Mercurial > repos > davidvanzessen > mutation_analysis
comparison baseline/Baseline_Functions.r @ 0:8a5a2abbb870 draft default tip
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 29 Aug 2016 05:36:10 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8a5a2abbb870 |
---|---|
1 ######################################################################################### | |
2 # License Agreement | |
3 # | |
4 # THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE | |
5 # ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER | |
6 # APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE | |
7 # OR COPYRIGHT LAW IS PROHIBITED. | |
8 # | |
9 # BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE | |
10 # BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED | |
11 # TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN | |
12 # CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS. | |
13 # | |
14 # BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences | |
15 # Coded by: Mohamed Uduman & Gur Yaari | |
16 # Copyright 2012 Kleinstein Lab | |
17 # Version: 1.3 (01/23/2014) | |
18 ######################################################################################### | |
19 | |
20 # Global variables | |
21 | |
22 FILTER_BY_MUTATIONS = 1000 | |
23 | |
24 # Nucleotides | |
25 NUCLEOTIDES = c("A","C","G","T") | |
26 | |
27 # Amino Acids | |
28 AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G") | |
29 names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG") | |
30 names(AMINO_ACIDS) <- names(AMINO_ACIDS) | |
31 | |
32 #Amino Acid Traits | |
33 #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y" | |
34 #B = "Hydrophobic/Burried" N = "Intermediate/Neutral" S="Hydrophilic/Surface") | |
35 TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N") | |
36 names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS)) | |
37 TRAITS_AMINO_ACIDS <- array(NA,21) | |
38 | |
39 # Codon Table | |
40 CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12)) | |
41 | |
42 # Substitution Model: Smith DS et al. 1996 | |
43 substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES)) | |
44 substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES)) | |
45 substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES)) | |
46 load("FiveS_Substitution.RData") | |
47 | |
48 # Mutability Models: Shapiro GS et al. 2002 | |
49 triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T) | |
50 triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T) | |
51 triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT") | |
52 load("FiveS_Mutability.RData") | |
53 | |
54 # Functions | |
55 | |
56 # Translate codon to amino acid | |
57 translateCodonToAminoAcid<-function(Codon){ | |
58 return(AMINO_ACIDS[Codon]) | |
59 } | |
60 | |
61 # Translate amino acid to trait change | |
62 translateAminoAcidToTraitChange<-function(AminoAcid){ | |
63 return(TRAITS_AMINO_ACIDS[AminoAcid]) | |
64 } | |
65 | |
66 # Initialize Amino Acid Trait Changes | |
67 initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){ | |
68 if(!is.null(traitChangeFileName)){ | |
69 tryCatch( | |
70 traitChange <- read.delim(traitChangeFileName,sep="\t",header=T) | |
71 , error = function(ex){ | |
72 cat("Error|Error reading trait changes. Please check file name/path and format.\n") | |
73 q() | |
74 } | |
75 ) | |
76 }else{ | |
77 traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98 | |
78 } | |
79 TRAITS_AMINO_ACIDS <<- traitChange | |
80 } | |
81 | |
82 # Read in formatted nucleotide substitution matrix | |
83 initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){ | |
84 if(!is.null(subsMatFileName)){ | |
85 tryCatch( | |
86 subsMat <- read.delim(subsMatFileName,sep="\t",header=T) | |
87 , error = function(ex){ | |
88 cat("Error|Error reading substitution matrix. Please check file name/path and format.\n") | |
89 q() | |
90 } | |
91 ) | |
92 if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x))) | |
93 }else{ | |
94 if(substitutionModel==1)subsMat <- substitution_Literature_Mouse | |
95 if(substitutionModel==2)subsMat <- substitution_Flu_Human | |
96 if(substitutionModel==3)subsMat <- substitution_Flu25_Human | |
97 | |
98 } | |
99 | |
100 if(substitutionModel==0){ | |
101 subsMat <- matrix(1,4,4) | |
102 subsMat[,] = 1/3 | |
103 subsMat[1,1] = 0 | |
104 subsMat[2,2] = 0 | |
105 subsMat[3,3] = 0 | |
106 subsMat[4,4] = 0 | |
107 } | |
108 | |
109 | |
110 NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-") | |
111 if(substitutionModel==5){ | |
112 subsMat <- FiveS_Substitution | |
113 return(subsMat) | |
114 }else{ | |
115 subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4)) | |
116 return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) ) | |
117 } | |
118 } | |
119 | |
120 | |
121 # Read in formatted Mutability file | |
122 initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){ | |
123 if(!is.null(mutabilityMatFileName)){ | |
124 tryCatch( | |
125 mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T) | |
126 , error = function(ex){ | |
127 cat("Error|Error reading mutability matrix. Please check file name/path and format.\n") | |
128 q() | |
129 } | |
130 ) | |
131 }else{ | |
132 mutabilityMat <- triMutability_Literature_Human | |
133 if(species==2) mutabilityMat <- triMutability_Literature_Mouse | |
134 } | |
135 | |
136 if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)} | |
137 | |
138 if(mutabilityModel==5){ | |
139 mutabilityMat <- FiveS_Mutability | |
140 return(mutabilityMat) | |
141 }else{ | |
142 return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) ) | |
143 } | |
144 } | |
145 | |
146 # Read FASTA file formats | |
147 # Modified from read.fasta from the seqinR package | |
148 baseline.read.fasta <- | |
149 function (file = system.file("sequences/sample.fasta", package = "seqinr"), | |
150 seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE, | |
151 set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, | |
152 strip.desc = FALSE, sizeof.longlong = .Machine$sizeof.longlong, | |
153 endian = .Platform$endian, apply.mask = TRUE) | |
154 { | |
155 seqtype <- match.arg(seqtype) | |
156 | |
157 lines <- readLines(file) | |
158 | |
159 if (legacy.mode) { | |
160 comments <- grep("^;", lines) | |
161 if (length(comments) > 0) | |
162 lines <- lines[-comments] | |
163 } | |
164 | |
165 | |
166 ind_groups<-which(substr(lines, 1L, 3L) == ">>>") | |
167 lines_mod<-lines | |
168 | |
169 if(!length(ind_groups)){ | |
170 lines_mod<-c(">>>All sequences combined",lines) | |
171 } | |
172 | |
173 ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>") | |
174 | |
175 lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod))) | |
176 id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1 | |
177 lines[id] <- "THIS IS A FAKE SEQUENCE" | |
178 lines[-id] <- lines_mod | |
179 rm(lines_mod) | |
180 | |
181 ind <- which(substr(lines, 1L, 1L) == ">") | |
182 nseq <- length(ind) | |
183 if (nseq == 0) { | |
184 stop("no line starting with a > character found") | |
185 } | |
186 start <- ind + 1 | |
187 end <- ind - 1 | |
188 | |
189 while( any(which(ind%in%end)) ){ | |
190 ind=ind[-which(ind%in%end)] | |
191 nseq <- length(ind) | |
192 if (nseq == 0) { | |
193 stop("no line starting with a > character found") | |
194 } | |
195 start <- ind + 1 | |
196 end <- ind - 1 | |
197 } | |
198 | |
199 end <- c(end[-1], length(lines)) | |
200 sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = "")) | |
201 if (seqonly) | |
202 return(sequences) | |
203 nomseq <- lapply(seq_len(nseq), function(i) { | |
204 | |
205 #firstword <- strsplit(lines[ind[i]], " ")[[1]][1] | |
206 substr(lines[ind[i]], 2, nchar(lines[ind[i]])) | |
207 | |
208 }) | |
209 if (seqtype == "DNA") { | |
210 if (forceDNAtolower) { | |
211 sequences <- as.list(tolower(chartr(".","-",sequences))) | |
212 }else{ | |
213 sequences <- as.list(toupper(chartr(".","-",sequences))) | |
214 } | |
215 } | |
216 if (as.string == FALSE) | |
217 sequences <- lapply(sequences, s2c) | |
218 if (set.attributes) { | |
219 for (i in seq_len(nseq)) { | |
220 Annot <- lines[ind[i]] | |
221 if (strip.desc) | |
222 Annot <- substr(Annot, 2L, nchar(Annot)) | |
223 attributes(sequences[[i]]) <- list(name = nomseq[[i]], | |
224 Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA", | |
225 DNA = "SeqFastadna")) | |
226 } | |
227 } | |
228 names(sequences) <- nomseq | |
229 return(sequences) | |
230 } | |
231 | |
232 | |
233 # Replaces non FASTA characters in input files with N | |
234 replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){ | |
235 gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE) | |
236 } | |
237 | |
238 # Find the germlines in the FASTA list | |
239 germlinesInFile <- function(seqIDs){ | |
240 firstChar = sapply(seqIDs,function(x){substr(x,1,1)}) | |
241 secondChar = sapply(seqIDs,function(x){substr(x,2,2)}) | |
242 return(firstChar==">" & secondChar!=">") | |
243 } | |
244 | |
245 # Find the groups in the FASTA list | |
246 groupsInFile <- function(seqIDs){ | |
247 sapply(seqIDs,function(x){substr(x,1,2)})==">>" | |
248 } | |
249 | |
250 # In the process of finding germlines/groups, expand from the start to end of the group | |
251 expandTillNext <- function(vecPosToID){ | |
252 IDs = names(vecPosToID) | |
253 posOfInterests = which(vecPosToID) | |
254 | |
255 expandedID = rep(NA,length(IDs)) | |
256 expandedIDNames = gsub(">","",IDs[posOfInterests]) | |
257 startIndexes = c(1,posOfInterests[-1]) | |
258 stopIndexes = c(posOfInterests[-1]-1,length(IDs)) | |
259 expandedID = unlist(sapply(1:length(startIndexes),function(i){ | |
260 rep(i,stopIndexes[i]-startIndexes[i]+1) | |
261 })) | |
262 names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){ | |
263 rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1) | |
264 })) | |
265 return(expandedID) | |
266 } | |
267 | |
268 # Process FASTA (list) to return a matrix[input, germline) | |
269 processInputAdvanced <- function(inputFASTA){ | |
270 | |
271 seqIDs = names(inputFASTA) | |
272 numbSeqs = length(seqIDs) | |
273 posGermlines1 = germlinesInFile(seqIDs) | |
274 numbGermlines = sum(posGermlines1) | |
275 posGroups1 = groupsInFile(seqIDs) | |
276 numbGroups = sum(posGroups1) | |
277 consDef = NA | |
278 | |
279 if(numbGermlines==0){ | |
280 posGermlines = 2 | |
281 numbGermlines = 1 | |
282 } | |
283 | |
284 glPositionsSum = cumsum(posGermlines1) | |
285 glPositions = table(glPositionsSum) | |
286 #Find the position of the conservation row | |
287 consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1 | |
288 if( length(consDefPos)> 0 ){ | |
289 consDefID = match(consDefPos, glPositionsSum) | |
290 #The coservation rows need to be pulled out and stores seperately | |
291 consDef = inputFASTA[consDefID] | |
292 inputFASTA = inputFASTA[-consDefID] | |
293 | |
294 seqIDs = names(inputFASTA) | |
295 numbSeqs = length(seqIDs) | |
296 posGermlines1 = germlinesInFile(seqIDs) | |
297 numbGermlines = sum(posGermlines1) | |
298 posGroups1 = groupsInFile(seqIDs) | |
299 numbGroups = sum(posGroups1) | |
300 if(numbGermlines==0){ | |
301 posGermlines = 2 | |
302 numbGermlines = 1 | |
303 } | |
304 } | |
305 | |
306 posGroups <- expandTillNext(posGroups1) | |
307 posGermlines <- expandTillNext(posGermlines1) | |
308 posGermlines[posGroups1] = 0 | |
309 names(posGermlines)[posGroups1] = names(posGroups)[posGroups1] | |
310 posInput = rep(TRUE,numbSeqs) | |
311 posInput[posGroups1 | posGermlines1] = FALSE | |
312 | |
313 matInput = matrix(NA, nrow=sum(posInput), ncol=2) | |
314 rownames(matInput) = seqIDs[posInput] | |
315 colnames(matInput) = c("Input","Germline") | |
316 | |
317 vecInputFASTA = unlist(inputFASTA) | |
318 matInput[,1] = vecInputFASTA[posInput] | |
319 matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ] | |
320 | |
321 germlines = posGermlines[posInput] | |
322 groups = posGroups[posInput] | |
323 | |
324 return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef )) | |
325 } | |
326 | |
327 | |
328 # Replace leading and trailing dashes in the sequence | |
329 replaceLeadingTrailingDashes <- function(x,readEnd){ | |
330 iiGap = unlist(gregexpr("-",x[1])) | |
331 ggGap = unlist(gregexpr("-",x[2])) | |
332 #posToChange = intersect(iiGap,ggGap) | |
333 | |
334 | |
335 seqIn = replaceLeadingTrailingDashesHelper(x[1]) | |
336 seqGL = replaceLeadingTrailingDashesHelper(x[2]) | |
337 seqTemplate = rep('N',readEnd) | |
338 seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd]) | |
339 seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd]) | |
340 # if(posToChange!=-1){ | |
341 # seqIn[posToChange] = "-" | |
342 # seqGL[posToChange] = "-" | |
343 # } | |
344 | |
345 seqIn = c2s(seqIn[1:readEnd]) | |
346 seqGL = c2s(seqGL[1:readEnd]) | |
347 | |
348 lenGL = nchar(seqGL) | |
349 if(lenGL<readEnd){ | |
350 seqGL = paste(seqGL,c2s(rep("N",readEnd-lenGL)),sep="") | |
351 } | |
352 | |
353 lenInput = nchar(seqIn) | |
354 if(lenInput<readEnd){ | |
355 seqIn = paste(seqIn,c2s(rep("N",readEnd-lenInput)),sep="") | |
356 } | |
357 return( c(seqIn,seqGL) ) | |
358 } | |
359 | |
360 replaceLeadingTrailingDashesHelper <- function(x){ | |
361 grepResults = gregexpr("-*",x) | |
362 grepResultsPos = unlist(grepResults) | |
363 grepResultsLen = attr(grepResults[[1]],"match.length") | |
364 #print(paste("x = '", x, "'", sep="")) | |
365 x = s2c(x) | |
366 if(x[1]=="-"){ | |
367 x[1:grepResultsLen[1]] = "N" | |
368 } | |
369 if(x[length(x)]=="-"){ | |
370 x[(length(x)-grepResultsLen[length(grepResultsLen)]+1):length(x)] = "N" | |
371 } | |
372 return(x) | |
373 } | |
374 | |
375 | |
376 | |
377 | |
378 # Check sequences for indels | |
379 checkForInDels <- function(matInputP){ | |
380 insPos <- checkInsertion(matInputP) | |
381 delPos <- checkDeletions(matInputP) | |
382 return(list("Insertions"=insPos, "Deletions"=delPos)) | |
383 } | |
384 | |
385 # Check sequences for insertions | |
386 checkInsertion <- function(matInputP){ | |
387 insertionCheck = apply( matInputP,1, function(x){ | |
388 inputGaps <- as.vector( gregexpr("-",x[1])[[1]] ) | |
389 glGaps <- as.vector( gregexpr("-",x[2])[[1]] ) | |
390 return( is.finite( match(FALSE, glGaps%in%inputGaps ) ) ) | |
391 }) | |
392 return(as.vector(insertionCheck)) | |
393 } | |
394 # Fix inserstions | |
395 fixInsertions <- function(matInputP){ | |
396 insPos <- checkInsertion(matInputP) | |
397 sapply((1:nrow(matInputP))[insPos],function(rowIndex){ | |
398 x <- matInputP[rowIndex,] | |
399 inputGaps <- gregexpr("-",x[1])[[1]] | |
400 glGaps <- gregexpr("-",x[2])[[1]] | |
401 posInsertions <- glGaps[!(glGaps%in%inputGaps)] | |
402 inputInsertionToN <- s2c(x[2]) | |
403 inputInsertionToN[posInsertions]!="-" | |
404 inputInsertionToN[posInsertions] <- "N" | |
405 inputInsertionToN <- c2s(inputInsertionToN) | |
406 matInput[rowIndex,2] <<- inputInsertionToN | |
407 }) | |
408 return(insPos) | |
409 } | |
410 | |
411 # Check sequences for deletions | |
412 checkDeletions <-function(matInputP){ | |
413 deletionCheck = apply( matInputP,1, function(x){ | |
414 inputGaps <- as.vector( gregexpr("-",x[1])[[1]] ) | |
415 glGaps <- as.vector( gregexpr("-",x[2])[[1]] ) | |
416 return( is.finite( match(FALSE, inputGaps%in%glGaps ) ) ) | |
417 }) | |
418 return(as.vector(deletionCheck)) | |
419 } | |
420 # Fix sequences with deletions | |
421 fixDeletions <- function(matInputP){ | |
422 delPos <- checkDeletions(matInputP) | |
423 sapply((1:nrow(matInputP))[delPos],function(rowIndex){ | |
424 x <- matInputP[rowIndex,] | |
425 inputGaps <- gregexpr("-",x[1])[[1]] | |
426 glGaps <- gregexpr("-",x[2])[[1]] | |
427 posDeletions <- inputGaps[!(inputGaps%in%glGaps)] | |
428 inputDeletionToN <- s2c(x[1]) | |
429 inputDeletionToN[posDeletions] <- "N" | |
430 inputDeletionToN <- c2s(inputDeletionToN) | |
431 matInput[rowIndex,1] <<- inputDeletionToN | |
432 }) | |
433 return(delPos) | |
434 } | |
435 | |
436 | |
437 # Trim DNA sequence to the last codon | |
438 trimToLastCodon <- function(seqToTrim){ | |
439 seqLen = nchar(seqToTrim) | |
440 trimmedSeq = s2c(seqToTrim) | |
441 poi = seqLen | |
442 tailLen = 0 | |
443 | |
444 while(trimmedSeq[poi]=="-" || trimmedSeq[poi]=="."){ | |
445 tailLen = tailLen + 1 | |
446 poi = poi - 1 | |
447 } | |
448 | |
449 trimmedSeq = c2s(trimmedSeq[1:(seqLen-tailLen)]) | |
450 seqLen = nchar(trimmedSeq) | |
451 # Trim sequence to last codon | |
452 if( getCodonPos(seqLen)[3] > seqLen ) | |
453 trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) ) | |
454 | |
455 return(trimmedSeq) | |
456 } | |
457 | |
458 # Given a nuclotide position, returns the pos of the 3 nucs that made the codon | |
459 # e.g. nuc 86 is part of nucs 85,86,87 | |
460 getCodonPos <- function(nucPos){ | |
461 codonNum = (ceiling(nucPos/3))*3 | |
462 return( (codonNum-2):codonNum) | |
463 } | |
464 | |
465 # Given a nuclotide position, returns the codon number | |
466 # e.g. nuc 86 = codon 29 | |
467 getCodonNumb <- function(nucPos){ | |
468 return( ceiling(nucPos/3) ) | |
469 } | |
470 | |
471 # Given a codon, returns all the nuc positions that make the codon | |
472 getCodonNucs <- function(codonNumb){ | |
473 getCodonPos(codonNumb*3) | |
474 } | |
475 | |
476 computeCodonTable <- function(testID=1){ | |
477 | |
478 if(testID<=4){ | |
479 # Pre-compute every codons | |
480 intCounter = 1 | |
481 for(pOne in NUCLEOTIDES){ | |
482 for(pTwo in NUCLEOTIDES){ | |
483 for(pThree in NUCLEOTIDES){ | |
484 codon = paste(pOne,pTwo,pThree,sep="") | |
485 colnames(CODON_TABLE)[intCounter] = codon | |
486 intCounter = intCounter + 1 | |
487 CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12))) | |
488 } | |
489 } | |
490 } | |
491 chars = c("N","A","C","G","T", "-") | |
492 for(a in chars){ | |
493 for(b in chars){ | |
494 for(c in chars){ | |
495 if(a=="N" | b=="N" | c=="N"){ | |
496 #cat(paste(a,b,c),sep="","\n") | |
497 CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12) | |
498 } | |
499 } | |
500 } | |
501 } | |
502 | |
503 chars = c("-","A","C","G","T") | |
504 for(a in chars){ | |
505 for(b in chars){ | |
506 for(c in chars){ | |
507 if(a=="-" | b=="-" | c=="-"){ | |
508 #cat(paste(a,b,c),sep="","\n") | |
509 CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12) | |
510 } | |
511 } | |
512 } | |
513 } | |
514 CODON_TABLE <<- as.matrix(CODON_TABLE) | |
515 } | |
516 } | |
517 | |
518 collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){ | |
519 #print(length(vecInputSeqs)) | |
520 vecInputSeqs = unique(vecInputSeqs) | |
521 if(length(vecInputSeqs)==1){ | |
522 return( list( c(vecInputSeqs,glSeq), F) ) | |
523 }else{ | |
524 charInputSeqs <- sapply(vecInputSeqs, function(x){ | |
525 s2c(x)[1:readEnd] | |
526 }) | |
527 charGLSeq <- s2c(glSeq) | |
528 matClone <- sapply(1:readEnd, function(i){ | |
529 posNucs = unique(charInputSeqs[i,]) | |
530 posGL = charGLSeq[i] | |
531 error = FALSE | |
532 if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){ | |
533 return(c("-",error)) | |
534 } | |
535 if(length(posNucs)==1) | |
536 return(c(posNucs[1],error)) | |
537 else{ | |
538 if("N"%in%posNucs){ | |
539 error=TRUE | |
540 } | |
541 if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){ | |
542 return( c(posGL,error) ) | |
543 }else{ | |
544 #return( c(sample(posNucs[posNucs!="N"],1),error) ) | |
545 if(nonTerminalOnly==0){ | |
546 return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) ) | |
547 }else{ | |
548 posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL] | |
549 posNucsTable = table(posNucs) | |
550 if(sum(posNucsTable>1)==0){ | |
551 return( c(posGL,error) ) | |
552 }else{ | |
553 return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) ) | |
554 } | |
555 } | |
556 | |
557 } | |
558 } | |
559 }) | |
560 | |
561 | |
562 #print(length(vecInputSeqs)) | |
563 return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,])) | |
564 } | |
565 } | |
566 | |
567 # Compute the expected for each sequence-germline pair | |
568 getExpectedIndividual <- function(matInput){ | |
569 if( any(grep("multicore",search())) ){ | |
570 facGL <- factor(matInput[,2]) | |
571 facLevels = levels(facGL) | |
572 LisGLs_MutabilityU = mclapply(1:length(facLevels), function(x){ | |
573 computeMutabilities(facLevels[x]) | |
574 }) | |
575 facIndex = match(facGL,facLevels) | |
576 | |
577 LisGLs_Mutability = mclapply(1:nrow(matInput), function(x){ | |
578 cInput = rep(NA,nchar(matInput[x,1])) | |
579 cInput[s2c(matInput[x,1])!="N"] = 1 | |
580 LisGLs_MutabilityU[[facIndex[x]]] * cInput | |
581 }) | |
582 | |
583 LisGLs_Targeting = mclapply(1:dim(matInput)[1], function(x){ | |
584 computeTargeting(matInput[x,2],LisGLs_Mutability[[x]]) | |
585 }) | |
586 | |
587 LisGLs_MutationTypes = mclapply(1:length(matInput[,2]),function(x){ | |
588 #print(x) | |
589 computeMutationTypes(matInput[x,2]) | |
590 }) | |
591 | |
592 LisGLs_Exp = mclapply(1:dim(matInput)[1], function(x){ | |
593 computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]]) | |
594 }) | |
595 | |
596 ul_LisGLs_Exp = unlist(LisGLs_Exp) | |
597 return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T)) | |
598 }else{ | |
599 facGL <- factor(matInput[,2]) | |
600 facLevels = levels(facGL) | |
601 LisGLs_MutabilityU = lapply(1:length(facLevels), function(x){ | |
602 computeMutabilities(facLevels[x]) | |
603 }) | |
604 facIndex = match(facGL,facLevels) | |
605 | |
606 LisGLs_Mutability = lapply(1:nrow(matInput), function(x){ | |
607 cInput = rep(NA,nchar(matInput[x,1])) | |
608 cInput[s2c(matInput[x,1])!="N"] = 1 | |
609 LisGLs_MutabilityU[[facIndex[x]]] * cInput | |
610 }) | |
611 | |
612 LisGLs_Targeting = lapply(1:dim(matInput)[1], function(x){ | |
613 computeTargeting(matInput[x,2],LisGLs_Mutability[[x]]) | |
614 }) | |
615 | |
616 LisGLs_MutationTypes = lapply(1:length(matInput[,2]),function(x){ | |
617 #print(x) | |
618 computeMutationTypes(matInput[x,2]) | |
619 }) | |
620 | |
621 LisGLs_Exp = lapply(1:dim(matInput)[1], function(x){ | |
622 computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]]) | |
623 }) | |
624 | |
625 ul_LisGLs_Exp = unlist(LisGLs_Exp) | |
626 return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T)) | |
627 | |
628 } | |
629 } | |
630 | |
631 # Compute mutabilities of sequence based on the tri-nucleotide model | |
632 computeMutabilities <- function(paramSeq){ | |
633 seqLen = nchar(paramSeq) | |
634 seqMutabilites = rep(NA,seqLen) | |
635 | |
636 gaplessSeq = gsub("-", "", paramSeq) | |
637 gaplessSeqLen = nchar(gaplessSeq) | |
638 gaplessSeqMutabilites = rep(NA,gaplessSeqLen) | |
639 | |
640 if(mutabilityModel!=5){ | |
641 pos<- 3:(gaplessSeqLen) | |
642 subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2)) | |
643 gaplessSeqMutabilites[pos] = | |
644 tapply( c( | |
645 getMutability( substr(subSeq,1,3), 3) , | |
646 getMutability( substr(subSeq,2,4), 2), | |
647 getMutability( substr(subSeq,3,5), 1) | |
648 ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE | |
649 ) | |
650 #Pos 1 | |
651 subSeq = substr(gaplessSeq,1,3) | |
652 gaplessSeqMutabilites[1] = getMutability(subSeq , 1) | |
653 #Pos 2 | |
654 subSeq = substr(gaplessSeq,1,4) | |
655 gaplessSeqMutabilites[2] = mean( c( | |
656 getMutability( substr(subSeq,1,3), 2) , | |
657 getMutability( substr(subSeq,2,4), 1) | |
658 ),na.rm=T | |
659 ) | |
660 seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites | |
661 return(seqMutabilites) | |
662 }else{ | |
663 | |
664 pos<- 3:(gaplessSeqLen) | |
665 subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2)) | |
666 gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T) | |
667 seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites | |
668 return(seqMutabilites) | |
669 } | |
670 | |
671 } | |
672 | |
673 # Returns the mutability of a triplet at a given position | |
674 getMutability <- function(codon, pos=1:3){ | |
675 triplets <- rownames(mutability) | |
676 mutability[ match(codon,triplets) ,pos] | |
677 } | |
678 | |
679 getMutability5 <- function(fivemer){ | |
680 return(mutability[fivemer]) | |
681 } | |
682 | |
683 # Returns the substitution probabilty | |
684 getTransistionProb <- function(nuc){ | |
685 substitution[nuc,] | |
686 } | |
687 | |
688 getTransistionProb5 <- function(fivemer){ | |
689 if(any(which(fivemer==colnames(substitution)))){ | |
690 return(substitution[,fivemer]) | |
691 }else{ | |
692 return(array(NA,4)) | |
693 } | |
694 } | |
695 | |
696 # Given a nuc, returns the other 3 nucs it can mutate to | |
697 canMutateTo <- function(nuc){ | |
698 NUCLEOTIDES[- which(NUCLEOTIDES==nuc)] | |
699 } | |
700 | |
701 # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to | |
702 canMutateToProb <- function(nuc){ | |
703 substitution[nuc,canMutateTo(nuc)] | |
704 } | |
705 | |
706 # Compute targeting, based on precomputed mutatbility & substitution | |
707 computeTargeting <- function(param_strSeq,param_vecMutabilities){ | |
708 | |
709 if(substitutionModel!=5){ | |
710 vecSeq = s2c(param_strSeq) | |
711 matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } ) | |
712 #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } ) | |
713 dimnames( matTargeting ) = list(NUCLEOTIDES,1:(length(vecSeq))) | |
714 return (matTargeting) | |
715 }else{ | |
716 | |
717 seqLen = nchar(param_strSeq) | |
718 seqsubstitution = matrix(NA,ncol=seqLen,nrow=4) | |
719 paramSeq <- param_strSeq | |
720 gaplessSeq = gsub("-", "", paramSeq) | |
721 gaplessSeqLen = nchar(gaplessSeq) | |
722 gaplessSeqSubstitution = matrix(NA,ncol=gaplessSeqLen,nrow=4) | |
723 | |
724 pos<- 3:(gaplessSeqLen) | |
725 subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2)) | |
726 gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T) | |
727 seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution | |
728 #matTargeting <- param_vecMutabilities %*% seqsubstitution | |
729 matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`) | |
730 dimnames( matTargeting ) = list(NUCLEOTIDES,1:(seqLen)) | |
731 return (matTargeting) | |
732 } | |
733 } | |
734 | |
735 # Compute the mutations types | |
736 computeMutationTypes <- function(param_strSeq){ | |
737 #cat(param_strSeq,"\n") | |
738 #vecSeq = trimToLastCodon(param_strSeq) | |
739 lenSeq = nchar(param_strSeq) | |
740 vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)}) | |
741 matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F) | |
742 dimnames( matMutationTypes ) = list(NUCLEOTIDES,1:(ncol(matMutationTypes))) | |
743 return(matMutationTypes) | |
744 } | |
745 computeMutationTypesFast <- function(param_strSeq){ | |
746 matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F) | |
747 #dimnames( matMutationTypes ) = list(NUCLEOTIDES,1:(length(vecSeq))) | |
748 return(matMutationTypes) | |
749 } | |
750 mutationTypeOptimized <- function( matOfCodons ){ | |
751 apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } ) | |
752 } | |
753 | |
754 # Returns a vector of codons 1 mutation away from the given codon | |
755 permutateAllCodon <- function(codon){ | |
756 cCodon = s2c(codon) | |
757 matCodons = t(array(cCodon,dim=c(3,12))) | |
758 matCodons[1:4,1] = NUCLEOTIDES | |
759 matCodons[5:8,2] = NUCLEOTIDES | |
760 matCodons[9:12,3] = NUCLEOTIDES | |
761 apply(matCodons,1,c2s) | |
762 } | |
763 | |
764 # Given two codons, tells you if the mutation is R or S (based on your definition) | |
765 mutationType <- function(codonFrom,codonTo){ | |
766 if(testID==4){ | |
767 if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){ | |
768 return(NA) | |
769 }else{ | |
770 mutationType = "S" | |
771 if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){ | |
772 mutationType = "R" | |
773 } | |
774 if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){ | |
775 mutationType = "Stop" | |
776 } | |
777 return(mutationType) | |
778 } | |
779 }else if(testID==5){ | |
780 if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){ | |
781 return(NA) | |
782 }else{ | |
783 if(codonFrom==codonTo){ | |
784 mutationType = "S" | |
785 }else{ | |
786 codonFrom = s2c(codonFrom) | |
787 codonTo = s2c(codonTo) | |
788 mutationType = "Stop" | |
789 nucOfI = codonFrom[which(codonTo!=codonFrom)] | |
790 if(nucOfI=="C"){ | |
791 mutationType = "R" | |
792 }else if(nucOfI=="G"){ | |
793 mutationType = "S" | |
794 } | |
795 } | |
796 return(mutationType) | |
797 } | |
798 }else{ | |
799 if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){ | |
800 return(NA) | |
801 }else{ | |
802 mutationType = "S" | |
803 if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){ | |
804 mutationType = "R" | |
805 } | |
806 if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){ | |
807 mutationType = "Stop" | |
808 } | |
809 return(mutationType) | |
810 } | |
811 } | |
812 } | |
813 | |
814 | |
815 #given a mat of targeting & it's corresponding mutationtypes returns | |
816 #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR | |
817 computeExpected <- function(paramTargeting,paramMutationTypes){ | |
818 # Replacements | |
819 RPos = which(paramMutationTypes=="R") | |
820 #FWR | |
821 Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T) | |
822 #CDR | |
823 Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T) | |
824 # Silents | |
825 SPos = which(paramMutationTypes=="S") | |
826 #FWR | |
827 Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T) | |
828 #CDR | |
829 Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T) | |
830 | |
831 return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR)) | |
832 } | |
833 | |
834 # Count the mutations in a sequence | |
835 # each mutation is treated independently | |
836 analyzeMutations2NucUri_website <- function( rev_in_matrix ){ | |
837 paramGL = rev_in_matrix[2,] | |
838 paramSeq = rev_in_matrix[1,] | |
839 | |
840 #Fill seq with GL seq if gapped | |
841 #if( any(paramSeq=="-") ){ | |
842 # gapPos_Seq = which(paramSeq=="-") | |
843 # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"] | |
844 # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace] | |
845 #} | |
846 | |
847 | |
848 #if( any(paramSeq=="N") ){ | |
849 # gapPos_Seq = which(paramSeq=="N") | |
850 # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"] | |
851 # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace] | |
852 #} | |
853 | |
854 analyzeMutations2NucUri( matrix(c( paramGL, paramSeq ),2,length(paramGL),byrow=T) ) | |
855 | |
856 } | |
857 | |
858 #1 = GL | |
859 #2 = Seq | |
860 analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){ | |
861 paramGL = in_matrix[2,] | |
862 paramSeq = in_matrix[1,] | |
863 paramSeqUri = paramGL | |
864 #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]}) | |
865 mutations_val = paramGL != paramSeq | |
866 if(any(mutations_val)){ | |
867 mutationPos = {1:length(mutations_val)}[mutations_val] | |
868 mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})] | |
869 length_mutations =length(mutationPos) | |
870 mutationInfo = rep(NA,length_mutations) | |
871 if(any(mutationPos)){ | |
872 | |
873 pos<- mutationPos | |
874 pos_array<-array(sapply(pos,getCodonPos)) | |
875 codonGL = paramGL[pos_array] | |
876 | |
877 codonSeq = sapply(pos,function(x){ | |
878 seqP = paramGL[getCodonPos(x)] | |
879 muCodonPos = {x-1}%%3+1 | |
880 seqP[muCodonPos] = paramSeq[x] | |
881 return(seqP) | |
882 }) | |
883 GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s) | |
884 Seqcodons = apply(codonSeq,2,c2s) | |
885 mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))}) | |
886 names(mutationInfo) = mutationPos | |
887 } | |
888 if(any(!is.na(mutationInfo))){ | |
889 return(mutationInfo[!is.na(mutationInfo)]) | |
890 }else{ | |
891 return(NA) | |
892 } | |
893 | |
894 | |
895 }else{ | |
896 return (NA) | |
897 } | |
898 } | |
899 | |
900 processNucMutations2 <- function(mu){ | |
901 if(!is.na(mu)){ | |
902 #R | |
903 if(any(mu=="R")){ | |
904 Rs = mu[mu=="R"] | |
905 nucNumbs = as.numeric(names(Rs)) | |
906 R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T) | |
907 R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T) | |
908 }else{ | |
909 R_CDR = 0 | |
910 R_FWR = 0 | |
911 } | |
912 | |
913 #S | |
914 if(any(mu=="S")){ | |
915 Ss = mu[mu=="S"] | |
916 nucNumbs = as.numeric(names(Ss)) | |
917 S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T) | |
918 S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T) | |
919 }else{ | |
920 S_CDR = 0 | |
921 S_FWR = 0 | |
922 } | |
923 | |
924 | |
925 retVec = c(R_CDR,S_CDR,R_FWR,S_FWR) | |
926 retVec[is.na(retVec)]=0 | |
927 return(retVec) | |
928 }else{ | |
929 return(rep(0,4)) | |
930 } | |
931 } | |
932 | |
933 | |
934 ## Z-score Test | |
935 computeZScore <- function(mat, test="Focused"){ | |
936 matRes <- matrix(NA,ncol=2,nrow=(nrow(mat))) | |
937 if(test=="Focused"){ | |
938 #Z_Focused_CDR | |
939 #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T ) | |
940 P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}) | |
941 R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))}) | |
942 R_sd=sqrt(R_mean*(1-P)) | |
943 matRes[,1] = (mat[,1]-R_mean)/R_sd | |
944 | |
945 #Z_Focused_FWR | |
946 #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T ) | |
947 P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}) | |
948 R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))}) | |
949 R_sd=sqrt(R_mean*(1-P)) | |
950 matRes[,2] = (mat[,3]-R_mean)/R_sd | |
951 } | |
952 | |
953 if(test=="Local"){ | |
954 #Z_Focused_CDR | |
955 #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T ) | |
956 P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}) | |
957 R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))}) | |
958 R_sd=sqrt(R_mean*(1-P)) | |
959 matRes[,1] = (mat[,1]-R_mean)/R_sd | |
960 | |
961 #Z_Focused_FWR | |
962 #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T ) | |
963 P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}) | |
964 R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))}) | |
965 R_sd=sqrt(R_mean*(1-P)) | |
966 matRes[,2] = (mat[,3]-R_mean)/R_sd | |
967 } | |
968 | |
969 if(test=="Imbalanced"){ | |
970 #Z_Focused_CDR | |
971 #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T ) | |
972 P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))}) | |
973 R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))}) | |
974 R_sd=sqrt(R_mean*(1-P)) | |
975 matRes[,1] = (mat[,1]-R_mean)/R_sd | |
976 | |
977 #Z_Focused_FWR | |
978 #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T ) | |
979 P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))}) | |
980 R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))}) | |
981 R_sd=sqrt(R_mean*(1-P)) | |
982 matRes[,2] = (mat[,3]-R_mean)/R_sd | |
983 } | |
984 | |
985 matRes[is.nan(matRes)] = NA | |
986 return(matRes) | |
987 } | |
988 | |
989 # Return a p-value for a z-score | |
990 z2p <- function(z){ | |
991 p=NA | |
992 if( !is.nan(z) && !is.na(z)){ | |
993 if(z>0){ | |
994 p = (1 - pnorm(z,0,1)) | |
995 } else if(z<0){ | |
996 p = (-1 * pnorm(z,0,1)) | |
997 } else{ | |
998 p = 0.5 | |
999 } | |
1000 }else{ | |
1001 p = NA | |
1002 } | |
1003 return(p) | |
1004 } | |
1005 | |
1006 | |
1007 ## Bayesian Test | |
1008 | |
1009 # Fitted parameter for the bayesian framework | |
1010 BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986) | |
1011 CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2)) | |
1012 | |
1013 # Given x, M & p, returns a pdf | |
1014 calculate_bayes <- function ( x=3, N=10, p=0.33, | |
1015 i=CONST_i, | |
1016 max_sigma=20,length_sigma=4001 | |
1017 ){ | |
1018 if(!0%in%N){ | |
1019 G <- max(length(x),length(N),length(p)) | |
1020 x=array(x,dim=G) | |
1021 N=array(N,dim=G) | |
1022 p=array(p,dim=G) | |
1023 sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma) | |
1024 sigma_1<-log({i/{1-i}}/{p/{1-p}}) | |
1025 index<-min(N,60) | |
1026 y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1)) | |
1027 if(!sum(is.na(y))){ | |
1028 tmp<-approx(sigma_1,y,sigma_s)$y | |
1029 tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}} | |
1030 }else{ | |
1031 return(NA) | |
1032 } | |
1033 }else{ | |
1034 return(NA) | |
1035 } | |
1036 } | |
1037 # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection | |
1038 computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){ | |
1039 flagOneSeq = F | |
1040 if(nrow(mat)==1){ | |
1041 mat=rbind(mat,mat) | |
1042 flagOneSeq = T | |
1043 } | |
1044 if(test=="Focused"){ | |
1045 #CDR | |
1046 P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5) | |
1047 N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0) | |
1048 X = c(mat[,1],0) | |
1049 bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1050 bayesCDR = bayesCDR[-length(bayesCDR)] | |
1051 | |
1052 #FWR | |
1053 P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5) | |
1054 N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0) | |
1055 X = c(mat[,3],0) | |
1056 bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1057 bayesFWR = bayesFWR[-length(bayesFWR)] | |
1058 } | |
1059 | |
1060 if(test=="Local"){ | |
1061 #CDR | |
1062 P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5) | |
1063 N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0) | |
1064 X = c(mat[,1],0) | |
1065 bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1066 bayesCDR = bayesCDR[-length(bayesCDR)] | |
1067 | |
1068 #FWR | |
1069 P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5) | |
1070 N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0) | |
1071 X = c(mat[,3],0) | |
1072 bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1073 bayesFWR = bayesFWR[-length(bayesFWR)] | |
1074 } | |
1075 | |
1076 if(test=="Imbalanced"){ | |
1077 #CDR | |
1078 P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5) | |
1079 N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0) | |
1080 X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0) | |
1081 bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1082 bayesCDR = bayesCDR[-length(bayesCDR)] | |
1083 | |
1084 #FWR | |
1085 P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5) | |
1086 N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0) | |
1087 X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0) | |
1088 bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1089 bayesFWR = bayesFWR[-length(bayesFWR)] | |
1090 } | |
1091 | |
1092 if(test=="ImbalancedSilent"){ | |
1093 #CDR | |
1094 P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5) | |
1095 N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0) | |
1096 X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0) | |
1097 bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1098 bayesCDR = bayesCDR[-length(bayesCDR)] | |
1099 | |
1100 #FWR | |
1101 P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5) | |
1102 N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0) | |
1103 X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0) | |
1104 bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)}) | |
1105 bayesFWR = bayesFWR[-length(bayesFWR)] | |
1106 } | |
1107 | |
1108 if(flagOneSeq==T){ | |
1109 bayesCDR = bayesCDR[1] | |
1110 bayesFWR = bayesFWR[1] | |
1111 } | |
1112 return( list("CDR"=bayesCDR, "FWR"=bayesFWR) ) | |
1113 } | |
1114 | |
1115 ##Covolution | |
1116 break2chunks<-function(G=1000){ | |
1117 base<-2^round(log(sqrt(G),2),0) | |
1118 return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base))) | |
1119 } | |
1120 | |
1121 PowersOfTwo <- function(G=100){ | |
1122 exponents <- array() | |
1123 i = 0 | |
1124 while(G > 0){ | |
1125 i=i+1 | |
1126 exponents[i] <- floor( log2(G) ) | |
1127 G <- G-2^exponents[i] | |
1128 } | |
1129 return(exponents) | |
1130 } | |
1131 | |
1132 convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){ | |
1133 G = ncol(cons) | |
1134 if(G>1){ | |
1135 for(gen in log(G,2):1){ | |
1136 ll<-seq(from=2,to=2^gen,by=2) | |
1137 sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)}) | |
1138 } | |
1139 } | |
1140 return( cons[,1] ) | |
1141 } | |
1142 | |
1143 convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){ | |
1144 if(length(ncol(cons))) G<-ncol(cons) | |
1145 groups <- PowersOfTwo(G) | |
1146 matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G ) | |
1147 startIndex = 1 | |
1148 for( i in 1:length(groups) ){ | |
1149 stopIndex <- 2^groups[i] + startIndex - 1 | |
1150 if(stopIndex!=startIndex){ | |
1151 matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma ) | |
1152 startIndex = stopIndex + 1 | |
1153 } | |
1154 else { | |
1155 if(G>1) matG[,i] <- cons[,startIndex:stopIndex] | |
1156 else matG[,i] <- cons | |
1157 #startIndex = stopIndex + 1 | |
1158 } | |
1159 } | |
1160 return( list( matG, groups ) ) | |
1161 } | |
1162 | |
1163 weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){ | |
1164 lx<-length(x) | |
1165 ly<-length(y) | |
1166 if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){ | |
1167 if(w<1){ | |
1168 y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y | |
1169 x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y | |
1170 lx<-length(x1) | |
1171 ly<-length(y1) | |
1172 } | |
1173 else { | |
1174 y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y | |
1175 x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y | |
1176 lx<-length(x1) | |
1177 ly<-length(y1) | |
1178 } | |
1179 } | |
1180 else{ | |
1181 x1<-x | |
1182 y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y | |
1183 ly<-length(y1) | |
1184 } | |
1185 tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y | |
1186 tmp[tmp<=0] = 0 | |
1187 return(tmp/sum(tmp)) | |
1188 } | |
1189 | |
1190 calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){ | |
1191 matG <- listMatG[[1]] | |
1192 groups <- listMatG[[2]] | |
1193 i = 1 | |
1194 resConv <- matG[,i] | |
1195 denom <- 2^groups[i] | |
1196 if(length(groups)>1){ | |
1197 while( i<length(groups) ){ | |
1198 i = i + 1 | |
1199 resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma) | |
1200 #cat({{2^groups[i]}/denom},"\n") | |
1201 denom <- denom + 2^groups[i] | |
1202 } | |
1203 } | |
1204 return(resConv) | |
1205 } | |
1206 | |
1207 # Given a list of PDFs, returns a convoluted PDF | |
1208 groupPosteriors <- function( listPosteriors, max_sigma=20, length_sigma=4001 ,Threshold=2 ){ | |
1209 listPosteriors = listPosteriors[ !is.na(listPosteriors) ] | |
1210 Length_Postrior<-length(listPosteriors) | |
1211 if(Length_Postrior>1 & Length_Postrior<=Threshold){ | |
1212 cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors)) | |
1213 listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma) | |
1214 y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma) | |
1215 return( y/sum(y)/(2*max_sigma/(length_sigma-1)) ) | |
1216 }else if(Length_Postrior==1) return(listPosteriors[[1]]) | |
1217 else if(Length_Postrior==0) return(NA) | |
1218 else { | |
1219 cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors)) | |
1220 y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma ) | |
1221 return( y/sum(y)/(2*max_sigma/(length_sigma-1)) ) | |
1222 } | |
1223 } | |
1224 | |
1225 fastConv<-function(cons, max_sigma=20, length_sigma=4001){ | |
1226 chunks<-break2chunks(G=ncol(cons)) | |
1227 if(ncol(cons)==3) chunks<-2:1 | |
1228 index_chunks_end <- cumsum(chunks) | |
1229 index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1) | |
1230 index_chunks <- cbind(index_chunks_start,index_chunks_end) | |
1231 | |
1232 case <- sum(chunks!=chunks[1]) | |
1233 if(case==1) End <- max(1,((length(index_chunks)/2)-1)) | |
1234 else End <- max(1,((length(index_chunks)/2))) | |
1235 | |
1236 firsts <- sapply(1:End,function(i){ | |
1237 indexes<-index_chunks[i,1]:index_chunks[i,2] | |
1238 convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]] | |
1239 }) | |
1240 if(case==0){ | |
1241 result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) ) | |
1242 }else if(case==1){ | |
1243 last<-list(calculate_bayesGHelper( | |
1244 convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] ) | |
1245 ),0) | |
1246 result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts)) | |
1247 result<-calculate_bayesGHelper( | |
1248 list( | |
1249 cbind( | |
1250 result_first,last[[1]]), | |
1251 c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2)) | |
1252 ) | |
1253 ) | |
1254 } | |
1255 return(as.vector(result)) | |
1256 } | |
1257 | |
1258 # Computes the 95% CI for a pdf | |
1259 calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){ | |
1260 if(length(Pdf)!=length_sigma) return(NA) | |
1261 sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma) | |
1262 cdf = cumsum(Pdf) | |
1263 cdf = cdf/cdf[length(cdf)] | |
1264 return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) ) | |
1265 } | |
1266 | |
1267 # Computes a mean for a pdf | |
1268 calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){ | |
1269 if(length(Pdf)!=length_sigma) return(NA) | |
1270 sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma) | |
1271 norm = {length_sigma-1}/2/max_sigma | |
1272 return( (Pdf%*%sigma_s/norm) ) | |
1273 } | |
1274 | |
1275 # Returns the mean, and the 95% CI for a pdf | |
1276 calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){ | |
1277 if(is.na(Pdf)) | |
1278 return(rep(NA,3)) | |
1279 bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma) | |
1280 bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma) | |
1281 return(c(bMean, bCI)) | |
1282 } | |
1283 | |
1284 # Computes the p-value of a pdf | |
1285 computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){ | |
1286 if(length(Pdf)>1){ | |
1287 norm = {length_sigma-1}/2/max_sigma | |
1288 pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm | |
1289 if(pVal>0.5){ | |
1290 pVal = pVal-1 | |
1291 } | |
1292 return(pVal) | |
1293 }else{ | |
1294 return(NA) | |
1295 } | |
1296 } | |
1297 | |
1298 # Compute p-value of two distributions | |
1299 compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){ | |
1300 #print(c(length(dens1),length(dens2))) | |
1301 if(length(dens1)>1 & length(dens2)>1 ){ | |
1302 dens1<-dens1/sum(dens1) | |
1303 dens2<-dens2/sum(dens2) | |
1304 cum2 <- cumsum(dens2)-dens2/2 | |
1305 tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i]))) | |
1306 #print(tmp) | |
1307 if(tmp>0.5)tmp<-tmp-1 | |
1308 return( tmp ) | |
1309 } | |
1310 else { | |
1311 return(NA) | |
1312 } | |
1313 #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N) | |
1314 } | |
1315 | |
1316 # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations) | |
1317 numberOfSeqsWithMutations <- function(matMutations,test=1){ | |
1318 if(test==4)test=2 | |
1319 cdrSeqs <- 0 | |
1320 fwrSeqs <- 0 | |
1321 if(test==1){#focused | |
1322 cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) }) | |
1323 fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) }) | |
1324 if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0) | |
1325 if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) | |
1326 } | |
1327 if(test==2){#local | |
1328 cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) }) | |
1329 fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) }) | |
1330 if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0) | |
1331 if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) | |
1332 } | |
1333 return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs)) | |
1334 } | |
1335 | |
1336 | |
1337 | |
1338 shadeColor <- function(sigmaVal=NA,pVal=NA){ | |
1339 if(is.na(sigmaVal) & is.na(pVal)) return(NA) | |
1340 if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal) | |
1341 if(is.na(pVal) || pVal==1 || pVal==0){ | |
1342 returnColor = "#FFFFFF"; | |
1343 }else{ | |
1344 colVal=abs(pVal); | |
1345 | |
1346 if(sigmaVal<0){ | |
1347 if(colVal>0.1) | |
1348 returnColor = "#CCFFCC"; | |
1349 if(colVal<=0.1) | |
1350 returnColor = "#99FF99"; | |
1351 if(colVal<=0.050) | |
1352 returnColor = "#66FF66"; | |
1353 if(colVal<=0.010) | |
1354 returnColor = "#33FF33"; | |
1355 if(colVal<=0.005) | |
1356 returnColor = "#00FF00"; | |
1357 | |
1358 }else{ | |
1359 if(colVal>0.1) | |
1360 returnColor = "#FFCCCC"; | |
1361 if(colVal<=0.1) | |
1362 returnColor = "#FF9999"; | |
1363 if(colVal<=0.05) | |
1364 returnColor = "#FF6666"; | |
1365 if(colVal<=0.01) | |
1366 returnColor = "#FF3333"; | |
1367 if(colVal<0.005) | |
1368 returnColor = "#FF0000"; | |
1369 } | |
1370 } | |
1371 | |
1372 return(returnColor) | |
1373 } | |
1374 | |
1375 | |
1376 | |
1377 plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){ | |
1378 if(!log){ | |
1379 x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac | |
1380 y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac | |
1381 }else { | |
1382 if(log==2){ | |
1383 x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac | |
1384 y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac) | |
1385 } | |
1386 if(log==1){ | |
1387 x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac) | |
1388 y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac | |
1389 } | |
1390 if(log==3){ | |
1391 x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac) | |
1392 y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac) | |
1393 } | |
1394 } | |
1395 return(c("x"=x,"y"=y)) | |
1396 } | |
1397 | |
1398 # SHMulation | |
1399 | |
1400 # Based on targeting, introduce a single mutation & then update the targeting | |
1401 oneMutation <- function(){ | |
1402 # Pick a postion + mutation | |
1403 posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting)) | |
1404 posNucNumb = ceiling(posMutation/4) # Nucleotide number | |
1405 posNucKind = 4 - ( (posNucNumb*4) - posMutation ) # Nuc the position mutates to | |
1406 | |
1407 #mutate the simulation sequence | |
1408 seqSimVec <- s2c(seqSim) | |
1409 seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind] | |
1410 seqSim <<- c2s(seqSimVec) | |
1411 | |
1412 #update Mutability, Targeting & MutationsTypes | |
1413 updateMutabilityNTargeting(posNucNumb) | |
1414 | |
1415 #return(c(posNucNumb,NUCLEOTIDES[posNucKind])) | |
1416 return(posNucNumb) | |
1417 } | |
1418 | |
1419 updateMutabilityNTargeting <- function(position){ | |
1420 min_i<-max((position-2),1) | |
1421 max_i<-min((position+2),nchar(seqSim)) | |
1422 min_ii<-min(min_i,3) | |
1423 | |
1424 #mutability - update locally | |
1425 seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)] | |
1426 | |
1427 | |
1428 #targeting - compute locally | |
1429 seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i]) | |
1430 seqTargeting[is.na(seqTargeting)] <<- 0 | |
1431 #mutCodonPos = getCodonPos(position) | |
1432 mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3]) | |
1433 #cat(mutCodonPos,"\n") | |
1434 mutTypeCodon = getCodonPos(position) | |
1435 seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) ) | |
1436 # Stop = 0 | |
1437 if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){ | |
1438 seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0 | |
1439 } | |
1440 | |
1441 | |
1442 #Selection | |
1443 selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R")) | |
1444 # CDR | |
1445 selectedCDR = selectedPos[which(matCDR[selectedPos]==T)] | |
1446 seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR] * exp(selCDR) | |
1447 seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K | |
1448 | |
1449 # FWR | |
1450 selectedFWR = selectedPos[which(matFWR[selectedPos]==T)] | |
1451 seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR] * exp(selFWR) | |
1452 seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K | |
1453 | |
1454 } | |
1455 | |
1456 | |
1457 | |
1458 # Validate the mutation: if the mutation has not been sampled before validate it, else discard it. | |
1459 validateMutation <- function(){ | |
1460 if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation | |
1461 uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1 | |
1462 mutatedPositions[uniqueMutationsIntroduced] <<- mutatedPos | |
1463 }else{ | |
1464 if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation | |
1465 mutatedPositions <<- mutatedPositions[-which(mutatedPositions==mutatedPos)] | |
1466 uniqueMutationsIntroduced <<- uniqueMutationsIntroduced - 1 | |
1467 } | |
1468 } | |
1469 } | |
1470 | |
1471 | |
1472 | |
1473 # Places text (labels) at normalized coordinates | |
1474 myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){ | |
1475 par(xpd=TRUE) | |
1476 if(!log) | |
1477 text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol) | |
1478 else { | |
1479 if(log==2) | |
1480 text( | |
1481 par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac, | |
1482 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac), | |
1483 w,cex=cex,adj=adj,col=thecol) | |
1484 if(log==1) | |
1485 text( | |
1486 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac), | |
1487 par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac, | |
1488 w,cex=cex,adj=adj,col=thecol) | |
1489 if(log==3) | |
1490 text( | |
1491 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac), | |
1492 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac), | |
1493 w,cex=cex,adj=adj,col=thecol) | |
1494 } | |
1495 par(xpd=FALSE) | |
1496 } | |
1497 | |
1498 | |
1499 | |
1500 # Count the mutations in a sequence | |
1501 analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){ | |
1502 | |
1503 paramGL = s2c(matInput[inputMatrixIndex,2]) | |
1504 paramSeq = s2c(matInput[inputMatrixIndex,1]) | |
1505 | |
1506 #if( any(paramSeq=="N") ){ | |
1507 # gapPos_Seq = which(paramSeq=="N") | |
1508 # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"] | |
1509 # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace] | |
1510 #} | |
1511 mutations_val = paramGL != paramSeq | |
1512 | |
1513 if(any(mutations_val)){ | |
1514 mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val] | |
1515 length_mutations =length(mutationPos) | |
1516 mutationInfo = rep(NA,length_mutations) | |
1517 | |
1518 pos<- mutationPos | |
1519 pos_array<-array(sapply(pos,getCodonPos)) | |
1520 codonGL = paramGL[pos_array] | |
1521 codonSeqWhole = paramSeq[pos_array] | |
1522 codonSeq = sapply(pos,function(x){ | |
1523 seqP = paramGL[getCodonPos(x)] | |
1524 muCodonPos = {x-1}%%3+1 | |
1525 seqP[muCodonPos] = paramSeq[x] | |
1526 return(seqP) | |
1527 }) | |
1528 GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s) | |
1529 SeqcodonsWhole = apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s) | |
1530 Seqcodons = apply(codonSeq,2,c2s) | |
1531 | |
1532 mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))}) | |
1533 names(mutationInfo) = mutationPos | |
1534 | |
1535 mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))}) | |
1536 names(mutationInfoWhole) = mutationPos | |
1537 | |
1538 mutationInfo <- mutationInfo[!is.na(mutationInfo)] | |
1539 mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)] | |
1540 | |
1541 if(any(!is.na(mutationInfo))){ | |
1542 | |
1543 #Filter based on Stop (at the codon level) | |
1544 if(seqWithStops==1){ | |
1545 nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"]) | |
1546 mutationInfo = mutationInfo[nucleotidesAtStopCodons] | |
1547 mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons] | |
1548 }else{ | |
1549 countStops = sum(mutationInfoWhole=="Stop") | |
1550 if(seqWithStops==2 & countStops==0) mutationInfo = NA | |
1551 if(seqWithStops==3 & countStops>0) mutationInfo = NA | |
1552 } | |
1553 | |
1554 if(any(!is.na(mutationInfo))){ | |
1555 #Filter mutations based on multipleMutation | |
1556 if(multipleMutation==1 & !is.na(mutationInfo)){ | |
1557 mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole))) | |
1558 tableMutationCodons <- table(mutationCodons) | |
1559 codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1])) | |
1560 if(any(codonsWithMultipleMutations)){ | |
1561 #remove the nucleotide mutations in the codons with multiple mutations | |
1562 mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)] | |
1563 #replace those codons with Ns in the input sequence | |
1564 paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N" | |
1565 matInput[inputMatrixIndex,1] <<- c2s(paramSeq) | |
1566 } | |
1567 } | |
1568 | |
1569 #Filter mutations based on the model | |
1570 if(any(mutationInfo)==T | is.na(any(mutationInfo))){ | |
1571 | |
1572 if(model==1 & !is.na(mutationInfo)){ | |
1573 mutationInfo <- mutationInfo[mutationInfo=="S"] | |
1574 } | |
1575 if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo) | |
1576 else return(NA) | |
1577 }else{ | |
1578 return(NA) | |
1579 } | |
1580 }else{ | |
1581 return(NA) | |
1582 } | |
1583 | |
1584 | |
1585 }else{ | |
1586 return(NA) | |
1587 } | |
1588 | |
1589 | |
1590 }else{ | |
1591 return (NA) | |
1592 } | |
1593 } | |
1594 | |
1595 analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){ | |
1596 | |
1597 paramGL = s2c(inputArray[2]) | |
1598 paramSeq = s2c(inputArray[1]) | |
1599 inputSeq <- inputArray[1] | |
1600 #if( any(paramSeq=="N") ){ | |
1601 # gapPos_Seq = which(paramSeq=="N") | |
1602 # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"] | |
1603 # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace] | |
1604 #} | |
1605 mutations_val = paramGL != paramSeq | |
1606 | |
1607 if(any(mutations_val)){ | |
1608 mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val] | |
1609 length_mutations =length(mutationPos) | |
1610 mutationInfo = rep(NA,length_mutations) | |
1611 | |
1612 pos<- mutationPos | |
1613 pos_array<-array(sapply(pos,getCodonPos)) | |
1614 codonGL = paramGL[pos_array] | |
1615 codonSeqWhole = paramSeq[pos_array] | |
1616 codonSeq = sapply(pos,function(x){ | |
1617 seqP = paramGL[getCodonPos(x)] | |
1618 muCodonPos = {x-1}%%3+1 | |
1619 seqP[muCodonPos] = paramSeq[x] | |
1620 return(seqP) | |
1621 }) | |
1622 GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s) | |
1623 SeqcodonsWhole = apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s) | |
1624 Seqcodons = apply(codonSeq,2,c2s) | |
1625 | |
1626 mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))}) | |
1627 names(mutationInfo) = mutationPos | |
1628 | |
1629 mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))}) | |
1630 names(mutationInfoWhole) = mutationPos | |
1631 | |
1632 mutationInfo <- mutationInfo[!is.na(mutationInfo)] | |
1633 mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)] | |
1634 | |
1635 if(any(!is.na(mutationInfo))){ | |
1636 | |
1637 #Filter based on Stop (at the codon level) | |
1638 if(seqWithStops==1){ | |
1639 nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"]) | |
1640 mutationInfo = mutationInfo[nucleotidesAtStopCodons] | |
1641 mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons] | |
1642 }else{ | |
1643 countStops = sum(mutationInfoWhole=="Stop") | |
1644 if(seqWithStops==2 & countStops==0) mutationInfo = NA | |
1645 if(seqWithStops==3 & countStops>0) mutationInfo = NA | |
1646 } | |
1647 | |
1648 if(any(!is.na(mutationInfo))){ | |
1649 #Filter mutations based on multipleMutation | |
1650 if(multipleMutation==1 & !is.na(mutationInfo)){ | |
1651 mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole))) | |
1652 tableMutationCodons <- table(mutationCodons) | |
1653 codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1])) | |
1654 if(any(codonsWithMultipleMutations)){ | |
1655 #remove the nucleotide mutations in the codons with multiple mutations | |
1656 mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)] | |
1657 #replace those codons with Ns in the input sequence | |
1658 paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N" | |
1659 #matInput[inputMatrixIndex,1] <<- c2s(paramSeq) | |
1660 inputSeq <- c2s(paramSeq) | |
1661 } | |
1662 } | |
1663 | |
1664 #Filter mutations based on the model | |
1665 if(any(mutationInfo)==T | is.na(any(mutationInfo))){ | |
1666 | |
1667 if(model==1 & !is.na(mutationInfo)){ | |
1668 mutationInfo <- mutationInfo[mutationInfo=="S"] | |
1669 } | |
1670 if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq)) | |
1671 else return(list(NA,inputSeq)) | |
1672 }else{ | |
1673 return(list(NA,inputSeq)) | |
1674 } | |
1675 }else{ | |
1676 return(list(NA,inputSeq)) | |
1677 } | |
1678 | |
1679 | |
1680 }else{ | |
1681 return(list(NA,inputSeq)) | |
1682 } | |
1683 | |
1684 | |
1685 }else{ | |
1686 return (list(NA,inputSeq)) | |
1687 } | |
1688 } | |
1689 | |
1690 # triMutability Background Count | |
1691 buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){ | |
1692 | |
1693 #rowOrigMatInput = matInput[inputMatrixIndex,] | |
1694 seqGL = gsub("-", "", matInput[inputMatrixIndex,2]) | |
1695 seqInput = gsub("-", "", matInput[inputMatrixIndex,1]) | |
1696 #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL) | |
1697 tempInput <- cbind(seqInput,seqGL) | |
1698 seqLength = nchar(seqGL) | |
1699 list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops) | |
1700 mutationCount <- list_analyzeMutationsFixed[[1]] | |
1701 seqInput <- list_analyzeMutationsFixed[[2]] | |
1702 BackgroundMatrix = mutabilityMatrix | |
1703 MutationMatrix = mutabilityMatrix | |
1704 MutationCountMatrix = mutabilityMatrix | |
1705 if(!is.na(mutationCount)){ | |
1706 if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ | |
1707 | |
1708 fivermerStartPos = 1:(seqLength-4) | |
1709 fivemerLength <- length(fivermerStartPos) | |
1710 fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4)) | |
1711 fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4)) | |
1712 | |
1713 #Background | |
1714 for(fivemerIndex in 1:fivemerLength){ | |
1715 fivemer = fivemerGL[fivemerIndex] | |
1716 if(!any(grep("N",fivemer))){ | |
1717 fivemerCodonPos = fivemerCodon(fivemerIndex) | |
1718 fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) | |
1719 fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3]) | |
1720 | |
1721 # All mutations model | |
1722 #if(!any(grep("N",fivemerReadingFrameCodon))){ | |
1723 if(model==0){ | |
1724 if(stopMutations==0){ | |
1725 if(!any(grep("N",fivemerReadingFrameCodonInputSeq))) | |
1726 BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1) | |
1727 }else{ | |
1728 if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){ | |
1729 positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1] | |
1730 BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon]) | |
1731 } | |
1732 } | |
1733 }else{ # Only silent mutations | |
1734 if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){ | |
1735 positionWithinCodon = which(fivemerCodonPos==3) | |
1736 BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon]) | |
1737 } | |
1738 } | |
1739 #} | |
1740 } | |
1741 } | |
1742 | |
1743 #Mutations | |
1744 if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"] | |
1745 if(model==1) mutationCount = mutationCount[mutationCount=="S"] | |
1746 mutationPositions = as.numeric(names(mutationCount)) | |
1747 mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)] | |
1748 mutationPositions = mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)] | |
1749 countMutations = 0 | |
1750 for(mutationPosition in mutationPositions){ | |
1751 fivemerIndex = mutationPosition-2 | |
1752 fivemer = fivemerSeq[fivemerIndex] | |
1753 GLfivemer = fivemerGL[fivemerIndex] | |
1754 fivemerCodonPos = fivemerCodon(fivemerIndex) | |
1755 fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) | |
1756 fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3]) | |
1757 if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){ | |
1758 if(model==0){ | |
1759 countMutations = countMutations + 1 | |
1760 MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1) | |
1761 MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1) | |
1762 }else{ | |
1763 if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){ | |
1764 countMutations = countMutations + 1 | |
1765 positionWithinCodon = which(fivemerCodonPos==3) | |
1766 glNuc = substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon) | |
1767 inputNuc = substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon) | |
1768 MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc]) | |
1769 MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1) | |
1770 } | |
1771 } | |
1772 } | |
1773 } | |
1774 | |
1775 seqMutability = MutationMatrix/BackgroundMatrix | |
1776 seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE) | |
1777 #cat(inputMatrixIndex,"\t",countMutations,"\n") | |
1778 return(list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix)) | |
1779 | |
1780 } | |
1781 } | |
1782 | |
1783 } | |
1784 | |
1785 #Returns the codon position containing the middle nucleotide | |
1786 fivemerCodon <- function(fivemerIndex){ | |
1787 codonPos = list(2:4,1:3,3:5) | |
1788 fivemerType = fivemerIndex%%3 | |
1789 return(codonPos[[fivemerType+1]]) | |
1790 } | |
1791 | |
1792 #returns probability values for one mutation in codons resulting in R, S or Stop | |
1793 probMutations <- function(typeOfMutation){ | |
1794 matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3))) | |
1795 for(codon in rownames(matMutationProb)){ | |
1796 if( !any(grep("N",codon)) ){ | |
1797 for(muPos in 1:3){ | |
1798 matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T) | |
1799 glNuc = matCodon[1,muPos] | |
1800 matCodon[,muPos] = canMutateTo(glNuc) | |
1801 substitutionRate = substitution[glNuc,matCodon[,muPos]] | |
1802 typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))}) | |
1803 matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation]) | |
1804 } | |
1805 } | |
1806 } | |
1807 | |
1808 return(matMutationProb) | |
1809 } | |
1810 | |
1811 | |
1812 | |
1813 | |
1814 #Mapping Trinucleotides to fivemers | |
1815 mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){ | |
1816 rownames(triMutability) <- triMutability_Names | |
1817 Fivemer<-rep(NA,1024) | |
1818 names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5) | |
1819 Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE))) | |
1820 Fivemer<-Fivemer/sum(Fivemer) | |
1821 return(Fivemer) | |
1822 } | |
1823 | |
1824 collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){ | |
1825 Indices<-substring(names(Fivemer),3,3)==NUC | |
1826 Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position)) | |
1827 tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE)) | |
1828 } | |
1829 | |
1830 | |
1831 | |
1832 CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){ | |
1833 Indices<-substring(names(Fivemer),3,3)==NUC | |
1834 Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position)) | |
1835 tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE)) | |
1836 } | |
1837 | |
1838 #Uses the real counts of the mutated fivemers | |
1839 CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){ | |
1840 Indices<-substring(names(Fivemer),3,3)==NUC | |
1841 Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position)) | |
1842 tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE)) | |
1843 } | |
1844 | |
1845 bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){ | |
1846 N<-sum(x) | |
1847 if(N){ | |
1848 p<-x/N | |
1849 k<-length(x)-1 | |
1850 tmp<-rmultinom(M, size = N, prob=p) | |
1851 tmp_p<-apply(tmp,2,function(y)y/N) | |
1852 (apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k)))) | |
1853 } | |
1854 else return(matrix(0,2,length(x))) | |
1855 } | |
1856 | |
1857 | |
1858 | |
1859 | |
1860 bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){ | |
1861 | |
1862 N<-sum(x) | |
1863 k<-length(x) | |
1864 y<-rep(1:k,x) | |
1865 tmp<-sapply(1:M,function(i)sample(y,n)) | |
1866 if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n | |
1867 if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n | |
1868 (apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1))))) | |
1869 } | |
1870 | |
1871 | |
1872 | |
1873 p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){ | |
1874 n=sum(x_obs) | |
1875 N<-sum(x) | |
1876 k<-length(x) | |
1877 y<-rep(1:k,x) | |
1878 tmp<-sapply(1:M,function(i)sample(y,n)) | |
1879 if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i))) | |
1880 if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i))) | |
1881 tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M), | |
1882 sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M)) | |
1883 sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])}) | |
1884 } | |
1885 | |
1886 #"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA" | |
1887 # Remove SNPs from IMGT germline segment alleles | |
1888 generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){ | |
1889 repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F) | |
1890 alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2]) | |
1891 SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){ | |
1892 Indices<-NULL | |
1893 for(i in 1:length(x)){ | |
1894 firstSeq = s2c(x[[1]]) | |
1895 iSeq = s2c(x[[i]]) | |
1896 Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="." )) | |
1897 } | |
1898 return(sort(unique(Indices))) | |
1899 }) | |
1900 repertoireOut <- repertoireIn | |
1901 repertoireOut <- lapply(names(repertoireOut), function(repertoireName){ | |
1902 alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2] | |
1903 geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1] | |
1904 alleleSeq <- s2c(repertoireOut[[repertoireName]]) | |
1905 alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N" | |
1906 alleleSeq <- c2s(alleleSeq) | |
1907 repertoireOut[[repertoireName]] <- alleleSeq | |
1908 }) | |
1909 names(repertoireOut) <- names(repertoireIn) | |
1910 write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile) | |
1911 | |
1912 } | |
1913 | |
1914 | |
1915 | |
1916 | |
1917 | |
1918 | |
1919 ############ | |
1920 groupBayes2 = function(indexes, param_resultMat){ | |
1921 | |
1922 BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])})) | |
1923 BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])})) | |
1924 #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])})) | |
1925 #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])})) | |
1926 #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])})) | |
1927 #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])})) | |
1928 return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR, | |
1929 "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) ) | |
1930 #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR, | |
1931 #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR)) | |
1932 # "BayesGDist_Global_CDR" = BayesGDist_Global_CDR, | |
1933 # "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) ) | |
1934 | |
1935 | |
1936 } | |
1937 | |
1938 | |
1939 calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){ | |
1940 G <- max(length(x),length(N),length(p)) | |
1941 x=array(x,dim=G) | |
1942 N=array(N,dim=G) | |
1943 p=array(p,dim=G) | |
1944 | |
1945 indexOfZero = N>0 & p>0 | |
1946 N = N[indexOfZero] | |
1947 x = x[indexOfZero] | |
1948 p = p[indexOfZero] | |
1949 G <- length(x) | |
1950 | |
1951 if(G){ | |
1952 | |
1953 cons<-array( dim=c(length_sigma,G) ) | |
1954 if(G==1) { | |
1955 return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma)) | |
1956 } | |
1957 else { | |
1958 for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma) | |
1959 listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma) | |
1960 y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma) | |
1961 return( y/sum(y)/(2*max_sigma/(length_sigma-1)) ) | |
1962 } | |
1963 }else{ | |
1964 return(NA) | |
1965 } | |
1966 } | |
1967 | |
1968 | |
1969 calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){ | |
1970 matG <- listMatG[[1]] | |
1971 groups <- listMatG[[2]] | |
1972 i = 1 | |
1973 resConv <- matG[,i] | |
1974 denom <- 2^groups[i] | |
1975 if(length(groups)>1){ | |
1976 while( i<length(groups) ){ | |
1977 i = i + 1 | |
1978 resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma) | |
1979 #cat({{2^groups[i]}/denom},"\n") | |
1980 denom <- denom + 2^groups[i] | |
1981 } | |
1982 } | |
1983 return(resConv) | |
1984 } | |
1985 | |
1986 weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){ | |
1987 lx<-length(x) | |
1988 ly<-length(y) | |
1989 if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){ | |
1990 if(w<1){ | |
1991 y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y | |
1992 x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y | |
1993 lx<-length(x1) | |
1994 ly<-length(y1) | |
1995 } | |
1996 else { | |
1997 y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y | |
1998 x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y | |
1999 lx<-length(x1) | |
2000 ly<-length(y1) | |
2001 } | |
2002 } | |
2003 else{ | |
2004 x1<-x | |
2005 y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y | |
2006 ly<-length(y1) | |
2007 } | |
2008 tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y | |
2009 tmp[tmp<=0] = 0 | |
2010 return(tmp/sum(tmp)) | |
2011 } | |
2012 | |
2013 ######################## | |
2014 | |
2015 | |
2016 | |
2017 | |
2018 mutabilityMatrixONE<-rep(0,4) | |
2019 names(mutabilityMatrixONE)<-NUCLEOTIDES | |
2020 | |
2021 # triMutability Background Count | |
2022 buildMutabilityModelONE <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){ | |
2023 | |
2024 #rowOrigMatInput = matInput[inputMatrixIndex,] | |
2025 seqGL = gsub("-", "", matInput[inputMatrixIndex,2]) | |
2026 seqInput = gsub("-", "", matInput[inputMatrixIndex,1]) | |
2027 matInput[inputMatrixIndex,] <<- c(seqInput,seqGL) | |
2028 seqLength = nchar(seqGL) | |
2029 mutationCount <- analyzeMutations(inputMatrixIndex, model, multipleMutation, seqWithStops) | |
2030 BackgroundMatrix = mutabilityMatrixONE | |
2031 MutationMatrix = mutabilityMatrixONE | |
2032 MutationCountMatrix = mutabilityMatrixONE | |
2033 if(!is.na(mutationCount)){ | |
2034 if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ | |
2035 | |
2036 # ONEmerStartPos = 1:(seqLength) | |
2037 # ONEmerLength <- length(ONEmerStartPos) | |
2038 ONEmerGL <- s2c(seqGL) | |
2039 ONEmerSeq <- s2c(seqInput) | |
2040 | |
2041 #Background | |
2042 for(ONEmerIndex in 1:seqLength){ | |
2043 ONEmer = ONEmerGL[ONEmerIndex] | |
2044 if(ONEmer!="N"){ | |
2045 ONEmerCodonPos = getCodonPos(ONEmerIndex) | |
2046 ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos]) | |
2047 ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] ) | |
2048 | |
2049 # All mutations model | |
2050 #if(!any(grep("N",ONEmerReadingFrameCodon))){ | |
2051 if(model==0){ | |
2052 if(stopMutations==0){ | |
2053 if(!any(grep("N",ONEmerReadingFrameCodonInputSeq))) | |
2054 BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1) | |
2055 }else{ | |
2056 if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){ | |
2057 positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1] | |
2058 BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon]) | |
2059 } | |
2060 } | |
2061 }else{ # Only silent mutations | |
2062 if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){ | |
2063 positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex) | |
2064 BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon]) | |
2065 } | |
2066 } | |
2067 } | |
2068 } | |
2069 } | |
2070 | |
2071 #Mutations | |
2072 if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"] | |
2073 if(model==1) mutationCount = mutationCount[mutationCount=="S"] | |
2074 mutationPositions = as.numeric(names(mutationCount)) | |
2075 mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)] | |
2076 mutationPositions = mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)] | |
2077 countMutations = 0 | |
2078 for(mutationPosition in mutationPositions){ | |
2079 ONEmerIndex = mutationPosition | |
2080 ONEmer = ONEmerSeq[ONEmerIndex] | |
2081 GLONEmer = ONEmerGL[ONEmerIndex] | |
2082 ONEmerCodonPos = getCodonPos(ONEmerIndex) | |
2083 ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos]) | |
2084 ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos]) | |
2085 if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){ | |
2086 if(model==0){ | |
2087 countMutations = countMutations + 1 | |
2088 MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1) | |
2089 MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1) | |
2090 }else{ | |
2091 if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){ | |
2092 countMutations = countMutations + 1 | |
2093 positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex) | |
2094 glNuc = substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon) | |
2095 inputNuc = substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon) | |
2096 MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc]) | |
2097 MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1) | |
2098 } | |
2099 } | |
2100 } | |
2101 } | |
2102 | |
2103 seqMutability = MutationMatrix/BackgroundMatrix | |
2104 seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE) | |
2105 #cat(inputMatrixIndex,"\t",countMutations,"\n") | |
2106 return(list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix)) | |
2107 # tmp<-list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix) | |
2108 } | |
2109 } | |
2110 | |
2111 ################ | |
2112 # $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $ | |
2113 | |
2114 trim <- function(s, recode.factor=TRUE, ...) | |
2115 UseMethod("trim", s) | |
2116 | |
2117 trim.default <- function(s, recode.factor=TRUE, ...) | |
2118 s | |
2119 | |
2120 trim.character <- function(s, recode.factor=TRUE, ...) | |
2121 { | |
2122 s <- sub(pattern="^ +", replacement="", x=s) | |
2123 s <- sub(pattern=" +$", replacement="", x=s) | |
2124 s | |
2125 } | |
2126 | |
2127 trim.factor <- function(s, recode.factor=TRUE, ...) | |
2128 { | |
2129 levels(s) <- trim(levels(s)) | |
2130 if(recode.factor) { | |
2131 dots <- list(x=s, ...) | |
2132 if(is.null(dots$sort)) dots$sort <- sort | |
2133 s <- do.call(what=reorder.factor, args=dots) | |
2134 } | |
2135 s | |
2136 } | |
2137 | |
2138 trim.list <- function(s, recode.factor=TRUE, ...) | |
2139 lapply(s, trim, recode.factor=recode.factor, ...) | |
2140 | |
2141 trim.data.frame <- function(s, recode.factor=TRUE, ...) | |
2142 { | |
2143 s[] <- trim.list(s, recode.factor=recode.factor, ...) | |
2144 s | |
2145 } | |
2146 ####################################### | |
2147 # Compute the expected for each sequence-germline pair by codon | |
2148 getExpectedIndividualByCodon <- function(matInput){ | |
2149 if( any(grep("multicore",search())) ){ | |
2150 facGL <- factor(matInput[,2]) | |
2151 facLevels = levels(facGL) | |
2152 LisGLs_MutabilityU = mclapply(1:length(facLevels), function(x){ | |
2153 computeMutabilities(facLevels[x]) | |
2154 }) | |
2155 facIndex = match(facGL,facLevels) | |
2156 | |
2157 LisGLs_Mutability = mclapply(1:nrow(matInput), function(x){ | |
2158 cInput = rep(NA,nchar(matInput[x,1])) | |
2159 cInput[s2c(matInput[x,1])!="N"] = 1 | |
2160 LisGLs_MutabilityU[[facIndex[x]]] * cInput | |
2161 }) | |
2162 | |
2163 LisGLs_Targeting = mclapply(1:dim(matInput)[1], function(x){ | |
2164 computeTargeting(matInput[x,2],LisGLs_Mutability[[x]]) | |
2165 }) | |
2166 | |
2167 LisGLs_MutationTypes = mclapply(1:length(matInput[,2]),function(x){ | |
2168 #print(x) | |
2169 computeMutationTypes(matInput[x,2]) | |
2170 }) | |
2171 | |
2172 LisGLs_R_Exp = mclapply(1:nrow(matInput), function(x){ | |
2173 Exp_R <- rollapply(as.zoo(1:readEnd),width=3,by=3, | |
2174 function(codonNucs){ | |
2175 RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") | |
2176 sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) | |
2177 } | |
2178 ) | |
2179 }) | |
2180 | |
2181 LisGLs_S_Exp = mclapply(1:nrow(matInput), function(x){ | |
2182 Exp_S <- rollapply(as.zoo(1:readEnd),width=3,by=3, | |
2183 function(codonNucs){ | |
2184 SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S") | |
2185 sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T ) | |
2186 } | |
2187 ) | |
2188 }) | |
2189 | |
2190 Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T) | |
2191 Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T) | |
2192 return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) ) | |
2193 }else{ | |
2194 facGL <- factor(matInput[,2]) | |
2195 facLevels = levels(facGL) | |
2196 LisGLs_MutabilityU = lapply(1:length(facLevels), function(x){ | |
2197 computeMutabilities(facLevels[x]) | |
2198 }) | |
2199 facIndex = match(facGL,facLevels) | |
2200 | |
2201 LisGLs_Mutability = lapply(1:nrow(matInput), function(x){ | |
2202 cInput = rep(NA,nchar(matInput[x,1])) | |
2203 cInput[s2c(matInput[x,1])!="N"] = 1 | |
2204 LisGLs_MutabilityU[[facIndex[x]]] * cInput | |
2205 }) | |
2206 | |
2207 LisGLs_Targeting = lapply(1:dim(matInput)[1], function(x){ | |
2208 computeTargeting(matInput[x,2],LisGLs_Mutability[[x]]) | |
2209 }) | |
2210 | |
2211 LisGLs_MutationTypes = lapply(1:length(matInput[,2]),function(x){ | |
2212 #print(x) | |
2213 computeMutationTypes(matInput[x,2]) | |
2214 }) | |
2215 | |
2216 LisGLs_R_Exp = lapply(1:nrow(matInput), function(x){ | |
2217 Exp_R <- rollapply(as.zoo(1:readEnd),width=3,by=3, | |
2218 function(codonNucs){ | |
2219 RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") | |
2220 sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) | |
2221 } | |
2222 ) | |
2223 }) | |
2224 | |
2225 LisGLs_S_Exp = lapply(1:nrow(matInput), function(x){ | |
2226 Exp_S <- rollapply(as.zoo(1:readEnd),width=3,by=3, | |
2227 function(codonNucs){ | |
2228 SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S") | |
2229 sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T ) | |
2230 } | |
2231 ) | |
2232 }) | |
2233 | |
2234 Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T) | |
2235 Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T) | |
2236 return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) ) | |
2237 } | |
2238 } | |
2239 | |
2240 # getObservedMutationsByCodon <- function(listMutations){ | |
2241 # numbSeqs <- length(listMutations) | |
2242 # obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3)))) | |
2243 # obsMu_S <- obsMu_R | |
2244 # temp <- mclapply(1:length(listMutations), function(i){ | |
2245 # arrMutations = listMutations[[i]] | |
2246 # RPos = as.numeric(names(arrMutations)[arrMutations=="R"]) | |
2247 # RPos <- sapply(RPos,getCodonNumb) | |
2248 # if(any(RPos)){ | |
2249 # tabR <- table(RPos) | |
2250 # obsMu_R[i,as.numeric(names(tabR))] <<- tabR | |
2251 # } | |
2252 # | |
2253 # SPos = as.numeric(names(arrMutations)[arrMutations=="S"]) | |
2254 # SPos <- sapply(SPos,getCodonNumb) | |
2255 # if(any(SPos)){ | |
2256 # tabS <- table(SPos) | |
2257 # obsMu_S[i,names(tabS)] <<- tabS | |
2258 # } | |
2259 # } | |
2260 # ) | |
2261 # return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) | |
2262 # } | |
2263 | |
2264 getObservedMutationsByCodon <- function(listMutations){ | |
2265 numbSeqs <- length(listMutations) | |
2266 obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3)))) | |
2267 obsMu_S <- obsMu_R | |
2268 temp <- lapply(1:length(listMutations), function(i){ | |
2269 arrMutations = listMutations[[i]] | |
2270 RPos = as.numeric(names(arrMutations)[arrMutations=="R"]) | |
2271 RPos <- sapply(RPos,getCodonNumb) | |
2272 if(any(RPos)){ | |
2273 tabR <- table(RPos) | |
2274 obsMu_R[i,as.numeric(names(tabR))] <<- tabR | |
2275 } | |
2276 | |
2277 SPos = as.numeric(names(arrMutations)[arrMutations=="S"]) | |
2278 SPos <- sapply(SPos,getCodonNumb) | |
2279 if(any(SPos)){ | |
2280 tabS <- table(SPos) | |
2281 obsMu_S[i,names(tabS)] <<- tabS | |
2282 } | |
2283 } | |
2284 ) | |
2285 return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) | |
2286 } | |
2287 |