0
|
1 #!/usr/bin/env python3
|
|
2 """
|
|
3 Assign Ig sequences into clones
|
|
4 """
|
|
5 # Info
|
|
6 __author__ = 'Namita Gupta, Jason Anthony Vander Heiden, Gur Yaari, Mohamed Uduman'
|
|
7 from changeo import __version__, __date__
|
|
8
|
|
9 # Imports
|
|
10 import os
|
|
11 import re
|
|
12 import sys
|
|
13 import csv
|
|
14 import numpy as np
|
|
15 from argparse import ArgumentParser
|
|
16 from collections import OrderedDict
|
|
17 from itertools import chain
|
|
18 from textwrap import dedent
|
|
19 from time import time
|
|
20 from Bio import pairwise2
|
|
21 from Bio.Seq import translate
|
|
22
|
|
23 # Presto and changeo imports
|
|
24 from presto.Defaults import default_out_args
|
|
25 from presto.IO import getFileType, getOutputHandle, printLog, printProgress
|
|
26 from presto.Multiprocessing import manageProcesses
|
|
27 from presto.Sequence import getDNAScoreDict
|
|
28 from changeo.Commandline import CommonHelpFormatter, checkArgs, getCommonArgParser, parseCommonArgs
|
|
29 from changeo.Distance import distance_models, calcDistances, formClusters
|
|
30 from changeo.IO import getDbWriter, readDbFile, countDbFile
|
|
31 from changeo.Multiprocessing import DbData, DbResult
|
|
32
|
|
33 # Defaults
|
|
34 default_translate = False
|
|
35 default_distance = 0.0
|
|
36 default_index_mode = 'gene'
|
|
37 default_index_action = 'set'
|
|
38 default_bygroup_model = 'ham'
|
|
39 default_hclust_model = 'chen2010'
|
|
40 default_seq_field = 'JUNCTION'
|
|
41 default_norm = 'len'
|
|
42 default_sym = 'avg'
|
|
43 default_linkage = 'single'
|
|
44 choices_bygroup_model = ('ham', 'aa', 'hh_s1f', 'hh_s5f', 'mk_rs1nf', 'mk_rs5nf', 'hs1f_compat', 'm1n_compat')
|
|
45
|
|
46
|
|
47 def indexByIdentity(index, key, rec, fields=None):
|
|
48 """
|
|
49 Updates a preclone index with a simple key
|
|
50
|
|
51 Arguments:
|
|
52 index = preclone index from indexJunctions
|
|
53 key = index key
|
|
54 rec = IgRecord to add to the index
|
|
55 fields = additional annotation fields to use to group preclones;
|
|
56 if None use only V, J and junction length
|
|
57
|
|
58 Returns:
|
|
59 None. Updates index with new key and records.
|
|
60 """
|
|
61 index.setdefault(tuple(key), []).append(rec)
|
|
62
|
|
63
|
|
64 def indexByUnion(index, key, rec, fields=None):
|
|
65 """
|
|
66 Updates a preclone index with the union of nested keys
|
|
67
|
|
68 Arguments:
|
|
69 index = preclone index from indexJunctions
|
|
70 key = index key
|
|
71 rec = IgRecord to add to the index
|
|
72 fields = additional annotation fields to use to group preclones;
|
|
73 if None use only V, J and junction length
|
|
74
|
|
75 Returns:
|
|
76 None. Updates index with new key and records.
|
|
77 """
|
|
78 # List of values for this/new key
|
|
79 val = [rec]
|
|
80 f_range = list(range(2, 3 + (len(fields) if fields else 0)))
|
|
81
|
|
82 # See if field/junction length combination exists in index
|
|
83 outer_dict = index
|
|
84 for field in f_range:
|
|
85 try:
|
|
86 outer_dict = outer_dict[key[field]]
|
|
87 except (KeyError):
|
|
88 outer_dict = None
|
|
89 break
|
|
90 # If field combination exists, look through Js
|
|
91 j_matches = []
|
|
92 if outer_dict is not None:
|
|
93 for j in outer_dict.keys():
|
|
94 if not set(key[1]).isdisjoint(set(j)):
|
|
95 key[1] = tuple(set(key[1]).union(set(j)))
|
|
96 j_matches += [j]
|
|
97 # If J overlap exists, look through Vs for each J
|
|
98 for j in j_matches:
|
|
99 v_matches = []
|
|
100 # Collect V matches for this J
|
|
101 for v in outer_dict[j].keys():
|
|
102 if not set(key[0]).isdisjoint(set(v)):
|
|
103 key[0] = tuple(set(key[0]).union(set(v)))
|
|
104 v_matches += [v]
|
|
105 # If there are V overlaps for this J, pop them out
|
|
106 if v_matches:
|
|
107 val += list(chain(*(outer_dict[j].pop(v) for v in v_matches)))
|
|
108 # If the J dict is now empty, remove it
|
|
109 if not outer_dict[j]:
|
|
110 outer_dict.pop(j, None)
|
|
111
|
|
112 # Add value(s) into index nested dictionary
|
|
113 # OMG Python pointers are the best!
|
|
114 # Add field dictionaries into index
|
|
115 outer_dict = index
|
|
116 for field in f_range:
|
|
117 outer_dict.setdefault(key[field], {})
|
|
118 outer_dict = outer_dict[key[field]]
|
|
119 # Add J, then V into index
|
|
120 if key[1] in outer_dict:
|
|
121 outer_dict[key[1]].update({key[0]: val})
|
|
122 else:
|
|
123 outer_dict[key[1]] = {key[0]: val}
|
|
124
|
|
125
|
|
126 def indexJunctions(db_iter, fields=None, mode=default_index_mode,
|
|
127 action=default_index_action):
|
|
128 """
|
|
129 Identifies preclonal groups by V, J and junction length
|
|
130
|
|
131 Arguments:
|
|
132 db_iter = an iterator of IgRecords defined by readDbFile
|
|
133 fields = additional annotation fields to use to group preclones;
|
|
134 if None use only V, J and junction length
|
|
135 mode = specificity of alignment call to use for assigning preclones;
|
|
136 one of ('allele', 'gene')
|
|
137 action = how to handle multiple value fields when assigning preclones;
|
|
138 one of ('first', 'set')
|
|
139
|
|
140 Returns:
|
|
141 a dictionary of {(V, J, junction length):[IgRecords]}
|
|
142 """
|
|
143 # print(fields)
|
|
144 # Define functions for grouping keys
|
|
145 if mode == 'allele' and fields is None:
|
|
146 def _get_key(rec, act):
|
|
147 return [rec.getVAllele(act), rec.getJAllele(act),
|
|
148 None if rec.junction is None else len(rec.junction)]
|
|
149 elif mode == 'gene' and fields is None:
|
|
150 def _get_key(rec, act):
|
|
151 return [rec.getVGene(act), rec.getJGene(act),
|
|
152 None if rec.junction is None else len(rec.junction)]
|
|
153 elif mode == 'allele' and fields is not None:
|
|
154 def _get_key(rec, act):
|
|
155 vdj = [rec.getVAllele(act), rec.getJAllele(act),
|
|
156 None if rec.junction is None else len(rec.junction)]
|
|
157 ann = [rec.toDict().get(k, None) for k in fields]
|
|
158 return list(chain(vdj, ann))
|
|
159 elif mode == 'gene' and fields is not None:
|
|
160 def _get_key(rec, act):
|
|
161 vdj = [rec.getVGene(act), rec.getJGene(act),
|
|
162 None if rec.junction is None else len(rec.junction)]
|
|
163 ann = [rec.toDict().get(k, None) for k in fields]
|
|
164 return list(chain(vdj, ann))
|
|
165
|
|
166 # Function to flatten nested dictionary
|
|
167 def _flatten_dict(d, parent_key=''):
|
|
168 items = []
|
|
169 for k, v in d.items():
|
|
170 new_key = parent_key + [k] if parent_key else [k]
|
|
171 if isinstance(v, dict):
|
|
172 items.extend(_flatten_dict(v, new_key).items())
|
|
173 else:
|
|
174 items.append((new_key, v))
|
|
175 flat_dict = {None if None in i[0] else tuple(i[0]): i[1] for i in items}
|
|
176 return flat_dict
|
|
177
|
|
178 if action == 'first':
|
|
179 index_func = indexByIdentity
|
|
180 elif action == 'set':
|
|
181 index_func = indexByUnion
|
|
182 else:
|
|
183 sys.stderr.write('Unrecognized action: %s.\n' % action)
|
|
184
|
|
185 start_time = time()
|
|
186 clone_index = {}
|
|
187 rec_count = 0
|
|
188 for rec in db_iter:
|
|
189 key = _get_key(rec, action)
|
|
190
|
|
191 # Print progress
|
|
192 if rec_count == 0:
|
|
193 print('PROGRESS> Grouping sequences')
|
|
194
|
|
195 printProgress(rec_count, step=1000, start_time=start_time)
|
|
196 rec_count += 1
|
|
197
|
|
198 # Assigned passed preclone records to key and failed to index None
|
|
199 if all([k is not None and k != '' for k in key]):
|
|
200 # Update index dictionary
|
|
201 index_func(clone_index, key, rec, fields)
|
|
202 else:
|
|
203 clone_index.setdefault(None, []).append(rec)
|
|
204
|
|
205 printProgress(rec_count, step=1000, start_time=start_time, end=True)
|
|
206
|
|
207 if action == 'set':
|
|
208 clone_index = _flatten_dict(clone_index)
|
|
209
|
|
210 return clone_index
|
|
211
|
|
212
|
|
213 def distanceClones(records, model=default_bygroup_model, distance=default_distance,
|
|
214 dist_mat=None, norm=default_norm, sym=default_sym,
|
|
215 linkage=default_linkage, seq_field=default_seq_field):
|
|
216 """
|
|
217 Separates a set of IgRecords into clones
|
|
218
|
|
219 Arguments:
|
|
220 records = an iterator of IgRecords
|
|
221 model = substitution model used to calculate distance
|
|
222 distance = the distance threshold to assign clonal groups
|
|
223 dist_mat = pandas DataFrame of pairwise nucleotide or amino acid distances
|
|
224 norm = normalization method
|
|
225 sym = symmetry method
|
|
226 linkage = type of linkage
|
|
227 seq_field = sequence field used to calculate distance between records
|
|
228
|
|
229 Returns:
|
|
230 a dictionary of lists defining {clone number: [IgRecords clonal group]}
|
|
231 """
|
|
232 # Get distance matrix if not provided
|
|
233 if dist_mat is None:
|
|
234 try:
|
|
235 dist_mat = distance_models[model]
|
|
236 except KeyError:
|
|
237 sys.exit('Unrecognized distance model: %s' % args_dict['model'])
|
|
238
|
|
239 # TODO: can be cleaned up with abstract model class
|
|
240 # Determine length of n-mers
|
|
241 if model in ['hs1f_compat', 'm1n_compat', 'aa', 'ham', 'hh_s1f', 'mk_rs1nf']:
|
|
242 nmer_len = 1
|
|
243 elif model in ['hh_s5f', 'mk_rs5nf']:
|
|
244 nmer_len = 5
|
|
245 else:
|
|
246 sys.exit('Unrecognized distance model: %s.\n' % model)
|
|
247
|
|
248 # Define unique junction mapping
|
|
249 seq_map = {}
|
|
250 for ig in records:
|
|
251 seq = ig.getSeqField(seq_field)
|
|
252 # Check if sequence length is 0
|
|
253 if len(seq) == 0:
|
|
254 return None
|
|
255
|
|
256 seq = re.sub('[\.-]', 'N', str(seq))
|
|
257 if model == 'aa': seq = translate(seq)
|
|
258
|
|
259 seq_map.setdefault(seq, []).append(ig)
|
|
260
|
|
261 # Process records
|
|
262 if len(seq_map) == 1:
|
|
263 return {1:records}
|
|
264
|
|
265 # Define sequences
|
|
266 seqs = list(seq_map.keys())
|
|
267
|
|
268 # Calculate pairwise distance matrix
|
|
269 dists = calcDistances(seqs, nmer_len, dist_mat, sym=sym, norm=norm)
|
|
270
|
|
271 # Perform hierarchical clustering
|
|
272 clusters = formClusters(dists, linkage, distance)
|
|
273
|
|
274 # Turn clusters into clone dictionary
|
|
275 clone_dict = {}
|
|
276 for i, c in enumerate(clusters):
|
|
277 clone_dict.setdefault(c, []).extend(seq_map[seqs[i]])
|
|
278
|
|
279 return clone_dict
|
|
280
|
|
281
|
|
282 def distChen2010(records):
|
|
283 """
|
|
284 Calculate pairwise distances as defined in Chen 2010
|
|
285
|
|
286 Arguments:
|
|
287 records = list of IgRecords where first is query to be compared to others in list
|
|
288
|
|
289 Returns:
|
|
290 list of distances
|
|
291 """
|
|
292 # Pull out query sequence and V/J information
|
|
293 query = records.popitem(last=False)
|
|
294 query_cdr3 = query.junction[3:-3]
|
|
295 query_v_allele = query.getVAllele()
|
|
296 query_v_gene = query.getVGene()
|
|
297 query_v_family = query.getVFamily()
|
|
298 query_j_allele = query.getJAllele()
|
|
299 query_j_gene = query.getJGene()
|
|
300 # Create alignment scoring dictionary
|
|
301 score_dict = getDNAScoreDict()
|
|
302
|
|
303 scores = [0]*len(records)
|
|
304 for i in range(len(records)):
|
|
305 ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3],
|
|
306 score_dict, -1, -1, one_alignment_only=True)
|
|
307 # Check V similarity
|
|
308 if records[i].getVAllele() == query_v_allele: ld += 0
|
|
309 elif records[i].getVGene() == query_v_gene: ld += 1
|
|
310 elif records[i].getVFamily() == query_v_family: ld += 3
|
|
311 else: ld += 5
|
|
312 # Check J similarity
|
|
313 if records[i].getJAllele() == query_j_allele: ld += 0
|
|
314 elif records[i].getJGene() == query_j_gene: ld += 1
|
|
315 else: ld += 3
|
|
316 # Divide by length
|
|
317 scores[i] = ld/max(len(records[i].junction[3:-3]), query_cdr3)
|
|
318
|
|
319 return scores
|
|
320
|
|
321
|
|
322 def distAdemokun2011(records):
|
|
323 """
|
|
324 Calculate pairwise distances as defined in Ademokun 2011
|
|
325
|
|
326 Arguments:
|
|
327 records = list of IgRecords where first is query to be compared to others in list
|
|
328
|
|
329 Returns:
|
|
330 list of distances
|
|
331 """
|
|
332 # Pull out query sequence and V family information
|
|
333 query = records.popitem(last=False)
|
|
334 query_cdr3 = query.junction[3:-3]
|
|
335 query_v_family = query.getVFamily()
|
|
336 # Create alignment scoring dictionary
|
|
337 score_dict = getDNAScoreDict()
|
|
338
|
|
339 scores = [0]*len(records)
|
|
340 for i in range(len(records)):
|
|
341
|
|
342 if abs(len(query_cdr3) - len(records[i].junction[3:-3])) > 10:
|
|
343 scores[i] = 1
|
|
344 elif query_v_family != records[i].getVFamily():
|
|
345 scores[i] = 1
|
|
346 else:
|
|
347 ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3],
|
|
348 score_dict, -1, -1, one_alignment_only=True)
|
|
349 scores[i] = ld/min(len(records[i].junction[3:-3]), query_cdr3)
|
|
350
|
|
351 return scores
|
|
352
|
|
353
|
|
354 def hierClust(dist_mat, method='chen2010'):
|
|
355 """
|
|
356 Calculate hierarchical clustering
|
|
357
|
|
358 Arguments:
|
|
359 dist_mat = square-formed distance matrix of pairwise CDR3 comparisons
|
|
360
|
|
361 Returns:
|
|
362 list of cluster ids
|
|
363 """
|
|
364 if method == 'chen2010':
|
|
365 clusters = formClusters(dist_mat, 'average', 0.32)
|
|
366 elif method == 'ademokun2011':
|
|
367 clusters = formClusters(dist_mat, 'complete', 0.25)
|
|
368 else: clusters = np.ones(dist_mat.shape[0])
|
|
369
|
|
370 return clusters
|
|
371
|
|
372 # TODO: Merge duplicate feed, process and collect functions.
|
|
373 def feedQueue(alive, data_queue, db_file, group_func, group_args={}):
|
|
374 """
|
|
375 Feeds the data queue with Ig records
|
|
376
|
|
377 Arguments:
|
|
378 alive = a multiprocessing.Value boolean controlling whether processing continues
|
|
379 if False exit process
|
|
380 data_queue = a multiprocessing.Queue to hold data for processing
|
|
381 db_file = the Ig record database file
|
|
382 group_func = the function to use for assigning preclones
|
|
383 group_args = a dictionary of arguments to pass to group_func
|
|
384
|
|
385 Returns:
|
|
386 None
|
|
387 """
|
|
388 # Open input file and perform grouping
|
|
389 try:
|
|
390 # Iterate over Ig records and assign groups
|
|
391 db_iter = readDbFile(db_file)
|
|
392 clone_dict = group_func(db_iter, **group_args)
|
|
393 except:
|
|
394 #sys.stderr.write('Exception in feeder grouping step\n')
|
|
395 alive.value = False
|
|
396 raise
|
|
397
|
|
398 # Add groups to data queue
|
|
399 try:
|
|
400 #print 'START FEED', alive.value
|
|
401 # Iterate over groups and feed data queue
|
|
402 clone_iter = iter(clone_dict.items())
|
|
403 while alive.value:
|
|
404 # Get data from queue
|
|
405 if data_queue.full(): continue
|
|
406 else: data = next(clone_iter, None)
|
|
407 # Exit upon reaching end of iterator
|
|
408 if data is None: break
|
|
409 #print "FEED", alive.value, k
|
|
410
|
|
411 # Feed queue
|
|
412 data_queue.put(DbData(*data))
|
|
413 else:
|
|
414 sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \
|
|
415 % os.getpid())
|
|
416 return None
|
|
417 except:
|
|
418 #sys.stderr.write('Exception in feeder queue feeding step\n')
|
|
419 alive.value = False
|
|
420 raise
|
|
421
|
|
422 return None
|
|
423
|
|
424
|
|
425 def feedQueueClust(alive, data_queue, db_file, group_func=None, group_args={}):
|
|
426 """
|
|
427 Feeds the data queue with Ig records
|
|
428
|
|
429 Arguments:
|
|
430 alive = a multiprocessing.Value boolean controlling whether processing continues
|
|
431 if False exit process
|
|
432 data_queue = a multiprocessing.Queue to hold data for processing
|
|
433 db_file = the Ig record database file
|
|
434
|
|
435 Returns:
|
|
436 None
|
|
437 """
|
|
438 # Open input file and perform grouping
|
|
439 try:
|
|
440 # Iterate over Ig records and order by junction length
|
|
441 records = {}
|
|
442 db_iter = readDbFile(db_file)
|
|
443 for rec in db_iter:
|
|
444 records[rec.id] = rec
|
|
445 records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length))
|
|
446 dist_dict = {}
|
|
447 for __ in range(len(records)):
|
|
448 k,v = records.popitem(last=False)
|
|
449 dist_dict[k] = [v].append(list(records.values()))
|
|
450 except:
|
|
451 #sys.stderr.write('Exception in feeder grouping step\n')
|
|
452 alive.value = False
|
|
453 raise
|
|
454
|
|
455 # Add groups to data queue
|
|
456 try:
|
|
457 # print 'START FEED', alive.value
|
|
458 # Iterate over groups and feed data queue
|
|
459 dist_iter = iter(dist_dict.items())
|
|
460 while alive.value:
|
|
461 # Get data from queue
|
|
462 if data_queue.full(): continue
|
|
463 else: data = next(dist_iter, None)
|
|
464 # Exit upon reaching end of iterator
|
|
465 if data is None: break
|
|
466 #print "FEED", alive.value, k
|
|
467
|
|
468 # Feed queue
|
|
469 data_queue.put(DbData(*data))
|
|
470 else:
|
|
471 sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \
|
|
472 % os.getpid())
|
|
473 return None
|
|
474 except:
|
|
475 #sys.stderr.write('Exception in feeder queue feeding step\n')
|
|
476 alive.value = False
|
|
477 raise
|
|
478
|
|
479 return None
|
|
480
|
|
481
|
|
482 def processQueue(alive, data_queue, result_queue, clone_func, clone_args):
|
|
483 """
|
|
484 Pulls from data queue, performs calculations, and feeds results queue
|
|
485
|
|
486 Arguments:
|
|
487 alive = a multiprocessing.Value boolean controlling whether processing continues
|
|
488 if False exit process
|
|
489 data_queue = a multiprocessing.Queue holding data to process
|
|
490 result_queue = a multiprocessing.Queue to hold processed results
|
|
491 clone_func = the function to call for clonal assignment
|
|
492 clone_args = a dictionary of arguments to pass to clone_func
|
|
493
|
|
494 Returns:
|
|
495 None
|
|
496 """
|
|
497 try:
|
|
498 # Iterator over data queue until sentinel object reached
|
|
499 while alive.value:
|
|
500 # Get data from queue
|
|
501 if data_queue.empty(): continue
|
|
502 else: data = data_queue.get()
|
|
503 # Exit upon reaching sentinel
|
|
504 if data is None: break
|
|
505
|
|
506 # Define result object for iteration and get data records
|
|
507 records = data.data
|
|
508 # print(data.id)
|
|
509 result = DbResult(data.id, records)
|
|
510
|
|
511 # Check for invalid data (due to failed indexing) and add failed result
|
|
512 if not data:
|
|
513 result_queue.put(result)
|
|
514 continue
|
|
515
|
|
516 # Add V(D)J to log
|
|
517 result.log['ID'] = ','.join([str(x) for x in data.id])
|
|
518 result.log['VALLELE'] = ','.join(set([(r.getVAllele() or '') for r in records]))
|
|
519 result.log['DALLELE'] = ','.join(set([(r.getDAllele() or '') for r in records]))
|
|
520 result.log['JALLELE'] = ','.join(set([(r.getJAllele() or '') for r in records]))
|
|
521 result.log['JUNCLEN'] = ','.join(set([(str(len(r.junction)) or '0') for r in records]))
|
|
522 result.log['SEQUENCES'] = len(records)
|
|
523
|
|
524 # Checking for preclone failure and assign clones
|
|
525 clones = clone_func(records, **clone_args) if data else None
|
|
526
|
|
527 # import cProfile
|
|
528 # prof = cProfile.Profile()
|
|
529 # clones = prof.runcall(clone_func, records, **clone_args)
|
|
530 # prof.dump_stats('worker-%d.prof' % os.getpid())
|
|
531
|
|
532 if clones is not None:
|
|
533 result.results = clones
|
|
534 result.valid = True
|
|
535 result.log['CLONES'] = len(clones)
|
|
536 else:
|
|
537 result.log['CLONES'] = 0
|
|
538
|
|
539 # Feed results to result queue
|
|
540 result_queue.put(result)
|
|
541 else:
|
|
542 sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \
|
|
543 % os.getpid())
|
|
544 return None
|
|
545 except:
|
|
546 #sys.stderr.write('Exception in worker\n')
|
|
547 alive.value = False
|
|
548 raise
|
|
549
|
|
550 return None
|
|
551
|
|
552
|
|
553 def processQueueClust(alive, data_queue, result_queue, clone_func, clone_args):
|
|
554 """
|
|
555 Pulls from data queue, performs calculations, and feeds results queue
|
|
556
|
|
557 Arguments:
|
|
558 alive = a multiprocessing.Value boolean controlling whether processing continues
|
|
559 if False exit process
|
|
560 data_queue = a multiprocessing.Queue holding data to process
|
|
561 result_queue = a multiprocessing.Queue to hold processed results
|
|
562 clone_func = the function to call for calculating pairwise distances between sequences
|
|
563 clone_args = a dictionary of arguments to pass to clone_func
|
|
564
|
|
565 Returns:
|
|
566 None
|
|
567 """
|
|
568
|
|
569 try:
|
|
570 # print 'START WORK', alive.value
|
|
571 # Iterator over data queue until sentinel object reached
|
|
572 while alive.value:
|
|
573 # Get data from queue
|
|
574 if data_queue.empty(): continue
|
|
575 else: data = data_queue.get()
|
|
576 # Exit upon reaching sentinel
|
|
577 if data is None: break
|
|
578 # print "WORK", alive.value, data['id']
|
|
579
|
|
580 # Define result object for iteration and get data records
|
|
581 records = data.data
|
|
582 result = DbResult(data.id, records)
|
|
583
|
|
584 # Create row of distance matrix and check for error
|
|
585 dist_row = clone_func(records, **clone_args) if data else None
|
|
586 if dist_row is not None:
|
|
587 result.results = dist_row
|
|
588 result.valid = True
|
|
589
|
|
590 # Feed results to result queue
|
|
591 result_queue.put(result)
|
|
592 else:
|
|
593 sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \
|
|
594 % os.getpid())
|
|
595 return None
|
|
596 except:
|
|
597 #sys.stderr.write('Exception in worker\n')
|
|
598 alive.value = False
|
|
599 raise
|
|
600
|
|
601 return None
|
|
602
|
|
603
|
|
604 def collectQueue(alive, result_queue, collect_queue, db_file, out_args, cluster_func=None, cluster_args={}):
|
|
605 """
|
|
606 Assembles results from a queue of individual sequence results and manages log/file I/O
|
|
607
|
|
608 Arguments:
|
|
609 alive = a multiprocessing.Value boolean controlling whether processing continues
|
|
610 if False exit process
|
|
611 result_queue = a multiprocessing.Queue holding processQueue results
|
|
612 collect_queue = a multiprocessing.Queue to store collector return values
|
|
613 db_file = the input database file name
|
|
614 out_args = common output argument dictionary from parseCommonArgs
|
|
615 cluster_func = the function to call for carrying out clustering on distance matrix
|
|
616 cluster_args = a dictionary of arguments to pass to cluster_func
|
|
617
|
|
618 Returns:
|
|
619 None
|
|
620 (adds 'log' and 'out_files' to collect_dict)
|
|
621 """
|
|
622 # Open output files
|
|
623 try:
|
|
624 # Count records and define output format
|
|
625 out_type = getFileType(db_file) if out_args['out_type'] is None \
|
|
626 else out_args['out_type']
|
|
627 result_count = countDbFile(db_file)
|
|
628
|
|
629 # Defined successful output handle
|
|
630 pass_handle = getOutputHandle(db_file,
|
|
631 out_label='clone-pass',
|
|
632 out_dir=out_args['out_dir'],
|
|
633 out_name=out_args['out_name'],
|
|
634 out_type=out_type)
|
|
635 pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE')
|
|
636
|
|
637 # Defined failed alignment output handle
|
|
638 if out_args['failed']:
|
|
639 fail_handle = getOutputHandle(db_file,
|
|
640 out_label='clone-fail',
|
|
641 out_dir=out_args['out_dir'],
|
|
642 out_name=out_args['out_name'],
|
|
643 out_type=out_type)
|
|
644 fail_writer = getDbWriter(fail_handle, db_file)
|
|
645 else:
|
|
646 fail_handle = None
|
|
647 fail_writer = None
|
|
648
|
|
649 # Define log handle
|
|
650 if out_args['log_file'] is None:
|
|
651 log_handle = None
|
|
652 else:
|
|
653 log_handle = open(out_args['log_file'], 'w')
|
|
654 except:
|
|
655 #sys.stderr.write('Exception in collector file opening step\n')
|
|
656 alive.value = False
|
|
657 raise
|
|
658
|
|
659 # Get results from queue and write to files
|
|
660 try:
|
|
661 #print 'START COLLECT', alive.value
|
|
662 # Iterator over results queue until sentinel object reached
|
|
663 start_time = time()
|
|
664 rec_count = clone_count = pass_count = fail_count = 0
|
|
665 while alive.value:
|
|
666 # Get result from queue
|
|
667 if result_queue.empty(): continue
|
|
668 else: result = result_queue.get()
|
|
669 # Exit upon reaching sentinel
|
|
670 if result is None: break
|
|
671 #print "COLLECT", alive.value, result['id']
|
|
672
|
|
673 # Print progress for previous iteration and update record count
|
|
674 if rec_count == 0:
|
|
675 print('PROGRESS> Assigning clones')
|
|
676 printProgress(rec_count, result_count, 0.05, start_time)
|
|
677 rec_count += len(result.data)
|
|
678
|
|
679 # Write passed and failed records
|
|
680 if result:
|
|
681 for clone in result.results.values():
|
|
682 clone_count += 1
|
|
683 for i, rec in enumerate(clone):
|
|
684 rec.annotations['CLONE'] = clone_count
|
|
685 pass_writer.writerow(rec.toDict())
|
|
686 pass_count += 1
|
|
687 result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction)
|
|
688
|
|
689 else:
|
|
690 for i, rec in enumerate(result.data):
|
|
691 if fail_writer is not None: fail_writer.writerow(rec.toDict())
|
|
692 fail_count += 1
|
|
693 result.log['CLONE0-%i' % (i + 1)] = str(rec.junction)
|
|
694
|
|
695 # Write log
|
|
696 printLog(result.log, handle=log_handle)
|
|
697 else:
|
|
698 sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \
|
|
699 % os.getpid())
|
|
700 return None
|
|
701
|
|
702 # Print total counts
|
|
703 printProgress(rec_count, result_count, 0.05, start_time)
|
|
704
|
|
705 # Close file handles
|
|
706 pass_handle.close()
|
|
707 if fail_handle is not None: fail_handle.close()
|
|
708 if log_handle is not None: log_handle.close()
|
|
709
|
|
710 # Update return list
|
|
711 log = OrderedDict()
|
|
712 log['OUTPUT'] = os.path.basename(pass_handle.name)
|
|
713 log['CLONES'] = clone_count
|
|
714 log['RECORDS'] = rec_count
|
|
715 log['PASS'] = pass_count
|
|
716 log['FAIL'] = fail_count
|
|
717 collect_dict = {'log':log, 'out_files': [pass_handle.name]}
|
|
718 collect_queue.put(collect_dict)
|
|
719 except:
|
|
720 #sys.stderr.write('Exception in collector result processing step\n')
|
|
721 alive.value = False
|
|
722 raise
|
|
723
|
|
724 return None
|
|
725
|
|
726
|
|
727 def collectQueueClust(alive, result_queue, collect_queue, db_file, out_args, cluster_func, cluster_args):
|
|
728 """
|
|
729 Assembles results from a queue of individual sequence results and manages log/file I/O
|
|
730
|
|
731 Arguments:
|
|
732 alive = a multiprocessing.Value boolean controlling whether processing continues
|
|
733 if False exit process
|
|
734 result_queue = a multiprocessing.Queue holding processQueue results
|
|
735 collect_queue = a multiprocessing.Queue to store collector return values
|
|
736 db_file = the input database file name
|
|
737 out_args = common output argument dictionary from parseCommonArgs
|
|
738 cluster_func = the function to call for carrying out clustering on distance matrix
|
|
739 cluster_args = a dictionary of arguments to pass to cluster_func
|
|
740
|
|
741 Returns:
|
|
742 None
|
|
743 (adds 'log' and 'out_files' to collect_dict)
|
|
744 """
|
|
745 # Open output files
|
|
746 try:
|
|
747
|
|
748 # Iterate over Ig records to count and order by junction length
|
|
749 result_count = 0
|
|
750 records = {}
|
|
751 # print 'Reading file...'
|
|
752 db_iter = readDbFile(db_file)
|
|
753 for rec in db_iter:
|
|
754 records[rec.id] = rec
|
|
755 result_count += 1
|
|
756 records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length))
|
|
757
|
|
758 # Define empty matrix to store assembled results
|
|
759 dist_mat = np.zeros((result_count,result_count))
|
|
760
|
|
761 # Count records and define output format
|
|
762 out_type = getFileType(db_file) if out_args['out_type'] is None \
|
|
763 else out_args['out_type']
|
|
764
|
|
765 # Defined successful output handle
|
|
766 pass_handle = getOutputHandle(db_file,
|
|
767 out_label='clone-pass',
|
|
768 out_dir=out_args['out_dir'],
|
|
769 out_name=out_args['out_name'],
|
|
770 out_type=out_type)
|
|
771 pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE')
|
|
772
|
|
773 # Defined failed cloning output handle
|
|
774 if out_args['failed']:
|
|
775 fail_handle = getOutputHandle(db_file,
|
|
776 out_label='clone-fail',
|
|
777 out_dir=out_args['out_dir'],
|
|
778 out_name=out_args['out_name'],
|
|
779 out_type=out_type)
|
|
780 fail_writer = getDbWriter(fail_handle, db_file)
|
|
781 else:
|
|
782 fail_handle = None
|
|
783 fail_writer = None
|
|
784
|
|
785 # Open log file
|
|
786 if out_args['log_file'] is None:
|
|
787 log_handle = None
|
|
788 else:
|
|
789 log_handle = open(out_args['log_file'], 'w')
|
|
790 except:
|
|
791 alive.value = False
|
|
792 raise
|
|
793
|
|
794 try:
|
|
795 # Iterator over results queue until sentinel object reached
|
|
796 start_time = time()
|
|
797 row_count = rec_count = 0
|
|
798 while alive.value:
|
|
799 # Get result from queue
|
|
800 if result_queue.empty(): continue
|
|
801 else: result = result_queue.get()
|
|
802 # Exit upon reaching sentinel
|
|
803 if result is None: break
|
|
804
|
|
805 # Print progress for previous iteration
|
|
806 if row_count == 0:
|
|
807 print('PROGRESS> Assigning clones')
|
|
808 printProgress(row_count, result_count, 0.05, start_time)
|
|
809
|
|
810 # Update counts for iteration
|
|
811 row_count += 1
|
|
812 rec_count += len(result)
|
|
813
|
|
814 # Add result row to distance matrix
|
|
815 if result:
|
|
816 dist_mat[list(range(result_count-len(result),result_count)),result_count-len(result)] = result.results
|
|
817
|
|
818 else:
|
|
819 sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \
|
|
820 % os.getpid())
|
|
821 return None
|
|
822
|
|
823 # Calculate linkage and carry out clustering
|
|
824 # print dist_mat
|
|
825 clusters = cluster_func(dist_mat, **cluster_args) if dist_mat is not None else None
|
|
826 clones = {}
|
|
827 # print clusters
|
|
828 for i, c in enumerate(clusters):
|
|
829 clones.setdefault(c, []).append(records[list(records.keys())[i]])
|
|
830
|
|
831 # Write passed and failed records
|
|
832 clone_count = pass_count = fail_count = 0
|
|
833 if clones:
|
|
834 for clone in clones.values():
|
|
835 clone_count += 1
|
|
836 for i, rec in enumerate(clone):
|
|
837 rec.annotations['CLONE'] = clone_count
|
|
838 pass_writer.writerow(rec.toDict())
|
|
839 pass_count += 1
|
|
840 #result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction)
|
|
841
|
|
842 else:
|
|
843 for i, rec in enumerate(result.data):
|
|
844 fail_writer.writerow(rec.toDict())
|
|
845 fail_count += 1
|
|
846 #result.log['CLONE0-%i' % (i + 1)] = str(rec.junction)
|
|
847
|
|
848 # Print final progress
|
|
849 printProgress(row_count, result_count, 0.05, start_time)
|
|
850
|
|
851 # Close file handles
|
|
852 pass_handle.close()
|
|
853 if fail_handle is not None: fail_handle.close()
|
|
854 if log_handle is not None: log_handle.close()
|
|
855
|
|
856 # Update return list
|
|
857 log = OrderedDict()
|
|
858 log['OUTPUT'] = os.path.basename(pass_handle.name)
|
|
859 log['CLONES'] = clone_count
|
|
860 log['RECORDS'] = rec_count
|
|
861 log['PASS'] = pass_count
|
|
862 log['FAIL'] = fail_count
|
|
863 collect_dict = {'log':log, 'out_files': [pass_handle.name]}
|
|
864 collect_queue.put(collect_dict)
|
|
865 except:
|
|
866 alive.value = False
|
|
867 raise
|
|
868
|
|
869 return None
|
|
870
|
|
871
|
|
872 def defineClones(db_file, feed_func, work_func, collect_func, clone_func, cluster_func=None,
|
|
873 group_func=None, group_args={}, clone_args={}, cluster_args={},
|
|
874 out_args=default_out_args, nproc=None, queue_size=None):
|
|
875 """
|
|
876 Define clonally related sequences
|
|
877
|
|
878 Arguments:
|
|
879 db_file = filename of input database
|
|
880 feed_func = the function that feeds the queue
|
|
881 work_func = the worker function that will run on each CPU
|
|
882 collect_func = the function that collects results from the workers
|
|
883 group_func = the function to use for assigning preclones
|
|
884 clone_func = the function to use for determining clones within preclonal groups
|
|
885 group_args = a dictionary of arguments to pass to group_func
|
|
886 clone_args = a dictionary of arguments to pass to clone_func
|
|
887 out_args = common output argument dictionary from parseCommonArgs
|
|
888 nproc = the number of processQueue processes;
|
|
889 if None defaults to the number of CPUs
|
|
890 queue_size = maximum size of the argument queue;
|
|
891 if None defaults to 2*nproc
|
|
892
|
|
893 Returns:
|
|
894 a list of successful output file names
|
|
895 """
|
|
896 # Print parameter info
|
|
897 log = OrderedDict()
|
|
898 log['START'] = 'DefineClones'
|
|
899 log['DB_FILE'] = os.path.basename(db_file)
|
|
900 if group_func is not None:
|
|
901 log['GROUP_FUNC'] = group_func.__name__
|
|
902 log['GROUP_ARGS'] = group_args
|
|
903 log['CLONE_FUNC'] = clone_func.__name__
|
|
904
|
|
905 # TODO: this is yucky, but can be fixed by using a model class
|
|
906 clone_log = clone_args.copy()
|
|
907 if 'dist_mat' in clone_log: del clone_log['dist_mat']
|
|
908 log['CLONE_ARGS'] = clone_log
|
|
909
|
|
910 if cluster_func is not None:
|
|
911 log['CLUSTER_FUNC'] = cluster_func.__name__
|
|
912 log['CLUSTER_ARGS'] = cluster_args
|
|
913 log['NPROC'] = nproc
|
|
914 printLog(log)
|
|
915
|
|
916 # Define feeder function and arguments
|
|
917 feed_args = {'db_file': db_file,
|
|
918 'group_func': group_func,
|
|
919 'group_args': group_args}
|
|
920 # Define worker function and arguments
|
|
921 work_args = {'clone_func': clone_func,
|
|
922 'clone_args': clone_args}
|
|
923 # Define collector function and arguments
|
|
924 collect_args = {'db_file': db_file,
|
|
925 'out_args': out_args,
|
|
926 'cluster_func': cluster_func,
|
|
927 'cluster_args': cluster_args}
|
|
928
|
|
929 # Call process manager
|
|
930 result = manageProcesses(feed_func, work_func, collect_func,
|
|
931 feed_args, work_args, collect_args,
|
|
932 nproc, queue_size)
|
|
933
|
|
934 # Print log
|
|
935 result['log']['END'] = 'DefineClones'
|
|
936 printLog(result['log'])
|
|
937
|
|
938 return result['out_files']
|
|
939
|
|
940
|
|
941 def getArgParser():
|
|
942 """
|
|
943 Defines the ArgumentParser
|
|
944
|
|
945 Arguments:
|
|
946 None
|
|
947
|
|
948 Returns:
|
|
949 an ArgumentParser object
|
|
950 """
|
|
951 # Define input and output fields
|
|
952 fields = dedent(
|
|
953 '''
|
|
954 output files:
|
|
955 clone-pass
|
|
956 database with assigned clonal group numbers.
|
|
957 clone-fail
|
|
958 database with records failing clonal grouping.
|
|
959
|
|
960 required fields:
|
|
961 SEQUENCE_ID, V_CALL or V_CALL_GENOTYPED, D_CALL, J_CALL, JUNCTION
|
|
962
|
|
963 <field>
|
|
964 sequence field specified by the --sf parameter
|
|
965
|
|
966 output fields:
|
|
967 CLONE
|
|
968 ''')
|
|
969
|
|
970 # Define ArgumentParser
|
|
971 parser = ArgumentParser(description=__doc__, epilog=fields,
|
|
972 formatter_class=CommonHelpFormatter)
|
|
973 parser.add_argument('--version', action='version',
|
|
974 version='%(prog)s:' + ' %s-%s' %(__version__, __date__))
|
|
975 subparsers = parser.add_subparsers(title='subcommands', dest='command', metavar='',
|
|
976 help='Cloning method')
|
|
977 # TODO: This is a temporary fix for Python issue 9253
|
|
978 subparsers.required = True
|
|
979
|
|
980 # Parent parser
|
|
981 parser_parent = getCommonArgParser(seq_in=False, seq_out=False, db_in=True,
|
|
982 multiproc=True)
|
|
983
|
|
984 # Distance cloning method
|
|
985 parser_bygroup = subparsers.add_parser('bygroup', parents=[parser_parent],
|
|
986 formatter_class=CommonHelpFormatter,
|
|
987 help='''Defines clones as having same V assignment,
|
|
988 J assignment, and junction length with
|
|
989 specified substitution distance model.''',
|
|
990 description='''Defines clones as having same V assignment,
|
|
991 J assignment, and junction length with
|
|
992 specified substitution distance model.''')
|
|
993 parser_bygroup.add_argument('-f', nargs='+', action='store', dest='fields', default=None,
|
|
994 help='Additional fields to use for grouping clones (non VDJ)')
|
|
995 parser_bygroup.add_argument('--mode', action='store', dest='mode',
|
|
996 choices=('allele', 'gene'), default=default_index_mode,
|
|
997 help='''Specifies whether to use the V(D)J allele or gene for
|
|
998 initial grouping.''')
|
|
999 parser_bygroup.add_argument('--act', action='store', dest='action',
|
|
1000 choices=('first', 'set'), default=default_index_action,
|
|
1001 help='''Specifies how to handle multiple V(D)J assignments
|
|
1002 for initial grouping.''')
|
|
1003 parser_bygroup.add_argument('--model', action='store', dest='model',
|
|
1004 choices=choices_bygroup_model,
|
|
1005 default=default_bygroup_model,
|
|
1006 help='''Specifies which substitution model to use for calculating distance
|
|
1007 between sequences. The "ham" model is nucleotide Hamming distance and
|
|
1008 "aa" is amino acid Hamming distance. The "hh_s1f" and "hh_s5f" models are
|
|
1009 human specific single nucleotide and 5-mer content models, respectively,
|
|
1010 from Yaari et al, 2013. The "mk_rs1nf" and "mk_rs5nf" models are
|
|
1011 mouse specific single nucleotide and 5-mer content models, respectively,
|
|
1012 from Cui et al, 2016. The "m1n_compat" and "hs1f_compat" models are
|
|
1013 deprecated models provided backwards compatibility with the "m1n" and
|
|
1014 "hs1f" models in Change-O v0.3.3 and SHazaM v0.1.4. Both
|
|
1015 5-mer models should be considered experimental.''')
|
|
1016 parser_bygroup.add_argument('--dist', action='store', dest='distance', type=float,
|
|
1017 default=default_distance,
|
|
1018 help='The distance threshold for clonal grouping')
|
|
1019 parser_bygroup.add_argument('--norm', action='store', dest='norm',
|
|
1020 choices=('len', 'mut', 'none'), default=default_norm,
|
|
1021 help='''Specifies how to normalize distances. One of none
|
|
1022 (do not normalize), len (normalize by length),
|
|
1023 or mut (normalize by number of mutations between sequences).''')
|
|
1024 parser_bygroup.add_argument('--sym', action='store', dest='sym',
|
|
1025 choices=('avg', 'min'), default=default_sym,
|
|
1026 help='''Specifies how to combine asymmetric distances. One of avg
|
|
1027 (average of A->B and B->A) or min (minimum of A->B and B->A).''')
|
|
1028 parser_bygroup.add_argument('--link', action='store', dest='linkage',
|
|
1029 choices=('single', 'average', 'complete'), default=default_linkage,
|
|
1030 help='''Type of linkage to use for hierarchical clustering.''')
|
|
1031 parser_bygroup.add_argument('--sf', action='store', dest='seq_field',
|
|
1032 default=default_seq_field,
|
|
1033 help='''The name of the field to be used to calculate
|
|
1034 distance between records''')
|
|
1035 parser_bygroup.set_defaults(feed_func=feedQueue)
|
|
1036 parser_bygroup.set_defaults(work_func=processQueue)
|
|
1037 parser_bygroup.set_defaults(collect_func=collectQueue)
|
|
1038 parser_bygroup.set_defaults(group_func=indexJunctions)
|
|
1039 parser_bygroup.set_defaults(clone_func=distanceClones)
|
|
1040
|
|
1041 # Chen2010
|
|
1042 parser_chen = subparsers.add_parser('chen2010', parents=[parser_parent],
|
|
1043 formatter_class=CommonHelpFormatter,
|
|
1044 help='''Defines clones by method specified in Chen, 2010.''',
|
|
1045 description='''Defines clones by method specified in Chen, 2010.''')
|
|
1046 parser_chen.set_defaults(feed_func=feedQueueClust)
|
|
1047 parser_chen.set_defaults(work_func=processQueueClust)
|
|
1048 parser_chen.set_defaults(collect_func=collectQueueClust)
|
|
1049 parser_chen.set_defaults(cluster_func=hierClust)
|
|
1050
|
|
1051 # Ademokun2011
|
|
1052 parser_ade = subparsers.add_parser('ademokun2011', parents=[parser_parent],
|
|
1053 formatter_class=CommonHelpFormatter,
|
|
1054 help='''Defines clones by method specified in Ademokun, 2011.''',
|
|
1055 description='''Defines clones by method specified in Ademokun, 2011.''')
|
|
1056 parser_ade.set_defaults(feed_func=feedQueueClust)
|
|
1057 parser_ade.set_defaults(work_func=processQueueClust)
|
|
1058 parser_ade.set_defaults(collect_func=collectQueueClust)
|
|
1059 parser_ade.set_defaults(cluster_func=hierClust)
|
|
1060
|
|
1061 return parser
|
|
1062
|
|
1063
|
|
1064 if __name__ == '__main__':
|
|
1065 """
|
|
1066 Parses command line arguments and calls main function
|
|
1067 """
|
|
1068 # Parse arguments
|
|
1069 parser = getArgParser()
|
|
1070 checkArgs(parser)
|
|
1071 args = parser.parse_args()
|
|
1072 args_dict = parseCommonArgs(args)
|
|
1073 # Convert case of fields
|
|
1074 if 'seq_field' in args_dict:
|
|
1075 args_dict['seq_field'] = args_dict['seq_field'].upper()
|
|
1076 if 'fields' in args_dict and args_dict['fields'] is not None:
|
|
1077 args_dict['fields'] = [f.upper() for f in args_dict['fields']]
|
|
1078
|
|
1079 # Define clone_args
|
|
1080 if args.command == 'bygroup':
|
|
1081 args_dict['group_args'] = {'fields': args_dict['fields'],
|
|
1082 'action': args_dict['action'],
|
|
1083 'mode':args_dict['mode']}
|
|
1084 args_dict['clone_args'] = {'model': args_dict['model'],
|
|
1085 'distance': args_dict['distance'],
|
|
1086 'norm': args_dict['norm'],
|
|
1087 'sym': args_dict['sym'],
|
|
1088 'linkage': args_dict['linkage'],
|
|
1089 'seq_field': args_dict['seq_field']}
|
|
1090
|
|
1091 # Get distance matrix
|
|
1092 try:
|
|
1093 args_dict['clone_args']['dist_mat'] = distance_models[args_dict['model']]
|
|
1094 except KeyError:
|
|
1095 sys.exit('Unrecognized distance model: %s' % args_dict['model'])
|
|
1096
|
|
1097 del args_dict['fields']
|
|
1098 del args_dict['action']
|
|
1099 del args_dict['mode']
|
|
1100 del args_dict['model']
|
|
1101 del args_dict['distance']
|
|
1102 del args_dict['norm']
|
|
1103 del args_dict['sym']
|
|
1104 del args_dict['linkage']
|
|
1105 del args_dict['seq_field']
|
|
1106
|
|
1107 # Define clone_args
|
|
1108 if args.command == 'chen2010':
|
|
1109 args_dict['clone_func'] = distChen2010
|
|
1110 args_dict['cluster_args'] = {'method': args.command }
|
|
1111
|
|
1112 if args.command == 'ademokun2011':
|
|
1113 args_dict['clone_func'] = distAdemokun2011
|
|
1114 args_dict['cluster_args'] = {'method': args.command }
|
|
1115
|
|
1116 # Call defineClones
|
|
1117 del args_dict['command']
|
|
1118 del args_dict['db_files']
|
|
1119 for f in args.__dict__['db_files']:
|
|
1120 args_dict['db_file'] = f
|
|
1121 defineClones(**args_dict)
|