Mercurial > repos > davidvanzessen > mutation_analysis
diff change_o/MakeDb.py @ 0:8a5a2abbb870 draft default tip
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 29 Aug 2016 05:36:10 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/change_o/MakeDb.py Mon Aug 29 05:36:10 2016 -0400 @@ -0,0 +1,1025 @@ +#!/usr/bin/env python3 +""" +Create tab-delimited database file to store sequence alignment information +""" +# Info +__author__ = 'Namita Gupta, Jason Anthony Vander Heiden' +from changeo import __version__, __date__ + +# Imports +import csv +import os +import re +import sys +import pandas as pd +import tarfile +import zipfile +from argparse import ArgumentParser +from collections import OrderedDict +from itertools import groupby +from shutil import rmtree +from tempfile import mkdtemp +from textwrap import dedent +from time import time +from Bio import SeqIO +from Bio.Seq import Seq +from Bio.Alphabet import IUPAC + +# Presto and changeo imports +from presto.Defaults import default_out_args +from presto.Annotation import parseAnnotation +from presto.IO import countSeqFile, printLog, printProgress +from changeo.Commandline import CommonHelpFormatter, getCommonArgParser, parseCommonArgs +from changeo.IO import getDbWriter, countDbFile, getRepo +from changeo.Receptor import IgRecord, parseAllele, v_allele_regex, d_allele_regex, \ + j_allele_regex + +# Default parameters +default_delimiter = ('\t', ',', '-') + + +def gapV(ig_dict, repo_dict): + """ + Insert gaps into V region and update alignment information + + Arguments: + ig_dict : Dictionary of parsed IgBlast output + repo_dict : Dictionary of IMGT gapped germline sequences + + Returns: + dict : Updated with SEQUENCE_IMGT, V_GERM_START_IMGT, and V_GERM_LENGTH_IMGT fields + """ + + seq_imgt = '.' * (int(ig_dict['V_GERM_START_VDJ'])-1) + ig_dict['SEQUENCE_VDJ'] + + # Find gapped germline V segment + vgene = parseAllele(ig_dict['V_CALL'], v_allele_regex, 'first') + vkey = (vgene, ) + #TODO: Figure out else case + if vkey in repo_dict: + vgap = repo_dict[vkey] + # Iterate over gaps in the germline segment + gaps = re.finditer(r'\.', vgap) + gapcount = int(ig_dict['V_GERM_START_VDJ'])-1 + for gap in gaps: + i = gap.start() + # Break if gap begins after V region + if i >= ig_dict['V_GERM_LENGTH_VDJ'] + gapcount: + break + # Insert gap into IMGT sequence + seq_imgt = seq_imgt[:i] + '.' + seq_imgt[i:] + # Update gap counter + gapcount += 1 + ig_dict['SEQUENCE_IMGT'] = seq_imgt + # Update IMGT positioning information for V + ig_dict['V_GERM_START_IMGT'] = 1 + ig_dict['V_GERM_LENGTH_IMGT'] = ig_dict['V_GERM_LENGTH_VDJ'] + gapcount + + return ig_dict + + +def getIMGTJunc(ig_dict, repo_dict): + """ + Identify junction region by IMGT definition + + Arguments: + ig_dict : Dictionary of parsed IgBlast output + repo_dict : Dictionary of IMGT gapped germline sequences + + Returns: + dict : Updated with JUNCTION_LENGTH_IMGT and JUNCTION_IMGT fields + """ + # Find germline J segment + jgene = parseAllele(ig_dict['J_CALL'], j_allele_regex, 'first') + jkey = (jgene, ) + #TODO: Figure out else case + if jkey in repo_dict: + # Get germline J sequence + jgerm = repo_dict[jkey] + jgerm = jgerm[:ig_dict['J_GERM_START']+ig_dict['J_GERM_LENGTH']-1] + # Look for (F|W)GXG aa motif in nt sequence + motif = re.search(r'T(TT|TC|GG)GG[ACGT]{4}GG[AGCT]', jgerm) + aa_end = len(ig_dict['SEQUENCE_IMGT']) + #TODO: Figure out else case + if motif: + # print('\n', motif.group()) + aa_end = motif.start() - len(jgerm) + 3 + # Add fields to dict + ig_dict['JUNCTION'] = ig_dict['SEQUENCE_IMGT'][309:aa_end] + ig_dict['JUNCTION_LENGTH'] = len(ig_dict['JUNCTION']) + + return ig_dict + + +def getRegions(ig_dict): + """ + Identify FWR and CDR regions by IMGT definition + + Arguments: + ig_dict : Dictionary of parsed alignment output + + Returns: + dict : Updated with FWR1_IMGT, FWR2_IMGT, FWR3_IMGT, FWR4_IMGT, + CDR1_IMGT, CDR2_IMGT, and CDR3_IMGT fields + """ + try: + seq_len = len(ig_dict['SEQUENCE_IMGT']) + ig_dict['FWR1_IMGT'] = ig_dict['SEQUENCE_IMGT'][0:min(78,seq_len)] + except (KeyError, IndexError): + return ig_dict + + try: ig_dict['CDR1_IMGT'] = ig_dict['SEQUENCE_IMGT'][78:min(114, seq_len)] + except (IndexError): return ig_dict + + try: ig_dict['FWR2_IMGT'] = ig_dict['SEQUENCE_IMGT'][114:min(165, seq_len)] + except (IndexError): return ig_dict + + try: ig_dict['CDR2_IMGT'] = ig_dict['SEQUENCE_IMGT'][165:min(195, seq_len)] + except (IndexError): return ig_dict + + try: ig_dict['FWR3_IMGT'] = ig_dict['SEQUENCE_IMGT'][195:min(312, seq_len)] + except (IndexError): return ig_dict + + try: + cdr3_end = 306 + ig_dict['JUNCTION_LENGTH'] + ig_dict['CDR3_IMGT'] = ig_dict['SEQUENCE_IMGT'][312:cdr3_end] + ig_dict['FWR4_IMGT'] = ig_dict['SEQUENCE_IMGT'][cdr3_end:] + except (KeyError, IndexError): + return ig_dict + + return ig_dict + + +def getSeqforIgBlast(seq_file): + """ + Fetch input sequences for IgBlast queries + + Arguments: + seq_file = a fasta file of sequences input to IgBlast + + Returns: + a dictionary of {ID:Seq} + """ + + seq_dict = SeqIO.index(seq_file, "fasta", IUPAC.ambiguous_dna) + + # Create a seq_dict ID translation using IDs truncate up to space or 50 chars + seqs = {} + for seq in seq_dict.values(): + seqs.update({seq.description:str(seq.seq)}) + + return seqs + + +def findLine(handle, query): + """ + Finds line with query string in file + + Arguments: + handle = file handle in which to search for line + query = query string for which to search in file + + Returns: + line from handle in which query string was found + """ + for line in handle: + if(re.match(query, line)): + return line + + +def extractIMGT(imgt_output): + """ + Extract necessary files from IMGT results, zipped or unzipped + + Arguments: + imgt_output = zipped file or unzipped folder output by IMGT + + Returns: + sorted list of filenames from which information will be read + """ + #file_ext = os.path.splitext(imgt_output)[1].lower() + imgt_flags = ('1_Summary', '2_IMGT-gapped', '3_Nt-sequences', '6_Junction') + temp_dir = mkdtemp() + if zipfile.is_zipfile(imgt_output): + # Open zip file + imgt_zip = zipfile.ZipFile(imgt_output, 'r') + # Extract required files + imgt_files = sorted([n for n in imgt_zip.namelist() \ + if os.path.basename(n).startswith(imgt_flags)]) + imgt_zip.extractall(temp_dir, imgt_files) + # Define file list + imgt_files = [os.path.join(temp_dir, f) for f in imgt_files] + elif os.path.isdir(imgt_output): + # Find required files in folder + folder_files = [] + for root, dirs, files in os.walk(imgt_output): + folder_files.extend([os.path.join(os.path.abspath(root), f) for f in files]) + # Define file list + imgt_files = sorted([n for n in folder_files \ + if os.path.basename(n).startswith(imgt_flags)]) + elif tarfile.is_tarfile(imgt_output): + # Open zip file + imgt_tar = tarfile.open(imgt_output, 'r') + # Extract required files + imgt_files = sorted([n for n in imgt_tar.getnames() \ + if os.path.basename(n).startswith(imgt_flags)]) + imgt_tar.extractall(temp_dir, [imgt_tar.getmember(n) for n in imgt_files]) + # Define file list + imgt_files = [os.path.join(temp_dir, f) for f in imgt_files] + else: + sys.exit('ERROR: Unsupported IGMT output file. Must be either a zipped file (.zip), LZMA compressed tarfile (.txz) or a folder.') + + if len(imgt_files) > len(imgt_flags): # e.g. multiple 1_Summary files + sys.exit('ERROR: Wrong files in IMGT output %s.' % imgt_output) + elif len(imgt_files) < len(imgt_flags): + sys.exit('ERROR: Missing necessary file IMGT output %s.' % imgt_output) + + return temp_dir, imgt_files + + +# TODO: return a dictionary with keys determined by the comment strings in the blocks, thus avoiding problems with missing blocks +def readOneIgBlastResult(block): + """ + Parse a single IgBLAST query result + + Arguments: + block = itertools groupby object of single result + + Returns: + None if no results, otherwise list of DataFrames for each result block + """ + results = list() + i = 0 + for match, subblock in groupby(block, lambda l: l=='\n'): + if not match: + # Strip whitespace and comments + sub = [s.strip() for s in subblock if not s.startswith('#')] + + # Continue on empty block + if not sub: continue + else: i += 1 + + # Split by tabs + sub = [s.split('\t') for s in sub] + + # Append list for "V-(D)-J rearrangement summary" (i == 1) + # And "V-(D)-J junction details" (i == 2) + # Otherwise append DataFrame of subblock + if i == 1 or i == 2: + results.append(sub[0]) + else: + df = pd.DataFrame(sub) + if not df.empty: results.append(df) + + return results if results else None + + +# TODO: needs more speeds. pandas is probably to blame. +def readIgBlast(igblast_output, seq_dict, repo_dict, + score_fields=False, region_fields=False): + """ + Reads IgBlast output + + Arguments: + igblast_output = IgBlast output file (format 7) + seq_dict = a dictionary of {ID:Seq} from input fasta file + repo_dict = dictionary of IMGT gapped germline sequences + score_fields = if True parse alignment scores + region_fields = if True add FWR and CDR region fields + + Returns: + a generator of dictionaries containing alignment data + """ + + # Open IgBlast output file + with open(igblast_output) as f: + # Iterate over individual results (separated by # IGBLASTN) + for k1, block in groupby(f, lambda x: re.match('# IGBLASTN', x)): + block = list(block) + if not k1: + # TODO: move query name extraction into block parser readOneIgBlastResult(). + # Extract sequence ID + query_name = ' '.join(block[0].strip().split(' ')[2:]) + # Initialize db_gen to have ID and input sequence + db_gen = {'SEQUENCE_ID': query_name, + 'SEQUENCE_INPUT': seq_dict[query_name]} + + # Parse further sub-blocks + block_list = readOneIgBlastResult(block) + + # TODO: this is indented pretty far. should be a separate function. or several functions. + # If results exist, parse further to obtain full db_gen + if block_list is not None: + # Parse quality information + db_gen['STOP'] = 'T' if block_list[0][-4] == 'Yes' else 'F' + db_gen['IN_FRAME'] = 'T' if block_list[0][-3] == 'In-frame' else 'F' + db_gen['FUNCTIONAL'] = 'T' if block_list[0][-2] == 'Yes' else 'F' + if block_list[0][-1] == '-': + db_gen['SEQUENCE_INPUT'] = str(Seq(db_gen['SEQUENCE_INPUT'], + IUPAC.ambiguous_dna).reverse_complement()) + + # Parse V, D, and J calls + call_str = ' '.join(block_list[0]) + v_call = parseAllele(call_str, v_allele_regex, action='list') + d_call = parseAllele(call_str, d_allele_regex, action='list') + j_call = parseAllele(call_str, j_allele_regex, action='list') + db_gen['V_CALL'] = ','.join(v_call) if v_call is not None else 'None' + db_gen['D_CALL'] = ','.join(d_call) if d_call is not None else 'None' + db_gen['J_CALL'] = ','.join(j_call) if j_call is not None else 'None' + + # Parse junction sequence + # db_gen['JUNCTION_VDJ'] = re.sub('(N/A)|\[|\(|\)|\]', '', ''.join(block_list[1])) + # db_gen['JUNCTION_LENGTH_VDJ'] = len(db_gen['JUNCTION_VDJ']) + + # TODO: IgBLAST does a stupid and doesn't output block #3 sometimes. why? + # TODO: maybe we should fail these. they look craptastic. + #pd.set_option('display.width', 500) + #print query_name, len(block_list), hit_idx + #for i, x in enumerate(block_list): + # print '[%i]' % i + # print x + + # Parse segment start and stop positions + hit_df = block_list[-1] + + # Alignment info block + # 0: segment + # 1: query id + # 2: subject id + # 3: % identity + # 4: alignment length + # 5: mismatches + # 6: gap opens + # 7: gaps + # 8: q. start + # 9: q. end + # 10: s. start + # 11: s. end + # 12: evalue + # 13: bit score + # 14: query seq + # 15: subject seq + # 16: btop + + # If V call exists, parse V alignment information + seq_vdj = '' + if v_call is not None: + v_align = hit_df[hit_df[0] == 'V'].iloc[0] + # Germline positions + db_gen['V_GERM_START_VDJ'] = int(v_align[10]) + db_gen['V_GERM_LENGTH_VDJ'] = int(v_align[11]) - db_gen['V_GERM_START_VDJ'] + 1 + # Query sequence positions + db_gen['V_SEQ_START'] = int(v_align[8]) + db_gen['V_SEQ_LENGTH'] = int(v_align[9]) - db_gen['V_SEQ_START'] + 1 + + if int(v_align[6]) == 0: + db_gen['INDELS'] = 'F' + else: + db_gen['INDELS'] = 'T' + # Set functional to none so record gets tossed (junction will be wrong) + # db_gen['FUNCTIONAL'] = None + + # V alignment scores + if score_fields: + try: db_gen['V_SCORE'] = float(v_align[13]) + except (TypeError, ValueError): db_gen['V_SCORE'] = 'None' + + try: db_gen['V_IDENTITY'] = float(v_align[3]) / 100.0 + except (TypeError, ValueError): db_gen['V_IDENTITY'] = 'None' + + try: db_gen['V_EVALUE'] = float(v_align[12]) + except (TypeError, ValueError): db_gen['V_EVALUE'] = 'None' + + try: db_gen['V_BTOP'] = v_align[16] + except (TypeError, ValueError): db_gen['V_BTOP'] = 'None' + + # Update VDJ sequence, removing insertions + start = 0 + for m in re.finditer(r'-', v_align[15]): + ins = m.start() + seq_vdj += v_align[14][start:ins] + start = ins + 1 + seq_vdj += v_align[14][start:] + + # TODO: needs to check that the V results are present before trying to determine N1_LENGTH from them. + # If D call exists, parse D alignment information + if d_call is not None: + d_align = hit_df[hit_df[0] == 'D'].iloc[0] + + # TODO: this is kinda gross. not sure how else to fix the alignment overlap problem though. + # Determine N-region length and amount of J overlap with V or D alignment + overlap = 0 + if v_call is not None: + n1_len = int(d_align[8]) - (db_gen['V_SEQ_START'] + db_gen['V_SEQ_LENGTH']) + if n1_len < 0: + db_gen['N1_LENGTH'] = 0 + overlap = abs(n1_len) + else: + db_gen['N1_LENGTH'] = n1_len + n1_start = (db_gen['V_SEQ_START'] + db_gen['V_SEQ_LENGTH']-1) + n1_end = int(d_align[8])-1 + seq_vdj += db_gen['SEQUENCE_INPUT'][n1_start:n1_end] + + # Query sequence positions + db_gen['D_SEQ_START'] = int(d_align[8]) + overlap + db_gen['D_SEQ_LENGTH'] = max(int(d_align[9]) - db_gen['D_SEQ_START'] + 1, 0) + + # Germline positions + db_gen['D_GERM_START'] = int(d_align[10]) + overlap + db_gen['D_GERM_LENGTH'] = max(int(d_align[11]) - db_gen['D_GERM_START'] + 1, 0) + + # Update VDJ sequence, removing insertions + start = overlap + for m in re.finditer(r'-', d_align[15]): + ins = m.start() + seq_vdj += d_align[14][start:ins] + start = ins + 1 + seq_vdj += d_align[14][start:] + + # TODO: needs to check that the V results are present before trying to determine N1_LENGTH from them. + # If J call exists, parse J alignment information + if j_call is not None: + j_align = hit_df[hit_df[0] == 'J'].iloc[0] + + # TODO: this is kinda gross. not sure how else to fix the alignment overlap problem though. + # Determine N-region length and amount of J overlap with V or D alignment + overlap = 0 + if d_call is not None: + n2_len = int(j_align[8]) - (db_gen['D_SEQ_START'] + db_gen['D_SEQ_LENGTH']) + if n2_len < 0: + db_gen['N2_LENGTH'] = 0 + overlap = abs(n2_len) + else: + db_gen['N2_LENGTH'] = n2_len + n2_start = (db_gen['D_SEQ_START']+db_gen['D_SEQ_LENGTH']-1) + n2_end = int(j_align[8])-1 + seq_vdj += db_gen['SEQUENCE_INPUT'][n2_start:n2_end] + elif v_call is not None: + n1_len = int(j_align[8]) - (db_gen['V_SEQ_START'] + db_gen['V_SEQ_LENGTH']) + if n1_len < 0: + db_gen['N1_LENGTH'] = 0 + overlap = abs(n1_len) + else: + db_gen['N1_LENGTH'] = n1_len + n1_start = (db_gen['V_SEQ_START']+db_gen['V_SEQ_LENGTH']-1) + n1_end = int(j_align[8])-1 + seq_vdj += db_gen['SEQUENCE_INPUT'][n1_start:n1_end] + else: + db_gen['N1_LENGTH'] = 0 + + # Query positions + db_gen['J_SEQ_START'] = int(j_align[8]) + overlap + db_gen['J_SEQ_LENGTH'] = max(int(j_align[9]) - db_gen['J_SEQ_START'] + 1, 0) + + # Germline positions + db_gen['J_GERM_START'] = int(j_align[10]) + overlap + db_gen['J_GERM_LENGTH'] = max(int(j_align[11]) - db_gen['J_GERM_START'] + 1, 0) + + # J alignment scores + if score_fields: + try: db_gen['J_SCORE'] = float(j_align[13]) + except (TypeError, ValueError): db_gen['J_SCORE'] = 'None' + + try: db_gen['J_IDENTITY'] = float(j_align[3]) / 100.0 + except (TypeError, ValueError): db_gen['J_IDENTITY'] = 'None' + + try: db_gen['J_EVALUE'] = float(j_align[12]) + except (TypeError, ValueError): db_gen['J_EVALUE'] = 'None' + + try: db_gen['J_BTOP'] = j_align[16] + except (TypeError, ValueError): db_gen['J_BTOP'] = 'None' + + # Update VDJ sequence, removing insertions + start = overlap + for m in re.finditer(r'-', j_align[15]): + ins = m.start() + seq_vdj += j_align[14][start:ins] + start = ins + 1 + seq_vdj += j_align[14][start:] + + db_gen['SEQUENCE_VDJ'] = seq_vdj + + # Create IMGT-gapped sequence and infer IMGT junction + if v_call is not None: + db_gen = gapV(db_gen, repo_dict) + if j_call is not None: + db_gen = getIMGTJunc(db_gen, repo_dict) + + # FWR and CDR regions + if region_fields: getRegions(db_gen) + + yield IgRecord(db_gen) + + +# TODO: should be more readable +def readIMGT(imgt_files, score_fields=False, region_fields=False): + """ + Reads IMGT/HighV-Quest output + + Arguments: + imgt_files = IMGT/HighV-Quest output files 1, 2, 3, and 6 + score_fields = if True parse alignment scores + region_fields = if True add FWR and CDR region fields + + Returns: + a generator of dictionaries containing alignment data + """ + imgt_iters = [csv.DictReader(open(f, 'rU'), delimiter='\t') for f in imgt_files] + # Create a dictionary for each sequence alignment and yield its generator + for sm, gp, nt, jn in zip(*imgt_iters): + if len(set([sm['Sequence ID'], + gp['Sequence ID'], + nt['Sequence ID'], + jn['Sequence ID']])) != 1: + sys.exit('Error: IMGT files are corrupt starting with Summary file record %s' \ + % sm['Sequence ID']) + + db_gen = {'SEQUENCE_ID': sm['Sequence ID'], + 'SEQUENCE_INPUT': sm['Sequence']} + + if 'No results' not in sm['Functionality']: + db_gen['FUNCTIONAL'] = ['?','T','F'][('productive' in sm['Functionality']) + + ('unprod' in sm['Functionality'])] + db_gen['IN_FRAME'] = ['?','T','F'][('in-frame' in sm['JUNCTION frame']) + + ('out-of-frame' in sm['JUNCTION frame'])], + db_gen['STOP'] = ['F','?','T'][('stop codon' in sm['Functionality comment']) + + ('unprod' in sm['Functionality'])] + db_gen['MUTATED_INVARIANT'] = ['F','?','T'][(any(('missing' in sm['Functionality comment'], + 'missing' in sm['V-REGION potential ins/del']))) + + ('unprod' in sm['Functionality'])] + db_gen['INDELS'] = ['F','T'][any((sm['V-REGION potential ins/del'], + sm['V-REGION insertions'], + sm['V-REGION deletions']))] + + db_gen['SEQUENCE_VDJ'] = nt['V-D-J-REGION'] if nt['V-D-J-REGION'] else nt['V-J-REGION'] + db_gen['SEQUENCE_IMGT'] = gp['V-D-J-REGION'] if gp['V-D-J-REGION'] else gp['V-J-REGION'] + + db_gen['V_CALL'] = re.sub('\sor\s', ',', re.sub(',', '', gp['V-GENE and allele'])) + db_gen['D_CALL'] = re.sub('\sor\s', ',', re.sub(',', '', gp['D-GENE and allele'])) + db_gen['J_CALL'] = re.sub('\sor\s', ',', re.sub(',', '', gp['J-GENE and allele'])) + + v_seq_length = len(nt['V-REGION']) if nt['V-REGION'] else 0 + db_gen['V_SEQ_START'] = nt['V-REGION start'] + db_gen['V_SEQ_LENGTH'] = v_seq_length + db_gen['V_GERM_START_IMGT'] = 1 + db_gen['V_GERM_LENGTH_IMGT'] = len(gp['V-REGION']) if gp['V-REGION'] else 0 + + db_gen['N1_LENGTH'] = sum(int(i) for i in [jn["P3'V-nt nb"], + jn['N-REGION-nt nb'], + jn['N1-REGION-nt nb'], + jn["P5'D-nt nb"]] if i) + db_gen['D_SEQ_START'] = sum(int(i) for i in [1, v_seq_length, + jn["P3'V-nt nb"], + jn['N-REGION-nt nb'], + jn['N1-REGION-nt nb'], + jn["P5'D-nt nb"]] if i) + db_gen['D_SEQ_LENGTH'] = int(jn["D-REGION-nt nb"] or 0) + db_gen['D_GERM_START'] = int(jn["5'D-REGION trimmed-nt nb"] or 0) + 1 + db_gen['D_GERM_LENGTH'] = int(jn["D-REGION-nt nb"] or 0) + db_gen['N2_LENGTH'] = sum(int(i) for i in [jn["P3'D-nt nb"], + jn['N2-REGION-nt nb'], + jn["P5'J-nt nb"]] if i) + + db_gen['J_SEQ_START_IMGT'] = sum(int(i) for i in [1, v_seq_length, + jn["P3'V-nt nb"], + jn['N-REGION-nt nb'], + jn['N1-REGION-nt nb'], + jn["P5'D-nt nb"], + jn["D-REGION-nt nb"], + jn["P3'D-nt nb"], + jn['N2-REGION-nt nb'], + jn["P5'J-nt nb"]] if i) + db_gen['J_SEQ_LENGTH'] = len(nt['J-REGION']) if nt['J-REGION'] else 0 + db_gen['J_GERM_START'] = int(jn["5'J-REGION trimmed-nt nb"] or 0) + 1 + db_gen['J_GERM_LENGTH'] = len(gp['J-REGION']) if gp['J-REGION'] else 0 + + db_gen['JUNCTION_LENGTH'] = len(jn['JUNCTION']) if jn['JUNCTION'] else 0 + db_gen['JUNCTION'] = jn['JUNCTION'] + + # Alignment scores + if score_fields: + try: db_gen['V_SCORE'] = float(sm['V-REGION score']) + except (TypeError, ValueError): db_gen['V_SCORE'] = 'None' + + try: db_gen['V_IDENTITY'] = float(sm['V-REGION identity %']) / 100.0 + except (TypeError, ValueError): db_gen['V_IDENTITY'] = 'None' + + try: db_gen['J_SCORE'] = float(sm['J-REGION score']) + except (TypeError, ValueError): db_gen['J_SCORE'] = 'None' + + try: db_gen['J_IDENTITY'] = float(sm['J-REGION identity %']) / 100.0 + except (TypeError, ValueError): db_gen['J_IDENTITY'] = 'None' + + # FWR and CDR regions + if region_fields: getRegions(db_gen) + else: + db_gen['V_CALL'] = 'None' + db_gen['D_CALL'] = 'None' + db_gen['J_CALL'] = 'None' + + yield IgRecord(db_gen) + + +def getIDforIMGT(seq_file): + """ + Create a sequence ID translation using IMGT truncation + + Arguments: + seq_file = a fasta file of sequences input to IMGT + + Returns: + a dictionary of {truncated ID: full seq description} + """ + + # Create a seq_dict ID translation using IDs truncate up to space or 50 chars + ids = {} + for i, rec in enumerate(SeqIO.parse(seq_file, 'fasta', IUPAC.ambiguous_dna)): + if len(rec.description) <= 50: + id_key = rec.description + else: + id_key = re.sub('\||\s|!|&|\*|<|>|\?','_',rec.description[:50]) + ids.update({id_key:rec.description}) + + return ids + + +def writeDb(db_gen, file_prefix, total_count, id_dict={}, no_parse=True, + score_fields=False, region_fields=False, out_args=default_out_args): + """ + Writes tab-delimited database file in output directory + + Arguments: + db_gen = a generator of IgRecord objects containing alignment data + file_prefix = directory and prefix for CLIP tab-delim file + total_count = number of records (for progress bar) + id_dict = a dictionary of {IMGT ID: full seq description} + no_parse = if ID is to be parsed for pRESTO output with default delimiters + score_fields = if True add alignment score fields to output file + region_fields = if True add FWR and CDR region fields to output file + out_args = common output argument dictionary from parseCommonArgs + + Returns: + None + """ + pass_file = "%s_db-pass.tab" % file_prefix + fail_file = "%s_db-fail.tab" % file_prefix + ordered_fields = ['SEQUENCE_ID', + 'SEQUENCE_INPUT', + 'FUNCTIONAL', + 'IN_FRAME', + 'STOP', + 'MUTATED_INVARIANT', + 'INDELS', + 'V_CALL', + 'D_CALL', + 'J_CALL', + 'SEQUENCE_VDJ', + 'SEQUENCE_IMGT', + 'V_SEQ_START', + 'V_SEQ_LENGTH', + 'V_GERM_START_VDJ', + 'V_GERM_LENGTH_VDJ', + 'V_GERM_START_IMGT', + 'V_GERM_LENGTH_IMGT', + 'N1_LENGTH', + 'D_SEQ_START', + 'D_SEQ_LENGTH', + 'D_GERM_START', + 'D_GERM_LENGTH', + 'N2_LENGTH', + 'J_SEQ_START', + 'J_SEQ_LENGTH', + 'J_GERM_START', + 'J_GERM_LENGTH', + 'JUNCTION_LENGTH', + 'JUNCTION'] + + if score_fields: + ordered_fields.extend(['V_SCORE', + 'V_IDENTITY', + 'V_EVALUE', + 'V_BTOP', + 'J_SCORE', + 'J_IDENTITY', + 'J_EVALUE', + 'J_BTOP']) + + if region_fields: + ordered_fields.extend(['FWR1_IMGT', 'FWR2_IMGT', 'FWR3_IMGT', 'FWR4_IMGT', + 'CDR1_IMGT', 'CDR2_IMGT', 'CDR3_IMGT']) + + + # TODO: This is not the best approach. should pass in output fields. + # Initiate passed handle + pass_handle = None + + # Open failed file + if out_args['failed']: + fail_handle = open(fail_file, 'wt') + fail_writer = getDbWriter(fail_handle, add_fields=['SEQUENCE_ID', 'SEQUENCE_INPUT']) + else: + fail_handle = None + fail_writer = None + + # Initialize counters and file + pass_writer = None + start_time = time() + rec_count = pass_count = fail_count = 0 + for record in db_gen: + #printProgress(i + (total_count/2 if id_dict else 0), total_count, 0.05, start_time) + printProgress(rec_count, total_count, 0.05, start_time) + rec_count += 1 + + # Count pass or fail + if (record.v_call == 'None' and record.j_call == 'None') or \ + record.functional is None or \ + not record.seq_vdj or \ + not record.junction: + # print(record.v_call, record.j_call, record.functional, record.junction) + fail_count += 1 + if fail_writer is not None: fail_writer.writerow(record.toDict()) + continue + else: + pass_count += 1 + + # Build sample sequence description + if record.id in id_dict: + record.id = id_dict[record.id] + + # Parse sequence description into new columns + if not no_parse: + record.annotations = parseAnnotation(record.id, delimiter=out_args['delimiter']) + record.id = record.annotations['ID'] + del record.annotations['ID'] + + # TODO: This is not the best approach. should pass in output fields. + # If first sequence, use parsed description to create new columns and initialize writer + if pass_writer is None: + if not no_parse: ordered_fields.extend(list(record.annotations.keys())) + pass_handle = open(pass_file, 'wt') + pass_writer = getDbWriter(pass_handle, add_fields=ordered_fields) + + # Write row to tab-delim CLIP file + pass_writer.writerow(record.toDict()) + + # Print log + #printProgress(i+1 + (total_count/2 if id_dict else 0), total_count, 0.05, start_time) + printProgress(rec_count, total_count, 0.05, start_time) + + log = OrderedDict() + log['OUTPUT'] = pass_file + log['PASS'] = pass_count + log['FAIL'] = fail_count + log['END'] = 'MakeDb' + printLog(log) + + if pass_handle is not None: pass_handle.close() + if fail_handle is not None: fail_handle.close() + + +# TODO: may be able to merge with parseIMGT +def parseIgBlast(igblast_output, seq_file, repo, no_parse=True, score_fields=False, + region_fields=False, out_args=default_out_args): + """ + Main for IgBlast aligned sample sequences + + Arguments: + igblast_output = IgBlast output file to process + seq_file = fasta file input to IgBlast (from which to get sequence) + repo = folder with germline repertoire files + no_parse = if ID is to be parsed for pRESTO output with default delimiters + score_fields = if True add alignment score fields to output file + region_fields = if True add FWR and CDR region fields to output file + out_args = common output argument dictionary from parseCommonArgs + + Returns: + None + """ + # Print parameter info + log = OrderedDict() + log['START'] = 'MakeDB' + log['ALIGNER'] = 'IgBlast' + log['ALIGN_RESULTS'] = os.path.basename(igblast_output) + log['SEQ_FILE'] = os.path.basename(seq_file) + log['NO_PARSE'] = no_parse + log['SCORE_FIELDS'] = score_fields + log['REGION_FIELDS'] = region_fields + printLog(log) + + # Get input sequence dictionary + seq_dict = getSeqforIgBlast(seq_file) + + # Formalize out_dir and file-prefix + if not out_args['out_dir']: + out_dir = os.path.split(igblast_output)[0] + else: + out_dir = os.path.abspath(out_args['out_dir']) + if not os.path.exists(out_dir): os.mkdir(out_dir) + if out_args['out_name']: + file_prefix = out_args['out_name'] + else: + file_prefix = os.path.basename(os.path.splitext(igblast_output)[0]) + file_prefix = os.path.join(out_dir, file_prefix) + + total_count = countSeqFile(seq_file) + + # Create + repo_dict = getRepo(repo) + igblast_dict = readIgBlast(igblast_output, seq_dict, repo_dict, + score_fields=score_fields, region_fields=region_fields) + writeDb(igblast_dict, file_prefix, total_count, no_parse=no_parse, + score_fields=score_fields, region_fields=region_fields, out_args=out_args) + + +# TODO: may be able to merge with parseIgBlast +def parseIMGT(imgt_output, seq_file=None, no_parse=True, score_fields=False, + region_fields=False, out_args=default_out_args): + """ + Main for IMGT aligned sample sequences + + Arguments: + imgt_output = zipped file or unzipped folder output by IMGT + seq_file = FASTA file input to IMGT (from which to get seqID) + no_parse = if ID is to be parsed for pRESTO output with default delimiters + score_fields = if True add alignment score fields to output file + region_fields = if True add FWR and CDR region fields to output file + out_args = common output argument dictionary from parseCommonArgs + + Returns: + None + """ + # Print parameter info + log = OrderedDict() + log['START'] = 'MakeDb' + log['ALIGNER'] = 'IMGT' + log['ALIGN_RESULTS'] = imgt_output + log['SEQ_FILE'] = os.path.basename(seq_file) if seq_file else '' + log['NO_PARSE'] = no_parse + log['SCORE_FIELDS'] = score_fields + log['REGION_FIELDS'] = region_fields + printLog(log) + + # Get individual IMGT result files + temp_dir, imgt_files = extractIMGT(imgt_output) + + # Formalize out_dir and file-prefix + if not out_args['out_dir']: + out_dir = os.path.dirname(os.path.abspath(imgt_output)) + else: + out_dir = os.path.abspath(out_args['out_dir']) + if not os.path.exists(out_dir): os.mkdir(out_dir) + if out_args['out_name']: + file_prefix = out_args['out_name'] + else: + file_prefix = os.path.splitext(os.path.split(os.path.abspath(imgt_output))[1])[0] + file_prefix = os.path.join(out_dir, file_prefix) + + total_count = countDbFile(imgt_files[0]) + + # Get (parsed) IDs from fasta file submitted to IMGT + id_dict = getIDforIMGT(seq_file) if seq_file else {} + + # Create + imgt_dict = readIMGT(imgt_files, score_fields=score_fields, + region_fields=region_fields) + writeDb(imgt_dict, file_prefix, total_count, id_dict=id_dict, no_parse=no_parse, + score_fields=score_fields, region_fields=region_fields, out_args=out_args) + + # Delete temp directory + rmtree(temp_dir) + + +def getArgParser(): + """ + Defines the ArgumentParser + + Arguments: + None + + Returns: + an ArgumentParser object + """ + fields = dedent( + ''' + output files: + db-pass + database of parsed alignment records. + db-fail + database with records failing alignment. + + output fields: + SEQUENCE_ID, SEQUENCE_INPUT, FUNCTIONAL, IN_FRAME, STOP, MUTATED_INVARIANT, + INDELS, V_CALL, D_CALL, J_CALL, SEQUENCE_VDJ and/or SEQUENCE_IMGT, + V_SEQ_START, V_SEQ_LENGTH, V_GERM_START_VDJ and/or V_GERM_START_IMGT, + V_GERM_LENGTH_VDJ and/or V_GERM_LENGTH_IMGT, N1_LENGTH, + D_SEQ_START, D_SEQ_LENGTH, D_GERM_START, D_GERM_LENGTH, N2_LENGTH, + J_SEQ_START, J_SEQ_LENGTH, J_GERM_START, J_GERM_LENGTH, + JUNCTION_LENGTH, JUNCTION, V_SCORE, V_IDENTITY, V_EVALUE, V_BTOP, + J_SCORE, J_IDENTITY, J_EVALUE, J_BTOP, FWR1_IMGT, FWR2_IMGT, FWR3_IMGT, + FWR4_IMGT, CDR1_IMGT, CDR2_IMGT, CDR3_IMGT + ''') + + # Define ArgumentParser + parser = ArgumentParser(description=__doc__, epilog=fields, + formatter_class=CommonHelpFormatter) + parser.add_argument('--version', action='version', + version='%(prog)s:' + ' %s-%s' %(__version__, __date__)) + subparsers = parser.add_subparsers(title='subcommands', dest='command', + help='Aligner used', metavar='') + # TODO: This is a temporary fix for Python issue 9253 + subparsers.required = True + + # Parent parser + parser_parent = getCommonArgParser(seq_in=False, seq_out=False, log=False) + + # IgBlast Aligner + parser_igblast = subparsers.add_parser('igblast', help='Process IgBlast output', + parents=[parser_parent], + formatter_class=CommonHelpFormatter) + parser_igblast.set_defaults(func=parseIgBlast) + parser_igblast.add_argument('-i', nargs='+', action='store', dest='aligner_files', + required=True, + help='''IgBLAST output files in format 7 with query sequence + (IgBLAST argument \'-outfmt "7 std qseq sseq btop"\').''') + parser_igblast.add_argument('-r', nargs='+', action='store', dest='repo', required=True, + help='''List of folders and/or fasta files containing + IMGT-gapped germline sequences corresponding to the + set of germlines used in the IgBLAST alignment.''') + parser_igblast.add_argument('-s', action='store', nargs='+', dest='seq_files', + required=True, + help='List of input FASTA files containing sequences') + parser_igblast.add_argument('--noparse', action='store_true', dest='no_parse', + help='''Specify if input IDs should not be parsed to add + new columns to database.''') + parser_igblast.add_argument('--scores', action='store_true', dest='score_fields', + help='''Specify if alignment score metrics should be + included in the output. Adds the V_SCORE, V_IDENTITY, + V_EVALUE, V_BTOP, J_SCORE, J_IDENTITY, + J_BTOP, and J_EVALUE columns.''') + parser_igblast.add_argument('--regions', action='store_true', dest='region_fields', + help='''Specify if IMGT framework and CDR regions should be + included in the output. Adds the FWR1_IMGT, FWR2_IMGT, + FWR3_IMGT, FWR4_IMGT, CDR1_IMGT, CDR2_IMGT, and + CDR3_IMGT columns.''') + + # IMGT aligner + parser_imgt = subparsers.add_parser('imgt', help='Process IMGT/HighV-Quest output', + parents=[parser_parent], + formatter_class=CommonHelpFormatter) + imgt_arg_group = parser_imgt.add_mutually_exclusive_group(required=True) + imgt_arg_group.add_argument('-i', nargs='+', action='store', dest='aligner_files', + help='''Either zipped IMGT output files (.zip) or a folder + containing unzipped IMGT output files (which must + include 1_Summary, 2_IMGT-gapped, 3_Nt-sequences, + and 6_Junction).''') + parser_imgt.add_argument('-s', nargs='*', action='store', dest='seq_files', + required=False, + help='List of input FASTA files containing sequences') + parser_imgt.add_argument('--noparse', action='store_true', dest='no_parse', + help='''Specify if input IDs should not be parsed to add new + columns to database.''') + parser_imgt.add_argument('--scores', action='store_true', dest='score_fields', + help='''Specify if alignment score metrics should be + included in the output. Adds the V_SCORE, V_IDENTITY, + J_SCORE and J_IDENTITY. Note, this will also add + the columns V_EVALUE, V_BTOP, J_EVALUE and J_BTOP, + but they will be empty for IMGT output.''') + parser_imgt.add_argument('--regions', action='store_true', dest='region_fields', + help='''Specify if IMGT framework and CDR regions should be + included in the output. Adds the FWR1_IMGT, FWR2_IMGT, + FWR3_IMGT, FWR4_IMGT, CDR1_IMGT, CDR2_IMGT, and + CDR3_IMGT columns.''') + parser_imgt.set_defaults(func=parseIMGT) + + return parser + + +if __name__ == "__main__": + """ + Parses command line arguments and calls main + """ + parser = getArgParser() + args = parser.parse_args() + args_dict = parseCommonArgs(args, in_arg='aligner_files') + + # Set no ID parsing if sequence files are not provided + if 'seq_files' in args_dict and not args_dict['seq_files']: + args_dict['no_parse'] = True + + # Delete + if 'seq_files' in args_dict: del args_dict['seq_files'] + if 'aligner_files' in args_dict: del args_dict['aligner_files'] + if 'command' in args_dict: del args_dict['command'] + if 'func' in args_dict: del args_dict['func'] + + if args.command == 'imgt': + for i in range(len(args.__dict__['aligner_files'])): + args_dict['imgt_output'] = args.__dict__['aligner_files'][i] + args_dict['seq_file'] = args.__dict__['seq_files'][i] \ + if args.__dict__['seq_files'] else None + args.func(**args_dict) + elif args.command == 'igblast': + for i in range(len(args.__dict__['aligner_files'])): + args_dict['igblast_output'] = args.__dict__['aligner_files'][i] + args_dict['seq_file'] = args.__dict__['seq_files'][i] + args.func(**args_dict)