diff RScript.r @ 1:75853bceec00 draft

Uploaded
author davidvanzessen
date Tue, 17 Jan 2017 07:24:44 -0500
parents ed6885c85660
children 7ffd0fba8cf4
line wrap: on
line diff
--- a/RScript.r	Wed Aug 31 05:31:47 2016 -0400
+++ b/RScript.r	Tue Jan 17 07:24:44 2017 -0500
@@ -34,7 +34,19 @@
 
 dat = dat[dat$Frequency >= min_freq,]
 
-triplets = dat[grepl("VanDongen_cALL_14696", dat$Patient) | grepl("(16278)|(26402)|(26759)", dat$Sample),]
+patient.sample.counts = data.frame(data.table(dat)[, list(count=.N), by=c("Patient", "Sample")])
+patient.sample.counts = data.frame(data.table(patient.sample.counts)[, list(count=.N), by=c("Patient")])
+
+print("Found the following patients with number of samples:")
+print(patient.sample.counts)
+
+patient.sample.counts.pairs = patient.sample.counts[patient.sample.counts$count %in% 1:2,]
+patient.sample.counts.triplets = patient.sample.counts[patient.sample.counts$count == 3,]
+
+
+
+triplets = dat[dat$Patient %in% patient.sample.counts.triplets$Patient,]
+dat = dat[dat$Patient %in% patient.sample.counts.pairs$Patient,]
 
 cat("<tr><td>Normalizing to lowest cell count within locus</td></tr>", file=logfile, append=T)
 
@@ -475,21 +487,21 @@
   print(plt)
   dev.off()
 }
-
-cat("<tr><td>Starting Frequency analysis</td></tr>", file=logfile, append=T)
+if(length(patients) > 0){
+	cat("<tr><td>Starting Frequency analysis</td></tr>", file=logfile, append=T)
 
-interval = intervalFreq
-intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
-product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
-lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="Frequency", appendtxt=T)
+	interval = intervalFreq
+	intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+	product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
+	lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="Frequency", appendtxt=T)
 
-cat("<tr><td>Starting Cell Count analysis</td></tr>", file=logfile, append=T)
+	cat("<tr><td>Starting Cell Count analysis</td></tr>", file=logfile, append=T)
 
-interval = intervalReads
-intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
-product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
-lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count")
-
+	interval = intervalReads
+	intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+	product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
+	lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count")
+}
 if(nrow(single_patients) > 0){
 	scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
 	p = ggplot(single_patients, aes(Rearrangement, normalized_read_count)) + scale_y_log10(breaks=scales,labels=as.character(scales)) + expand_limits(y=c(0,1000000))
@@ -525,551 +537,532 @@
 patient.merge.list.second = list()
 
 tripletAnalysis <- function(patient1, label1, patient2, label2, patient3, label3, product, interval, on, appendTriplets= FALSE){
-  onShort = "reads"
-  if(on == "Frequency"){
-    onShort = "freq"
-  }
-  onx = paste(on, ".x", sep="")
-  ony = paste(on, ".y", sep="")
-  onz = paste(on, ".z", sep="")
-  type="triplet"
-  
-  threshholdIndex = which(colnames(product) == "interval")
-  V_SegmentIndex = which(colnames(product) == "V_Segments")
-  J_SegmentIndex = which(colnames(product) == "J_Segments")
-  titleIndex = which(colnames(product) == "Titles")
-  sampleIndex = which(colnames(patient1) == "Sample")
-  patientIndex = which(colnames(patient1) == "Patient")
-  oneSample = paste(patient1[1,sampleIndex], sep="")
-  twoSample = paste(patient2[1,sampleIndex], sep="")
-  threeSample = paste(patient3[1,sampleIndex], sep="")
+	onShort = "reads"
+	if(on == "Frequency"){
+	onShort = "freq"
+	}
+	onx = paste(on, ".x", sep="")
+	ony = paste(on, ".y", sep="")
+	onz = paste(on, ".z", sep="")
+	type="triplet"
 
-  if(mergeOn == "Clone_Sequence"){
-    patient1$merge = paste(patient1$Clone_Sequence)
+	threshholdIndex = which(colnames(product) == "interval")
+	V_SegmentIndex = which(colnames(product) == "V_Segments")
+	J_SegmentIndex = which(colnames(product) == "J_Segments")
+	titleIndex = which(colnames(product) == "Titles")
+	sampleIndex = which(colnames(patient1) == "Sample")
+	patientIndex = which(colnames(patient1) == "Patient")
+	oneSample = paste(patient1[1,sampleIndex], sep="")
+	twoSample = paste(patient2[1,sampleIndex], sep="")
+	threeSample = paste(patient3[1,sampleIndex], sep="")
+
+	if(mergeOn == "Clone_Sequence"){
+	patient1$merge = paste(patient1$Clone_Sequence)
 		patient2$merge = paste(patient2$Clone_Sequence)
 		patient3$merge = paste(patient3$Clone_Sequence)
 
-  } else {
+	} else {
 		patient1$merge = paste(patient1$V_Segment_Major_Gene, patient1$J_Segment_Major_Gene, patient1$CDR3_Sense_Sequence)
 		patient2$merge = paste(patient2$V_Segment_Major_Gene, patient2$J_Segment_Major_Gene, patient2$CDR3_Sense_Sequence)
 		patient3$merge = paste(patient3$V_Segment_Major_Gene, patient3$J_Segment_Major_Gene, patient3$CDR3_Sense_Sequence)
-  }
+	}
 
-  #patientMerge = merge(patient1, patient2, by="merge")[NULL,]
-  patient1.fuzzy = patient1
-  patient2.fuzzy = patient2
-  patient3.fuzzy = patient3
+	#patientMerge = merge(patient1, patient2, by="merge")[NULL,]
+	patient1.fuzzy = patient1
+	patient2.fuzzy = patient2
+	patient3.fuzzy = patient3
 
-  cat(paste("<tr><td>", label1, "</td>", sep=""), file=logfile, append=T)
+	cat(paste("<tr><td>", label1, "</td>", sep=""), file=logfile, append=T)
 
-  patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J)
-  patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J)
-  patient3.fuzzy$merge = paste(patient3.fuzzy$locus_V, patient3.fuzzy$locus_J)
+	patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J)
+	patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J)
+	patient3.fuzzy$merge = paste(patient3.fuzzy$locus_V, patient3.fuzzy$locus_J)
 
-  patient.fuzzy = rbind(patient1.fuzzy ,patient2.fuzzy, patient3.fuzzy)
-  patient.fuzzy = patient.fuzzy[order(nchar(patient.fuzzy$Clone_Sequence)),]
+	patient.fuzzy = rbind(patient1.fuzzy ,patient2.fuzzy, patient3.fuzzy)
+	patient.fuzzy = patient.fuzzy[order(nchar(patient.fuzzy$Clone_Sequence)),]
 
-  other.sample.list = list()
-  other.sample.list[[oneSample]] = c(twoSample, threeSample)
-  other.sample.list[[twoSample]] = c(oneSample, threeSample)
-  other.sample.list[[threeSample]] = c(oneSample, twoSample)
+	other.sample.list = list()
+	other.sample.list[[oneSample]] = c(twoSample, threeSample)
+	other.sample.list[[twoSample]] = c(oneSample, threeSample)
+	other.sample.list[[threeSample]] = c(oneSample, twoSample)
 
-  patientMerge = merge(patient1, patient2, by="merge")
-  patientMerge = merge(patientMerge, patient3, by="merge")
-  colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="")
-  #patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
-  patientMerge = patientMerge[NULL,]
+	patientMerge = merge(patient1, patient2, by="merge")
+	patientMerge = merge(patientMerge, patient3, by="merge")
+	colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="")
+	#patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+	patientMerge = patientMerge[NULL,]
 
-  duo.merge.list = list()
+	duo.merge.list = list()
 
-  patientMerge12 = merge(patient1, patient2, by="merge")
-  #patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
-  patientMerge12 = patientMerge12[NULL,]
-  duo.merge.list[[paste(oneSample, twoSample)]] = patientMerge12
-  duo.merge.list[[paste(twoSample, oneSample)]] = patientMerge12
+	patientMerge12 = merge(patient1, patient2, by="merge")
+	#patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
+	patientMerge12 = patientMerge12[NULL,]
+	duo.merge.list[[paste(oneSample, twoSample)]] = patientMerge12
+	duo.merge.list[[paste(twoSample, oneSample)]] = patientMerge12
 
-  patientMerge13 = merge(patient1, patient3, by="merge")
-  #patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
-  patientMerge13 = patientMerge13[NULL,]
-  duo.merge.list[[paste(oneSample, threeSample)]] = patientMerge13
-  duo.merge.list[[paste(threeSample, oneSample)]] = patientMerge13
+	patientMerge13 = merge(patient1, patient3, by="merge")
+	#patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
+	patientMerge13 = patientMerge13[NULL,]
+	duo.merge.list[[paste(oneSample, threeSample)]] = patientMerge13
+	duo.merge.list[[paste(threeSample, oneSample)]] = patientMerge13
 
-  patientMerge23 = merge(patient2, patient3, by="merge")
-  #patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
-  patientMerge23 = patientMerge23[NULL,]
-  duo.merge.list[[paste(twoSample, threeSample)]] = patientMerge23
-  duo.merge.list[[paste(threeSample, twoSample)]] = patientMerge23
-
-  merge.list = list()
-  merge.list[["second"]] = vector()
+	patientMerge23 = merge(patient2, patient3, by="merge")
+	#patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
+	patientMerge23 = patientMerge23[NULL,]
+	duo.merge.list[[paste(twoSample, threeSample)]] = patientMerge23
+	duo.merge.list[[paste(threeSample, twoSample)]] = patientMerge23
 
-  start.time = proc.time()
-  if(paste(label1, "123") %in% names(patient.merge.list)){
-    patientMerge = patient.merge.list[[paste(label1, "123")]]
-    patientMerge12 = patient.merge.list[[paste(label1, "12")]]
-    patientMerge13 = patient.merge.list[[paste(label1, "13")]]
-    patientMerge23 = patient.merge.list[[paste(label1, "23")]]
+	merge.list = list()
+	merge.list[["second"]] = vector()
+	
+	#print(paste(nrow(patient1), nrow(patient2), nrow(patient3), label1, label2, label3))
+	
+	start.time = proc.time()
+	if(paste(label1, "123") %in% names(patient.merge.list)){
+		patientMerge = patient.merge.list[[paste(label1, "123")]]
+		patientMerge12 = patient.merge.list[[paste(label1, "12")]]
+		patientMerge13 = patient.merge.list[[paste(label1, "13")]]
+		patientMerge23 = patient.merge.list[[paste(label1, "23")]]
 
-    merge.list[["second"]] = patient.merge.list.second[[label1]]
+		#merge.list[["second"]] = patient.merge.list.second[[label1]]
 
-    cat(paste("<td>", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (fetched from cache)</td></tr>", sep=""), file=logfile, append=T)
-  } else {
-    while(nrow(patient.fuzzy) > 0){
-      first.merge = patient.fuzzy[1,"merge"]
-      first.clone.sequence = patient.fuzzy[1,"Clone_Sequence"]
-      first.sample = patient.fuzzy[1,"Sample"]
-
-      merge.filter = first.merge == patient.fuzzy$merge
-
-      second.sample = other.sample.list[[first.sample]][1]
-      third.sample = other.sample.list[[first.sample]][2]
+		cat(paste("<td>", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (fetched from cache)</td></tr>", sep=""), file=logfile, append=T)
+	} else {
+		while(nrow(patient.fuzzy) > 0){
+			first.merge = patient.fuzzy[1,"merge"]
+			first.clone.sequence = patient.fuzzy[1,"Clone_Sequence"]
+			first.sample = paste(patient.fuzzy[1,"Sample"], sep="")
+			
+			merge.filter = first.merge == patient.fuzzy$merge
+			
+			second.sample = other.sample.list[[first.sample]][1]
+			third.sample = other.sample.list[[first.sample]][2]
 
-      sample.filter.1 = first.sample == patient.fuzzy$Sample
-      sample.filter.2 = second.sample == patient.fuzzy$Sample
-      sample.filter.3 = third.sample == patient.fuzzy$Sample
+			sample.filter.1 = first.sample == patient.fuzzy$Sample
+			sample.filter.2 = second.sample == patient.fuzzy$Sample
+			sample.filter.3 = third.sample == patient.fuzzy$Sample
 
-      sequence.filter = grepl(paste("^", first.clone.sequence, sep=""), patient.fuzzy$Clone_Sequence)
+			sequence.filter = grepl(paste("^", first.clone.sequence, sep=""), patient.fuzzy$Clone_Sequence)
 
-      match.filter.1 = sample.filter.1 & sequence.filter & merge.filter
-      match.filter.2 = sample.filter.2 & sequence.filter & merge.filter
-      match.filter.3 = sample.filter.3 & sequence.filter & merge.filter
+			match.filter.1 = sample.filter.1 & sequence.filter & merge.filter
+			match.filter.2 = sample.filter.2 & sequence.filter & merge.filter
+			match.filter.3 = sample.filter.3 & sequence.filter & merge.filter
 
-      matches.in.1 = any(match.filter.1)
-      matches.in.2 = any(match.filter.2)
-      matches.in.3 = any(match.filter.3)
+			matches.in.1 = any(match.filter.1)
+			matches.in.2 = any(match.filter.2)
+			matches.in.3 = any(match.filter.3)
 
-
-
-      rows.1 = patient.fuzzy[match.filter.1,]
+			rows.1 = patient.fuzzy[match.filter.1,]
 
-      sum.1 = data.frame(merge = first.clone.sequence,
-                         Patient = label1,
-                         Receptor = rows.1[1,"Receptor"],
-                         Sample = rows.1[1,"Sample"],
-                         Cell_Count = rows.1[1,"Cell_Count"],
-                         Clone_Molecule_Count_From_Spikes = sum(rows.1$Clone_Molecule_Count_From_Spikes),
-                         Log10_Frequency = log10(sum(rows.1$Frequency)),
-                         Total_Read_Count = sum(rows.1$Total_Read_Count),
-                         dsPerM = sum(rows.1$dsPerM),
-                         J_Segment_Major_Gene = rows.1[1,"J_Segment_Major_Gene"],
-                         V_Segment_Major_Gene = rows.1[1,"V_Segment_Major_Gene"],
-                         Clone_Sequence = first.clone.sequence,
-                         CDR3_Sense_Sequence = rows.1[1,"CDR3_Sense_Sequence"],
-                         Related_to_leukemia_clone = F,
-                         Frequency = sum(rows.1$Frequency),
-                         locus_V = rows.1[1,"locus_V"],
-                         locus_J = rows.1[1,"locus_J"],
-                         uniqueID = rows.1[1,"uniqueID"],
-                         normalized_read_count = sum(rows.1$normalized_read_count))
-      sum.2 = sum.1[NULL,]
-      rows.2 = patient.fuzzy[match.filter.2,]
-      if(matches.in.2){
-        sum.2 = data.frame(merge = first.clone.sequence,
-                           Patient = label1,
-                           Receptor = rows.2[1,"Receptor"],
-                           Sample = rows.2[1,"Sample"],
-                           Cell_Count = rows.2[1,"Cell_Count"],
-                           Clone_Molecule_Count_From_Spikes = sum(rows.2$Clone_Molecule_Count_From_Spikes),
-                           Log10_Frequency = log10(sum(rows.2$Frequency)),
-                           Total_Read_Count = sum(rows.2$Total_Read_Count),
-                           dsPerM = sum(rows.2$dsPerM),
-                           J_Segment_Major_Gene = rows.2[1,"J_Segment_Major_Gene"],
-                           V_Segment_Major_Gene = rows.2[1,"V_Segment_Major_Gene"],
-                           Clone_Sequence = first.clone.sequence,
-                           CDR3_Sense_Sequence = rows.2[1,"CDR3_Sense_Sequence"],
-                           Related_to_leukemia_clone = F,
-                           Frequency = sum(rows.2$Frequency),
-                           locus_V = rows.2[1,"locus_V"],
-                           locus_J = rows.2[1,"locus_J"],
-                           uniqueID = rows.2[1,"uniqueID"],
-                           normalized_read_count = sum(rows.2$normalized_read_count))
-      }
+			sum.1 = data.frame(merge = first.clone.sequence,
+								 Patient = label1,
+								 Receptor = rows.1[1,"Receptor"],
+								 Sample = rows.1[1,"Sample"],
+								 Cell_Count = rows.1[1,"Cell_Count"],
+								 Clone_Molecule_Count_From_Spikes = sum(rows.1$Clone_Molecule_Count_From_Spikes),
+								 Log10_Frequency = log10(sum(rows.1$Frequency)),
+								 Total_Read_Count = sum(rows.1$Total_Read_Count),
+								 dsPerM = sum(rows.1$dsPerM),
+								 J_Segment_Major_Gene = rows.1[1,"J_Segment_Major_Gene"],
+								 V_Segment_Major_Gene = rows.1[1,"V_Segment_Major_Gene"],
+								 Clone_Sequence = first.clone.sequence,
+								 CDR3_Sense_Sequence = rows.1[1,"CDR3_Sense_Sequence"],
+								 Related_to_leukemia_clone = F,
+								 Frequency = sum(rows.1$Frequency),
+								 locus_V = rows.1[1,"locus_V"],
+								 locus_J = rows.1[1,"locus_J"],
+								 uniqueID = rows.1[1,"uniqueID"],
+								 normalized_read_count = sum(rows.1$normalized_read_count))
+			sum.2 = sum.1[NULL,]
+			rows.2 = patient.fuzzy[match.filter.2,]
+			if(matches.in.2){
+				sum.2 = data.frame(merge = first.clone.sequence,
+								   Patient = label1,
+								   Receptor = rows.2[1,"Receptor"],
+								   Sample = rows.2[1,"Sample"],
+								   Cell_Count = rows.2[1,"Cell_Count"],
+								   Clone_Molecule_Count_From_Spikes = sum(rows.2$Clone_Molecule_Count_From_Spikes),
+								   Log10_Frequency = log10(sum(rows.2$Frequency)),
+								   Total_Read_Count = sum(rows.2$Total_Read_Count),
+								   dsPerM = sum(rows.2$dsPerM),
+								   J_Segment_Major_Gene = rows.2[1,"J_Segment_Major_Gene"],
+								   V_Segment_Major_Gene = rows.2[1,"V_Segment_Major_Gene"],
+								   Clone_Sequence = first.clone.sequence,
+								   CDR3_Sense_Sequence = rows.2[1,"CDR3_Sense_Sequence"],
+								   Related_to_leukemia_clone = F,
+								   Frequency = sum(rows.2$Frequency),
+								   locus_V = rows.2[1,"locus_V"],
+								   locus_J = rows.2[1,"locus_J"],
+								   uniqueID = rows.2[1,"uniqueID"],
+								   normalized_read_count = sum(rows.2$normalized_read_count))
+			}
 
-      sum.3 = sum.1[NULL,]
-      rows.3 = patient.fuzzy[match.filter.3,]
-      if(matches.in.3){
-        sum.3 = data.frame(merge = first.clone.sequence,
-                           Patient = label1,
-                           Receptor = rows.3[1,"Receptor"],
-                           Sample = rows.3[1,"Sample"],
-                           Cell_Count = rows.3[1,"Cell_Count"],
-                           Clone_Molecule_Count_From_Spikes = sum(rows.3$Clone_Molecule_Count_From_Spikes),
-                           Log10_Frequency = log10(sum(rows.3$Frequency)),
-                           Total_Read_Count = sum(rows.3$Total_Read_Count),
-                           dsPerM = sum(rows.3$dsPerM),
-                           J_Segment_Major_Gene = rows.3[1,"J_Segment_Major_Gene"],
-                           V_Segment_Major_Gene = rows.3[1,"V_Segment_Major_Gene"],
-                           Clone_Sequence = first.clone.sequence,
-                           CDR3_Sense_Sequence = rows.3[1,"CDR3_Sense_Sequence"],
-                           Related_to_leukemia_clone = F,
-                           Frequency = sum(rows.3$Frequency),
-                           locus_V = rows.3[1,"locus_V"],
-                           locus_J = rows.3[1,"locus_J"],
-                           uniqueID = rows.3[1,"uniqueID"],
-                           normalized_read_count = sum(rows.3$normalized_read_count))
-      }
+		sum.3 = sum.1[NULL,]
+		rows.3 = patient.fuzzy[match.filter.3,]
+		if(matches.in.3){
+			sum.3 = data.frame(merge = first.clone.sequence,
+							   Patient = label1,
+							   Receptor = rows.3[1,"Receptor"],
+							   Sample = rows.3[1,"Sample"],
+							   Cell_Count = rows.3[1,"Cell_Count"],
+							   Clone_Molecule_Count_From_Spikes = sum(rows.3$Clone_Molecule_Count_From_Spikes),
+							   Log10_Frequency = log10(sum(rows.3$Frequency)),
+							   Total_Read_Count = sum(rows.3$Total_Read_Count),
+							   dsPerM = sum(rows.3$dsPerM),
+							   J_Segment_Major_Gene = rows.3[1,"J_Segment_Major_Gene"],
+							   V_Segment_Major_Gene = rows.3[1,"V_Segment_Major_Gene"],
+							   Clone_Sequence = first.clone.sequence,
+							   CDR3_Sense_Sequence = rows.3[1,"CDR3_Sense_Sequence"],
+							   Related_to_leukemia_clone = F,
+							   Frequency = sum(rows.3$Frequency),
+							   locus_V = rows.3[1,"locus_V"],
+							   locus_J = rows.3[1,"locus_J"],
+							   uniqueID = rows.3[1,"uniqueID"],
+							   normalized_read_count = sum(rows.3$normalized_read_count))
+		}
 
-      if(matches.in.2 & matches.in.3){
-        merge.123 = merge(sum.1, sum.2, by="merge")
-        merge.123 = merge(merge.123, sum.3, by="merge")
-        colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123)))] = paste(colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123), perl=T))], ".z", sep="")
-        #merge.123$thresholdValue = pmax(merge.123[,onx], merge.123[,ony], merge.123[,onz])
+	  if(matches.in.2 & matches.in.3){
+			merge.123 = merge(sum.1, sum.2, by="merge")
+			merge.123 = merge(merge.123, sum.3, by="merge")
+			colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123)))] = paste(colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123), perl=T))], ".z", sep="")
+			#merge.123$thresholdValue = pmax(merge.123[,onx], merge.123[,ony], merge.123[,onz])
 
-        patientMerge = rbind(patientMerge, merge.123)
-        patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2 | match.filter.3),]
+			patientMerge = rbind(patientMerge, merge.123)
+			patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2 | match.filter.3),]
 
-        hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
-        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+			hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
+			merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
 
-      } else if (matches.in.2) {
-        #other.sample1 = other.sample.list[[first.sample]][1]
-        #other.sample2 = other.sample.list[[first.sample]][2]
+		} else if (matches.in.2) {
+			#other.sample1 = other.sample.list[[first.sample]][1]
+			#other.sample2 = other.sample.list[[first.sample]][2]
 
-        second.sample = sum.2[,"Sample"]
+			second.sample = sum.2[,"Sample"]
 
-        current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]]
+			current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]]
 
-        merge.12 = merge(sum.1, sum.2, by="merge")
+			merge.12 = merge(sum.1, sum.2, by="merge")
 
-        current.merge.list = rbind(current.merge.list, merge.12)
-        duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list
+			current.merge.list = rbind(current.merge.list, merge.12)
+			duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list
 
-        patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2),]
+			patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2),]
 
-        hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
-        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+			hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
+			merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
 
-      } else if (matches.in.3) {
+		} else if (matches.in.3) {
 
-        #other.sample1 = other.sample.list[[first.sample]][1]
-        #other.sample2 = other.sample.list[[first.sample]][2]
+			#other.sample1 = other.sample.list[[first.sample]][1]
+			#other.sample2 = other.sample.list[[first.sample]][2]
 
-        second.sample = sum.3[,"Sample"]
+			second.sample = sum.3[,"Sample"]
 
-        current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]]
+			current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]]
 
-        merge.13 = merge(sum.1, sum.3, by="merge")
+			merge.13 = merge(sum.1, sum.3, by="merge")
 
-        current.merge.list = rbind(current.merge.list, merge.13)
-        duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list
+			current.merge.list = rbind(current.merge.list, merge.13)
+			duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list
 
-        patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.3),]
+			patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.3),]
 
-        hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
-        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+			hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
+			merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
 
-      } else if(nrow(rows.1) > 1){
-        patient1 = patient1[!(patient1$Clone_Sequence %in% rows.1$Clone_Sequence),]
-        print(names(patient1)[names(patient1) %in% sum.1])
-        print(names(patient1)[!(names(patient1) %in% sum.1)])
-        print(names(patient1))
-        print(names(sum.1))
-        print(summary(sum.1))
-        print(summary(patient1))
-        print(dim(sum.1))
-        print(dim(patient1))
-        print(head(sum.1[,names(patient1)]))
-        patient1 = rbind(patient1, sum.1[,names(patient1)])
-        patient.fuzzy = patient.fuzzy[-match.filter.1,]
-      } else {
-        patient.fuzzy = patient.fuzzy[-1,]
-      }
+		} else if(nrow(rows.1) > 1){
+			patient1 = patient1[!(patient1$Clone_Sequence %in% rows.1$Clone_Sequence),]
+			print(names(patient1)[names(patient1) %in% sum.1])
+			print(names(patient1)[!(names(patient1) %in% sum.1)])
+			print(names(patient1))
+			print(names(sum.1))
+			print(summary(sum.1))
+			print(summary(patient1))
+			print(dim(sum.1))
+			print(dim(patient1))
+			print(head(sum.1[,names(patient1)]))
+			patient1 = rbind(patient1, sum.1[,names(patient1)])
+			patient.fuzzy = patient.fuzzy[-match.filter.1,]
+		} else {
+			patient.fuzzy = patient.fuzzy[-1,]
+		}
+
+		tmp.rows = rbind(rows.1, rows.2, rows.3)
+		tmp.rows = tmp.rows[order(nchar(tmp.rows$Clone_Sequence)),]
 
-      tmp.rows = rbind(rows.1, rows.2, rows.3)
-      tmp.rows = tmp.rows[order(nchar(tmp.rows$Clone_Sequence)),]
+		if (sum(match.filter.1) > 1 | sum(match.filter.2) > 1 | sum(match.filter.1) > 1) {
+		cat(paste("<tr><td>", label1, " row ", 1:nrow(tmp.rows), "</td><td>", tmp.rows$Sample, ":</td><td>", tmp.rows$Clone_Sequence, "</td><td>", tmp.rows$normalized_read_count, "</td></tr>", sep=""), file="multiple_matches.html", append=T)
+		} else {
+		}
+
+	}
+		patient.merge.list[[paste(label1, "123")]] = patientMerge
+
+		patientMerge12 = duo.merge.list[[paste(oneSample, twoSample)]]
+		patientMerge13 = duo.merge.list[[paste(oneSample, threeSample)]]
+		patientMerge23 = duo.merge.list[[paste(twoSample, threeSample)]]
 
-      if (sum(match.filter.1) > 1 | sum(match.filter.2) > 1 | sum(match.filter.1) > 1) {
-        cat(paste("<tr><td>", label1, " row ", 1:nrow(tmp.rows), "</td><td>", tmp.rows$Sample, ":</td><td>", tmp.rows$Clone_Sequence, "</td><td>", tmp.rows$normalized_read_count, "</td></tr>", sep=""), file="multiple_matches.html", append=T)
-      } else {
-      }
+		patient.merge.list[[paste(label1, "12")]] = patientMerge12
+		patient.merge.list[[paste(label1, "13")]] = patientMerge13
+		patient.merge.list[[paste(label1, "23")]] = patientMerge23
+
+		#patient.merge.list.second[[label1]] = merge.list[["second"]]
+	}
+	cat(paste("<td>", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (finding both took ", (proc.time() - start.time)[[3]], "s)</td></tr>", sep=""), file=logfile, append=T)
+	patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+	patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
+	patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
+	patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
+
+	#patientMerge$thresholdValue = pmin(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+	#patientMerge12$thresholdValue = pmin(patientMerge12[,onx], patientMerge12[,ony])
+	#patientMerge13$thresholdValue = pmin(patientMerge13[,onx], patientMerge13[,ony])
+	#patientMerge23$thresholdValue = pmin(patientMerge23[,onx], patientMerge23[,ony])
 
-    }
-    patient.merge.list[[paste(label1, "123")]] = patientMerge
+	patient1 = patient1[!(patient1$Clone_Sequence %in% merge.list[["second"]]),]
+	patient2 = patient2[!(patient2$Clone_Sequence %in% merge.list[["second"]]),]
+	patient3 = patient3[!(patient3$Clone_Sequence %in% merge.list[["second"]]),]
 
-    patientMerge12 = duo.merge.list[[paste(oneSample, twoSample)]]
-    patientMerge13 = duo.merge.list[[paste(oneSample, threeSample)]]
-    patientMerge23 = duo.merge.list[[paste(twoSample, threeSample)]]
+	if(F){
+		patientMerge = merge(patient1, patient2, by="merge")
+		patientMerge = merge(patientMerge, patient3, by="merge")
+		colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="")
+		patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+		patientMerge12 = merge(patient1, patient2, by="merge")
+		patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
+		patientMerge13 = merge(patient1, patient3, by="merge")
+		patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
+		patientMerge23 = merge(patient2, patient3, by="merge")
+		patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
+	}
 
-    patient.merge.list[[paste(label1, "12")]] = patientMerge12
-    patient.merge.list[[paste(label1, "13")]] = patientMerge13
-    patient.merge.list[[paste(label1, "23")]] = patientMerge23
+	scatterplot_data_columns = c("Clone_Sequence", "Frequency", "normalized_read_count", "V_Segment_Major_Gene", "J_Segment_Major_Gene", "merge")
+	scatterplot_data = rbind(patient1[,scatterplot_data_columns], patient2[,scatterplot_data_columns], patient3[,scatterplot_data_columns])
+	scatterplot_data = scatterplot_data[!duplicated(scatterplot_data$merge),]
+
+	scatterplot_data$type = factor(x="In one", levels=c("In one", "In two", "In three", "In multiple"))
 
-    patient.merge.list.second[[label1]] = merge.list[["second"]]
-  }
-  cat(paste("<td>", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (finding both took ", (proc.time() - start.time)[[3]], "s)</td></tr>", sep=""), file=logfile, append=T)
-  patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
-  patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
-  patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
-  patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
+	res1 = vector()
+	res2 = vector()
+	res3 = vector()
+	res12 = vector()
+	res13 = vector()
+	res23 = vector()
+	resAll = vector()
+	read1Count = vector()
+	read2Count = vector()
+	read3Count = vector()
 
-  #patientMerge$thresholdValue = pmin(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
-  #patientMerge12$thresholdValue = pmin(patientMerge12[,onx], patientMerge12[,ony])
-  #patientMerge13$thresholdValue = pmin(patientMerge13[,onx], patientMerge13[,ony])
-  #patientMerge23$thresholdValue = pmin(patientMerge23[,onx], patientMerge23[,ony])
+	if(appendTriplets){
+		cat(paste(label1, label2, label3, sep="\t"), file="triplets.txt", append=T, sep="", fill=3)
+	}
+	for(iter in 1:length(product[,1])){
+	threshhold = product[iter,threshholdIndex]
+	V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="")
+	J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="")
+	#all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,onx] > threshhold & patientMerge[,ony] > threshhold & patientMerge[,onz] > threshhold) 
+	all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge$thresholdValue > threshhold)
 
-  patient1 = patient1[!(patient1$Clone_Sequence %in% merge.list[["second"]]),]
-  patient2 = patient2[!(patient2$Clone_Sequence %in% merge.list[["second"]]),]
-  patient3 = patient3[!(patient3$Clone_Sequence %in% merge.list[["second"]]),]
+	one_two = (grepl(V_Segment, patientMerge12$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge12$J_Segment_Major_Gene.x) & patientMerge12$thresholdValue > threshhold & !(patientMerge12$merge %in% patientMerge[all,]$merge))
+	one_three = (grepl(V_Segment, patientMerge13$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge13$J_Segment_Major_Gene.x) & patientMerge13$thresholdValue > threshhold & !(patientMerge13$merge %in% patientMerge[all,]$merge))
+	two_three = (grepl(V_Segment, patientMerge23$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge23$J_Segment_Major_Gene.x) & patientMerge23$thresholdValue > threshhold & !(patientMerge23$merge %in% patientMerge[all,]$merge))
+
+	one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$merge %in% patientMerge[all,]$merge) & !(patient1$merge %in% patientMerge12[one_two,]$merge) & !(patient1$merge %in% patientMerge13[one_three,]$merge))
+	two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$merge %in% patientMerge[all,]$merge) & !(patient2$merge %in% patientMerge12[one_two,]$merge) & !(patient2$merge %in% patientMerge23[two_three,]$merge))
+	three = (grepl(V_Segment, patient3$V_Segment_Major_Gene) & grepl(J_Segment, patient3$J_Segment_Major_Gene) & patient3[,on] > threshhold & !(patient3$merge %in% patientMerge[all,]$merge) & !(patient3$merge %in% patientMerge13[one_three,]$merge) & !(patient3$merge %in% patientMerge23[two_three,]$merge))
 
-  if(F){
-    patientMerge = merge(patient1, patient2, by="merge")
-    patientMerge = merge(patientMerge, patient3, by="merge")
-    colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="")
-    patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
-    patientMerge12 = merge(patient1, patient2, by="merge")
-    patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
-    patientMerge13 = merge(patient1, patient3, by="merge")
-    patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
-    patientMerge23 = merge(patient2, patient3, by="merge")
-    patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
-  }
-  
-  scatterplot_data_columns = c("Clone_Sequence", "Frequency", "normalized_read_count", "V_Segment_Major_Gene", "J_Segment_Major_Gene", "merge")
-  scatterplot_data = rbind(patient1[,scatterplot_data_columns], patient2[,scatterplot_data_columns], patient3[,scatterplot_data_columns])
-  scatterplot_data = scatterplot_data[!duplicated(scatterplot_data$merge),]
-  scatterplot_data$type = factor(x="In one", levels=c("In one", "In two", "In three", "In multiple"))
-  
-  res1 = vector()
-  res2 = vector()
-  res3 = vector()
-  res12 = vector()
-  res13 = vector()
-  res23 = vector()
-  resAll = vector()
-  read1Count = vector()
-  read2Count = vector()
-  read3Count = vector()
-  
-  if(appendTriplets){
-    cat(paste(label1, label2, label3, sep="\t"), file="triplets.txt", append=T, sep="", fill=3)
-  }
-  for(iter in 1:length(product[,1])){
-    threshhold = product[iter,threshholdIndex]
-    V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="")
-    J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="")
-    #all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,onx] > threshhold & patientMerge[,ony] > threshhold & patientMerge[,onz] > threshhold) 
-    all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge$thresholdValue > threshhold)
-    
-    one_two = (grepl(V_Segment, patientMerge12$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge12$J_Segment_Major_Gene.x) & patientMerge12$thresholdValue > threshhold & !(patientMerge12$merge %in% patientMerge[all,]$merge))
-    one_three = (grepl(V_Segment, patientMerge13$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge13$J_Segment_Major_Gene.x) & patientMerge13$thresholdValue > threshhold & !(patientMerge13$merge %in% patientMerge[all,]$merge))
-    two_three = (grepl(V_Segment, patientMerge23$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge23$J_Segment_Major_Gene.x) & patientMerge23$thresholdValue > threshhold & !(patientMerge23$merge %in% patientMerge[all,]$merge))
-    
-    one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$merge %in% patientMerge[all,]$merge) & !(patient1$merge %in% patientMerge12[one_two,]$merge) & !(patient1$merge %in% patientMerge13[one_three,]$merge))
-    two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$merge %in% patientMerge[all,]$merge) & !(patient2$merge %in% patientMerge12[one_two,]$merge) & !(patient2$merge %in% patientMerge23[two_three,]$merge))
-    three = (grepl(V_Segment, patient3$V_Segment_Major_Gene) & grepl(J_Segment, patient3$J_Segment_Major_Gene) & patient3[,on] > threshhold & !(patient3$merge %in% patientMerge[all,]$merge) & !(patient3$merge %in% patientMerge13[one_three,]$merge) & !(patient3$merge %in% patientMerge23[two_three,]$merge))
-    
-    read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.x))
-    read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.y))
-    read3Count = append(read3Count, sum(patient3[three,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.z))
-    res1 = append(res1, sum(one))
-    res2 = append(res2, sum(two))
-    res3 = append(res3, sum(three))
-    resAll = append(resAll, sum(all))
-    res12 = append(res12, sum(one_two))
-    res13 = append(res13, sum(one_three))
-    res23 = append(res23, sum(two_three))
-    #threshhold = 0
-    if(threshhold != 0){
-      if(sum(one) > 0){
-        dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
-        colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
-        filenameOne = paste(label1, "_", product[iter, titleIndex], "_", threshhold, sep="")
-        write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-      }
-      if(sum(two) > 0){
-        dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
-        colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
-        filenameTwo = paste(label2, "_", product[iter, titleIndex], "_", threshhold, sep="")
-        write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-      }
-      if(sum(three) > 0){
-        dfThree = patient3[three,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
-        colnames(dfThree) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
-        filenameThree = paste(label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
-        write.table(dfThree, file=paste(filenameThree, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-      }
-      if(sum(one_two) > 0){
-        dfOne_two = patientMerge12[one_two,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
-        colnames(dfOne_two) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample))
-        filenameOne_two = paste(label1, "_", label2, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
-        write.table(dfOne_two, file=paste(filenameOne_two, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-      }
-      if(sum(one_three) > 0){
-        dfOne_three = patientMerge13[one_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
-        colnames(dfOne_three) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
-        filenameOne_three = paste(label1, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
-        write.table(dfOne_three, file=paste(filenameOne_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-      }
-      if(sum(two_three) > 0){
-        dfTwo_three = patientMerge23[two_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
-        colnames(dfTwo_three) = c(paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
-        filenameTwo_three = paste(label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
-        write.table(dfTwo_three, file=paste(filenameTwo_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-      }
-    } else { #scatterplot data
-      scatterplot_locus_data = scatterplot_data[grepl(V_Segment, scatterplot_data$V_Segment_Major_Gene) & grepl(J_Segment, scatterplot_data$J_Segment_Major_Gene),]
-      scatterplot_locus_data = scatterplot_locus_data[!(scatterplot_locus_data$merge %in% merge.list[["second"]]),]
-      in_two = (scatterplot_locus_data$merge %in% patientMerge12[one_two,]$merge) | (scatterplot_locus_data$merge %in% patientMerge13[one_three,]$merge) | (scatterplot_locus_data$merge %in% patientMerge23[two_three,]$merge)
-      if(sum(in_two) > 0){
-				scatterplot_locus_data[in_two,]$type = "In two"
-      }
-      in_three = (scatterplot_locus_data$merge %in% patientMerge[all,]$merge)
-      if(sum(in_three)> 0){
-				scatterplot_locus_data[in_three,]$type = "In three"
-      }
-      not_in_one = scatterplot_locus_data$type != "In one"
-      if(sum(not_in_one) > 0){
-				#scatterplot_locus_data[not_in_one,]$type = "In multiple"
-      }
-      p = NULL
-      if(nrow(scatterplot_locus_data) != 0){
-        if(on == "normalized_read_count"){
-		  scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
-          p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales, limits=c(1, 1e6))
-        } else {
-          p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100))
-          #p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100))
-        }
-        p = p + geom_point(aes(colour=type), position="jitter")
-        p = p + xlab("In one or in multiple samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
-      } else {
-        p = ggplot(NULL, aes(x=c("In one", "In multiple"),y=0)) + geom_blank(NULL) + xlab("In two or in three of the samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
-      }
-      png(paste(label1, "_", label2, "_", label3, "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep=""))
-      print(p)
-      dev.off()
-    } 
-    if(sum(all) > 0){
-      dfAll = patientMerge[all,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y", "V_Segment_Major_Gene.z", "J_Segment_Major_Gene.z", "normalized_read_count.z", "Frequency.z", "Related_to_leukemia_clone.z")]
-      colnames(dfAll) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample), paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
-      filenameAll = paste(label1, "_", label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
-      write.table(dfAll, file=paste(filenameAll, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-    }
-  }
-  #patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "tmp3"=res3, "read_count3"=round(read3Count))
-  patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "tmp2"=res2, "tmp3"=res3, "tmp12"=res12, "tmp13"=res13, "tmp23"=res23)
-  colnames(patientResult)[6] = oneSample
-  colnames(patientResult)[7] = twoSample
-  colnames(patientResult)[8] = threeSample
-  colnames(patientResult)[9] = paste(oneSample, twoSample, sep="_")
-  colnames(patientResult)[10] = paste(oneSample, twoSample, sep="_")
-  colnames(patientResult)[11] = paste(oneSample, twoSample, sep="_")
-  
-  colnamesBak = colnames(patientResult)
-  colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", "Number of sequences All", paste("Number of sequences", oneSample), paste("Number of sequences", twoSample), paste("Number of sequences", threeSample), paste("Number of sequences", oneSample, twoSample), paste("Number of sequences", oneSample, threeSample), paste("Number of sequences", twoSample, threeSample))
-  write.table(patientResult, file=paste(label1, "_", label2, "_", label3, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
-  colnames(patientResult) = colnamesBak
-  
-  patientResult$Locus = factor(patientResult$Locus, Titles)
-  patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep=""))
-  
-  plt = ggplot(patientResult[,c("Locus", "cut_off_value", "All")])
-  plt = plt + geom_bar( aes( x=factor(cut_off_value), y=All), stat='identity', position="dodge", fill="#79c36a")
-  plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
-  plt = plt + geom_text(aes(ymax=max(All), x=cut_off_value,y=All,label=All), angle=90, hjust=0)
-  plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in All")
-  plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
-  png(paste(label1, "_", label2, "_", label3, "_", onShort, "_total_all.png", sep=""), width=1920, height=1080)
-  print(plt)
-  dev.off()
-  
-  fontSize = 4
-  
-  bak = patientResult
-  patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample, threeSample)] ,id.vars=1:2)
-  patientResult$relativeValue = patientResult$value * 10
-  patientResult[patientResult$relativeValue == 0,]$relativeValue = 1
-  plt = ggplot(patientResult)
-  plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge")
-  plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
-  plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9)))
-  plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.7, size=fontSize)
-  plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.4, size=fontSize)
-  plt = plt + geom_text(data=patientResult[patientResult$variable == threeSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=1.5, size=fontSize)
-  plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in only one sample")
-  png(paste(label1, "_", label2, "_", label3, "_", onShort, "_indiv_all.png", sep=""), width=1920, height=1080)
-  print(plt)
-  dev.off()
+	read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.x))
+	read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.y))
+	read3Count = append(read3Count, sum(patient3[three,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.z))
+	res1 = append(res1, sum(one))
+	res2 = append(res2, sum(two))
+	res3 = append(res3, sum(three))
+	resAll = append(resAll, sum(all))
+	res12 = append(res12, sum(one_two))
+	res13 = append(res13, sum(one_three))
+	res23 = append(res23, sum(two_three))
+	#threshhold = 0
+	if(threshhold != 0){
+		if(sum(one) > 0){
+			dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+			colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
+			filenameOne = paste(label1, "_", product[iter, titleIndex], "_", threshhold, sep="")
+			write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+		}
+		if(sum(two) > 0){
+			dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+			colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
+			filenameTwo = paste(label2, "_", product[iter, titleIndex], "_", threshhold, sep="")
+			write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+		}
+		if(sum(three) > 0){
+			dfThree = patient3[three,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+			colnames(dfThree) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
+			filenameThree = paste(label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
+			write.table(dfThree, file=paste(filenameThree, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+		}
+		if(sum(one_two) > 0){
+			dfOne_two = patientMerge12[one_two,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
+			colnames(dfOne_two) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample))
+			filenameOne_two = paste(label1, "_", label2, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
+			write.table(dfOne_two, file=paste(filenameOne_two, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+		}
+		if(sum(one_three) > 0){
+			dfOne_three = patientMerge13[one_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
+			colnames(dfOne_three) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
+			filenameOne_three = paste(label1, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
+			write.table(dfOne_three, file=paste(filenameOne_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+		}
+		if(sum(two_three) > 0){
+			dfTwo_three = patientMerge23[two_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
+			colnames(dfTwo_three) = c(paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
+			filenameTwo_three = paste(label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
+			write.table(dfTwo_three, file=paste(filenameTwo_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+		}
+	} else { #scatterplot data
+		scatterplot_locus_data = scatterplot_data[grepl(V_Segment, scatterplot_data$V_Segment_Major_Gene) & grepl(J_Segment, scatterplot_data$J_Segment_Major_Gene),]
+		scatterplot_locus_data = scatterplot_locus_data[!(scatterplot_locus_data$merge %in% merge.list[["second"]]),]
+		in_two = (scatterplot_locus_data$merge %in% patientMerge12[one_two,]$merge) | (scatterplot_locus_data$merge %in% patientMerge13[one_three,]$merge) | (scatterplot_locus_data$merge %in% patientMerge23[two_three,]$merge)
+		if(sum(in_two) > 0){
+			scatterplot_locus_data[in_two,]$type = "In two"
+		}
+		in_three = (scatterplot_locus_data$merge %in% patientMerge[all,]$merge)
+		if(sum(in_three)> 0){
+			scatterplot_locus_data[in_three,]$type = "In three"
+		}
+		not_in_one = scatterplot_locus_data$type != "In one"
+		if(sum(not_in_one) > 0){
+			#scatterplot_locus_data[not_in_one,]$type = "In multiple"
+		}
+		p = NULL
+		if(nrow(scatterplot_locus_data) != 0){
+		if(on == "normalized_read_count"){
+		scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
+		p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales, limits=c(1, 1e6))
+		} else {
+		p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100))
+		#p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100))
+		}
+		p = p + geom_point(aes(colour=type), position="jitter")
+		p = p + xlab("In one or in multiple samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
+	  } else {
+		p = ggplot(NULL, aes(x=c("In one", "In multiple"),y=0)) + geom_blank(NULL) + xlab("In two or in three of the samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
+	  }
+		png(paste(label1, "_", label2, "_", label3, "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep=""))
+		print(p)
+	  dev.off()
+	} 
+	if(sum(all) > 0){
+		dfAll = patientMerge[all,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y", "V_Segment_Major_Gene.z", "J_Segment_Major_Gene.z", "normalized_read_count.z", "Frequency.z", "Related_to_leukemia_clone.z")]
+		colnames(dfAll) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample), paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
+		filenameAll = paste(label1, "_", label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
+		write.table(dfAll, file=paste(filenameAll, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+	}
+	}
+	#patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "tmp3"=res3, "read_count3"=round(read3Count))
+	patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "tmp2"=res2, "tmp3"=res3, "tmp12"=res12, "tmp13"=res13, "tmp23"=res23)
+	colnames(patientResult)[6] = oneSample
+	colnames(patientResult)[7] = twoSample
+	colnames(patientResult)[8] = threeSample
+	colnames(patientResult)[9] = paste(oneSample, twoSample, sep="_")
+	colnames(patientResult)[10] = paste(oneSample, twoSample, sep="_")
+	colnames(patientResult)[11] = paste(oneSample, twoSample, sep="_")
+
+	colnamesBak = colnames(patientResult)
+	colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", "Number of sequences All", paste("Number of sequences", oneSample), paste("Number of sequences", twoSample), paste("Number of sequences", threeSample), paste("Number of sequences", oneSample, twoSample), paste("Number of sequences", oneSample, threeSample), paste("Number of sequences", twoSample, threeSample))
+	write.table(patientResult, file=paste(label1, "_", label2, "_", label3, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+	colnames(patientResult) = colnamesBak
+
+	patientResult$Locus = factor(patientResult$Locus, Titles)
+	patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep=""))
+
+	plt = ggplot(patientResult[,c("Locus", "cut_off_value", "All")])
+	plt = plt + geom_bar( aes( x=factor(cut_off_value), y=All), stat='identity', position="dodge", fill="#79c36a")
+	plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
+	plt = plt + geom_text(aes(ymax=max(All), x=cut_off_value,y=All,label=All), angle=90, hjust=0)
+	plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in All")
+	plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
+	png(paste(label1, "_", label2, "_", label3, "_", onShort, "_total_all.png", sep=""), width=1920, height=1080)
+	print(plt)
+	dev.off()
+
+	fontSize = 4
+
+	bak = patientResult
+	patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample, threeSample)] ,id.vars=1:2)
+	patientResult$relativeValue = patientResult$value * 10
+	patientResult[patientResult$relativeValue == 0,]$relativeValue = 1
+	plt = ggplot(patientResult)
+	plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge")
+	plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
+	plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9)))
+	plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.7, size=fontSize)
+	plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.4, size=fontSize)
+	plt = plt + geom_text(data=patientResult[patientResult$variable == threeSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=1.5, size=fontSize)
+	plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in only one sample")
+	png(paste(label1, "_", label2, "_", label3, "_", onShort, "_indiv_all.png", sep=""), width=1920, height=1080)
+	print(plt)
+	dev.off()
 }
 
 if(nrow(triplets) != 0){
 
-  cat("<tr><td>Starting triplet analysis</td></tr>", file=logfile, append=T)
+	cat("<tr><td>Starting triplet analysis</td></tr>", file=logfile, append=T)
+
+	triplets$uniqueID = paste(triplets$Patient, triplets$Sample, sep="_")
+
+	cat("<tr><td>Normalizing to lowest cell count within locus</td></tr>", file=logfile, append=T)
 
-  triplets$uniqueID = "ID"
-  
-  triplets[grepl("16278_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
-  triplets[grepl("26402_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
-  triplets[grepl("26759_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
-  
-  triplets[grepl("16278_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
-  triplets[grepl("26402_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
-  triplets[grepl("26759_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
-  
-  triplets[grepl("14696", triplets$Patient),]$uniqueID = "14696"
+	triplets$locus_V = substring(triplets$V_Segment_Major_Gene, 0, 4)
+	triplets$locus_J = substring(triplets$J_Segment_Major_Gene, 0, 4)
+	min_cell_count = data.frame(data.table(triplets)[, list(min_cell_count=min(.SD$Cell_Count)), by=c("uniqueID", "locus_V", "locus_J")])
 
-  cat("<tr><td>Normalizing to lowest cell count within locus</td></tr>", file=logfile, append=T)
+	triplets$min_cell_paste = paste(triplets$uniqueID, triplets$locus_V, triplets$locus_J)
+	min_cell_count$min_cell_paste = paste(min_cell_count$uniqueID, min_cell_count$locus_V, min_cell_count$locus_J)
 
-  triplets$locus_V = substring(triplets$V_Segment_Major_Gene, 0, 4)
-  triplets$locus_J = substring(triplets$J_Segment_Major_Gene, 0, 4)
-  min_cell_count = data.frame(data.table(triplets)[, list(min_cell_count=min(.SD$Cell_Count)), by=c("uniqueID", "locus_V", "locus_J")])
-  
-  triplets$min_cell_paste = paste(triplets$uniqueID, triplets$locus_V, triplets$locus_J)
-  min_cell_count$min_cell_paste = paste(min_cell_count$uniqueID, min_cell_count$locus_V, min_cell_count$locus_J)
-  
-  min_cell_count = min_cell_count[,c("min_cell_paste", "min_cell_count")]
-  
-  triplets = merge(triplets, min_cell_count, by="min_cell_paste")
-  
-  triplets$normalized_read_count = round(triplets$Clone_Molecule_Count_From_Spikes / triplets$Cell_Count * triplets$min_cell_count / 2, digits=2) #??????????????????????????????????? wel of geen / 2
-  
-  triplets = triplets[triplets$normalized_read_count >= min_cells,]
-  
-  column_drops = c("min_cell_count", "min_cell_paste")
-  
-  triplets = triplets[,!(colnames(triplets) %in% column_drops)]
+	min_cell_count = min_cell_count[,c("min_cell_paste", "min_cell_count")]
+
+	triplets = merge(triplets, min_cell_count, by="min_cell_paste")
+
+	triplets$normalized_read_count = round(triplets$Clone_Molecule_Count_From_Spikes / triplets$Cell_Count * triplets$min_cell_count / 2, digits=2)
 
-  cat("<tr><td>Starting Cell Count analysis</td></tr>", file=logfile, append=T)
+	triplets = triplets[triplets$normalized_read_count >= min_cells,]
+
+	column_drops = c("min_cell_count", "min_cell_paste")
+
+	triplets = triplets[,!(colnames(triplets) %in% column_drops)]
+
+	cat("<tr><td>Starting Cell Count analysis</td></tr>", file=logfile, append=T)
 
-  interval = intervalReads
-  intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
-  product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
-  
-  one = triplets[triplets$Sample == "14696_reg_BM",]
-  two = triplets[triplets$Sample == "24536_reg_BM",]
-  three = triplets[triplets$Sample == "24062_reg_BM",]
-  tripletAnalysis(one, "14696_1_Trio", two, "14696_2_Trio", three, "14696_3_Trio", product=product, interval=interval, on="normalized_read_count", T)
-  
-  one = triplets[triplets$Sample == "16278_Left",]
-  two = triplets[triplets$Sample == "26402_Left",]
-  three = triplets[triplets$Sample == "26759_Left",]
-  tripletAnalysis(one, "16278_Left_Trio", two, "26402_Left_Trio", three, "26759_Left_Trio", product=product, interval=interval, on="normalized_read_count", T)
-  
-  one = triplets[triplets$Sample == "16278_Right",]
-  two = triplets[triplets$Sample == "26402_Right",]
-  three = triplets[triplets$Sample == "26759_Right",]
-  tripletAnalysis(one, "16278_Right_Trio", two, "26402_Right_Trio", three, "26759_Right_Trio", product=product, interval=interval, on="normalized_read_count", T)
-  
-  cat("<tr><td>Starting Frequency analysis</td></tr>", file=logfile, append=T)
+	interval = intervalReads
+	intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+	product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
 
-  interval = intervalFreq
-  intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
-  product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
-  
-  one = triplets[triplets$Sample == "14696_reg_BM",]
-  two = triplets[triplets$Sample == "24536_reg_BM",]
-  three = triplets[triplets$Sample == "24062_reg_BM",]
-  tripletAnalysis(one, "14696_1_Trio", two, "14696_2_Trio", three, "14696_3_Trio", product=product, interval=interval, on="Frequency", F)
-  
-  one = triplets[triplets$Sample == "16278_Left",]
-  two = triplets[triplets$Sample == "26402_Left",]
-  three = triplets[triplets$Sample == "26759_Left",]
-  tripletAnalysis(one, "16278_Left_Trio", two, "26402_Left_Trio", three, "26759_Left_Trio", product=product, interval=interval, on="Frequency", F)
-  
-  one = triplets[triplets$Sample == "16278_Right",]
-  two = triplets[triplets$Sample == "26402_Right",]
-  three = triplets[triplets$Sample == "26759_Right",]
-  tripletAnalysis(one, "16278_Right_Trio", two, "26402_Right_Trio", three, "26759_Right_Trio", product=product, interval=interval, on="Frequency", F)
+	triplets = split(triplets, triplets$Patient, drop=T)
+	print(nrow(triplets))
+	for(triplet in triplets){
+		samples = unique(triplet$Sample)
+		one = triplet[triplet$Sample == samples[1],]
+		two = triplet[triplet$Sample == samples[2],]
+		three = triplet[triplet$Sample == samples[3],]
+		
+		print(paste(nrow(triplet), nrow(one), nrow(two), nrow(three)))
+		tripletAnalysis(one, one[1,"uniqueID"], two, two[1,"uniqueID"], three, three[1,"uniqueID"], product=product, interval=interval, on="normalized_read_count", T)
+	}
+
+	cat("<tr><td>Starting Frequency analysis</td></tr>", file=logfile, append=T)
+
+	interval = intervalFreq
+	intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+	product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
+
+	for(triplet in triplets){
+		samples = unique(triplet$Sample)
+		one = triplet[triplet$Sample == samples[1],]
+		two = triplet[triplet$Sample == samples[2],]
+		three = triplet[triplet$Sample == samples[3],]
+		tripletAnalysis(one, one[1,"uniqueID"], two, two[1,"uniqueID"], three, three[1,"uniqueID"], product=product, interval=interval, on="Frequency", F)
+	}
 } else {
   cat("", file="triplets.txt")
 }