diff sequence_overview.r @ 0:8a5a2abbb870 draft default tip

Uploaded
author davidvanzessen
date Mon, 29 Aug 2016 05:36:10 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sequence_overview.r	Mon Aug 29 05:36:10 2016 -0400
@@ -0,0 +1,315 @@
+library(reshape2)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+before.unique.file = args[1]
+merged.file = args[2]
+outputdir = args[3]
+gene.classes = unlist(strsplit(args[4], ","))
+hotspot.analysis.sum.file = args[5]
+NToverview.file = paste(outputdir, "ntoverview.txt", sep="/")
+NTsum.file = paste(outputdir, "ntsum.txt", sep="/")
+main.html = "index.html"
+
+setwd(outputdir)
+
+before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="")
+
+#before.unique = before.unique[!grepl("unmatched", before.unique$best_match),]
+
+before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
+
+IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")]
+IDs$best_match = as.character(IDs$best_match)
+
+#dat = data.frame(data.table(dat)[, list(freq=.N), by=c("best_match", "seq_conc")])
+
+dat = data.frame(table(before.unique$seq_conc))
+#dat = data.frame(table(merged$seq_conc, merged$Functionality))
+
+#dat = dat[dat$Freq > 1,]
+
+#names(dat) = c("seq_conc", "Functionality", "Freq")
+names(dat) = c("seq_conc", "Freq")
+
+dat$seq_conc = factor(dat$seq_conc)
+
+dat = dat[order(as.character(dat$seq_conc)),]
+
+#writing html from R...
+get.bg.color = function(val){
+	if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color
+		return(ifelse(val,"#eafaf1","#f9ebea"))
+	} else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0
+		return(ifelse(val > 0,"#eaecee","white"))
+	} else {
+		return("white")
+	}
+}
+td = function(val) {
+  return(paste("<td bgcolor='", get.bg.color(val), "'>", val, "</td>", sep=""))
+}
+tr = function(val) { 
+	return(paste(c("<tr>", sapply(val, td), "</tr>"), collapse="")) 
+}
+
+make.link = function(id, clss, val) { 
+	paste("<a href='", clss, "_", id, ".html'>", val, "</a>", sep="") 
+}
+tbl = function(df) {
+	res = "<table border='1'>"
+	for(i in 1:nrow(df)){ 
+		res = paste(res, tr(df[i,]), sep="")
+	}
+	res = paste(res, "</table>")
+}
+
+cat("<table border='1'>", file=main.html, append=F)
+cat("<caption>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T)
+cat("<tr>", file=main.html, append=T)
+cat("<th>Sequence</th><th>Functionality</th><th>ca1</th><th>ca2</th><th>cg1</th><th>cg2</th><th>cg3</th><th>cg4</th><th>cm</th><th>un</th>", file=main.html, append=T)
+cat("<th>total CA</th><th>total CG</th><th>number of subclasses</th><th>present in both Ca and Cg</th><th>Ca1+Ca2</th>", file=main.html, append=T)
+cat("<th>Cg1+Cg2</th><th>Cg1+Cg3</th><th>Cg1+Cg4</th><th>Cg2+Cg3</th><th>Cg2+Cg4</th><th>Cg3+Cg4</th>", file=main.html, append=T)
+cat("<th>Cg1+Cg2+Cg3</th><th>Cg2+Cg3+Cg4</th><th>Cg1+Cg2+Cg4</th><th>Cg1+Cg3+Cg4</th><th>Cg1+Cg2+Cg3+Cg4</th>", file=main.html, append=T)
+cat("</tr>", file=main.html, append=T)
+
+
+
+single.sequences=0 #sequence only found once, skipped
+in.multiple=0 #same sequence across multiple subclasses
+multiple.in.one=0 #same sequence multiple times in one subclass
+unmatched=0 #all of the sequences are unmatched
+some.unmatched=0 #one or more sequences in a clone are unmatched
+matched=0 #should be the same als matched sequences
+
+sequence.id.page="by_id.html"
+
+for(i in 1:nrow(dat)){
+	
+	ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^ca1", IDs$best_match),]
+	ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^ca2", IDs$best_match),]
+	
+	cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^cg1", IDs$best_match),]
+	cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^cg2", IDs$best_match),]
+	cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^cg3", IDs$best_match),]
+	cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^cg4", IDs$best_match),]
+	
+	cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^cm", IDs$best_match),]
+	
+	un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),]
+	allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, un)
+	
+	ca1.n = nrow(ca1)
+	ca2.n = nrow(ca2)
+	
+	cg1.n = nrow(cg1)
+	cg2.n = nrow(cg2)
+	cg3.n = nrow(cg3)
+	cg4.n = nrow(cg4)
+	
+	cm.n = nrow(cm)
+	
+	un.n = nrow(un)
+	
+	classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, un.n)
+	
+	classes.sum = sum(classes)
+	
+	if(classes.sum == 1){
+		single.sequences = single.sequences + 1
+		next
+	}
+	
+	if(un.n == classes.sum){
+		unmatched = unmatched + 1
+		next
+	}
+	
+	in.classes = sum(classes > 0)
+	
+	matched = matched + in.classes #count in how many subclasses the sequence occurs.
+	
+	if(any(classes  == classes.sum)){
+		multiple.in.one = multiple.in.one + 1
+	} else if (un.n > 0) {
+		some.unmatched = some.unmatched + 1
+	} else {
+		in.multiple = in.multiple + 1
+	}
+	
+	id = as.numeric(dat[i,"seq_conc"])
+	
+	functionality = paste(unique(allc[,"Functionality"]), collapse=",")
+	
+	by.id.row = c()
+	
+	if(ca1.n > 0){
+		cat(tbl(ca1), file=paste("ca1_", id, ".html", sep=""))
+	}
+
+	if(ca2.n > 0){
+		cat(tbl(ca2), file=paste("ca2_", id, ".html", sep=""))
+	}
+
+	if(cg1.n > 0){
+		cat(tbl(cg1), file=paste("cg1_", id, ".html", sep=""))
+	}
+
+	if(cg2.n > 0){
+		cat(tbl(cg2), file=paste("cg2_", id, ".html", sep=""))
+	}
+
+	if(cg3.n > 0){
+		cat(tbl(cg3), file=paste("cg3_", id, ".html", sep=""))
+	}
+
+	if(cg4.n > 0){
+		cat(tbl(cg4), file=paste("cg4_", id, ".html", sep=""))
+	}
+
+	if(cm.n > 0){
+		cat(tbl(cm), file=paste("cm_", id, ".html", sep=""))
+	}
+
+	if(un.n > 0){
+		cat(tbl(un), file=paste("un_", id, ".html", sep=""))
+	}
+	
+	ca1.html = make.link(id, "ca1", ca1.n)
+	ca2.html = make.link(id, "ca2", ca2.n)
+	
+	cg1.html = make.link(id, "cg1", cg1.n)
+	cg2.html = make.link(id, "cg2", cg2.n)
+	cg3.html = make.link(id, "cg3", cg3.n)
+	cg4.html = make.link(id, "cg4", cg4.n)
+	
+	cm.html = make.link(id, "cm", cm.n)
+	
+	un.html = make.link(id, "un", un.n)
+	
+	#extra columns
+	ca.n = ca1.n + ca2.n
+	
+	cg.n = cg1.n + cg2.n + cg3.n + cg4.n
+	
+	#in.classes
+	
+	in.ca.cg = (ca.n > 0 & cg.n > 0)
+	
+	in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0)
+	
+	in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0)
+	in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0)
+	in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0)
+	in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0)
+	in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0)
+	in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0)
+	
+	in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0)
+	in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
+	in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0)
+	in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0)
+	
+	in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
+	
+	
+	
+	
+	#rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
+	rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
+	rw = c(rw, ca.n, cg.n, in.classes, in.ca.cg, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all)
+
+	cat(tr(rw), file=main.html, append=T)
+	
+	
+	for(i in 1:nrow(allc)){ #generate html by id
+		html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"])
+		cat(paste(html, "<br />"), file=sequence.id.page, append=T)
+	}
+}
+
+cat("</table>", file=main.html, append=T)
+
+print(paste("Single sequences:", single.sequences))
+print(paste("Sequences in multiple subclasses:", in.multiple))
+print(paste("Multiple sequences in one subclass:", multiple.in.one))
+print(paste("Matched with unmatched:", some.unmatched))
+print(paste("Count that should match 'matched' sequences:", matched))
+
+#ACGT overview
+
+NToverview = merged[!grepl("^unmatched", merged$best_match),]
+
+NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq, sep="_")
+
+NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq))
+NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq))
+NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq))
+NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq))
+
+#Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T))
+
+#NToverview = rbind(NToverview, NTsum)
+
+NTresult = data.frame(nt=c("A", "C", "T", "G"))
+
+for(clazz in gene.classes){
+	NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),]
+	new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G))
+	new.col.y = sum(new.col.x)
+	new.col.z = round(new.col.x / new.col.y * 100, 2)
+	
+	tmp = names(NTresult)
+	NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
+	names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep=""))
+}
+
+write.table(NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")], NToverview.file, quote=F, sep="\t", row.names=F, col.names=T)
+
+NToverview = NToverview[!grepl("unmatched", NToverview$best_match),]
+
+new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G))
+new.col.y = sum(new.col.x)
+new.col.z = round(new.col.x / new.col.y * 100, 2)
+
+tmp = names(NTresult)
+NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
+names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep=""))
+
+names(hotspot.analysis.sum) = names(NTresult)
+
+hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult)
+
+write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+