$Treatment , method = "NormFinder", Symbols =rownames(as.matrix(delete.na(exprs(xGlico),0))), minNrHK = as.numeric(user_number), log = TRUE) -#normfinder -#intersection= intersect(normfinder$ranking, genorm$ranking[1:as.numeric(user_number)]) - -#cat("\n GeNorm and NormFinder transcripts selected as housekeeping for normalization! \n") -#intersection -#dnorm <- normalizeCtData(xGlico , norm="deltaCt", deltaCt.genes=as.vector(intersection)) switch(normalizationMethod, "deltaCt"={ @@ -783,29 +768,11 @@ stop("Enter something that switches me!") ) - #if (normalizationMethod=="deltaCt") { -#normalize CT data - -#normalizedDataset <- normalizeCtDataDav(xFilter, norm="deltaCt", deltaCt.genes =explode(normalizers, sep = ",")) -#} else { -#normalizedDataset <- normalizeCtDataDav(xFilter, norm=normalizationMethod) - -#} + cat("\n Data normalized correctly! \n") write.table(exprs(normalizedDataset), file=outputNorm, quote=FALSE, row.names=TRUE, col.names=TRUE,sep = "\t") -#normalizedDataset -#################################################################################################################### -#Check noise reduction by empirical cumulative distribution - -#X = rnorm(100) # X is a sample of 100 normally distributed random variables -# P = ecdf(X) # P is a function giving the empirical CDF of X -#Y = rnorm(1000) # X is a sample of 100 normally distributed random variables -# PY = ecdf(Y) -#plotâ„— - -#lines(PY) png(outputECDF, # create PNG for the heat map width = 10*300, # 5 x 300 pixels height = 10*300, @@ -828,8 +795,8 @@ PY = ecdf(gm) plot_colors <- c(rgb(r=0.0,g=0.0,b=0.9), "red", "forestgreen",rgb(r=0.0,g=0.0,b=0.0),rgb(r=0.5,g=0.0,b=0.3),rgb(r=0.0,g=0.4,b=0.4)) - -plot(P,col=plot_colors[1],xlim=c(0.0,600), ylim=c(0.0,1),xaxp = c(0.0, 600, 6),yaxp = c(0.0, 1, 10), cex=1.3, lwd=5, main=NULL,xlab="CV(%)",ylab="Empirical Cumulative Distribution") +par(mar = c(8, 8,8, 8)) # Set the margin on all sides to 8 +plot(P,cex.lab=3, cex.axis = 2,col=plot_colors[1],xlim=c(0.0,600), ylim=c(0.0,1),xaxp = c(0.0, 600, 6),yaxp = c(0.0, 1, 10), cex=1.3, lwd=5, main=paste("p-value=", formatC(ks.test(vec,gm)$p.value, format = "e", digits = 2)),xlab="CV(%)",ylab="Empirical Cumulative Distribution") lines(PY, lwd=5, col=plot_colors[6],cex=1.3) legend("bottomright", c("not normalized", "normalized"), cex=1.3, col=c(plot_colors[1],plot_colors[6]), lwd=c(5,5)); dev.off() @@ -844,7 +811,8 @@ height = 10*300, res = 300, # 300 pixels per inch pointsize = 8) - plotCtBoxes(normalizedDataset, stratify=NULL, xlab = "Samples", ylab="DeltaCt", names=as.character(seq(1, ncol(normalizedDataset), 1))) # smaller font size + par(mar = c(8, 8,8, 8)) + plotCtBoxes(normalizedDataset, cex.lab=3, cex.axis = 2,stratify=NULL, xlab = "Samples", ylab="DeltaCt", names=as.character(seq(1, ncol(normalizedDataset), 1))) # smaller font size dev.off() ################################################## Filtering based on number of NAs##################################################