# HG changeset patch
# User davidvanzessen
# Date 1505739679 14400
# Node ID 7ffd0fba8cf4b085dc037936903471d3475fd7db
# Parent 75853bceec005adbcea81ed4f7a15204bf46e3f6
Uploaded
diff -r 75853bceec00 -r 7ffd0fba8cf4 RScript.r
--- a/RScript.r Tue Jan 17 07:24:44 2017 -0500
+++ b/RScript.r Mon Sep 18 09:01:19 2017 -0400
@@ -18,7 +18,23 @@
#require(xtable)
cat("
Reading input |
", file=logfile, append=T)
dat = read.table(inFile, header=T, sep="\t", dec=".", fill=T, stringsAsFactors=F)
-dat = dat[,c("Patient", "Receptor", "Sample", "Cell_Count", "Clone_Molecule_Count_From_Spikes", "Log10_Frequency", "Total_Read_Count", "J_Segment_Major_Gene", "V_Segment_Major_Gene", "CDR3_Sense_Sequence", "Clone_Sequence")]
+
+needed_cols = c("Patient", "Receptor", "Sample", "Cell_Count", "Clone_Molecule_Count_From_Spikes", "Log10_Frequency", "J_Segment_Major_Gene", "V_Segment_Major_Gene", "CDR3_Sense_Sequence", "Clone_Sequence")
+if(!all(needed_cols %in% names(dat))){
+ cat("Missing column(s):
", file=logfile, append=F)
+ missing_cols = needed_cols[!(needed_cols %in% names(dat))]
+ for(col in missing_cols){
+ cat(paste(col, "
"), file=logfile, append=T)
+ }
+ stop("Not all columns are present")
+}
+
+if(!("Total_Read_Count" %in% names(dat))){
+ dat$Total_Read_Count = 0
+}
+
+dat = dat[,c("Patient", "Receptor", "Sample", "Cell_Count", "Clone_Molecule_Count_From_Spikes", "Log10_Frequency", "Total_Read_Count", "J_Segment_Major_Gene", "V_Segment_Major_Gene", "CDR3_Sense_Sequence", "Clone_Sequence")]
+
dat$dsPerM = 0
dat = dat[!is.na(dat$Patient),]
dat$Related_to_leukemia_clone = F
@@ -76,7 +92,7 @@
Titles = factor(Titles, levels=Titles)
TitlesOrder = data.frame("Title"=Titles, "TitlesOrder"=1:length(Titles))
-single_patients = data.frame("Patient" = character(0),"Sample" = character(0), "on" = character(0), "Clone_Sequence" = character(0), "Frequency" = numeric(0), "normalized_read_count" = numeric(0), "V_Segment_Major_Gene" = character(0), "J_Segment_Major_Gene" = character(0), "Rearrangement" = character(0))
+single_patients = dat[NULL,]
patient.merge.list = list() #cache the 'both' table, 2x speedup for more memory...
patient.merge.list.second = list()
@@ -96,25 +112,20 @@
onx = paste(on, ".x", sep="")
ony = paste(on, ".y", sep="")
splt = split(x, x$Sample, drop=T)
+ print(splt)
type="pair"
if(length(splt) == 1){
print(paste(paste(x[1,which(colnames(x) == "Patient")]), "has one sample"))
- splt[[2]] = data.frame("Patient" = character(0), "Receptor" = character(0), "Sample" = character(0), "Cell_Count" = numeric(0), "Clone_Molecule_Count_From_Spikes" = numeric(0), "Log10_Frequency" = numeric(0), "Total_Read_Count" = numeric(0), "dsMol_per_1e6_cells" = numeric(0), "J_Segment_Major_Gene" = character(0), "V_Segment_Major_Gene" = character(0), "Clone_Sequence" = character(0), "CDR3_Sense_Sequence" = character(0), "Related_to_leukemia_clone" = logical(0), "Frequency"= numeric(0), "normalized_read_count" = numeric(0), "paste" = character(0))
+ splt[[2]] = splt[[1]][NULL,]
type="single"
}
patient1 = splt[[1]]
patient2 = splt[[2]]
- threshholdIndex = which(colnames(product) == "interval")
- V_SegmentIndex = which(colnames(product) == "V_Segments")
- J_SegmentIndex = which(colnames(product) == "J_Segments")
- titleIndex = which(colnames(product) == "Titles")
- sampleIndex = which(colnames(x) == "Sample")
- patientIndex = which(colnames(x) == "Patient")
- oneSample = paste(patient1[1,sampleIndex], sep="")
- twoSample = paste(patient2[1,sampleIndex], sep="")
- patient = paste(x[1,patientIndex])
-
+ oneSample = patient1[1,"Sample"]
+ twoSample = patient2[1,"Sample"]
+ patient = x[1,"Patient"]
+
switched = F
if(length(grep(".*_Right$", twoSample)) == 1 || length(grep(".*_Dx_BM$", twoSample)) == 1 || length(grep(".*_Dx$", twoSample)) == 1 ){
tmp = twoSample
@@ -139,95 +150,74 @@
}
scatterplot_data_columns = c("Patient", "Sample", "Frequency", "normalized_read_count", "V_Segment_Major_Gene", "J_Segment_Major_Gene", "merge")
- #scatterplot_data = rbind(patient1[,scatterplot_data_columns], patient2[,scatterplot_data_columns])
scatterplot_data = patient1[NULL,scatterplot_data_columns]
- #scatterplot_data = scatterplot_data[!duplicated(scatterplot_data$merge),]
- #scatterplot_data$type = factor(x=oneSample, levels=c(oneSample, twoSample, "In Both"))
scatterplot.data.type.factor = c(oneSample, twoSample, paste(c(oneSample, twoSample), "In Both"))
- #scatterplot_data$type = factor(x=NULL, levels=scatterplot.data.type.factor)
scatterplot_data$type = character(0)
scatterplot_data$link = numeric(0)
scatterplot_data$on = character(0)
- #patientMerge = merge(patient1, patient2, by.x="merge", by.y="merge") #merge alles 'fuzzy'
patientMerge = merge(patient1, patient2, by.x="merge", by.y="merge")[NULL,] #blegh
-
+
cs.exact.matches = patient1[patient1$Clone_Sequence %in% patient2$Clone_Sequence,]$Clone_Sequence
-
+
start.time = proc.time()
merge.list = c()
-
+
if(patient %in% names(patient.merge.list)){
patientMerge = patient.merge.list[[patient]]
merge.list[["second"]] = patient.merge.list.second[[patient]]
scatterplot_data = scatter_locus_data_list[[patient]]
cat(paste("", nrow(patient1), " in ", oneSample, " and ", nrow(patient2), " in ", twoSample, ", ", nrow(patientMerge), " in both (fetched from cache) | ", sep=""), file=logfile, append=T)
-
+
print(names(patient.merge.list))
} else {
#fuzzy matching here...
- #merge.list = patientMerge$merge
-
- #patient1.fuzzy = patient1[!(patient1$merge %in% merge.list),]
- #patient2.fuzzy = patient2[!(patient2$merge %in% merge.list),]
-
+
patient1.fuzzy = patient1
patient2.fuzzy = patient2
-
- #patient1.fuzzy$merge = paste(patient1.fuzzy$V_Segment_Major_Gene, patient1.fuzzy$J_Segment_Major_Gene, patient1.fuzzy$CDR3_Sense_Sequence)
- #patient2.fuzzy$merge = paste(patient2.fuzzy$V_Segment_Major_Gene, patient2.fuzzy$J_Segment_Major_Gene, patient2.fuzzy$CDR3_Sense_Sequence)
-
- #patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J, patient1.fuzzy$CDR3_Sense_Sequence)
- #patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J, patient2.fuzzy$CDR3_Sense_Sequence)
-
+
patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J)
patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J)
-
- #merge.freq.table = data.frame(table(c(patient1.fuzzy[!duplicated(patient1.fuzzy$merge),"merge"], patient2.fuzzy[!duplicated(patient2.fuzzy$merge),"merge"]))) #also remove?
- #merge.freq.table.gt.1 = merge.freq.table[merge.freq.table$Freq > 1,]
-
- #patient1.fuzzy = patient1.fuzzy[patient1.fuzzy$merge %in% merge.freq.table.gt.1$Var1,]
- #patient2.fuzzy = patient2.fuzzy[patient2.fuzzy$merge %in% merge.freq.table.gt.1$Var1,]
-
+
patient.fuzzy = rbind(patient1.fuzzy, patient2.fuzzy)
patient.fuzzy = patient.fuzzy[order(nchar(patient.fuzzy$Clone_Sequence)),]
-
+
merge.list = list()
-
+
merge.list[["second"]] = vector()
-
- link.count = 1
-
+
+ link.count = 1
+
while(nrow(patient.fuzzy) > 1){
first.merge = patient.fuzzy[1,"merge"]
first.clone.sequence = patient.fuzzy[1,"Clone_Sequence"]
first.sample = patient.fuzzy[1,"Sample"]
merge.filter = first.merge == patient.fuzzy$merge
-
+
#length.filter = nchar(patient.fuzzy$Clone_Sequence) - nchar(first.clone.sequence) <= 9
-
+
first.sample.filter = first.sample == patient.fuzzy$Sample
second.sample.filter = first.sample != patient.fuzzy$Sample
-
+
#first match same sample, sum to a single row, same for other sample
#then merge rows like 'normal'
-
+
sequence.filter = grepl(paste("^", first.clone.sequence, sep=""), patient.fuzzy$Clone_Sequence)
-
-
-
+
+
+
#match.filter = merge.filter & grepl(first.clone.sequence, patient.fuzzy$Clone_Sequence) & length.filter & sample.filter
first.match.filter = merge.filter & sequence.filter & first.sample.filter
second.match.filter = merge.filter & sequence.filter & second.sample.filter
-
+
first.rows = patient.fuzzy[first.match.filter,]
second.rows = patient.fuzzy[second.match.filter,]
-
+
first.rows.v = table(first.rows$V_Segment_Major_Gene)
first.rows.v = names(first.rows.v[which.max(first.rows.v)])
first.rows.j = table(first.rows$J_Segment_Major_Gene)
first.rows.j = names(first.rows.j[which.max(first.rows.j)])
-
+
first.sum = data.frame(merge = first.clone.sequence,
Patient = patient,
Receptor = first.rows[1,"Receptor"],
@@ -249,61 +239,65 @@
normalized_read_count = sum(first.rows$normalized_read_count),
paste = first.rows[1,"paste"],
min_cell_paste = first.rows[1,"min_cell_paste"])
-
+
if(nrow(second.rows) > 0){
second.rows.v = table(second.rows$V_Segment_Major_Gene)
second.rows.v = names(second.rows.v[which.max(second.rows.v)])
second.rows.j = table(second.rows$J_Segment_Major_Gene)
second.rows.j = names(second.rows.j[which.max(second.rows.j)])
-
+
second.sum = data.frame(merge = first.clone.sequence,
- Patient = patient,
- Receptor = second.rows[1,"Receptor"],
- Sample = second.rows[1,"Sample"],
- Cell_Count = second.rows[1,"Cell_Count"],
- Clone_Molecule_Count_From_Spikes = sum(second.rows$Clone_Molecule_Count_From_Spikes),
- Log10_Frequency = log10(sum(second.rows$Frequency)),
- Total_Read_Count = sum(second.rows$Total_Read_Count),
- dsPerM = sum(second.rows$dsPerM),
- J_Segment_Major_Gene = second.rows.j,
- V_Segment_Major_Gene = second.rows.v,
- Clone_Sequence = first.clone.sequence,
- CDR3_Sense_Sequence = second.rows[1,"CDR3_Sense_Sequence"],
- Related_to_leukemia_clone = F,
- Frequency = sum(second.rows$Frequency),
- locus_V = second.rows[1,"locus_V"],
- locus_J = second.rows[1,"locus_J"],
- min_cell_count = second.rows[1,"min_cell_count"],
- normalized_read_count = sum(second.rows$normalized_read_count),
- paste = second.rows[1,"paste"],
- min_cell_paste = second.rows[1,"min_cell_paste"])
-
+ Patient = patient,
+ Receptor = second.rows[1,"Receptor"],
+ Sample = second.rows[1,"Sample"],
+ Cell_Count = second.rows[1,"Cell_Count"],
+ Clone_Molecule_Count_From_Spikes = sum(second.rows$Clone_Molecule_Count_From_Spikes),
+ Log10_Frequency = log10(sum(second.rows$Frequency)),
+ Total_Read_Count = sum(second.rows$Total_Read_Count),
+ dsPerM = sum(second.rows$dsPerM),
+ J_Segment_Major_Gene = second.rows.j,
+ V_Segment_Major_Gene = second.rows.v,
+ Clone_Sequence = first.clone.sequence,
+ CDR3_Sense_Sequence = second.rows[1,"CDR3_Sense_Sequence"],
+ Related_to_leukemia_clone = F,
+ Frequency = sum(second.rows$Frequency),
+ locus_V = second.rows[1,"locus_V"],
+ locus_J = second.rows[1,"locus_J"],
+ min_cell_count = second.rows[1,"min_cell_count"],
+ normalized_read_count = sum(second.rows$normalized_read_count),
+ paste = second.rows[1,"paste"],
+ min_cell_paste = second.rows[1,"min_cell_paste"])
+
+ #print(names(patientMerge))
+ #print(merge(first.sum, second.sum, by="merge"))
patientMerge = rbind(patientMerge, merge(first.sum, second.sum, by="merge"))
+ #print("test2")
patient.fuzzy = patient.fuzzy[!(first.match.filter | second.match.filter),]
-
+
hidden.clone.sequences = c(first.rows[-1,"Clone_Sequence"], second.rows[second.rows$Clone_Sequence != first.clone.sequence,"Clone_Sequence"])
merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
-
+
tmp.rows = rbind(first.rows, second.rows)
+ #print("test3")
tmp.rows = tmp.rows[order(nchar(tmp.rows$Clone_Sequence)),]
#add to the scatterplot data
scatterplot.row = first.sum[,scatterplot_data_columns]
- scatterplot.row$type = paste(first.sum[,"Sample"], "In Both")
- scatterplot.row$link = link.count
- scatterplot.row$on = onShort
-
- scatterplot_data = rbind(scatterplot_data, scatterplot.row)
+ scatterplot.row$type = paste(first.sum[,"Sample"], "In Both")
+ scatterplot.row$link = link.count
+ scatterplot.row$on = onShort
+
+ scatterplot_data = rbind(scatterplot_data, scatterplot.row)
scatterplot.row = second.sum[,scatterplot_data_columns]
- scatterplot.row$type = paste(second.sum[,"Sample"], "In Both")
- scatterplot.row$link = link.count
- scatterplot.row$on = onShort
-
- scatterplot_data = rbind(scatterplot_data, scatterplot.row)
-
- #write some information about the match to a log file
+ scatterplot.row$type = paste(second.sum[,"Sample"], "In Both")
+ scatterplot.row$link = link.count
+ scatterplot.row$on = onShort
+
+ scatterplot_data = rbind(scatterplot_data, scatterplot.row)
+
+ #write some information about the match to a log file
if (nrow(first.rows) > 1 | nrow(second.rows) > 1) {
cat(paste("", patient, " row ", 1:nrow(tmp.rows), " | ", tmp.rows$Sample, ": | ", tmp.rows$Clone_Sequence, " | ", tmp.rows$normalized_read_count, " |
", sep=""), file="multiple_matches.html", append=T)
} else {
@@ -314,7 +308,7 @@
#cat(paste("", patient, " row ", 1:nrow(tmp.rows), " | ", tmp.rows$Sample, ": | ", tmp.rows$Clone_Sequence, " | ", tmp.rows$normalized_read_count, " |
", sep=""), file="single_matches.html", append=T)
}
}
-
+
} else if(nrow(first.rows) > 1) {
if(patient1[1,"Sample"] == first.sample){
patient1 = patient1[!(patient1$Clone_Sequence %in% first.rows$Clone_Sequence),]
@@ -323,31 +317,31 @@
patient2 = patient2[!(patient2$Clone_Sequence %in% first.rows$Clone_Sequence),]
patient2 = rbind(patient2, first.sum)
}
-
+
hidden.clone.sequences = c(first.rows[-1,"Clone_Sequence"])
merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences)
-
+
patient.fuzzy = patient.fuzzy[-first.match.filter,]
#add to the scatterplot data
scatterplot.row = first.sum[,scatterplot_data_columns]
- scatterplot.row$type = first.sum[,"Sample"]
- scatterplot.row$link = link.count
- scatterplot.row$on = onShort
-
- scatterplot_data = rbind(scatterplot_data, scatterplot.row)
-
+ scatterplot.row$type = first.sum[,"Sample"]
+ scatterplot.row$link = link.count
+ scatterplot.row$on = onShort
+
+ scatterplot_data = rbind(scatterplot_data, scatterplot.row)
+
cat(paste("", patient, " row ", 1:nrow(first.rows), " | ", first.rows$Sample, ": | ", first.rows$Clone_Sequence, " | ", first.rows$normalized_read_count, " |
", sep=""), file="single_matches.html", append=T)
} else {
patient.fuzzy = patient.fuzzy[-1,]
#add to the scatterplot data
scatterplot.row = first.sum[,scatterplot_data_columns]
- scatterplot.row$type = first.sum[,"Sample"]
- scatterplot.row$link = link.count
- scatterplot.row$on = onShort
-
- scatterplot_data = rbind(scatterplot_data, scatterplot.row)
+ scatterplot.row$type = first.sum[,"Sample"]
+ scatterplot.row$link = link.count
+ scatterplot.row$on = onShort
+
+ scatterplot_data = rbind(scatterplot_data, scatterplot.row)
}
link.count = link.count + 1
}
@@ -360,10 +354,10 @@
scatter_locus_data_list[[patient]] <<- scatterplot_data
cat(paste("", nrow(patient1), " in ", oneSample, " and ", nrow(patient2), " in ", twoSample, ", ", nrow(patientMerge), " in both (finding both took ", (proc.time() - start.time)[[3]], "s) | ", sep=""), file=logfile, append=T)
}
-
+
patient1 = patient1[!(patient1$Clone_Sequence %in% patient.merge.list.second[[patient]]),]
patient2 = patient2[!(patient2$Clone_Sequence %in% patient.merge.list.second[[patient]]),]
-
+
patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony])
#patientMerge$thresholdValue = pmin(patientMerge[,onx], patientMerge[,ony])
@@ -377,9 +371,9 @@
#for(iter in 1){
for(iter in 1:length(product[,1])){
- threshhold = product[iter,threshholdIndex]
- V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="")
- J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="")
+ threshhold = product[iter,"interval"]
+ V_Segment = paste(".*", as.character(product[iter,"V_Segments"]), ".*", sep="")
+ J_Segment = paste(".*", as.character(product[iter,"J_Segments"]), ".*", sep="")
#both = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,onx] > threshhold & patientMerge[,ony] > threshhold) #both higher than threshold
both = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge$thresholdValue > threshhold) #highest of both is higher than threshold
one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$merge %in% patientMerge[both,]$merge))
@@ -392,50 +386,50 @@
locussum1 = append(locussum1, sum(patient1[(grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene)),]$normalized_read_count))
locussum2 = append(locussum2, sum(patient2[(grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene)),]$normalized_read_count))
#threshhold = 0
- if(threshhold != 0){
+ if(threshhold != 0 | T){
if(sum(one) > 0){
dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone Sequence", "Related_to_leukemia_clone")
- filenameOne = paste(oneSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
+ filenameOne = paste(oneSample, "_", product[iter, "Titles"], "_", threshhold, sep="")
write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
}
if(sum(two) > 0){
dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")]
colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone Sequence", "Related_to_leukemia_clone")
- filenameTwo = paste(twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
+ filenameTwo = paste(twoSample, "_", product[iter, "Titles"], "_", threshhold, sep="")
write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
}
} else {
scatterplot_locus_data = scatterplot_data[grepl(V_Segment, scatterplot_data$V_Segment_Major_Gene) & grepl(J_Segment, scatterplot_data$J_Segment_Major_Gene),]
if(nrow(scatterplot_locus_data) > 0){
- scatterplot_locus_data$Rearrangement = product[iter, titleIndex]
+ scatterplot_locus_data$Rearrangement = product[iter, "Titles"]
}
-
+
p = NULL
- print(paste("nrow scatterplot_locus_data", nrow(scatterplot_locus_data)))
+ #print(paste("nrow scatterplot_locus_data", nrow(scatterplot_locus_data)))
if(nrow(scatterplot_locus_data) != 0){
if(on == "normalized_read_count"){
- write.table(scatterplot_locus_data, file=paste(oneSample, twoSample, product[iter, titleIndex], "scatterplot_locus_data.txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+ write.table(scatterplot_locus_data, file=paste(oneSample, twoSample, product[iter, "Titles"], "scatterplot_locus_data.txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
p = ggplot(scatterplot_locus_data, aes(factor(reorder(type, type.order)), normalized_read_count, group=link)) + geom_line() + scale_y_log10(breaks=scales,labels=scales, limits=c(1,1e6)) + scale_x_discrete(breaks=levels(scatterplot_data$type), labels=levels(scatterplot_data$type), drop=FALSE)
} else {
p = ggplot(scatterplot_locus_data, aes(factor(reorder(type, type.order)), Frequency, group=link)) + geom_line() + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + scale_x_discrete(breaks=levels(scatterplot_data$type), labels=levels(scatterplot_data$type), drop=FALSE)
}
p = p + geom_point(aes(colour=type), position="dodge")
- p = p + xlab("In one or both samples") + ylab(onShort) + ggtitle(paste(patient1[1,patientIndex], patient1[1,sampleIndex], patient2[1,sampleIndex], onShort, product[iter, titleIndex]))
+ p = p + xlab("In one or both samples") + ylab(onShort) + ggtitle(paste(patient1[1,"Patient"], patient1[1,"Sample"], patient2[1,"Sample"], onShort, product[iter, "Titles"]))
} else {
- p = ggplot(NULL, aes(x=c("In one", "In Both"),y=0)) + geom_blank(NULL) + xlab("In one or both of the samples") + ylab(onShort) + ggtitle(paste(patient1[1,patientIndex], patient1[1,sampleIndex], patient2[1,sampleIndex], onShort, product[iter, titleIndex]))
+ p = ggplot(NULL, aes(x=c("In one", "In Both"),y=0)) + geom_blank(NULL) + xlab("In one or both of the samples") + ylab(onShort) + ggtitle(paste(patient1[1,"Patient"], patient1[1,"Sample"], patient2[1,"Sample"], onShort, product[iter, titleIndex]))
}
- png(paste(patient1[1,patientIndex], "_", patient1[1,sampleIndex], "_", patient2[1,sampleIndex], "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep=""))
+ png(paste(patient1[1,"Patient"], "_", patient1[1,"Sample"], "_", patient2[1,"Sample"], "_", onShort, "_", product[iter, "Titles"],"_scatter.png", sep=""))
print(p)
dev.off()
}
if(sum(both) > 0){
dfBoth = patientMerge[both,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
colnames(dfBoth) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample))
- filenameBoth = paste(oneSample, "_", twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
+ filenameBoth = paste(oneSample, "_", twoSample, "_", product[iter, "Titles"], "_", threshhold, sep="")
write.table(dfBoth, file=paste(filenameBoth, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
}
}
@@ -487,20 +481,27 @@
print(plt)
dev.off()
}
+
if(length(patients) > 0){
cat("Starting Frequency analysis |
", file=logfile, append=T)
interval = intervalFreq
intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
- lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="Frequency", appendtxt=T)
+ for (current_patient in patients){
+ print(paste("Started working", unique(current_patient$Patient), "Frequency analysis"))
+ patientCountOnColumn(current_patient, product=product, interval=interval, on="Frequency", appendtxt=T)
+ }
cat("Starting Cell Count analysis |
", file=logfile, append=T)
interval = intervalReads
intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
- lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count")
+ for (current_patient in patients){
+ print(paste("Started working on ", unique(current_patient$Patient), "Read Count analysis"))
+ patientCountOnColumn(current_patient, product=product, interval=interval, on="normalized_read_count")
+ }
}
if(nrow(single_patients) > 0){
scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
@@ -936,18 +937,20 @@
}
p = NULL
if(nrow(scatterplot_locus_data) != 0){
- if(on == "normalized_read_count"){
- scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
- p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales, limits=c(1, 1e6))
+ filename.scatter = paste(label1, "_", label2, "_", label3, "_", product[iter, titleIndex], "_scatter_", threshhold, sep="")
+ write.table(scatterplot_locus_data, file=paste(filename.scatter, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
+ if(on == "normalized_read_count"){
+ scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count))))
+ p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales, limits=c(1, 1e6))
+ } else {
+ p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100))
+ #p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100))
+ }
+ p = p + geom_point(aes(colour=type), position="jitter")
+ p = p + xlab("In one or in multiple samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
} else {
- p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100))
- #p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100))
+ p = ggplot(NULL, aes(x=c("In one", "In multiple"),y=0)) + geom_blank(NULL) + xlab("In two or in three of the samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
}
- p = p + geom_point(aes(colour=type), position="jitter")
- p = p + xlab("In one or in multiple samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
- } else {
- p = ggplot(NULL, aes(x=c("In one", "In multiple"),y=0)) + geom_blank(NULL) + xlab("In two or in three of the samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex]))
- }
png(paste(label1, "_", label2, "_", label3, "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep=""))
print(p)
dev.off()