diff RScript.r @ 0:ed6885c85660 draft

Uploaded
author davidvanzessen
date Wed, 31 Aug 2016 05:31:47 -0400
parents
children 75853bceec00
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/RScript.r	Wed Aug 31 05:31:47 2016 -0400
@@ -0,0 +1,1076 @@
+args <- commandArgs(trailingOnly = TRUE)
+options(scipen=999)
+
+inFile = args[1]
+outDir = args[2]
+logfile = args[3]
+min_freq = as.numeric(args[4])
+min_cells = as.numeric(args[5])
+mergeOn = args[6]
+
+cat("<html><table><tr><td>Starting analysis</td></tr>", file=logfile, append=F)
+
+library(ggplot2)
+library(reshape2)
+library(data.table)
+library(grid)
+library(parallel)
+#require(xtable)
+cat("<tr><td>Reading input</td></tr>", file=logfile, append=T)
+dat = read.table(inFile, header=T, sep="\t", dec=".", fill=T, stringsAsFactors=F)
+dat = dat[,c("Patient",  "Receptor", "Sample", "Cell_Count", "Clone_Molecule_Count_From_Spikes", "Log10_Frequency", "Total_Read_Count", "J_Segment_Major_Gene", "V_Segment_Major_Gene", "CDR3_Sense_Sequence", "Clone_Sequence")]
+dat$dsPerM = 0
+dat = dat[!is.na(dat$Patient),]
+dat$Related_to_leukemia_clone = F
+
+setwd(outDir)
+cat("<tr><td>Selecting first V/J Genes</td></tr>", file=logfile, append=T)
+dat$V_Segment_Major_Gene = as.factor(as.character(lapply(strsplit(as.character(dat$V_Segment_Major_Gene), "; "), "[[", 1)))
+dat$J_Segment_Major_Gene = as.factor(as.character(lapply(strsplit(as.character(dat$J_Segment_Major_Gene), "; "), "[[", 1)))
+
+cat("<tr><td>Calculating Frequency</td></tr>", file=logfile, append=T)
+
+dat$Frequency = ((10^dat$Log10_Frequency)*100)
+
+dat = dat[dat$Frequency >= min_freq,]
+
+triplets = dat[grepl("VanDongen_cALL_14696", dat$Patient) | grepl("(16278)|(26402)|(26759)", dat$Sample),]
+
+cat("<tr><td>Normalizing to lowest cell count within locus</td></tr>", file=logfile, append=T)
+
+dat$locus_V = substring(dat$V_Segment_Major_Gene, 0, 4)
+dat$locus_J = substring(dat$J_Segment_Major_Gene, 0, 4)
+min_cell_count = data.frame(data.table(dat)[, list(min_cell_count=min(.SD$Cell_Count)), by=c("Patient", "locus_V", "locus_J")])
+
+dat$min_cell_paste = paste(dat$Patient, dat$locus_V, dat$locus_J)
+min_cell_count$min_cell_paste = paste(min_cell_count$Patient, min_cell_count$locus_V, min_cell_count$locus_J)
+
+min_cell_count = min_cell_count[,c("min_cell_paste", "min_cell_count")]
+print(paste("rows:", nrow(dat)))
+dat = merge(dat, min_cell_count, by="min_cell_paste")
+print(paste("rows:", nrow(dat)))
+dat$normalized_read_count = round(dat$Clone_Molecule_Count_From_Spikes / dat$Cell_Count * dat$min_cell_count / 2, digits=2) #??????????????????????????????????? wel of geen / 2
+
+dat = dat[dat$normalized_read_count >= min_cells,]
+
+dat$paste = paste(dat$Sample, dat$Clone_Sequence)
+
+patients = split(dat, dat$Patient, drop=T)
+intervalReads = rev(c(0,10,25,50,100,250,500,750,1000,10000))
+intervalFreq = rev(c(0,0.01,0.05,0.1,0.5,1,5))
+V_Segments = c(".*", "IGHV", "IGHD", "IGKV", "IGKV", "IgKINTR", "TRGV", "TRDV", "TRDD" , "TRBV")
+J_Segments = c(".*", ".*", ".*", "IGKJ", "KDE", ".*", ".*", ".*", ".*", ".*")
+Titles = c("Total", "IGH-Vh-Jh", "IGH-Dh-Jh", "Vk-Jk", "Vk-Kde" , "Intron-Kde", "TCRG", "TCRD-Vd-Dd", "TCRD-Dd-Dd", "TCRB-Vb-Jb")
+Titles = factor(Titles, levels=Titles)
+TitlesOrder = data.frame("Title"=Titles, "TitlesOrder"=1:length(Titles))
+
+single_patients = data.frame("Patient" = character(0),"Sample" = character(0), "on" = character(0), "Clone_Sequence" = character(0), "Frequency" = numeric(0), "normalized_read_count" = numeric(0), "V_Segment_Major_Gene" = character(0), "J_Segment_Major_Gene" = character(0), "Rearrangement" = character(0))
+
+patient.merge.list = list() #cache the 'both' table, 2x speedup for more memory...
+patient.merge.list.second = list()
+  scatter_locus_data_list = list()
+cat(paste("<table border='0' style='font-family:courier;'>", sep=""), file="multiple_matches.html", append=T)
+cat(paste("<table border='0' style='font-family:courier;'>", sep=""), file="single_matches.html", append=T)
+patientCountOnColumn <- function(x, product, interval, on, appendtxt=F){
+  if (!is.data.frame(x) & is.list(x)){
+    x = x[[1]]
+  }
+  #x$Sample = factor(x$Sample, levels=unique(x$Sample))
+  x = data.frame(x,stringsAsFactors=F)
+  onShort = "reads"
+  if(on == "Frequency"){
+    onShort = "freq"
+  }
+  onx = paste(on, ".x", sep="")
+  ony = paste(on, ".y", sep="")
+  splt = split(x, x$Sample, drop=T)
+  type="pair"
+  if(length(splt) == 1){
+    print(paste(paste(x[1,which(colnames(x) == "Patient")]), "has one sample"))
+    splt[[2]] = data.frame("Patient" = character(0), "Receptor" = character(0), "Sample" = character(0), "Cell_Count" = numeric(0), "Clone_Molecule_Count_From_Spikes" = numeric(0), "Log10_Frequency" = numeric(0), "Total_Read_Count" = numeric(0), "dsMol_per_1e6_cells" = numeric(0), "J_Segment_Major_Gene" = character(0), "V_Segment_Major_Gene" = character(0), "Clone_Sequence" = character(0), "CDR3_Sense_Sequence" = character(0), "Related_to_leukemia_clone" = logical(0), "Frequency"= numeric(0), "normalized_read_count" = numeric(0), "paste" = character(0))
+    type="single"
+  }
+  patient1 = splt[[1]]
+  patient2 = splt[[2]]
+  
+  threshholdIndex = which(colnames(product) == "interval")
+  V_SegmentIndex = which(colnames(product) == "V_Segments")
+  J_SegmentIndex = which(colnames(product) == "J_Segments")
+  titleIndex = which(colnames(product) == "Titles")
+  sampleIndex = which(colnames(x) == "Sample")
+  patientIndex = which(colnames(x) == "Patient")
+  oneSample = paste(patient1[1,sampleIndex], sep="")
+  twoSample = paste(patient2[1,sampleIndex], sep="")
+  patient = paste(x[1,patientIndex])
+
+  switched = F
+  if(length(grep(".*_Right$", twoSample)) == 1 || length(grep(".*_Dx_BM$", twoSample)) == 1 || length(grep(".*_Dx$", twoSample)) == 1 ){
+    tmp = twoSample
+    twoSample = oneSample
+    oneSample = tmp
+    tmp = patient1
+    patient1 = patient2
+    patient2 = tmp
+    switched = T
+  }
+  if(appendtxt){
+    cat(paste(patient, oneSample, twoSample, type, sep="\t"), file="patients.txt", append=T, sep="", fill=3)
+  }
+  cat(paste("<tr><td>", patient, "</td>", sep=""), file=logfile, append=T)
+  
+  if(mergeOn == "Clone_Sequence"){
+    patient1$merge = paste(patient1$Clone_Sequence)
+    patient2$merge = paste(patient2$Clone_Sequence)
+  } else {
+    patient1$merge = paste(patient1$V_Segment_Major_Gene, patient1$J_Segment_Major_Gene, patient1$CDR3_Sense_Sequence)
+    patient2$merge = paste(patient2$V_Segment_Major_Gene, patient2$J_Segment_Major_Gene, patient2$CDR3_Sense_Sequence)
+  }
+  
+  scatterplot_data_columns = c("Patient", "Sample", "Frequency", "normalized_read_count", "V_Segment_Major_Gene", "J_Segment_Major_Gene", "merge")
+  #scatterplot_data = rbind(patient1[,scatterplot_data_columns], patient2[,scatterplot_data_columns])
+  scatterplot_data = patient1[NULL,scatterplot_data_columns]
+  #scatterplot_data = scatterplot_data[!duplicated(scatterplot_data$merge),]
+  #scatterplot_data$type = factor(x=oneSample, levels=c(oneSample, twoSample, "In Both"))
+  scatterplot.data.type.factor = c(oneSample, twoSample, paste(c(oneSample, twoSample), "In Both"))
+  #scatterplot_data$type = factor(x=NULL, levels=scatterplot.data.type.factor)
+  scatterplot_data$type = character(0)
+  scatterplot_data$link = numeric(0)
+  scatterplot_data$on = character(0)
+  
+  #patientMerge = merge(patient1, patient2, by.x="merge", by.y="merge") #merge alles 'fuzzy'
+  patientMerge = merge(patient1, patient2, by.x="merge", by.y="merge")[NULL,] #blegh
+
+  cs.exact.matches = patient1[patient1$Clone_Sequence %in% patient2$Clone_Sequence,]$Clone_Sequence
+
+  start.time = proc.time()
+  merge.list = c()
+
+  if(patient %in% names(patient.merge.list)){
+    patientMerge = patient.merge.list[[patient]]
+    merge.list[["second"]] = patient.merge.list.second[[patient]]
+    scatterplot_data = scatter_locus_data_list[[patient]]
+    cat(paste("<td>", nrow(patient1), " in ", oneSample, " and ", nrow(patient2), " in ", twoSample, ", ", nrow(patientMerge), " in both (fetched from cache)</td></tr>", sep=""), file=logfile, append=T)
+
+    print(names(patient.merge.list))
+  } else {
+    #fuzzy matching here...
+    #merge.list = patientMerge$merge
+
+    #patient1.fuzzy = patient1[!(patient1$merge %in% merge.list),]
+    #patient2.fuzzy = patient2[!(patient2$merge %in% merge.list),]
+
+    patient1.fuzzy = patient1
+    patient2.fuzzy = patient2
+
+    #patient1.fuzzy$merge = paste(patient1.fuzzy$V_Segment_Major_Gene, patient1.fuzzy$J_Segment_Major_Gene, patient1.fuzzy$CDR3_Sense_Sequence)
+    #patient2.fuzzy$merge = paste(patient2.fuzzy$V_Segment_Major_Gene, patient2.fuzzy$J_Segment_Major_Gene, patient2.fuzzy$CDR3_Sense_Sequence)
+
+    #patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J, patient1.fuzzy$CDR3_Sense_Sequence)
+    #patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J, patient2.fuzzy$CDR3_Sense_Sequence)
+
+    patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J)
+    patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J)
+
+    #merge.freq.table = data.frame(table(c(patient1.fuzzy[!duplicated(patient1.fuzzy$merge),"merge"], patient2.fuzzy[!duplicated(patient2.fuzzy$merge),"merge"]))) #also remove?
+    #merge.freq.table.gt.1 = merge.freq.table[merge.freq.table$Freq > 1,]
+
+    #patient1.fuzzy = patient1.fuzzy[patient1.fuzzy$merge %in% merge.freq.table.gt.1$Var1,]
+    #patient2.fuzzy = patient2.fuzzy[patient2.fuzzy$merge %in% merge.freq.table.gt.1$Var1,]
+
+    patient.fuzzy = rbind(patient1.fuzzy, patient2.fuzzy)
+    patient.fuzzy = patient.fuzzy[order(nchar(patient.fuzzy$Clone_Sequence)),]
+
+    merge.list = list()
+
+    merge.list[["second"]] = vector()
+	
+	link.count = 1
+	
+    while(nrow(patient.fuzzy) > 1){
+      first.merge = patient.fuzzy[1,"merge"]
+      first.clone.sequence = patient.fuzzy[1,"Clone_Sequence"]
+      first.sample = patient.fuzzy[1,"Sample"]
+      merge.filter = first.merge == patient.fuzzy$merge
+
+      #length.filter = nchar(patient.fuzzy$Clone_Sequence) - nchar(first.clone.sequence) <= 9
+
+      first.sample.filter = first.sample == patient.fuzzy$Sample
+      second.sample.filter = first.sample != patient.fuzzy$Sample
+
+      #first match same sample, sum to a single row, same for other sample
+      #then merge rows like 'normal'
+
+      sequence.filter = grepl(paste("^", first.clone.sequence, sep=""), patient.fuzzy$Clone_Sequence)
+
+
+
+      #match.filter = merge.filter & grepl(first.clone.sequence, patient.fuzzy$Clone_Sequence) & length.filter & sample.filter
+      first.match.filter = merge.filter & sequence.filter & first.sample.filter
+      second.match.filter = merge.filter & sequence.filter & second.sample.filter
+
+      first.rows = patient.fuzzy[first.match.filter,]
+      second.rows = patient.fuzzy[second.match.filter,]
+
+      first.rows.v = table(first.rows$V_Segment_Major_Gene)
+      first.rows.v = names(first.rows.v[which.max(first.rows.v)])
+      first.rows.j = table(first.rows$J_Segment_Major_Gene)
+      first.rows.j = names(first.rows.j[which.max(first.rows.j)])
+
+      first.sum = data.frame(merge = first.clone.sequence,
+                             Patient = patient,
+                             Receptor = first.rows[1,"Receptor"],
+                             Sample = first.rows[1,"Sample"],
+                             Cell_Count = first.rows[1,"Cell_Count"],
+                             Clone_Molecule_Count_From_Spikes = sum(first.rows$Clone_Molecule_Count_From_Spikes),
+                             Log10_Frequency = log10(sum(first.rows$Frequency)),
+                             Total_Read_Count = sum(first.rows$Total_Read_Count),
+                             dsPerM = sum(first.rows$dsPerM),
+                             J_Segment_Major_Gene = first.rows.j,
+                             V_Segment_Major_Gene = first.rows.v,
+                             Clone_Sequence = first.clone.sequence,
+                             CDR3_Sense_Sequence = first.rows[1,"CDR3_Sense_Sequence"],
+                             Related_to_leukemia_clone = F,
+                             Frequency = sum(first.rows$Frequency),
+                             locus_V = first.rows[1,"locus_V"],
+                             locus_J = first.rows[1,"locus_J"],
+                             min_cell_count = first.rows[1,"min_cell_count"],
+                             normalized_read_count = sum(first.rows$normalized_read_count),
+                             paste = first.rows[1,"paste"],
+                             min_cell_paste = first.rows[1,"min_cell_paste"])
+
+      if(nrow(second.rows) > 0){
+        second.rows.v = table(second.rows$V_Segment_Major_Gene)
+        second.rows.v = names(second.rows.v[which.max(second.rows.v)])
+        second.rows.j = table(second.rows$J_Segment_Major_Gene)
+        second.rows.j = names(second.rows.j[which.max(second.rows.j)])
+
+        second.sum = data.frame(merge = first.clone.sequence,
+                               Patient = patient,
+                               Receptor = second.rows[1,"Receptor"],
+                               Sample = second.rows[1,"Sample"],
+                               Cell_Count = second.rows[1,"Cell_Count"],
+                               Clone_Molecule_Count_From_Spikes = sum(second.rows$Clone_Molecule_Count_From_Spikes),
+                               Log10_Frequency = log10(sum(second.rows$Frequency)),
+                               Total_Read_Count = sum(second.rows$Total_Read_Count),
+                               dsPerM = sum(second.rows$dsPerM),
+                               J_Segment_Major_Gene = second.rows.j,
+                               V_Segment_Major_Gene = second.rows.v,
+                               Clone_Sequence = first.clone.sequence,
+                               CDR3_Sense_Sequence = second.rows[1,"CDR3_Sense_Sequence"],
+                               Related_to_leukemia_clone = F,
+                               Frequency = sum(second.rows$Frequency),
+                               locus_V = second.rows[1,"locus_V"],
+                               locus_J = second.rows[1,"locus_J"],
+                               min_cell_count = second.rows[1,"min_cell_count"],
+                               normalized_read_count = sum(second.rows$normalized_read_count),
+                               paste = second.rows[1,"paste"],
+                               min_cell_paste = second.rows[1,"min_cell_paste"])
+
+        patientMerge = rbind(patientMerge, merge(first.sum, second.sum, by="merge"))
+        patient.fuzzy = patient.fuzzy[!(first.match.filter | second.match.filter),]
+
+        hidden.clone.sequences = c(first.rows[-1,"Clone_Sequence"], second.rows[second.rows$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
+        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+
+        tmp.rows = rbind(first.rows, second.rows)
+        tmp.rows = tmp.rows[order(nchar(tmp.rows$Clone_Sequence)),]
+        
+        
+        #add to the scatterplot data
+        scatterplot.row = first.sum[,scatterplot_data_columns]
+		scatterplot.row$type = paste(first.sum[,"Sample"], "In Both")
+		scatterplot.row$link = link.count
+		scatterplot.row$on = onShort
+		
+		scatterplot_data = rbind(scatterplot_data, scatterplot.row)
+        
+        scatterplot.row = second.sum[,scatterplot_data_columns]
+		scatterplot.row$type = paste(second.sum[,"Sample"], "In Both")
+		scatterplot.row$link = link.count
+		scatterplot.row$on = onShort
+		
+		scatterplot_data = rbind(scatterplot_data, scatterplot.row)    
+		
+		#write some information about the match to a log file
+        if (nrow(first.rows) > 1 | nrow(second.rows) > 1) {
+          cat(paste("<tr><td>", patient, " row ", 1:nrow(tmp.rows), "</td><td>", tmp.rows$Sample, ":</td><td>", tmp.rows$Clone_Sequence, "</td><td>", tmp.rows$normalized_read_count, "</td></tr>", sep=""), file="multiple_matches.html", append=T)
+        } else {
+          second.clone.sequence = second.rows[1,"Clone_Sequence"]
+          if(nchar(first.clone.sequence) != nchar(second.clone.sequence)){
+            cat(paste("<tr bgcolor='#DDD'><td>", patient, " row ", 1:nrow(tmp.rows), "</td><td>", tmp.rows$Sample, ":</td><td>", tmp.rows$Clone_Sequence, "</td><td>", tmp.rows$normalized_read_count, "</td></tr>", sep=""), file="single_matches.html", append=T)
+          } else {
+            #cat(paste("<tr><td>", patient, " row ", 1:nrow(tmp.rows), "</td><td>", tmp.rows$Sample, ":</td><td>", tmp.rows$Clone_Sequence, "</td><td>", tmp.rows$normalized_read_count, "</td></tr>", sep=""), file="single_matches.html", append=T)
+          }
+        }
+
+      } else if(nrow(first.rows) > 1) {
+        if(patient1[1,"Sample"] == first.sample){
+          patient1 = patient1[!(patient1$Clone_Sequence %in% first.rows$Clone_Sequence),]
+          patient1 = rbind(patient1, first.sum)
+        } else {
+          patient2 = patient2[!(patient2$Clone_Sequence %in% first.rows$Clone_Sequence),]
+          patient2 = rbind(patient2, first.sum)
+        }
+
+        hidden.clone.sequences = c(first.rows[-1,"Clone_Sequence"])
+        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+
+        patient.fuzzy = patient.fuzzy[-first.match.filter,]
+        
+        #add to the scatterplot data
+        scatterplot.row = first.sum[,scatterplot_data_columns]
+		scatterplot.row$type = first.sum[,"Sample"]
+		scatterplot.row$link = link.count
+		scatterplot.row$on = onShort
+		
+		scatterplot_data = rbind(scatterplot_data, scatterplot.row)
+
+        cat(paste("<tr bgcolor='#DDF'><td>", patient, " row ", 1:nrow(first.rows), "</td><td>", first.rows$Sample, ":</td><td>", first.rows$Clone_Sequence, "</td><td>", first.rows$normalized_read_count, "</td></tr>", sep=""), file="single_matches.html", append=T)
+      } else {
+        patient.fuzzy = patient.fuzzy[-1,]
+        
+        #add to the scatterplot data
+        scatterplot.row = first.sum[,scatterplot_data_columns]
+		scatterplot.row$type = first.sum[,"Sample"]
+		scatterplot.row$link = link.count
+		scatterplot.row$on = onShort
+		
+		scatterplot_data = rbind(scatterplot_data, scatterplot.row)
+      }
+      link.count = link.count + 1    
+    }
+    patient.merge.list[[patient]] <<- patientMerge
+    patient.merge.list.second[[patient]] <<- merge.list[["second"]]
+    
+    sample.order = data.frame(type = c(oneSample, twoSample, paste(c(oneSample, twoSample), "In Both")),type.order = 1:4)
+    scatterplot_data = merge(scatterplot_data, sample.order, by="type")
+    
+    scatter_locus_data_list[[patient]] <<- scatterplot_data
+    cat(paste("<td>", nrow(patient1), " in ", oneSample, " and ", nrow(patient2), " in ", twoSample, ", ", nrow(patientMerge), " in both (finding both took ", (proc.time() - start.time)[[3]], "s)</td></tr>", sep=""), file=logfile, append=T)
+  }
+
+  patient1 = patient1[!(patient1$Clone_Sequence %in% patient.merge.list.second[[patient]]),]
+  patient2 = patient2[!(patient2$Clone_Sequence %in% patient.merge.list.second[[patient]]),]
+
+  
+  patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony])
+  #patientMerge$thresholdValue = pmin(patientMerge[,onx], patientMerge[,ony])
+  res1 = vector()
+  res2 = vector()
+  resBoth = vector()
+  read1Count = vector()
+  read2Count = vector()
+  locussum1 = vector()
+  locussum2 = vector()
+  
+  #for(iter in 1){
+  for(iter in 1:length(product[,1])){
+    threshhold = product[iter,threshholdIndex]
+    V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="")
+    J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="")
+    #both = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,onx] > threshhold & patientMerge[,ony] > threshhold) #both higher than threshold
+    both = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge$thresholdValue > threshhold) #highest of both is higher than threshold
+    one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$merge %in% patientMerge[both,]$merge))
+    two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$merge %in% patientMerge[both,]$merge))
+    read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count))
+    read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count))
+    res1 = append(res1, sum(one))
+    res2 = append(res2, sum(two))
+    resBoth = append(resBoth, sum(both))
+    locussum1 = append(locussum1, sum(patient1[(grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene)),]$normalized_read_count))
+    locussum2 = append(locussum2, sum(patient2[(grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene)),]$normalized_read_count))
+    #threshhold = 0
+    if(threshhold != 0){
+      if(sum(one) > 0){
+        dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+        colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone Sequence", "Related_to_leukemia_clone")
+        filenameOne = paste(oneSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
+        write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+      if(sum(two) > 0){
+        dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+        colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone Sequence", "Related_to_leukemia_clone")
+        filenameTwo = paste(twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
+        write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+    } else {
+      scatterplot_locus_data = scatterplot_data[grepl(V_Segment, scatterplot_data$V_Segment_Major_Gene) & grepl(J_Segment, scatterplot_data$J_Segment_Major_Gene),]
+      if(nrow(scatterplot_locus_data) > 0){
+        scatterplot_locus_data$Rearrangement = product[iter, titleIndex]
+      }
+      
+      
+            
+      p = NULL
+      print(paste("nrow scatterplot_locus_data", nrow(scatterplot_locus_data)))
+      if(nrow(scatterplot_locus_data) != 0){
+        if(on == "normalized_read_count"){
+		  write.table(scatterplot_locus_data, file=paste(oneSample, twoSample, product[iter, titleIndex], "scatterplot_locus_data.txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+          scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
+          p = ggplot(scatterplot_locus_data, aes(factor(reorder(type, type.order)), normalized_read_count, group=link)) + geom_line() + scale_y_log10(breaks=scales,labels=scales, limits=c(1,1e6)) + scale_x_discrete(breaks=levels(scatterplot_data$type), labels=levels(scatterplot_data$type), drop=FALSE)
+        } else {
+          p = ggplot(scatterplot_locus_data, aes(factor(reorder(type, type.order)), Frequency, group=link)) + geom_line() + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + scale_x_discrete(breaks=levels(scatterplot_data$type), labels=levels(scatterplot_data$type), drop=FALSE)
+        }
+        p = p + geom_point(aes(colour=type), position="dodge")
+        p = p + xlab("In one or both samples") + ylab(onShort) + ggtitle(paste(patient1[1,patientIndex], patient1[1,sampleIndex], patient2[1,sampleIndex], onShort, product[iter, titleIndex]))
+      } else {
+        p = ggplot(NULL, aes(x=c("In one", "In Both"),y=0)) + geom_blank(NULL) + xlab("In one or both of the samples") + ylab(onShort) + ggtitle(paste(patient1[1,patientIndex], patient1[1,sampleIndex], patient2[1,sampleIndex], onShort, product[iter, titleIndex]))
+      }
+      png(paste(patient1[1,patientIndex], "_", patient1[1,sampleIndex], "_", patient2[1,sampleIndex], "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep=""))
+      print(p)
+      dev.off()
+    }
+    if(sum(both) > 0){
+      dfBoth = patientMerge[both,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
+      colnames(dfBoth) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample))
+      filenameBoth = paste(oneSample, "_", twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
+      write.table(dfBoth, file=paste(filenameBoth, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+    } 
+  }
+  patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "Both"=resBoth, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "Sum"=res1 + res2 + resBoth, "percentage" = round((resBoth/(res1 + res2 + resBoth)) * 100, digits=2), "Locus_sum1"=locussum1, "Locus_sum2"=locussum2)
+  if(sum(is.na(patientResult$percentage)) > 0){
+    patientResult[is.na(patientResult$percentage),]$percentage = 0
+  }
+  colnames(patientResult)[6] = oneSample
+  colnames(patientResult)[8] = twoSample
+  colnamesBak = colnames(patientResult)
+  colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", paste("Number of sequences ", patient, "_Both", sep=""), paste("Number of sequences", oneSample, sep=""), paste("Normalized Read Count", oneSample), paste("Number of sequences", twoSample, sep=""), paste("Normalized Read Count", twoSample), paste("Sum number of sequences", patient), paste("Percentage of sequences ", patient, "_Both", sep=""), paste("Locus Sum", oneSample), paste("Locus Sum", twoSample))
+  write.table(patientResult, file=paste(patient, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+  colnames(patientResult) = colnamesBak
+  
+  patientResult$Locus = factor(patientResult$Locus, Titles)
+  patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep=""))
+  
+  plt = ggplot(patientResult[,c("Locus", "cut_off_value", "Both")])
+  plt = plt + geom_bar( aes( x=factor(cut_off_value), y=Both), stat='identity', position="dodge", fill="#79c36a")
+  plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
+  plt = plt + geom_text(aes(ymax=max(Both), x=cut_off_value,y=Both,label=Both), angle=90, hjust=0)
+  plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in both")
+  plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
+  png(paste(patient, "_", onShort, ".png", sep=""), width=1920, height=1080)
+  print(plt)
+  dev.off()
+  #(t,r,b,l)
+  plt = ggplot(patientResult[,c("Locus", "cut_off_value", "percentage")])
+  plt = plt + geom_bar( aes( x=factor(cut_off_value), y=percentage), stat='identity', position="dodge", fill="#79c36a")
+  plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
+  plt = plt + geom_text(aes(ymax=max(percentage), x=cut_off_value,y=percentage,label=percentage), angle=90, hjust=0)
+  plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("% clones in both left and right")
+  plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
+  png(paste(patient, "_percent_", onShort, ".png", sep=""), width=1920, height=1080)
+  print(plt)
+  dev.off()
+  
+  patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample)] ,id.vars=1:2)
+  patientResult$relativeValue = patientResult$value * 10
+  patientResult[patientResult$relativeValue == 0,]$relativeValue = 1
+  plt = ggplot(patientResult)
+  plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge")
+  plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
+  plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9)))
+  plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.2)
+  plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.8)
+  plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle(paste("Number of clones in only ", oneSample, " and only ", twoSample, sep=""))
+  png(paste(patient, "_", onShort, "_both.png", sep=""), width=1920, height=1080)
+  print(plt)
+  dev.off()
+}
+
+cat("<tr><td>Starting Frequency analysis</td></tr>", file=logfile, append=T)
+
+interval = intervalFreq
+intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
+lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="Frequency", appendtxt=T)
+
+cat("<tr><td>Starting Cell Count analysis</td></tr>", file=logfile, append=T)
+
+interval = intervalReads
+intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
+lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count")
+
+if(nrow(single_patients) > 0){
+	scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
+	p = ggplot(single_patients, aes(Rearrangement, normalized_read_count)) + scale_y_log10(breaks=scales,labels=as.character(scales)) + expand_limits(y=c(0,1000000))
+	p = p + geom_point(aes(colour=type), position="jitter")
+	p = p + xlab("In one or both samples") + ylab("Reads")
+	p = p + facet_grid(.~Patient) + ggtitle("Scatterplot of the reads of the patients with a single sample")
+	png("singles_reads_scatterplot.png", width=640 * length(unique(single_patients$Patient)) + 100, height=1080)
+	print(p)
+	dev.off()
+
+	#p = ggplot(single_patients, aes(Rearrangement, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100))
+	p = ggplot(single_patients, aes(Rearrangement, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100))
+	p = p + geom_point(aes(colour=type), position="jitter")
+	p = p + xlab("In one or both samples") + ylab("Frequency")
+	p = p + facet_grid(.~Patient) + ggtitle("Scatterplot of the frequency of the patients with a single sample")
+	png("singles_freq_scatterplot.png", width=640 * length(unique(single_patients$Patient)) + 100, height=1080)
+	print(p)
+	dev.off()
+} else {
+	empty <- data.frame()
+	p = ggplot(empty) + geom_point() + xlim(0, 10) + ylim(0, 100) + xlab("In one or both samples") + ylab("Frequency") + ggtitle("Scatterplot of the frequency of the patients with a single sample")
+	
+	png("singles_reads_scatterplot.png", width=400, height=300)
+	print(p)
+	dev.off()	
+	
+	png("singles_freq_scatterplot.png", width=400, height=300)
+	print(p)
+	dev.off()
+}
+
+patient.merge.list = list() #cache the 'both' table, 2x speedup for more memory...
+patient.merge.list.second = list()
+
+tripletAnalysis <- function(patient1, label1, patient2, label2, patient3, label3, product, interval, on, appendTriplets= FALSE){
+  onShort = "reads"
+  if(on == "Frequency"){
+    onShort = "freq"
+  }
+  onx = paste(on, ".x", sep="")
+  ony = paste(on, ".y", sep="")
+  onz = paste(on, ".z", sep="")
+  type="triplet"
+  
+  threshholdIndex = which(colnames(product) == "interval")
+  V_SegmentIndex = which(colnames(product) == "V_Segments")
+  J_SegmentIndex = which(colnames(product) == "J_Segments")
+  titleIndex = which(colnames(product) == "Titles")
+  sampleIndex = which(colnames(patient1) == "Sample")
+  patientIndex = which(colnames(patient1) == "Patient")
+  oneSample = paste(patient1[1,sampleIndex], sep="")
+  twoSample = paste(patient2[1,sampleIndex], sep="")
+  threeSample = paste(patient3[1,sampleIndex], sep="")
+
+  if(mergeOn == "Clone_Sequence"){
+    patient1$merge = paste(patient1$Clone_Sequence)
+		patient2$merge = paste(patient2$Clone_Sequence)
+		patient3$merge = paste(patient3$Clone_Sequence)
+
+  } else {
+		patient1$merge = paste(patient1$V_Segment_Major_Gene, patient1$J_Segment_Major_Gene, patient1$CDR3_Sense_Sequence)
+		patient2$merge = paste(patient2$V_Segment_Major_Gene, patient2$J_Segment_Major_Gene, patient2$CDR3_Sense_Sequence)
+		patient3$merge = paste(patient3$V_Segment_Major_Gene, patient3$J_Segment_Major_Gene, patient3$CDR3_Sense_Sequence)
+  }
+
+  #patientMerge = merge(patient1, patient2, by="merge")[NULL,]
+  patient1.fuzzy = patient1
+  patient2.fuzzy = patient2
+  patient3.fuzzy = patient3
+
+  cat(paste("<tr><td>", label1, "</td>", sep=""), file=logfile, append=T)
+
+  patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J)
+  patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J)
+  patient3.fuzzy$merge = paste(patient3.fuzzy$locus_V, patient3.fuzzy$locus_J)
+
+  patient.fuzzy = rbind(patient1.fuzzy ,patient2.fuzzy, patient3.fuzzy)
+  patient.fuzzy = patient.fuzzy[order(nchar(patient.fuzzy$Clone_Sequence)),]
+
+  other.sample.list = list()
+  other.sample.list[[oneSample]] = c(twoSample, threeSample)
+  other.sample.list[[twoSample]] = c(oneSample, threeSample)
+  other.sample.list[[threeSample]] = c(oneSample, twoSample)
+
+  patientMerge = merge(patient1, patient2, by="merge")
+  patientMerge = merge(patientMerge, patient3, by="merge")
+  colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="")
+  #patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+  patientMerge = patientMerge[NULL,]
+
+  duo.merge.list = list()
+
+  patientMerge12 = merge(patient1, patient2, by="merge")
+  #patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
+  patientMerge12 = patientMerge12[NULL,]
+  duo.merge.list[[paste(oneSample, twoSample)]] = patientMerge12
+  duo.merge.list[[paste(twoSample, oneSample)]] = patientMerge12
+
+  patientMerge13 = merge(patient1, patient3, by="merge")
+  #patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
+  patientMerge13 = patientMerge13[NULL,]
+  duo.merge.list[[paste(oneSample, threeSample)]] = patientMerge13
+  duo.merge.list[[paste(threeSample, oneSample)]] = patientMerge13
+
+  patientMerge23 = merge(patient2, patient3, by="merge")
+  #patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
+  patientMerge23 = patientMerge23[NULL,]
+  duo.merge.list[[paste(twoSample, threeSample)]] = patientMerge23
+  duo.merge.list[[paste(threeSample, twoSample)]] = patientMerge23
+
+  merge.list = list()
+  merge.list[["second"]] = vector()
+
+  start.time = proc.time()
+  if(paste(label1, "123") %in% names(patient.merge.list)){
+    patientMerge = patient.merge.list[[paste(label1, "123")]]
+    patientMerge12 = patient.merge.list[[paste(label1, "12")]]
+    patientMerge13 = patient.merge.list[[paste(label1, "13")]]
+    patientMerge23 = patient.merge.list[[paste(label1, "23")]]
+
+    merge.list[["second"]] = patient.merge.list.second[[label1]]
+
+    cat(paste("<td>", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (fetched from cache)</td></tr>", sep=""), file=logfile, append=T)
+  } else {
+    while(nrow(patient.fuzzy) > 0){
+      first.merge = patient.fuzzy[1,"merge"]
+      first.clone.sequence = patient.fuzzy[1,"Clone_Sequence"]
+      first.sample = patient.fuzzy[1,"Sample"]
+
+      merge.filter = first.merge == patient.fuzzy$merge
+
+      second.sample = other.sample.list[[first.sample]][1]
+      third.sample = other.sample.list[[first.sample]][2]
+
+      sample.filter.1 = first.sample == patient.fuzzy$Sample
+      sample.filter.2 = second.sample == patient.fuzzy$Sample
+      sample.filter.3 = third.sample == patient.fuzzy$Sample
+
+      sequence.filter = grepl(paste("^", first.clone.sequence, sep=""), patient.fuzzy$Clone_Sequence)
+
+      match.filter.1 = sample.filter.1 & sequence.filter & merge.filter
+      match.filter.2 = sample.filter.2 & sequence.filter & merge.filter
+      match.filter.3 = sample.filter.3 & sequence.filter & merge.filter
+
+      matches.in.1 = any(match.filter.1)
+      matches.in.2 = any(match.filter.2)
+      matches.in.3 = any(match.filter.3)
+
+
+
+      rows.1 = patient.fuzzy[match.filter.1,]
+
+      sum.1 = data.frame(merge = first.clone.sequence,
+                         Patient = label1,
+                         Receptor = rows.1[1,"Receptor"],
+                         Sample = rows.1[1,"Sample"],
+                         Cell_Count = rows.1[1,"Cell_Count"],
+                         Clone_Molecule_Count_From_Spikes = sum(rows.1$Clone_Molecule_Count_From_Spikes),
+                         Log10_Frequency = log10(sum(rows.1$Frequency)),
+                         Total_Read_Count = sum(rows.1$Total_Read_Count),
+                         dsPerM = sum(rows.1$dsPerM),
+                         J_Segment_Major_Gene = rows.1[1,"J_Segment_Major_Gene"],
+                         V_Segment_Major_Gene = rows.1[1,"V_Segment_Major_Gene"],
+                         Clone_Sequence = first.clone.sequence,
+                         CDR3_Sense_Sequence = rows.1[1,"CDR3_Sense_Sequence"],
+                         Related_to_leukemia_clone = F,
+                         Frequency = sum(rows.1$Frequency),
+                         locus_V = rows.1[1,"locus_V"],
+                         locus_J = rows.1[1,"locus_J"],
+                         uniqueID = rows.1[1,"uniqueID"],
+                         normalized_read_count = sum(rows.1$normalized_read_count))
+      sum.2 = sum.1[NULL,]
+      rows.2 = patient.fuzzy[match.filter.2,]
+      if(matches.in.2){
+        sum.2 = data.frame(merge = first.clone.sequence,
+                           Patient = label1,
+                           Receptor = rows.2[1,"Receptor"],
+                           Sample = rows.2[1,"Sample"],
+                           Cell_Count = rows.2[1,"Cell_Count"],
+                           Clone_Molecule_Count_From_Spikes = sum(rows.2$Clone_Molecule_Count_From_Spikes),
+                           Log10_Frequency = log10(sum(rows.2$Frequency)),
+                           Total_Read_Count = sum(rows.2$Total_Read_Count),
+                           dsPerM = sum(rows.2$dsPerM),
+                           J_Segment_Major_Gene = rows.2[1,"J_Segment_Major_Gene"],
+                           V_Segment_Major_Gene = rows.2[1,"V_Segment_Major_Gene"],
+                           Clone_Sequence = first.clone.sequence,
+                           CDR3_Sense_Sequence = rows.2[1,"CDR3_Sense_Sequence"],
+                           Related_to_leukemia_clone = F,
+                           Frequency = sum(rows.2$Frequency),
+                           locus_V = rows.2[1,"locus_V"],
+                           locus_J = rows.2[1,"locus_J"],
+                           uniqueID = rows.2[1,"uniqueID"],
+                           normalized_read_count = sum(rows.2$normalized_read_count))
+      }
+
+      sum.3 = sum.1[NULL,]
+      rows.3 = patient.fuzzy[match.filter.3,]
+      if(matches.in.3){
+        sum.3 = data.frame(merge = first.clone.sequence,
+                           Patient = label1,
+                           Receptor = rows.3[1,"Receptor"],
+                           Sample = rows.3[1,"Sample"],
+                           Cell_Count = rows.3[1,"Cell_Count"],
+                           Clone_Molecule_Count_From_Spikes = sum(rows.3$Clone_Molecule_Count_From_Spikes),
+                           Log10_Frequency = log10(sum(rows.3$Frequency)),
+                           Total_Read_Count = sum(rows.3$Total_Read_Count),
+                           dsPerM = sum(rows.3$dsPerM),
+                           J_Segment_Major_Gene = rows.3[1,"J_Segment_Major_Gene"],
+                           V_Segment_Major_Gene = rows.3[1,"V_Segment_Major_Gene"],
+                           Clone_Sequence = first.clone.sequence,
+                           CDR3_Sense_Sequence = rows.3[1,"CDR3_Sense_Sequence"],
+                           Related_to_leukemia_clone = F,
+                           Frequency = sum(rows.3$Frequency),
+                           locus_V = rows.3[1,"locus_V"],
+                           locus_J = rows.3[1,"locus_J"],
+                           uniqueID = rows.3[1,"uniqueID"],
+                           normalized_read_count = sum(rows.3$normalized_read_count))
+      }
+
+      if(matches.in.2 & matches.in.3){
+        merge.123 = merge(sum.1, sum.2, by="merge")
+        merge.123 = merge(merge.123, sum.3, by="merge")
+        colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123)))] = paste(colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123), perl=T))], ".z", sep="")
+        #merge.123$thresholdValue = pmax(merge.123[,onx], merge.123[,ony], merge.123[,onz])
+
+        patientMerge = rbind(patientMerge, merge.123)
+        patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2 | match.filter.3),]
+
+        hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
+        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+
+      } else if (matches.in.2) {
+        #other.sample1 = other.sample.list[[first.sample]][1]
+        #other.sample2 = other.sample.list[[first.sample]][2]
+
+        second.sample = sum.2[,"Sample"]
+
+        current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]]
+
+        merge.12 = merge(sum.1, sum.2, by="merge")
+
+        current.merge.list = rbind(current.merge.list, merge.12)
+        duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list
+
+        patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2),]
+
+        hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
+        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+
+      } else if (matches.in.3) {
+
+        #other.sample1 = other.sample.list[[first.sample]][1]
+        #other.sample2 = other.sample.list[[first.sample]][2]
+
+        second.sample = sum.3[,"Sample"]
+
+        current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]]
+
+        merge.13 = merge(sum.1, sum.3, by="merge")
+
+        current.merge.list = rbind(current.merge.list, merge.13)
+        duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list
+
+        patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.3),]
+
+        hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
+        merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
+
+      } else if(nrow(rows.1) > 1){
+        patient1 = patient1[!(patient1$Clone_Sequence %in% rows.1$Clone_Sequence),]
+        print(names(patient1)[names(patient1) %in% sum.1])
+        print(names(patient1)[!(names(patient1) %in% sum.1)])
+        print(names(patient1))
+        print(names(sum.1))
+        print(summary(sum.1))
+        print(summary(patient1))
+        print(dim(sum.1))
+        print(dim(patient1))
+        print(head(sum.1[,names(patient1)]))
+        patient1 = rbind(patient1, sum.1[,names(patient1)])
+        patient.fuzzy = patient.fuzzy[-match.filter.1,]
+      } else {
+        patient.fuzzy = patient.fuzzy[-1,]
+      }
+
+      tmp.rows = rbind(rows.1, rows.2, rows.3)
+      tmp.rows = tmp.rows[order(nchar(tmp.rows$Clone_Sequence)),]
+
+      if (sum(match.filter.1) > 1 | sum(match.filter.2) > 1 | sum(match.filter.1) > 1) {
+        cat(paste("<tr><td>", label1, " row ", 1:nrow(tmp.rows), "</td><td>", tmp.rows$Sample, ":</td><td>", tmp.rows$Clone_Sequence, "</td><td>", tmp.rows$normalized_read_count, "</td></tr>", sep=""), file="multiple_matches.html", append=T)
+      } else {
+      }
+
+    }
+    patient.merge.list[[paste(label1, "123")]] = patientMerge
+
+    patientMerge12 = duo.merge.list[[paste(oneSample, twoSample)]]
+    patientMerge13 = duo.merge.list[[paste(oneSample, threeSample)]]
+    patientMerge23 = duo.merge.list[[paste(twoSample, threeSample)]]
+
+    patient.merge.list[[paste(label1, "12")]] = patientMerge12
+    patient.merge.list[[paste(label1, "13")]] = patientMerge13
+    patient.merge.list[[paste(label1, "23")]] = patientMerge23
+
+    patient.merge.list.second[[label1]] = merge.list[["second"]]
+  }
+  cat(paste("<td>", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (finding both took ", (proc.time() - start.time)[[3]], "s)</td></tr>", sep=""), file=logfile, append=T)
+  patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+  patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
+  patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
+  patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
+
+  #patientMerge$thresholdValue = pmin(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+  #patientMerge12$thresholdValue = pmin(patientMerge12[,onx], patientMerge12[,ony])
+  #patientMerge13$thresholdValue = pmin(patientMerge13[,onx], patientMerge13[,ony])
+  #patientMerge23$thresholdValue = pmin(patientMerge23[,onx], patientMerge23[,ony])
+
+  patient1 = patient1[!(patient1$Clone_Sequence %in% merge.list[["second"]]),]
+  patient2 = patient2[!(patient2$Clone_Sequence %in% merge.list[["second"]]),]
+  patient3 = patient3[!(patient3$Clone_Sequence %in% merge.list[["second"]]),]
+
+  if(F){
+    patientMerge = merge(patient1, patient2, by="merge")
+    patientMerge = merge(patientMerge, patient3, by="merge")
+    colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="")
+    patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz])
+    patientMerge12 = merge(patient1, patient2, by="merge")
+    patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony])
+    patientMerge13 = merge(patient1, patient3, by="merge")
+    patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony])
+    patientMerge23 = merge(patient2, patient3, by="merge")
+    patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony])
+  }
+  
+  scatterplot_data_columns = c("Clone_Sequence", "Frequency", "normalized_read_count", "V_Segment_Major_Gene", "J_Segment_Major_Gene", "merge")
+  scatterplot_data = rbind(patient1[,scatterplot_data_columns], patient2[,scatterplot_data_columns], patient3[,scatterplot_data_columns])
+  scatterplot_data = scatterplot_data[!duplicated(scatterplot_data$merge),]
+  scatterplot_data$type = factor(x="In one", levels=c("In one", "In two", "In three", "In multiple"))
+  
+  res1 = vector()
+  res2 = vector()
+  res3 = vector()
+  res12 = vector()
+  res13 = vector()
+  res23 = vector()
+  resAll = vector()
+  read1Count = vector()
+  read2Count = vector()
+  read3Count = vector()
+  
+  if(appendTriplets){
+    cat(paste(label1, label2, label3, sep="\t"), file="triplets.txt", append=T, sep="", fill=3)
+  }
+  for(iter in 1:length(product[,1])){
+    threshhold = product[iter,threshholdIndex]
+    V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="")
+    J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="")
+    #all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,onx] > threshhold & patientMerge[,ony] > threshhold & patientMerge[,onz] > threshhold) 
+    all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge$thresholdValue > threshhold)
+    
+    one_two = (grepl(V_Segment, patientMerge12$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge12$J_Segment_Major_Gene.x) & patientMerge12$thresholdValue > threshhold & !(patientMerge12$merge %in% patientMerge[all,]$merge))
+    one_three = (grepl(V_Segment, patientMerge13$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge13$J_Segment_Major_Gene.x) & patientMerge13$thresholdValue > threshhold & !(patientMerge13$merge %in% patientMerge[all,]$merge))
+    two_three = (grepl(V_Segment, patientMerge23$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge23$J_Segment_Major_Gene.x) & patientMerge23$thresholdValue > threshhold & !(patientMerge23$merge %in% patientMerge[all,]$merge))
+    
+    one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$merge %in% patientMerge[all,]$merge) & !(patient1$merge %in% patientMerge12[one_two,]$merge) & !(patient1$merge %in% patientMerge13[one_three,]$merge))
+    two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$merge %in% patientMerge[all,]$merge) & !(patient2$merge %in% patientMerge12[one_two,]$merge) & !(patient2$merge %in% patientMerge23[two_three,]$merge))
+    three = (grepl(V_Segment, patient3$V_Segment_Major_Gene) & grepl(J_Segment, patient3$J_Segment_Major_Gene) & patient3[,on] > threshhold & !(patient3$merge %in% patientMerge[all,]$merge) & !(patient3$merge %in% patientMerge13[one_three,]$merge) & !(patient3$merge %in% patientMerge23[two_three,]$merge))
+    
+    read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.x))
+    read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.y))
+    read3Count = append(read3Count, sum(patient3[three,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.z))
+    res1 = append(res1, sum(one))
+    res2 = append(res2, sum(two))
+    res3 = append(res3, sum(three))
+    resAll = append(resAll, sum(all))
+    res12 = append(res12, sum(one_two))
+    res13 = append(res13, sum(one_three))
+    res23 = append(res23, sum(two_three))
+    #threshhold = 0
+    if(threshhold != 0){
+      if(sum(one) > 0){
+        dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+        colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
+        filenameOne = paste(label1, "_", product[iter, titleIndex], "_", threshhold, sep="")
+        write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+      if(sum(two) > 0){
+        dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+        colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
+        filenameTwo = paste(label2, "_", product[iter, titleIndex], "_", threshhold, sep="")
+        write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+      if(sum(three) > 0){
+        dfThree = patient3[three,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
+        colnames(dfThree) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")
+        filenameThree = paste(label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
+        write.table(dfThree, file=paste(filenameThree, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+      if(sum(one_two) > 0){
+        dfOne_two = patientMerge12[one_two,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
+        colnames(dfOne_two) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample))
+        filenameOne_two = paste(label1, "_", label2, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
+        write.table(dfOne_two, file=paste(filenameOne_two, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+      if(sum(one_three) > 0){
+        dfOne_three = patientMerge13[one_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
+        colnames(dfOne_three) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
+        filenameOne_three = paste(label1, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
+        write.table(dfOne_three, file=paste(filenameOne_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+      if(sum(two_three) > 0){
+        dfTwo_three = patientMerge23[two_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
+        colnames(dfTwo_three) = c(paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
+        filenameTwo_three = paste(label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="")
+        write.table(dfTwo_three, file=paste(filenameTwo_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+      }
+    } else { #scatterplot data
+      scatterplot_locus_data = scatterplot_data[grepl(V_Segment, scatterplot_data$V_Segment_Major_Gene) & grepl(J_Segment, scatterplot_data$J_Segment_Major_Gene),]
+      scatterplot_locus_data = scatterplot_locus_data[!(scatterplot_locus_data$merge %in% merge.list[["second"]]),]
+      in_two = (scatterplot_locus_data$merge %in% patientMerge12[one_two,]$merge) | (scatterplot_locus_data$merge %in% patientMerge13[one_three,]$merge) | (scatterplot_locus_data$merge %in% patientMerge23[two_three,]$merge)
+      if(sum(in_two) > 0){
+				scatterplot_locus_data[in_two,]$type = "In two"
+      }
+      in_three = (scatterplot_locus_data$merge %in% patientMerge[all,]$merge)
+      if(sum(in_three)> 0){
+				scatterplot_locus_data[in_three,]$type = "In three"
+      }
+      not_in_one = scatterplot_locus_data$type != "In one"
+      if(sum(not_in_one) > 0){
+				#scatterplot_locus_data[not_in_one,]$type = "In multiple"
+      }
+      p = NULL
+      if(nrow(scatterplot_locus_data) != 0){
+        if(on == "normalized_read_count"){
+		  scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
+          p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales, limits=c(1, 1e6))
+        } else {
+          p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100))
+          #p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100))
+        }
+        p = p + geom_point(aes(colour=type), position="jitter")
+        p = p + xlab("In one or in multiple samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
+      } else {
+        p = ggplot(NULL, aes(x=c("In one", "In multiple"),y=0)) + geom_blank(NULL) + xlab("In two or in three of the samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
+      }
+      png(paste(label1, "_", label2, "_", label3, "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep=""))
+      print(p)
+      dev.off()
+    } 
+    if(sum(all) > 0){
+      dfAll = patientMerge[all,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y", "V_Segment_Major_Gene.z", "J_Segment_Major_Gene.z", "normalized_read_count.z", "Frequency.z", "Related_to_leukemia_clone.z")]
+      colnames(dfAll) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample), paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
+      filenameAll = paste(label1, "_", label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
+      write.table(dfAll, file=paste(filenameAll, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+    }
+  }
+  #patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "tmp3"=res3, "read_count3"=round(read3Count))
+  patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "tmp2"=res2, "tmp3"=res3, "tmp12"=res12, "tmp13"=res13, "tmp23"=res23)
+  colnames(patientResult)[6] = oneSample
+  colnames(patientResult)[7] = twoSample
+  colnames(patientResult)[8] = threeSample
+  colnames(patientResult)[9] = paste(oneSample, twoSample, sep="_")
+  colnames(patientResult)[10] = paste(oneSample, twoSample, sep="_")
+  colnames(patientResult)[11] = paste(oneSample, twoSample, sep="_")
+  
+  colnamesBak = colnames(patientResult)
+  colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", "Number of sequences All", paste("Number of sequences", oneSample), paste("Number of sequences", twoSample), paste("Number of sequences", threeSample), paste("Number of sequences", oneSample, twoSample), paste("Number of sequences", oneSample, threeSample), paste("Number of sequences", twoSample, threeSample))
+  write.table(patientResult, file=paste(label1, "_", label2, "_", label3, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+  colnames(patientResult) = colnamesBak
+  
+  patientResult$Locus = factor(patientResult$Locus, Titles)
+  patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep=""))
+  
+  plt = ggplot(patientResult[,c("Locus", "cut_off_value", "All")])
+  plt = plt + geom_bar( aes( x=factor(cut_off_value), y=All), stat='identity', position="dodge", fill="#79c36a")
+  plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
+  plt = plt + geom_text(aes(ymax=max(All), x=cut_off_value,y=All,label=All), angle=90, hjust=0)
+  plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in All")
+  plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
+  png(paste(label1, "_", label2, "_", label3, "_", onShort, "_total_all.png", sep=""), width=1920, height=1080)
+  print(plt)
+  dev.off()
+  
+  fontSize = 4
+  
+  bak = patientResult
+  patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample, threeSample)] ,id.vars=1:2)
+  patientResult$relativeValue = patientResult$value * 10
+  patientResult[patientResult$relativeValue == 0,]$relativeValue = 1
+  plt = ggplot(patientResult)
+  plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge")
+  plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
+  plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9)))
+  plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.7, size=fontSize)
+  plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.4, size=fontSize)
+  plt = plt + geom_text(data=patientResult[patientResult$variable == threeSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=1.5, size=fontSize)
+  plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in only one sample")
+  png(paste(label1, "_", label2, "_", label3, "_", onShort, "_indiv_all.png", sep=""), width=1920, height=1080)
+  print(plt)
+  dev.off()
+}
+
+if(nrow(triplets) != 0){
+
+  cat("<tr><td>Starting triplet analysis</td></tr>", file=logfile, append=T)
+
+  triplets$uniqueID = "ID"
+  
+  triplets[grepl("16278_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
+  triplets[grepl("26402_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
+  triplets[grepl("26759_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
+  
+  triplets[grepl("16278_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
+  triplets[grepl("26402_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
+  triplets[grepl("26759_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
+  
+  triplets[grepl("14696", triplets$Patient),]$uniqueID = "14696"
+
+  cat("<tr><td>Normalizing to lowest cell count within locus</td></tr>", file=logfile, append=T)
+
+  triplets$locus_V = substring(triplets$V_Segment_Major_Gene, 0, 4)
+  triplets$locus_J = substring(triplets$J_Segment_Major_Gene, 0, 4)
+  min_cell_count = data.frame(data.table(triplets)[, list(min_cell_count=min(.SD$Cell_Count)), by=c("uniqueID", "locus_V", "locus_J")])
+  
+  triplets$min_cell_paste = paste(triplets$uniqueID, triplets$locus_V, triplets$locus_J)
+  min_cell_count$min_cell_paste = paste(min_cell_count$uniqueID, min_cell_count$locus_V, min_cell_count$locus_J)
+  
+  min_cell_count = min_cell_count[,c("min_cell_paste", "min_cell_count")]
+  
+  triplets = merge(triplets, min_cell_count, by="min_cell_paste")
+  
+  triplets$normalized_read_count = round(triplets$Clone_Molecule_Count_From_Spikes / triplets$Cell_Count * triplets$min_cell_count / 2, digits=2) #??????????????????????????????????? wel of geen / 2
+  
+  triplets = triplets[triplets$normalized_read_count >= min_cells,]
+  
+  column_drops = c("min_cell_count", "min_cell_paste")
+  
+  triplets = triplets[,!(colnames(triplets) %in% column_drops)]
+
+  cat("<tr><td>Starting Cell Count analysis</td></tr>", file=logfile, append=T)
+
+  interval = intervalReads
+  intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+  product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
+  
+  one = triplets[triplets$Sample == "14696_reg_BM",]
+  two = triplets[triplets$Sample == "24536_reg_BM",]
+  three = triplets[triplets$Sample == "24062_reg_BM",]
+  tripletAnalysis(one, "14696_1_Trio", two, "14696_2_Trio", three, "14696_3_Trio", product=product, interval=interval, on="normalized_read_count", T)
+  
+  one = triplets[triplets$Sample == "16278_Left",]
+  two = triplets[triplets$Sample == "26402_Left",]
+  three = triplets[triplets$Sample == "26759_Left",]
+  tripletAnalysis(one, "16278_Left_Trio", two, "26402_Left_Trio", three, "26759_Left_Trio", product=product, interval=interval, on="normalized_read_count", T)
+  
+  one = triplets[triplets$Sample == "16278_Right",]
+  two = triplets[triplets$Sample == "26402_Right",]
+  three = triplets[triplets$Sample == "26759_Right",]
+  tripletAnalysis(one, "16278_Right_Trio", two, "26402_Right_Trio", three, "26759_Right_Trio", product=product, interval=interval, on="normalized_read_count", T)
+  
+  cat("<tr><td>Starting Frequency analysis</td></tr>", file=logfile, append=T)
+
+  interval = intervalFreq
+  intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
+  product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
+  
+  one = triplets[triplets$Sample == "14696_reg_BM",]
+  two = triplets[triplets$Sample == "24536_reg_BM",]
+  three = triplets[triplets$Sample == "24062_reg_BM",]
+  tripletAnalysis(one, "14696_1_Trio", two, "14696_2_Trio", three, "14696_3_Trio", product=product, interval=interval, on="Frequency", F)
+  
+  one = triplets[triplets$Sample == "16278_Left",]
+  two = triplets[triplets$Sample == "26402_Left",]
+  three = triplets[triplets$Sample == "26759_Left",]
+  tripletAnalysis(one, "16278_Left_Trio", two, "26402_Left_Trio", three, "26759_Left_Trio", product=product, interval=interval, on="Frequency", F)
+  
+  one = triplets[triplets$Sample == "16278_Right",]
+  two = triplets[triplets$Sample == "26402_Right",]
+  three = triplets[triplets$Sample == "26759_Right",]
+  tripletAnalysis(one, "16278_Right_Trio", two, "26402_Right_Trio", three, "26759_Right_Trio", product=product, interval=interval, on="Frequency", F)
+} else {
+  cat("", file="triplets.txt")
+}
+cat("</table></html>", file=logfile, append=T)