# HG changeset patch
# User davidvanzessen
# Date 1488382890 18000
# Node ID 798b62942b4bd85251c2b2722890b1e4c3d526f6
# Parent b539aeb759805c9685a4c6cd54c55e05fb918077
Uploaded
diff -r b539aeb75980 -r 798b62942b4b imgt_loader/imgt_loader.r
--- a/imgt_loader/imgt_loader.r Tue Feb 28 08:10:34 2017 -0500
+++ b/imgt_loader/imgt_loader.r Wed Mar 01 10:41:30 2017 -0500
@@ -4,11 +4,13 @@
sequences.file = args[2]
aa.file = args[3]
junction.file = args[4]
-out.file = args[5]
+gapped.aa.file = args[5]
+out.file = args[6]
summ = read.table(summ.file, sep="\t", header=T, quote="", fill=T)
sequences = read.table(sequences.file, sep="\t", header=T, quote="", fill=T)
aa = read.table(aa.file, sep="\t", header=T, quote="", fill=T)
+gapped.aa = read.table(gapped.aa.file, sep="\t", header=T, quote="", fill=T)
junction = read.table(junction.file, sep="\t", header=T, quote="", fill=T)
old_summary_columns=c('Sequence.ID','JUNCTION.frame','V.GENE.and.allele','D.GENE.and.allele','J.GENE.and.allele','CDR1.IMGT.length','CDR2.IMGT.length','CDR3.IMGT.length','Orientation')
@@ -32,8 +34,8 @@
out[,"CDR3.Seq"] = aa[,"CDR3.IMGT"]
out[,"CDR3.Length"] = summ[,"CDR3.IMGT.length"]
-out[,"CDR3.Seq.DNA"] = sequences[,"CDR3.IMGT"]
-out[,"CDR3.Length.DNA"] = nchar(as.character(sequences[,"CDR3.IMGT"]))
+out[,"CDR3.Seq.DNA"] = gapped.aa[,"CDR3.IMGT"]
+out[,"CDR3.Length.DNA"] = nchar(as.character(out[,"CDR3.Seq.DNA"]))
out[,"Strand"] = summ[,"Orientation"]
out[,"CDR3.Found.How"] = "a"
diff -r b539aeb75980 -r 798b62942b4b imgt_loader/imgt_loader.sh
--- a/imgt_loader/imgt_loader.sh Tue Feb 28 08:10:34 2017 -0500
+++ b/imgt_loader/imgt_loader.sh Wed Mar 01 10:41:30 2017 -0500
@@ -62,9 +62,10 @@
fi
find $PWD/$name/files -iname "1_*" -exec cat {} + > $PWD/$name/summ.txt
find $PWD/$name/files -iname "3_*" -exec cat {} + > $PWD/$name/sequences.txt
+find $PWD/$name/files -iname "4_*" -exec cat {} + > $PWD/$name/gapped_aa.txt
find $PWD/$name/files -iname "5_*" -exec cat {} + > $PWD/$name/aa.txt
find $PWD/$name/files -iname "6_*" -exec cat {} + > $PWD/$name/junction.txt
#python $dir/imgt_loader.py --summ $PWD/$name/summ.txt --aa $PWD/$name/aa.txt --junction $PWD/$name/junction.txt --output $output
-Rscript --verbose $dir/imgt_loader.r $PWD/$name/summ.txt $PWD/$name/sequences.txt $PWD/$name/aa.txt $PWD/$name/junction.txt $output 2>&1
+Rscript --verbose $dir/imgt_loader.r $PWD/$name/summ.txt $PWD/$name/sequences.txt $PWD/$name/aa.txt $PWD/$name/junction.txt $PWD/$name/gapped_aa.txt $output 2>&1
diff -r b539aeb75980 -r 798b62942b4b report_clonality/RScript.r.old
--- a/report_clonality/RScript.r.old Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,877 +0,0 @@
-# ---------------------- load/install packages ----------------------
-
-if (!("gridExtra" %in% rownames(installed.packages()))) {
- install.packages("gridExtra", repos="http://cran.xl-mirror.nl/")
-}
-library(gridExtra)
-if (!("ggplot2" %in% rownames(installed.packages()))) {
- install.packages("ggplot2", repos="http://cran.xl-mirror.nl/")
-}
-library(ggplot2)
-if (!("plyr" %in% rownames(installed.packages()))) {
- install.packages("plyr", repos="http://cran.xl-mirror.nl/")
-}
-library(plyr)
-
-if (!("data.table" %in% rownames(installed.packages()))) {
- install.packages("data.table", repos="http://cran.xl-mirror.nl/")
-}
-library(data.table)
-
-if (!("reshape2" %in% rownames(installed.packages()))) {
- install.packages("reshape2", repos="http://cran.xl-mirror.nl/")
-}
-library(reshape2)
-
-if (!("lymphclon" %in% rownames(installed.packages()))) {
- install.packages("lymphclon", repos="http://cran.xl-mirror.nl/")
-}
-library(lymphclon)
-
-# ---------------------- parameters ----------------------
-
-args <- commandArgs(trailingOnly = TRUE)
-
-infile = args[1] #path to input file
-outfile = args[2] #path to output file
-outdir = args[3] #path to output folder (html/images/data)
-clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering
-ct = unlist(strsplit(clonaltype, ","))
-species = args[5] #human or mouse
-locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD
-filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no)
-clonality_method = args[8]
-
-
-# ---------------------- Data preperation ----------------------
-
-print("Report Clonality - Data preperation")
-
-inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="", stringsAsFactors=F)
-
-print(paste("nrows: ", nrow(inputdata)))
-
-setwd(outdir)
-
-# remove weird rows
-inputdata = inputdata[inputdata$Sample != "",]
-
-print(paste("nrows: ", nrow(inputdata)))
-
-#remove the allele from the V,D and J genes
-inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene)
-inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene)
-inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene)
-
-print(paste("nrows: ", nrow(inputdata)))
-
-#filter uniques
-inputdata.removed = inputdata[NULL,]
-
-print(paste("nrows: ", nrow(inputdata)))
-
-inputdata$clonaltype = 1:nrow(inputdata)
-
-#keep track of the count of sequences in samples or samples/replicates for the front page overview
-input.sample.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample")])
-input.rep.count = data.frame(data.table(inputdata)[, list(All=.N), by=c("Sample", "Replicate")])
-
-PRODF = inputdata
-UNPROD = inputdata
-if(filterproductive){
- if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column
- #PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ]
- PRODF = inputdata[inputdata$Functionality %in% c("productive (see comment)","productive"),]
-
- PRODF.count = data.frame(data.table(PRODF)[, list(count=.N), by=c("Sample")])
-
- UNPROD = inputdata[inputdata$Functionality %in% c("unproductive (see comment)","unproductive"), ]
- } else {
- PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ]
- UNPROD = inputdata[!(inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" ), ]
- }
-}
-
-for(i in 1:nrow(UNPROD)){
- if(!is.numeric(UNPROD[i,"CDR3.Length"])){
- UNPROD[i,"CDR3.Length"] = 0
- }
-}
-
-prod.sample.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample")])
-prod.rep.count = data.frame(data.table(PRODF)[, list(Productive=.N), by=c("Sample", "Replicate")])
-
-unprod.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample")])
-unprod.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive=.N), by=c("Sample", "Replicate")])
-
-clonalityFrame = PRODF
-
-#remove duplicates based on the clonaltype
-if(clonaltype != "none"){
- clonaltype = paste(clonaltype, ",Sample", sep="") #add sample column to clonaltype, unique within samples
- PRODF$clonaltype = do.call(paste, c(PRODF[unlist(strsplit(clonaltype, ","))], sep = ":"))
- PRODF = PRODF[!duplicated(PRODF$clonaltype), ]
-
- UNPROD$clonaltype = do.call(paste, c(UNPROD[unlist(strsplit(clonaltype, ","))], sep = ":"))
- UNPROD = UNPROD[!duplicated(UNPROD$clonaltype), ]
-
- #again for clonalityFrame but with sample+replicate
- clonalityFrame$clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(clonaltype, ","))], sep = ":"))
- clonalityFrame$clonality_clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(paste(clonaltype, ",Replicate", sep=""), ","))], sep = ":"))
- clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$clonality_clonaltype), ]
-}
-
-print("SAMPLE TABLE:")
-print(table(PRODF$Sample))
-
-prod.unique.sample.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample")])
-prod.unique.rep.count = data.frame(data.table(PRODF)[, list(Productive_unique=.N), by=c("Sample", "Replicate")])
-
-unprod.unique.sample.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample")])
-unprod.unique.rep.count = data.frame(data.table(UNPROD)[, list(Unproductive_unique=.N), by=c("Sample", "Replicate")])
-
-PRODF$freq = 1
-
-if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*"
- PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID)
- PRODF$freq = gsub("_.*", "", PRODF$freq)
- PRODF$freq = as.numeric(PRODF$freq)
- if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence
- PRODF$freq = 1
- }
-}
-
-#make a names list with sample -> color
-naive.colors = c('blue4', 'darkred', 'olivedrab3', 'red', 'gray74', 'darkviolet', 'lightblue1', 'gold', 'chartreuse2', 'pink', 'Paleturquoise3', 'Chocolate1', 'Yellow', 'Deeppink3', 'Mediumorchid1', 'Darkgreen', 'Blue', 'Gray36', 'Hotpink', 'Yellow4')
-unique.samples = unique(PRODF$Sample)
-
-if(length(unique.samples) <= length(naive.colors)){
- sample.colors = naive.colors[1:length(unique.samples)]
-} else {
- sample.colors = rainbow(length(unique.samples))
-}
-
-names(sample.colors) = unique.samples
-
-print("Sample.colors")
-print(sample.colors)
-
-
-#write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive
-write.table(PRODF, "allUnique.txt", sep="\t",quote=F,row.names=F,col.names=T)
-write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T)
-write.table(UNPROD, "allUnproductive.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-#write the samples to a file
-sampleFile <- file("samples.txt")
-un = unique(inputdata$Sample)
-un = paste(un, sep="\n")
-writeLines(un, sampleFile)
-close(sampleFile)
-
-# ---------------------- Counting the productive/unproductive and unique sequences ----------------------
-
-print("Report Clonality - counting productive/unproductive/unique")
-
-#create the table on the overview page with the productive/unique counts per sample/replicate
-#first for sample
-sample.count = merge(input.sample.count, prod.sample.count, by="Sample", all.x=T)
-sample.count$perc_prod = round(sample.count$Productive / sample.count$All * 100)
-sample.count = merge(sample.count, prod.unique.sample.count, by="Sample", all.x=T)
-sample.count$perc_prod_un = round(sample.count$Productive_unique / sample.count$All * 100)
-
-sample.count = merge(sample.count , unprod.sample.count, by="Sample", all.x=T)
-sample.count$perc_unprod = round(sample.count$Unproductive / sample.count$All * 100)
-sample.count = merge(sample.count, unprod.unique.sample.count, by="Sample", all.x=T)
-sample.count$perc_unprod_un = round(sample.count$Unproductive_unique / sample.count$All * 100)
-
-#then sample/replicate
-rep.count = merge(input.rep.count, prod.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_prod = round(rep.count$Productive / rep.count$All * 100)
-rep.count = merge(rep.count, prod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_prod_un = round(rep.count$Productive_unique / rep.count$All * 100)
-
-rep.count = merge(rep.count, unprod.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_unprod = round(rep.count$Unproductive / rep.count$All * 100)
-rep.count = merge(rep.count, unprod.unique.rep.count, by=c("Sample", "Replicate"), all.x=T)
-rep.count$perc_unprod_un = round(rep.count$Unproductive_unique / rep.count$All * 100)
-
-rep.count$Sample = paste(rep.count$Sample, rep.count$Replicate, sep="_")
-rep.count = rep.count[,names(rep.count) != "Replicate"]
-
-count = rbind(sample.count, rep.count)
-
-
-
-write.table(x=count, file="productive_counting.txt", sep=",",quote=F,row.names=F,col.names=F)
-
-# ---------------------- V+J+CDR3 sequence count ----------------------
-
-VJCDR3.count = data.frame(table(clonalityFrame$Top.V.Gene, clonalityFrame$Top.J.Gene, clonalityFrame$CDR3.Seq.DNA))
-names(VJCDR3.count) = c("Top.V.Gene", "Top.J.Gene", "CDR3.Seq.DNA", "Count")
-
-VJCDR3.count = VJCDR3.count[VJCDR3.count$Count > 0,]
-VJCDR3.count = VJCDR3.count[order(-VJCDR3.count$Count),]
-
-write.table(x=VJCDR3.count, file="VJCDR3_count.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Frequency calculation for V, D and J ----------------------
-
-print("Report Clonality - frequency calculation V, D and J")
-
-PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")])
-Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")])
-Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")])
-Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
-
-# ---------------------- Setting up the gene names for the different species/loci ----------------------
-
-print("Report Clonality - getting genes for species/loci")
-
-Vchain = ""
-Dchain = ""
-Jchain = ""
-
-if(species == "custom"){
- print("Custom genes: ")
- splt = unlist(strsplit(locus, ";"))
- print(paste("V:", splt[1]))
- print(paste("D:", splt[2]))
- print(paste("J:", splt[3]))
-
- Vchain = unlist(strsplit(splt[1], ","))
- Vchain = data.frame(v.name = Vchain, chr.orderV = 1:length(Vchain))
-
- Dchain = unlist(strsplit(splt[2], ","))
- if(length(Dchain) > 0){
- Dchain = data.frame(v.name = Dchain, chr.orderD = 1:length(Dchain))
- } else {
- Dchain = data.frame(v.name = character(0), chr.orderD = numeric(0))
- }
-
- Jchain = unlist(strsplit(splt[3], ","))
- Jchain = data.frame(v.name = Jchain, chr.orderJ = 1:length(Jchain))
-
-} else {
- genes = read.table("genes.txt", sep="\t", header=TRUE, fill=T, comment.char="")
-
- Vchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "V",c("IMGT.GENE.DB", "chr.order")]
- colnames(Vchain) = c("v.name", "chr.orderV")
- Dchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "D",c("IMGT.GENE.DB", "chr.order")]
- colnames(Dchain) = c("v.name", "chr.orderD")
- Jchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "J",c("IMGT.GENE.DB", "chr.order")]
- colnames(Jchain) = c("v.name", "chr.orderJ")
-}
-useD = TRUE
-if(nrow(Dchain) == 0){
- useD = FALSE
- cat("No D Genes in this species/locus")
-}
-print(paste(nrow(Vchain), "genes in V"))
-print(paste(nrow(Dchain), "genes in D"))
-print(paste(nrow(Jchain), "genes in J"))
-
-# ---------------------- merge with the frequency count ----------------------
-
-PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
-
-# ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ----------------------
-
-print("Report Clonality - V, D and J frequency plots")
-
-pV = ggplot(PRODFV)
-pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") + scale_fill_manual(values=sample.colors)
-pV = pV + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("VPlot.png",width = 1280, height = 720)
-pV
-dev.off();
-
-if(useD){
- pD = ggplot(PRODFD)
- pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
- pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") + scale_fill_manual(values=sample.colors)
- pD = pD + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
- write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
- png("DPlot.png",width = 800, height = 600)
- print(pD)
- dev.off();
-}
-
-pJ = ggplot(PRODFJ)
-pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") + scale_fill_manual(values=sample.colors)
-pJ = pJ + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("JPlot.png",width = 800, height = 600)
-pJ
-dev.off();
-
-# ---------------------- Now the frequency plots of the V, D and J families ----------------------
-
-print("Report Clonality - V, D and J family plots")
-
-VGenes = PRODF[,c("Sample", "Top.V.Gene")]
-VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene)
-VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")])
-TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample])
-VGenes = merge(VGenes, TotalPerSample, by="Sample")
-VGenes$Frequency = VGenes$Count * 100 / VGenes$total
-VPlot = ggplot(VGenes)
-VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- ggtitle("Distribution of V gene families") +
- ylab("Percentage of sequences") +
- scale_fill_manual(values=sample.colors) +
- theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-png("VFPlot.png")
-VPlot
-dev.off();
-write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-if(useD){
- DGenes = PRODF[,c("Sample", "Top.D.Gene")]
- DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
- DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")])
- TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
- DGenes = merge(DGenes, TotalPerSample, by="Sample")
- DGenes$Frequency = DGenes$Count * 100 / DGenes$total
- DPlot = ggplot(DGenes)
- DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- ggtitle("Distribution of D gene families") +
- ylab("Percentage of sequences") +
- scale_fill_manual(values=sample.colors) +
- theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
- png("DFPlot.png")
- print(DPlot)
- dev.off();
- write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-}
-
-# ---------------------- Plotting the cdr3 length ----------------------
-
-print("Report Clonality - CDR3 length plot")
-
-CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length")])
-TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample])
-CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample")
-CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total
-CDR3LengthPlot = ggplot(CDR3Length)
-CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = factor(reorder(CDR3.Length, as.numeric(CDR3.Length))), y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- ggtitle("Length distribution of CDR3") +
- xlab("CDR3 Length") +
- ylab("Percentage of sequences") +
- scale_fill_manual(values=sample.colors) +
- theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-png("CDR3LengthPlot.png",width = 1280, height = 720)
-CDR3LengthPlot
-dev.off()
-write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Plot the heatmaps ----------------------
-
-#get the reverse order for the V and D genes
-revVchain = Vchain
-revDchain = Dchain
-revVchain$chr.orderV = rev(revVchain$chr.orderV)
-revDchain$chr.orderD = rev(revDchain$chr.orderD)
-
-if(useD){
- print("Report Clonality - Heatmaps VD")
- plotVD <- function(dat){
- if(length(dat[,1]) == 0){
- return()
- }
-
- img = ggplot() +
- geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
- theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- scale_fill_gradient(low="gold", high="blue", na.value="white") +
- ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
- xlab("D genes") +
- ylab("V Genes") +
- theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro"))
-
- png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
- print(img)
- dev.off()
- write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
- }
-
- VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
-
- VandDCount$l = log(VandDCount$Length)
- maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
- VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
- VandDCount$relLength = VandDCount$l / VandDCount$max
- check = is.nan(VandDCount$relLength)
- if(any(check)){
- VandDCount[check,"relLength"] = 0
- }
-
- cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name)
-
- completeVD = merge(VandDCount, cartegianProductVD, by.x=c("Top.V.Gene", "Top.D.Gene"), by.y=c("Top.V.Gene", "Top.D.Gene"), all=TRUE)
-
- completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
-
- completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
-
- fltr = is.nan(completeVD$relLength)
- if(all(fltr)){
- completeVD[fltr,"relLength"] = 0
- }
-
- VDList = split(completeVD, f=completeVD[,"Sample"])
- lapply(VDList, FUN=plotVD)
-}
-
-print("Report Clonality - Heatmaps VJ")
-
-plotVJ <- function(dat){
- if(length(dat[,1]) == 0){
- return()
- }
- cat(paste(unique(dat[3])[1,1]))
- img = ggplot() +
- geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
- theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- scale_fill_gradient(low="gold", high="blue", na.value="white") +
- ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
- xlab("J genes") +
- ylab("V Genes") +
- theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro"))
-
- png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
- print(img)
- dev.off()
- write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-}
-
-VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
-
-VandJCount$l = log(VandJCount$Length)
-maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")])
-VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
-VandJCount$relLength = VandJCount$l / VandJCount$max
-
-check = is.nan(VandJCount$relLength)
-if(any(check)){
- VandJCount[check,"relLength"] = 0
-}
-
-cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name)
-
-completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
-completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
-completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-
-fltr = is.nan(completeVJ$relLength)
-if(any(fltr)){
- completeVJ[fltr,"relLength"] = 1
-}
-
-VJList = split(completeVJ, f=completeVJ[,"Sample"])
-lapply(VJList, FUN=plotVJ)
-
-
-
-if(useD){
- print("Report Clonality - Heatmaps DJ")
- plotDJ <- function(dat){
- if(length(dat[,1]) == 0){
- return()
- }
- img = ggplot() +
- geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) +
- theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- scale_fill_gradient(low="gold", high="blue", na.value="white") +
- ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
- xlab("J genes") +
- ylab("D Genes") +
- theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), panel.grid.major = element_line(colour = "gainsboro"))
-
- png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
- print(img)
- dev.off()
- write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
- }
-
-
- DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
-
- DandJCount$l = log(DandJCount$Length)
- maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
- DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
- DandJCount$relLength = DandJCount$l / DandJCount$max
-
- check = is.nan(DandJCount$relLength)
- if(any(check)){
- DandJCount[check,"relLength"] = 0
- }
-
- cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name)
-
- completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
- completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
- completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-
- fltr = is.nan(completeDJ$relLength)
- if(any(fltr)){
- completeDJ[fltr, "relLength"] = 1
- }
-
- DJList = split(completeDJ, f=completeDJ[,"Sample"])
- lapply(DJList, FUN=plotDJ)
-}
-
-
-# ---------------------- output tables for the circos plots ----------------------
-
-print("Report Clonality - Circos data")
-
-for(smpl in unique(PRODF$Sample)){
- PRODF.sample = PRODF[PRODF$Sample == smpl,]
-
- fltr = PRODF.sample$Top.V.Gene == ""
- if(any(fltr, na.rm=T)){
- PRODF.sample[fltr, "Top.V.Gene"] = "NA"
- }
-
- fltr = PRODF.sample$Top.D.Gene == ""
- if(any(fltr, na.rm=T)){
- PRODF.sample[fltr, "Top.D.Gene"] = "NA"
- }
-
- fltr = PRODF.sample$Top.J.Gene == ""
- if(any(fltr, na.rm=T)){
- PRODF.sample[fltr, "Top.J.Gene"] = "NA"
- }
-
- v.d = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.D.Gene)
- v.j = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.J.Gene)
- d.j = table(PRODF.sample$Top.D.Gene, PRODF.sample$Top.J.Gene)
-
- write.table(v.d, file=paste(smpl, "_VD_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA)
- write.table(v.j, file=paste(smpl, "_VJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA)
- write.table(d.j, file=paste(smpl, "_DJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA)
-}
-
-# ---------------------- calculating the clonality score ----------------------
-
-if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available
-{
- print("Report Clonality - Clonality")
- write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
- if(clonality_method == "boyd"){
- samples = split(clonalityFrame, clonalityFrame$Sample, drop=T)
-
- for (sample in samples){
- res = data.frame(paste=character(0))
- sample_id = unique(sample$Sample)[[1]]
- for(replicate in unique(sample$Replicate)){
- tmp = sample[sample$Replicate == replicate,]
- clone_table = data.frame(table(tmp$clonaltype))
- clone_col_name = paste("V", replicate, sep="")
- colnames(clone_table) = c("paste", clone_col_name)
- res = merge(res, clone_table, by="paste", all=T)
- }
-
- res[is.na(res)] = 0
- infer.result = infer.clonality(as.matrix(res[,2:ncol(res)]))
-
- #print(infer.result)
-
- write.table(data.table(infer.result[[12]]), file=paste("lymphclon_clonality_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=F)
-
- res$type = rowSums(res[,2:ncol(res)])
-
- coincidence.table = data.frame(table(res$type))
- colnames(coincidence.table) = c("Coincidence Type", "Raw Coincidence Freq")
- write.table(coincidence.table, file=paste("lymphclon_coincidences_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
- }
- } else {
- clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")])
-
- #write files for every coincidence group of >1
- samples = unique(clonalFreq$Sample)
- for(sample in samples){
- clonalFreqSample = clonalFreq[clonalFreq$Sample == sample,]
- if(max(clonalFreqSample$Type) > 1){
- for(i in 2:max(clonalFreqSample$Type)){
- clonalFreqSampleType = clonalFreqSample[clonalFreqSample$Type == i,]
- clonalityFrame.sub = clonalityFrame[clonalityFrame$clonaltype %in% clonalFreqSampleType$clonaltype,]
- clonalityFrame.sub = clonalityFrame.sub[order(clonalityFrame.sub$clonaltype),]
- write.table(clonalityFrame.sub, file=paste("coincidences_", sample, "_", i, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
- }
- }
- }
-
- clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
- clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
- clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
- clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
-
- ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
- tcct = textConnection(ct)
- CT = read.table(tcct, sep="\t", header=TRUE)
- close(tcct)
- clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
- clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
-
- ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")])
- ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
- clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
- ReplicateReads$Reads = as.numeric(ReplicateReads$Reads)
- ReplicateReads$squared = as.numeric(ReplicateReads$Reads * ReplicateReads$Reads)
-
- ReplicatePrint <- function(dat){
- write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
- lapply(ReplicateSplit, FUN=ReplicatePrint)
-
- ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(as.numeric(Reads)), ReadsSquaredSum=sum(as.numeric(squared))), by=c("Sample")])
- clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
-
- ReplicateSumPrint <- function(dat){
- write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
- lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
-
- clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
- clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
- clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
- clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
- clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
-
- ClonalityScorePrint <- function(dat){
- write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- clonalityScore = clonalFreqCount[c("Sample", "Result")]
- clonalityScore = unique(clonalityScore)
-
- clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
- lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
-
- clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
-
-
-
- ClonalityOverviewPrint <- function(dat){
- dat = dat[order(dat[,2]),]
- write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
- lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
- }
-}
-
-bak = PRODF
-
-imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb")
-if(all(imgtcolumns %in% colnames(inputdata)))
-{
- print("found IMGT columns, running junction analysis")
-
- if(locus %in% c("IGK","IGL", "TRA", "TRG")){
- print("VJ recombination, no filtering on absent D")
- } else {
- print("VDJ recombination, using N column for junction analysis")
- fltr = nchar(PRODF$Top.D.Gene) < 4
- print(paste("Removing", sum(fltr), "sequences without a identified D"))
- PRODF = PRODF[!fltr,]
- }
-
-
- #ensure certain columns are in the data (files generated with older versions of IMGT Loader)
- col.checks = c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb")
- for(col.check in col.checks){
- if(!(col.check %in% names(PRODF))){
- print(paste(col.check, "not found adding new column"))
- if(nrow(PRODF) > 0){ #because R is anoying...
- PRODF[,col.check] = 0
- } else {
- PRODF = cbind(PRODF, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0)))
- }
- if(nrow(UNPROD) > 0){
- UNPROD[,col.check] = 0
- } else {
- UNPROD = cbind(UNPROD, data.frame(N3.REGION.nt.nb=numeric(0), N4.REGION.nt.nb=numeric(0)))
- }
- }
- }
-
- num_median = function(x, na.rm=T) { as.numeric(median(x, na.rm=na.rm)) }
-
- newData = data.frame(data.table(PRODF)[,list(unique=.N,
- VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
- P1=mean(.SD$P3V.nt.nb, na.rm=T),
- N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
- P2=mean(.SD$P5D.nt.nb, na.rm=T),
- DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
- DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
- P3=mean(.SD$P3D.nt.nb, na.rm=T),
- N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- P4=mean(.SD$P5J.nt.nb, na.rm=T),
- DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
- Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
- Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
- Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
- by=c("Sample")])
- newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
- write.table(newData, "junctionAnalysisProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-
- newData = data.frame(data.table(PRODF)[,list(unique=.N,
- VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
- P1=num_median(.SD$P3V.nt.nb, na.rm=T),
- N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
- P2=num_median(.SD$P5D.nt.nb, na.rm=T),
- DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
- DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
- P3=num_median(.SD$P3D.nt.nb, na.rm=T),
- N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- P4=num_median(.SD$P5J.nt.nb, na.rm=T),
- DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
- Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
- Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
- Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
- by=c("Sample")])
- newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
- write.table(newData, "junctionAnalysisProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-
- newData = data.frame(data.table(UNPROD)[,list(unique=.N,
- VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
- P1=mean(.SD$P3V.nt.nb, na.rm=T),
- N1=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
- P2=mean(.SD$P5D.nt.nb, na.rm=T),
- DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
- DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
- P3=mean(.SD$P3D.nt.nb, na.rm=T),
- N2=mean(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- P4=mean(.SD$P5J.nt.nb, na.rm=T),
- DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
- Total.Del=mean(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
- Total.N=mean(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- Total.P=mean(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
- Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
- by=c("Sample")])
- newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
- write.table(newData, "junctionAnalysisUnProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-
- newData = data.frame(data.table(UNPROD)[,list(unique=.N,
- VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
- P1=num_median(.SD$P3V.nt.nb, na.rm=T),
- N1=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb"), with=F], na.rm=T)),
- P2=num_median(.SD$P5D.nt.nb, na.rm=T),
- DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
- DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
- P3=num_median(.SD$P3D.nt.nb, na.rm=T),
- N2=num_median(rowSums(.SD[,c("N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- P4=num_median(.SD$P5J.nt.nb, na.rm=T),
- DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
- Total.Del=num_median(rowSums(.SD[,c("X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb"), with=F], na.rm=T)),
- Total.N=num_median(rowSums(.SD[,c("N.REGION.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "N3.REGION.nt.nb", "N4.REGION.nt.nb"), with=F], na.rm=T)),
- Total.P=num_median(rowSums(.SD[,c("P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb"), with=F], na.rm=T)),
- Median.CDR3.l=as.double(median(.SD$CDR3.Length))),
- by=c("Sample")])
-
- newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
- write.table(newData, "junctionAnalysisUnProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-}
-
-PRODF = bak
-
-
-# ---------------------- D reading frame ----------------------
-
-D.REGION.reading.frame = PRODF[,c("Sample", "D.REGION.reading.frame")]
-
-chck = is.na(D.REGION.reading.frame$D.REGION.reading.frame)
-if(any(chck)){
- D.REGION.reading.frame[chck,"D.REGION.reading.frame"] = "No D"
-}
-
-D.REGION.reading.frame = data.frame(data.table(D.REGION.reading.frame)[, list(Freq=.N), by=c("Sample", "D.REGION.reading.frame")])
-
-write.table(D.REGION.reading.frame, "DReadingFrame.csv" , sep="\t",quote=F,row.names=F,col.names=T)
-
-D.REGION.reading.frame = ggplot(D.REGION.reading.frame)
-D.REGION.reading.frame = D.REGION.reading.frame + geom_bar(aes( x = D.REGION.reading.frame, y = Freq, fill=Sample), stat='identity', position='dodge' ) + ggtitle("D reading frame") + xlab("Frequency") + ylab("Frame")
-D.REGION.reading.frame = D.REGION.reading.frame + scale_fill_manual(values=sample.colors)
-D.REGION.reading.frame = D.REGION.reading.frame + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-
-png("DReadingFrame.png")
-D.REGION.reading.frame
-dev.off()
-
-
-
-
-# ---------------------- AA composition in CDR3 ----------------------
-
-AACDR3 = PRODF[,c("Sample", "CDR3.Seq")]
-
-TotalPerSample = data.frame(data.table(AACDR3)[, list(total=sum(nchar(as.character(.SD$CDR3.Seq)))), by=Sample])
-
-AAfreq = list()
-
-for(i in 1:nrow(TotalPerSample)){
- sample = TotalPerSample$Sample[i]
- AAfreq[[i]] = data.frame(table(unlist(strsplit(as.character(AACDR3[AACDR3$Sample == sample,c("CDR3.Seq")]), ""))))
- AAfreq[[i]]$Sample = sample
-}
-
-AAfreq = ldply(AAfreq, data.frame)
-AAfreq = merge(AAfreq, TotalPerSample, by="Sample", all.x = T)
-AAfreq$freq_perc = as.numeric(AAfreq$Freq / AAfreq$total * 100)
-
-
-AAorder = read.table(sep="\t", header=TRUE, text="order.aa\tAA\n1\tR\n2\tK\n3\tN\n4\tD\n5\tQ\n6\tE\n7\tH\n8\tP\n9\tY\n10\tW\n11\tS\n12\tT\n13\tG\n14\tA\n15\tM\n16\tC\n17\tF\n18\tL\n19\tV\n20\tI")
-AAfreq = merge(AAfreq, AAorder, by.x='Var1', by.y='AA', all.x=TRUE)
-
-AAfreq = AAfreq[!is.na(AAfreq$order.aa),]
-
-AAfreqplot = ggplot(AAfreq)
-AAfreqplot = AAfreqplot + geom_bar(aes( x=factor(reorder(Var1, order.aa)), y = freq_perc, fill = Sample), stat='identity', position='dodge' )
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 0.5, xmax = 2.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 3.5, xmax = 4.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 5.5, xmax = 6.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 6.5, xmax = 7.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + ggtitle("Amino Acid Composition in the CDR3") + xlab("Amino Acid, from Hydrophilic (left) to Hydrophobic (right)") + ylab("Percentage") + scale_fill_manual(values=sample.colors)
-AAfreqplot = AAfreqplot + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-
-png("AAComposition.png",width = 1280, height = 720)
-AAfreqplot
-dev.off()
-write.table(AAfreq, "AAComposition.csv" , sep=",",quote=F,na="-",row.names=F,col.names=T)
-
-# ---------------------- AA median CDR3 length ----------------------
-
-median.aa.l = data.frame(data.table(PRODF)[, list(median=as.double(median(.SD$CDR3.Length))), by=c("Sample")])
-write.table(median.aa.l, "AAMedianBySample.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-
diff -r b539aeb75980 -r 798b62942b4b report_clonality/RScript.r~
--- a/report_clonality/RScript.r~ Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,658 +0,0 @@
-# ---------------------- load/install packages ----------------------
-
-if (!("gridExtra" %in% rownames(installed.packages()))) {
- install.packages("gridExtra", repos="http://cran.xl-mirror.nl/")
-}
-library(gridExtra)
-if (!("ggplot2" %in% rownames(installed.packages()))) {
- install.packages("ggplot2", repos="http://cran.xl-mirror.nl/")
-}
-library(ggplot2)
-if (!("plyr" %in% rownames(installed.packages()))) {
- install.packages("plyr", repos="http://cran.xl-mirror.nl/")
-}
-library(plyr)
-
-if (!("data.table" %in% rownames(installed.packages()))) {
- install.packages("data.table", repos="http://cran.xl-mirror.nl/")
-}
-library(data.table)
-
-if (!("reshape2" %in% rownames(installed.packages()))) {
- install.packages("reshape2", repos="http://cran.xl-mirror.nl/")
-}
-library(reshape2)
-
-if (!("lymphclon" %in% rownames(installed.packages()))) {
- install.packages("lymphclon", repos="http://cran.xl-mirror.nl/")
-}
-library(lymphclon)
-
-# ---------------------- parameters ----------------------
-
-args <- commandArgs(trailingOnly = TRUE)
-
-infile = args[1] #path to input file
-outfile = args[2] #path to output file
-outdir = args[3] #path to output folder (html/images/data)
-clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering
-ct = unlist(strsplit(clonaltype, ","))
-species = args[5] #human or mouse
-locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD
-filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no)
-clonality_method = args[8]
-
-# ---------------------- Data preperation ----------------------
-
-inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="")
-
-setwd(outdir)
-
-# remove weird rows
-inputdata = inputdata[inputdata$Sample != "",]
-
-#remove the allele from the V,D and J genes
-inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene)
-inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene)
-inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene)
-
-inputdata$clonaltype = 1:nrow(inputdata)
-
-PRODF = inputdata
-UNPROD = inputdata
-if(filterproductive){
- if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column
- PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ]
- UNPROD = inputdata[!(inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)"), ]
- } else {
- PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ]
- UNPROD = inputdata[!(inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" ), ]
- }
-}
-
-clonalityFrame = PRODF
-
-#remove duplicates based on the clonaltype
-if(clonaltype != "none"){
- clonaltype = paste(clonaltype, ",Sample", sep="") #add sample column to clonaltype, unique within samples
- PRODF$clonaltype = do.call(paste, c(PRODF[unlist(strsplit(clonaltype, ","))], sep = ":"))
- PRODF = PRODF[!duplicated(PRODF$clonaltype), ]
-
- UNPROD$clonaltype = do.call(paste, c(UNPROD[unlist(strsplit(clonaltype, ","))], sep = ":"))
- UNPROD = UNPROD[!duplicated(UNPROD$clonaltype), ]
-
- #again for clonalityFrame but with sample+replicate
- clonalityFrame$clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(clonaltype, ","))], sep = ":"))
- clonalityFrame$clonality_clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(paste(clonaltype, ",Replicate", sep=""), ","))], sep = ":"))
- clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$clonality_clonaltype), ]
-}
-
-PRODF$freq = 1
-
-if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*"
- PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID)
- PRODF$freq = gsub("_.*", "", PRODF$freq)
- PRODF$freq = as.numeric(PRODF$freq)
- if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence
- PRODF$freq = 1
- }
-}
-
-
-
-#write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive
-write.table(PRODF, "allUnique.txt", sep=",",quote=F,row.names=F,col.names=T)
-write.table(PRODF, "allUnique.csv", sep="\t",quote=F,row.names=F,col.names=T)
-write.table(UNPROD, "allUnproductive.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-#write the samples to a file
-sampleFile <- file("samples.txt")
-un = unique(inputdata$Sample)
-un = paste(un, sep="\n")
-writeLines(un, sampleFile)
-close(sampleFile)
-
-# ---------------------- Counting the productive/unproductive and unique sequences ----------------------
-
-if(!("Functionality" %in% inputdata)){ #add a functionality column to the igblast data
- inputdata$Functionality = "unproductive"
- search = (inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND")
- if(sum(search) > 0){
- inputdata[search,]$Functionality = "productive"
- }
-}
-
-inputdata.dt = data.table(inputdata) #for speed
-
-if(clonaltype == "none"){
- ct = c("clonaltype")
-}
-
-inputdata.dt$samples_replicates = paste(inputdata.dt$Sample, inputdata.dt$Replicate, sep="_")
-samples_replicates = c(unique(inputdata.dt$samples_replicates), unique(as.character(inputdata.dt$Sample)))
-frequency_table = data.frame(ID = samples_replicates[order(samples_replicates)])
-
-
-sample_productive_count = inputdata.dt[, list(All=.N,
- Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]),
- perc_prod = 1,
- Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]),
- perc_prod_un = 1,
- Unproductive= nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",]),
- perc_unprod = 1,
- Unproductive_unique =nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",list(count=.N),by=ct]),
- perc_unprod_un = 1),
- by=c("Sample")]
-
-sample_productive_count$perc_prod = round(sample_productive_count$Productive / sample_productive_count$All * 100)
-sample_productive_count$perc_prod_un = round(sample_productive_count$Productive_unique / sample_productive_count$All * 100)
-
-sample_productive_count$perc_unprod = round(sample_productive_count$Unproductive / sample_productive_count$All * 100)
-sample_productive_count$perc_unprod_un = round(sample_productive_count$Unproductive_unique / sample_productive_count$All * 100)
-
-
-sample_replicate_productive_count = inputdata.dt[, list(All=.N,
- Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]),
- perc_prod = 1,
- Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]),
- perc_prod_un = 1,
- Unproductive= nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",]),
- perc_unprod = 1,
- Unproductive_unique =nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",list(count=.N),by=ct]),
- perc_unprod_un = 1),
- by=c("samples_replicates")]
-
-sample_replicate_productive_count$perc_prod = round(sample_replicate_productive_count$Productive / sample_replicate_productive_count$All * 100)
-sample_replicate_productive_count$perc_prod_un = round(sample_replicate_productive_count$Productive_unique / sample_replicate_productive_count$All * 100)
-
-sample_replicate_productive_count$perc_unprod = round(sample_replicate_productive_count$Unproductive / sample_replicate_productive_count$All * 100)
-sample_replicate_productive_count$perc_unprod_un = round(sample_replicate_productive_count$Unproductive_unique / sample_replicate_productive_count$All * 100)
-
-setnames(sample_replicate_productive_count, colnames(sample_productive_count))
-
-counts = rbind(sample_replicate_productive_count, sample_productive_count)
-counts = counts[order(counts$Sample),]
-
-write.table(x=counts, file="productive_counting.txt", sep=",",quote=F,row.names=F,col.names=F)
-
-# ---------------------- Frequency calculation for V, D and J ----------------------
-
-PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")])
-Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")])
-Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
-
-PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")])
-Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
-PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
-PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
-
-# ---------------------- Setting up the gene names for the different species/loci ----------------------
-
-Vchain = ""
-Dchain = ""
-Jchain = ""
-
-if(species == "custom"){
- print("Custom genes: ")
- splt = unlist(strsplit(locus, ";"))
- print(paste("V:", splt[1]))
- print(paste("D:", splt[2]))
- print(paste("J:", splt[3]))
-
- Vchain = unlist(strsplit(splt[1], ","))
- Vchain = data.frame(v.name = Vchain, chr.orderV = 1:length(Vchain))
-
- Dchain = unlist(strsplit(splt[2], ","))
- if(length(Dchain) > 0){
- Dchain = data.frame(v.name = Dchain, chr.orderD = 1:length(Dchain))
- } else {
- Dchain = data.frame(v.name = character(0), chr.orderD = numeric(0))
- }
-
- Jchain = unlist(strsplit(splt[3], ","))
- Jchain = data.frame(v.name = Jchain, chr.orderJ = 1:length(Jchain))
-
-} else {
- genes = read.table("genes.txt", sep="\t", header=TRUE, fill=T, comment.char="")
-
- Vchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "V",c("IMGT.GENE.DB", "chr.order")]
- colnames(Vchain) = c("v.name", "chr.orderV")
- Dchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "D",c("IMGT.GENE.DB", "chr.order")]
- colnames(Dchain) = c("v.name", "chr.orderD")
- Jchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "J",c("IMGT.GENE.DB", "chr.order")]
- colnames(Jchain) = c("v.name", "chr.orderJ")
-}
-useD = TRUE
-if(nrow(Dchain) == 0){
- useD = FALSE
- cat("No D Genes in this species/locus")
-}
-print(paste("useD:", useD))
-
-# ---------------------- merge with the frequency count ----------------------
-
-PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE)
-
-PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
-
-# ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ----------------------
-
-pV = ggplot(PRODFV)
-pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage")
-write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("VPlot.png",width = 1280, height = 720)
-pV
-dev.off();
-
-if(useD){
- pD = ggplot(PRODFD)
- pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
- pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage")
- write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
- png("DPlot.png",width = 800, height = 600)
- print(pD)
- dev.off();
-}
-
-pJ = ggplot(PRODFJ)
-pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
-write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("JPlot.png",width = 800, height = 600)
-pJ
-dev.off();
-
-pJ = ggplot(PRODFJ)
-pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
-pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
-write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-png("JPlot.png",width = 800, height = 600)
-pJ
-dev.off();
-
-# ---------------------- Now the frequency plots of the V, D and J families ----------------------
-
-VGenes = PRODF[,c("Sample", "Top.V.Gene")]
-VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene)
-VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")])
-TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample])
-VGenes = merge(VGenes, TotalPerSample, by="Sample")
-VGenes$Frequency = VGenes$Count * 100 / VGenes$total
-VPlot = ggplot(VGenes)
-VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- ggtitle("Distribution of V gene families") +
- ylab("Percentage of sequences")
-png("VFPlot.png")
-VPlot
-dev.off();
-write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-if(useD){
- DGenes = PRODF[,c("Sample", "Top.D.Gene")]
- DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
- DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")])
- TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
- DGenes = merge(DGenes, TotalPerSample, by="Sample")
- DGenes$Frequency = DGenes$Count * 100 / DGenes$total
- DPlot = ggplot(DGenes)
- DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- ggtitle("Distribution of D gene families") +
- ylab("Percentage of sequences")
- png("DFPlot.png")
- print(DPlot)
- dev.off();
- write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-}
-
-JGenes = PRODF[,c("Sample", "Top.J.Gene")]
-JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene)
-JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")])
-TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample])
-JGenes = merge(JGenes, TotalPerSample, by="Sample")
-JGenes$Frequency = JGenes$Count * 100 / JGenes$total
-JPlot = ggplot(JGenes)
-JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- ggtitle("Distribution of J gene families") +
- ylab("Percentage of sequences")
-png("JFPlot.png")
-JPlot
-dev.off();
-write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Plotting the cdr3 length ----------------------
-
-CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")])
-TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample])
-CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample")
-CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total
-CDR3LengthPlot = ggplot(CDR3Length)
-CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- ggtitle("Length distribution of CDR3") +
- xlab("CDR3 Length") +
- ylab("Percentage of sequences")
-png("CDR3LengthPlot.png",width = 1280, height = 720)
-CDR3LengthPlot
-dev.off()
-write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T)
-
-# ---------------------- Plot the heatmaps ----------------------
-
-
-#get the reverse order for the V and D genes
-revVchain = Vchain
-revDchain = Dchain
-revVchain$chr.orderV = rev(revVchain$chr.orderV)
-revDchain$chr.orderD = rev(revDchain$chr.orderD)
-
-if(useD){
- plotVD <- function(dat){
- if(length(dat[,1]) == 0){
- return()
- }
- img = ggplot() +
- geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
- theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- scale_fill_gradient(low="gold", high="blue", na.value="white") +
- ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
- xlab("D genes") +
- ylab("V Genes")
-
- png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
- print(img)
- dev.off()
- write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
- }
-
- VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
-
- VandDCount$l = log(VandDCount$Length)
- maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
- VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
- VandDCount$relLength = VandDCount$l / VandDCount$max
-
- cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(inputdata$Sample))
-
- completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE)
- completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
- completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
- VDList = split(completeVD, f=completeVD[,"Sample"])
-
- lapply(VDList, FUN=plotVD)
-}
-
-plotVJ <- function(dat){
- if(length(dat[,1]) == 0){
- return()
- }
- cat(paste(unique(dat[3])[1,1]))
- img = ggplot() +
- geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
- theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- scale_fill_gradient(low="gold", high="blue", na.value="white") +
- ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
- xlab("J genes") +
- ylab("V Genes")
-
- png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
- print(img)
- dev.off()
- write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-}
-
-VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
-
-VandJCount$l = log(VandJCount$Length)
-maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")])
-VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
-VandJCount$relLength = VandJCount$l / VandJCount$max
-
-cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample))
-
-completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
-completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
-completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
-VJList = split(completeVJ, f=completeVJ[,"Sample"])
-lapply(VJList, FUN=plotVJ)
-
-if(useD){
- plotDJ <- function(dat){
- if(length(dat[,1]) == 0){
- return()
- }
- img = ggplot() +
- geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) +
- theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
- scale_fill_gradient(low="gold", high="blue", na.value="white") +
- ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
- xlab("J genes") +
- ylab("D Genes")
-
- png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
- print(img)
- dev.off()
- write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
- }
-
-
- DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
-
- DandJCount$l = log(DandJCount$Length)
- maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
- DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
- DandJCount$relLength = DandJCount$l / DandJCount$max
-
- cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample))
-
- completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
- completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
- completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
- DJList = split(completeDJ, f=completeDJ[,"Sample"])
- lapply(DJList, FUN=plotDJ)
-}
-
-
-# ---------------------- calculating the clonality score ----------------------
-
-if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available
-{
- if(clonality_method == "boyd"){
- samples = split(clonalityFrame, clonalityFrame$Sample, drop=T)
-
- for (sample in samples){
- res = data.frame(paste=character(0))
- sample_id = unique(sample$Sample)[[1]]
- for(replicate in unique(sample$Replicate)){
- tmp = sample[sample$Replicate == replicate,]
- clone_table = data.frame(table(tmp$clonaltype))
- clone_col_name = paste("V", replicate, sep="")
- colnames(clone_table) = c("paste", clone_col_name)
- res = merge(res, clone_table, by="paste", all=T)
- }
-
- res[is.na(res)] = 0
- infer.result = infer.clonality(as.matrix(res[,2:ncol(res)]))
-
- write.table(data.table(infer.result[[12]]), file=paste("lymphclon_clonality_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=F)
-
- res$type = rowSums(res[,2:ncol(res)])
-
- coincidence.table = data.frame(table(res$type))
- colnames(coincidence.table) = c("Coincidence Type", "Raw Coincidence Freq")
- write.table(coincidence.table, file=paste("lymphclon_coincidences_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
- }
- } else {
- write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
-
- clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")])
- clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
- clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
- clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
- clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
-
- ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
- tcct = textConnection(ct)
- CT = read.table(tcct, sep="\t", header=TRUE)
- close(tcct)
- clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
- clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
-
- ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")])
- ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
- clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
- ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads
-
- ReplicatePrint <- function(dat){
- write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
- lapply(ReplicateSplit, FUN=ReplicatePrint)
-
- ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(as.numeric(Reads)), ReadsSquaredSum=sum(as.numeric(squared))), by=c("Sample")])
- clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
-
- ReplicateSumPrint <- function(dat){
- write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
- lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
-
- clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
- clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
- clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
- clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
- clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
-
- ClonalityScorePrint <- function(dat){
- write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- clonalityScore = clonalFreqCount[c("Sample", "Result")]
- clonalityScore = unique(clonalityScore)
-
- clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
- lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
-
- clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
-
-
-
- ClonalityOverviewPrint <- function(dat){
- write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
- }
-
- clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
- lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
- }
-}
-
-imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb")
-if(all(imgtcolumns %in% colnames(inputdata)))
-{
- print("found IMGT columns, running junction analysis")
- newData = data.frame(data.table(PRODF)[,list(unique=.N,
- VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
- P1=mean(.SD$P3V.nt.nb, na.rm=T),
- N1=mean(.SD$N1.REGION.nt.nb, na.rm=T),
- P2=mean(.SD$P5D.nt.nb, na.rm=T),
- DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
- DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
- P3=mean(.SD$P3D.nt.nb, na.rm=T),
- N2=mean(.SD$N2.REGION.nt.nb, na.rm=T),
- P4=mean(.SD$P5J.nt.nb, na.rm=T),
- DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
- Total.Del=( mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T) +
- mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T) +
- mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T) +
- mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T)),
-
- Total.N=( mean(.SD$N1.REGION.nt.nb, na.rm=T) +
- mean(.SD$N2.REGION.nt.nb, na.rm=T)),
-
- Total.P=( mean(.SD$P3V.nt.nb, na.rm=T) +
- mean(.SD$P5D.nt.nb, na.rm=T) +
- mean(.SD$P3D.nt.nb, na.rm=T) +
- mean(.SD$P5J.nt.nb, na.rm=T))),
- by=c("Sample")])
- print(newData)
- newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
- write.table(newData, "junctionAnalysisProd.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-
- newData = data.frame(data.table(UNPROD)[,list(unique=.N,
- VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T),
- P1=mean(.SD$P3V.nt.nb, na.rm=T),
- N1=mean(.SD$N1.REGION.nt.nb, na.rm=T),
- P2=mean(.SD$P5D.nt.nb, na.rm=T),
- DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T),
- DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T),
- P3=mean(.SD$P3D.nt.nb, na.rm=T),
- N2=mean(.SD$N2.REGION.nt.nb, na.rm=T),
- P4=mean(.SD$P5J.nt.nb, na.rm=T),
- DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T),
- Total.Del=(mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T) +
- mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T) +
- mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T) +
- mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T)),
- Total.N=( mean(.SD$N1.REGION.nt.nb, na.rm=T) +
- mean(.SD$N2.REGION.nt.nb, na.rm=T)),
- Total.P=( mean(.SD$P3V.nt.nb, na.rm=T) +
- mean(.SD$P5D.nt.nb, na.rm=T) +
- mean(.SD$P3D.nt.nb, na.rm=T) +
- mean(.SD$P5J.nt.nb, na.rm=T))),
- by=c("Sample")])
- newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1)
- write.table(newData, "junctionAnalysisUnProd.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
-}
-
-# ---------------------- AA composition in CDR3 ----------------------
-
-AACDR3 = PRODF[,c("Sample", "CDR3.Seq")]
-
-TotalPerSample = data.frame(data.table(AACDR3)[, list(total=sum(nchar(as.character(.SD$CDR3.Seq)))), by=Sample])
-
-AAfreq = list()
-
-for(i in 1:nrow(TotalPerSample)){
- sample = TotalPerSample$Sample[i]
- AAfreq[[i]] = data.frame(table(unlist(strsplit(as.character(AACDR3[AACDR3$Sample == sample,c("CDR3.Seq")]), ""))))
- AAfreq[[i]]$Sample = sample
-}
-
-AAfreq = ldply(AAfreq, data.frame)
-AAfreq = merge(AAfreq, TotalPerSample, by="Sample", all.x = T)
-AAfreq$freq_perc = as.numeric(AAfreq$Freq / AAfreq$total * 100)
-
-
-AAorder = read.table(sep="\t", header=TRUE, text="order.aa\tAA\n1\tR\n2\tK\n3\tN\n4\tD\n5\tQ\n6\tE\n7\tH\n8\tP\n9\tY\n10\tW\n11\tS\n12\tT\n13\tG\n14\tA\n15\tM\n16\tC\n17\tF\n18\tL\n19\tV\n20\tI")
-AAfreq = merge(AAfreq, AAorder, by.x='Var1', by.y='AA', all.x=TRUE)
-
-AAfreq = AAfreq[!is.na(AAfreq$order.aa),]
-
-AAfreqplot = ggplot(AAfreq)
-AAfreqplot = AAfreqplot + geom_bar(aes( x=factor(reorder(Var1, order.aa)), y = freq_perc, fill = Sample), stat='identity', position='dodge' )
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 0.5, xmax = 2.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 3.5, xmax = 4.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 5.5, xmax = 6.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2)
-AAfreqplot = AAfreqplot + annotate("rect", xmin = 6.5, xmax = 7.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2)
-AAfreqplot = AAfreqplot + ggtitle("Amino Acid Composition in the CDR3") + xlab("Amino Acid, from Hydrophilic (left) to Hydrophobic (right)") + ylab("Percentage")
-
-png("AAComposition.png",width = 1280, height = 720)
-AAfreqplot
-dev.off()
-write.table(AAfreq, "AAComposition.csv" , sep=",",quote=F,na="-",row.names=F,col.names=T)
-
-
diff -r b539aeb75980 -r 798b62942b4b report_clonality/r_wrapper.sh.old
--- a/report_clonality/r_wrapper.sh.old Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,315 +0,0 @@
-#!/bin/bash
-
-inputFile=$1
-outputDir=$3
-outputFile=$3/index.html #$2
-clonalType=$4
-species=$5
-locus=$6
-filterproductive=$7
-clonality_method=$8
-
-dir="$(cd "$(dirname "$0")" && pwd)"
-useD="false"
-if grep -q "$species.*${locus}D" "$dir/genes.txt" ; then
- echo "species D region in reference db"
- useD="true"
-fi
-echo "$species"
-if [[ "$species" == *"custom"* ]] ; then
- loci=(${locus//;/ })
- useD="true"
- echo "${loci[@]}"
- if [[ "${#loci[@]}" -eq "2" ]] ; then
- useD="false"
- fi
-fi
-mkdir $3
-cp $dir/genes.txt $outputDir
-Rscript --verbose $dir/RScript.r $inputFile $outputDir $outputDir $clonalType "$species" "$locus" $filterproductive ${clonality_method} 2>&1
-cp $dir/tabber.js $outputDir
-cp $dir/style.css $outputDir
-cp $dir/script.js $outputDir
-cp $dir/jquery-1.11.0.min.js $outputDir
-cp $dir/pure-min.css $outputDir
-samples=`cat $outputDir/samples.txt`
-
-echo "
Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above)
" > $2
-echo "" >> $2
-echo "Sample/Replicate | All | Productive | Unique Productive | Unproductive | Unique Unproductive |
" >> $2
-while IFS=, read sample all productive perc_prod productive_unique perc_prod_un unproductive perc_unprod unproductive_unique perc_unprod_un
- do
- echo "$sample | " >> $2
- echo "$all | " >> $2
- echo "$productive (${perc_prod}%) | " >> $2
- echo "$productive_unique (${perc_prod_un}%) | " >> $2
- echo "$unproductive (${perc_unprod}%) | " >> $2
- echo "$unproductive_unique (${perc_unprod_un}%) |
" >> $2
-done < $outputDir/productive_counting.txt
-echo "
" >> $2
-
-echo "Report on:" >> $outputFile
-
-mkdir $outputDir/circos
-cp $dir/circos/* $outputDir/circos/
-#CIRCOSTOOLS="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/circos-tools-0.21/tools"
-#CIRCOSDIR="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/bin/"
-
-#CIRCOSTOOLS="/home/galaxy/circos/circos-tools-0.22/tools"
-#CIRCOSDIR="/home/galaxy/Anaconda3/bin"
-
-USECIRCOS="no"
-if [ -d "$CIRCOSDIR" ]; then
- USECIRCOS="yes"
-else
- if [ -d "/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/bin/" ]; then #hopefully temporary fix
- USECIRCOS="yes"
- CIRCOSTOOLS="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/circos-tools-0.21/tools"
- CIRCOSDIR="/data/galaxy/galaxy-dist/toolsheddependencies/circos/0.64/saskia-hiltemann/cg_circos_plots/bbfdd52d64fd/bin/"
- fi
-
- if [ -d "/home/galaxy/Anaconda3/bin" ]; then #hopefully temporary fix
- USECIRCOS="yes"
- CIRCOSTOOLS="/home/galaxy/circos/circos-tools-0.22/tools"
- CIRCOSDIR="/home/galaxy/Anaconda3/bin"
- fi
-fi
-
-echo "Using Circos: $USECIRCOS"
-sed -i "s%DATA_DIR%$outputDir/circos%" $outputDir/circos/circos.conf
-for sample in $samples; do #output the samples to a file and create the circos plots with the R script output
- echo " $sample" >> $outputFile
-
- if [[ "$USECIRCOS" != "yes" ]]; then
- continue
- fi
-
- circos_file="$outputDir/${sample}_VJ_circos.txt"
- echo -e -n "labels$(cat ${circos_file})" > ${circos_file}
- cat "${circos_file}" | $CIRCOSTOOLS/tableviewer/bin/parse-table -configfile $dir/circos/parse-table.conf 2>&1 | $CIRCOSTOOLS/tableviewer/bin/make-conf -dir $outputDir/circos/
- $CIRCOSDIR/circos -conf $outputDir/circos/circos.conf 2>&1
- mv $outputDir/circos/circos.png $outputDir/circosVJ_${sample}.png
-
-
- if [[ "$useD" == "true" ]] ; then
- circos_file="$outputDir/${sample}_VD_circos.txt"
- echo -e -n "labels$(cat ${circos_file})" > ${circos_file}
- cat "${circos_file}" | $CIRCOSTOOLS/tableviewer/bin/parse-table -configfile $dir/circos/parse-table.conf 2>&1 | $CIRCOSTOOLS/tableviewer/bin/make-conf -dir $outputDir/circos/
- $CIRCOSDIR/circos -conf $outputDir/circos/circos.conf 2>&1
- mv $outputDir/circos/circos.png $outputDir/circosVD_${sample}.png
-
- circos_file="$outputDir/${sample}_DJ_circos.txt"
- echo -e -n "labels$(cat ${circos_file})" > ${circos_file}
- cat "${circos_file}" | $CIRCOSTOOLS/tableviewer/bin/parse-table -configfile $dir/circos/parse-table.conf 2>&1 | $CIRCOSTOOLS/tableviewer/bin/make-conf -dir $outputDir/circos/
- $CIRCOSDIR/circos -conf $outputDir/circos/circos.conf 2>&1
- mv $outputDir/circos/circos.png $outputDir/circosDJ_${sample}.png
-
- fi
-done
-echo "" >> $outputFile
-echo "" >> $outputFile
-echo "" >> $outputFile
-echo "" >> $outputFile
-echo "" >> $outputFile
-echo "" >> $outputFile
-
-
-echo "
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "
" >> $outputFile
-fi
-echo "
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "
" >> $outputFile
-fi
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-
-echo "
" >> $outputFile
-echo "Sample | Median CDR3 Length |
" >> $outputFile
-while IFS=, read Sample median
-do
- echo "$Sample | $median |
" >> $outputFile
-done < $outputDir/AAMedianBySample.csv
-echo "
" >> $outputFile
-
-echo "
" >> $outputFile
-
-#Heatmaps
-
-count=1
-echo "
" >> $outputFile
-for sample in $samples; do
- echo "
" >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo " | " >> $outputFile
- fi
- echo " | " >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo " | " >> $outputFile
- fi
- echo "
" >> $outputFile
- count=$((count+1))
-done
-echo "
" >> $outputFile
-
-#circos
-
-if [[ "$USECIRCOS" == "yes" ]]; then
-
- echo "
" >> $outputFile
- for sample in $samples; do
- echo "
" >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo "V-D | |
" >> $outputFile
- fi
- echo "V-J | |
" >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo "D-J | |
" >> $outputFile
- fi
- echo "
" >> $outputFile
- count=$((count+1))
- done
- echo "
" >> $outputFile
-fi
-#echo "
" >> $outputFile
-
-hasReplicateColumn="$(if head -n 1 $inputFile | grep -q 'Replicate'; then echo 'Yes'; else echo 'No'; fi)"
-echo "$hasReplicateColumn"
-#if its a 'new' merged file with replicate info
-if [[ "$hasReplicateColumn" == "Yes" ]] ; then
- echo "
" >> $outputFile
- for sample in $samples; do
- echo "${clonality_method}"
- if [[ "${clonality_method}" == "old" ]] ; then
- echo "in old"
- clonalityScore="$(cat $outputDir/ClonalityScore_$sample.csv)"
- echo "
" >> $outputFile
- echo "Clonality Score: $clonalityScore |
" >> $outputFile
-
- #replicate,reads,squared
- echo "Replicate ID | Number of Reads |
" >> $outputFile
- while IFS=, read replicate reads squared
- do
- echo "$replicate | $reads |
" >> $outputFile
- done < $outputDir/ReplicateReads_$sample.csv
-
- #sum of reads and reads squared
- while IFS=, read readsSum squaredSum
- do
- echo "Sum | $readsSum |
" >> $outputFile
- done < $outputDir/ReplicateSumReads_$sample.csv
-
- #overview
- echo "Coincidence Type | Raw Coincidence Freq |
" >> $outputFile
- while IFS=, read type count weight weightedCount
- do
- if [[ "$type" -eq "1" ]]; then
- echo "$type | $count |
" >> $outputFile
- else
- echo "$type | $count |
" >> $outputFile
- fi
-
- done < $outputDir/ClonalityOverView_$sample.csv
- echo "
" >> $outputFile
- else
- echo "in new"
- clonalityScore="$(cat $outputDir/lymphclon_clonality_${sample}.csv)"
- echo "
" >> $outputFile
- echo "Lymphclon clonality score:
$clonalityScore
" >> $outputFile
- echo "
" >> $outputFile
- while IFS=, read type count
- do
- echo "$type | $count |
" >> $outputFile
- done < $outputDir/lymphclon_coincidences_$sample.csv
- echo "
" >> $outputFile
- fi
- done
- echo "
" >> $outputFile
-fi
-
-#hasJunctionData="$(if head -n 1 $inputFile | grep -qE '3V.REGION.trimmed.nt.nb'; then echo 'Yes'; else echo 'No'; fi)"
-
-#if [[ "$hasJunctionData" == "Yes" ]] ; then
-if [ -a "$outputDir/junctionAnalysisProd_mean.csv" ] ; then
- echo "
" >> $outputFile
- echo "
Productive meanSample | count | V.DEL | P1 | N1 | P2 | DEL.D | D.DEL | P3 | N2 | P4 | DEL.J | Total.Del | Total.N | Total.P | Median.CDR3 |
" >> $outputFile
- while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
- do
- echo "$Sample | $unique | $VDEL | $P1 | $N1 | $P2 | $DELD | $DDEL | $P3 | $N2 | $P4 | $DELJ | $TotalDel | $TotalN | $TotalP | $median |
" >> $outputFile
- done < $outputDir/junctionAnalysisProd_mean.csv
- echo "
" >> $outputFile
-
- echo "
Unproductive meanSample | count | V.DEL | P1 | N1 | P2 | DEL.D | D.DEL | P3 | N2 | P4 | DEL.J | Total.Del | Total.N | Total.P | Median.CDR3 |
" >> $outputFile
- while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
- do
- echo "$Sample | $unique | $VDEL | $P1 | $N1 | $P2 | $DELD | $DDEL | $P3 | $N2 | $P4 | $DELJ | $TotalDel | $TotalN | $TotalP | $median |
" >> $outputFile
- done < $outputDir/junctionAnalysisUnProd_mean.csv
- echo "
" >> $outputFile
-
- echo "
Productive medianSample | count | V.DEL | P1 | N1 | P2 | DEL.D | D.DEL | P3 | N2 | P4 | DEL.J | Total.Del | Total.N | Total.P | Median.CDR3 |
" >> $outputFile
- while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
- do
- echo "$Sample | $unique | $VDEL | $P1 | $N1 | $P2 | $DELD | $DDEL | $P3 | $N2 | $P4 | $DELJ | $TotalDel | $TotalN | $TotalP | $median |
" >> $outputFile
- done < $outputDir/junctionAnalysisProd_median.csv
- echo "
" >> $outputFile
-
- echo "
Unproductive medianSample | count | V.DEL | P1 | N1 | P2 | DEL.D | D.DEL | P3 | N2 | P4 | DEL.J | Total.Del | Total.N | Total.P | Median.CDR3 |
" >> $outputFile
- while IFS=, read Sample unique VDEL P1 N1 P2 DELD DDEL P3 N2 P4 DELJ TotalDel TotalN TotalP median
- do
- echo "$Sample | $unique | $VDEL | $P1 | $N1 | $P2 | $DELD | $DDEL | $P3 | $N2 | $P4 | $DELJ | $TotalDel | $TotalN | $TotalP | $median |
" >> $outputFile
- done < $outputDir/junctionAnalysisUnProd_median.csv
- echo "
" >> $outputFile
-
- echo "
" >> $outputFile
-fi
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "Description | Link |
" >> $outputFile
-echo "The dataset used to generate the frequency graphs and the heatmaps (Unique based on clonaltype, $clonalType) | Download |
" >> $outputFile
-echo "The dataset used to calculate clonality score (Unique based on clonaltype, $clonalType) | Download |
" >> $outputFile
-
-echo "The dataset used to generate the CDR3 length frequency graph | Download |
" >> $outputFile
-
-echo "The dataset used to generate the V gene family frequency graph | Download |
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "The dataset used to generate the D gene family frequency graph | Download |
" >> $outputFile
-fi
-
-echo "The dataset used to generate the V gene frequency graph | Download |
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "The dataset used to generate the D gene frequency graph | Download |
" >> $outputFile
-fi
-echo "The dataset used to generate the J gene frequency graph | Download |
" >> $outputFile
-echo "The dataset used to generate the AA composition graph | Download |
" >> $outputFile
-
-for sample in $samples; do
- if [[ "$useD" == "true" ]] ; then
- echo "The data used to generate the VD heatmap for $sample. | Download |
" >> $outputFile
- fi
- echo "The data used to generate the VJ heatmap for $sample. | Download |
" >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo "The data used to generate the DJ heatmap for $sample. | Download |
" >> $outputFile
- fi
-done
-
-echo "A frequency count of V Gene + J Gene + CDR3 | Download |
" >> $outputFile
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile
diff -r b539aeb75980 -r 798b62942b4b report_clonality/r_wrapper.sh~
--- a/report_clonality/r_wrapper.sh~ Tue Feb 28 08:10:34 2017 -0500
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,203 +0,0 @@
-#!/bin/bash
-
-inputFile=$1
-outputDir=$3
-outputFile=$3/index.html #$2
-clonalType=$4
-species=$5
-locus=$6
-filterproductive=$7
-clonality_method=$8
-dir="$(cd "$(dirname "$0")" && pwd)"
-useD="false"
-if grep -q "$species.*${locus}D" "$dir/genes.txt" ; then
- echo "species D region in reference db"
- useD="true"
-fi
-echo "$species"
-if [[ "$species" == *"custom"* ]] ; then
- loci=(${locus//;/ })
- useD="true"
- echo "${loci[@]}"
- if [[ "${#loci[@]}" -eq "2" ]] ; then
- useD="false"
- fi
-fi
-mkdir $3
-cp $dir/genes.txt $outputDir
-Rscript --verbose $dir/RScript.r $inputFile $outputDir $outputDir $clonalType "$species" "$locus" $filterproductive ${clonality_method} 2>&1
-cp $dir/tabber.js $outputDir
-cp $dir/style.css $outputDir
-cp $dir/script.js $outputDir
-cp $dir/jquery-1.11.0.min.js $outputDir
-samples=`cat $outputDir/samples.txt`
-echo "
Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above)
" > $2
-echo "" >> $2
-echo "Sample/Replicate | All | Productive | Unique Productive | Unproductive | Unique Unproductive |
" >> $2
-while IFS=, read sample all productive perc_prod productive_unique perc_prod_un unproductive perc_unprod unproductive_unique perc_unprod_un
- do
- echo "$sample | " >> $2
- echo "$all | " >> $2
- echo "$productive (${perc_prod}%) | " >> $2
- echo "$productive_unique (${perc_prod_un}%) | " >> $2
- echo "$unproductive (${perc_unprod}%) | " >> $2
- echo "$unproductive_unique (${perc_unprod_un}%) |
" >> $2
-done < $outputDir/productive_counting.txt
-echo "
" >> $2
-
-echo "productive_counting.txt"
-echo "
Report on:" >> $outputFile
-for sample in $samples; do
- echo " $sample" >> $outputFile
-done
-echo "" >> $outputFile
-echo "" >> $outputFile
-echo "" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "
" >> $outputFile
-fi
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "
" >> $outputFile
-fi
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-
-count=1
-echo "
" >> $outputFile
-for sample in $samples; do
- echo "
" >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo " | " >> $outputFile
- fi
- echo " | " >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo " | " >> $outputFile
- fi
- echo "
" >> $outputFile
- count=$((count+1))
-done
-echo "
" >> $outputFile
-
-#echo "
" >> $outputFile
-
-hasReplicateColumn="$(if head -n 1 $inputFile | grep -q 'Replicate'; then echo 'Yes'; else echo 'No'; fi)"
-echo "$hasReplicateColumn"
-#if its a 'new' merged file with replicate info
-if [[ "$hasReplicateColumn" == "Yes" && "$clonalType" != "none" ]] ; then
- echo "
" >> $outputFile
- for sample in $samples; do
- echo "${clonality_method}"
- if [[ "${clonality_method}" == "old" ]] ; then
- echo "in old"
- clonalityScore="$(cat $outputDir/ClonalityScore_$sample.csv)"
- echo "
" >> $outputFile
- echo "Clonality Score: $clonalityScore |
" >> $outputFile
-
- #replicate,reads,squared
- echo "Replicate ID | Number of Reads | Reads Squared | |
" >> $outputFile
- while IFS=, read replicate reads squared
- do
-
- echo "$replicate | $reads | $squared | |
" >> $outputFile
- done < $outputDir/ReplicateReads_$sample.csv
-
- #sum of reads and reads squared
- while IFS=, read readsSum squaredSum
- do
- echo "Sum | $readsSum | $squaredSum |
" >> $outputFile
- done < $outputDir/ReplicateSumReads_$sample.csv
-
- #overview
- echo "Coincidence Type | Raw Coincidence Freq | Coincidence Weight | Coincidences, Weighted |
" >> $outputFile
- while IFS=, read type count weight weightedCount
- do
- echo "$type | $count | $weight | $weightedCount |
" >> $outputFile
- done < $outputDir/ClonalityOverView_$sample.csv
- echo "
" >> $outputFile
- else
- echo "in new"
- clonalityScore="$(cat $outputDir/lymphclon_clonality_${sample}.csv)"
- echo "
" >> $outputFile
- echo "Lymphclon clonality score:
$clonalityScore
" >> $outputFile
- echo "
" >> $outputFile
- while IFS=, read type count
- do
- echo "$type | $count |
" >> $outputFile
- done < $outputDir/lymphclon_coincidences_$sample.csv
- echo "
" >> $outputFile
- fi
- done
- echo "
" >> $outputFile
-fi
-
-hasJunctionData="$(if head -n 1 $inputFile | grep -q '3V-REGION trimmed-nt'; then echo 'Yes'; else echo 'No'; fi)"
-
-if [[ "$hasJunctionData" == "Yes" ]] ; then
- echo "
" >> $outputFile
- echo "
ProductiveSample | count | VH.DEL | P1 | N1 | P2 | DEL.DH | DH.DEL | P3 | N2 | P4 | DEL.JH | Total.Del | Total.N | Total.P |
" >> $outputFile
- while IFS=, read Sample unique VHDEL P1 N1 P2 DELDH DHDEL P3 N2 P4 DELJH TotalDel TotalN TotalP
- do
- echo "$Sample | $unique | $VHDEL | $P1 | $N1 | $P2 | $DELDH | $DHDEL | $P3 | $N2 | $P4 | $DELJH | $TotalDel | $TotalN | $TotalP |
" >> $outputFile
- done < $outputDir/junctionAnalysisProd.csv
- echo "
" >> $outputFile
-
- echo "
UnproductiveSample | count | VH.DEL | P1 | N1 | P2 | DEL.DH | DH.DEL | P3 | N2 | P4 | DEL.JH | Total.Del | Total.N | Total.P |
" >> $outputFile
- while IFS=, read Sample unique VHDEL P1 N1 P2 DELDH DHDEL P3 N2 P4 DELJH TotalDel TotalN TotalP
- do
- echo "$Sample | $unique | $VHDEL | $P1 | $N1 | $P2 | $DELDH | $DHDEL | $P3 | $N2 | $P4 | $DELJH | $TotalDel | $TotalN | $TotalP |
" >> $outputFile
- done < $outputDir/junctionAnalysisUnProd.csv
- echo "
" >> $outputFile
-
- echo "
" >> $outputFile
-fi
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile
-echo "Description | Link |
" >> $outputFile
-echo "The dataset used to generate the frequency graphs and the heatmaps (Unique based on clonaltype, $clonalType) | Download |
" >> $outputFile
-echo "The dataset used to calculate clonality score (Unique based on clonaltype, $clonalType) | Download |
" >> $outputFile
-
-echo "The dataset used to generate the CDR3 length frequency graph | Download |
" >> $outputFile
-
-echo "The dataset used to generate the V gene family frequency graph | Download |
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "The dataset used to generate the D gene family frequency graph | Download |
" >> $outputFile
-fi
-echo "The dataset used to generate the J gene family frequency graph | Download |
" >> $outputFile
-
-echo "The dataset used to generate the V gene frequency graph | Download |
" >> $outputFile
-if [[ "$useD" == "true" ]] ; then
- echo "The dataset used to generate the D gene frequency graph | Download |
" >> $outputFile
-fi
-echo "The dataset used to generate the J gene frequency graph | Download |
" >> $outputFile
-echo "The dataset used to generate the AA composition graph | Download |
" >> $outputFile
-
-for sample in $samples; do
- if [[ "$useD" == "true" ]] ; then
- echo "The data used to generate the VD heatmap for $sample. | Download |
" >> $outputFile
- fi
- echo "The data used to generate the VJ heatmap for $sample. | Download |
" >> $outputFile
- if [[ "$useD" == "true" ]] ; then
- echo "The data used to generate the DJ heatmap for $sample. | Download |
" >> $outputFile
- fi
-done
-
-echo "
" >> $outputFile
-echo "
" >> $outputFile