# HG changeset patch # User davidvanzessen # Date 1472635907 14400 # Node ID ed6885c85660e10bb1bc3e9b573f5a9c5b43bcb0 Uploaded diff -r 000000000000 -r ed6885c85660 ALL.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ALL.xml Wed Aug 31 05:31:47 2016 -0400 @@ -0,0 +1,46 @@ + + PRecISe Clonal Analysis + + wrapper.sh $in_file $out_file $out_file.files_path $min_freq $min_cells $merge_on + + + + + + + + + + + + + + +Takes a tabular file as input, it needs to following columns: + ++----------------------------------+----------------------------------------------+ +| **Column name** | **Column contents** | ++----------------------------------+----------------------------------------------+ +| Patient | The patient ID | ++----------------------------------+----------------------------------------------+ +| Sample | The Sample ID, one, two or three per Patient | ++----------------------------------+----------------------------------------------+ +| Cell_Count | The cell count within a sample/loci | ++----------------------------------+----------------------------------------------+ +| Clone_Molocule_Count_From_Spikes | The count of a clone | ++----------------------------------+----------------------------------------------+ +| Log10_Frequency | The frequency of a clone in log10 | ++----------------------------------+----------------------------------------------+ +| J_Segment_Major_Gene | The J Gene of this clone | ++----------------------------------+----------------------------------------------+ +| V_Segment_Major_Gene | The V Gene of this clone | ++----------------------------------+----------------------------------------------+ +| Clone_Sequence | The entire sequence | ++----------------------------------+----------------------------------------------+ +| CDR3_Sense_Sequence | The CDR3 sequence region. | ++----------------------------------+----------------------------------------------+ + + +And generate a detailed HTML report on the sequences found in indiviual samples and in both samples. + + diff -r 000000000000 -r ed6885c85660 RScript.r --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RScript.r Wed Aug 31 05:31:47 2016 -0400 @@ -0,0 +1,1076 @@ +args <- commandArgs(trailingOnly = TRUE) +options(scipen=999) + +inFile = args[1] +outDir = args[2] +logfile = args[3] +min_freq = as.numeric(args[4]) +min_cells = as.numeric(args[5]) +mergeOn = args[6] + +cat("", file=logfile, append=F) + +library(ggplot2) +library(reshape2) +library(data.table) +library(grid) +library(parallel) +#require(xtable) +cat("", file=logfile, append=T) +dat = read.table(inFile, header=T, sep="\t", dec=".", fill=T, stringsAsFactors=F) +dat = dat[,c("Patient", "Receptor", "Sample", "Cell_Count", "Clone_Molecule_Count_From_Spikes", "Log10_Frequency", "Total_Read_Count", "J_Segment_Major_Gene", "V_Segment_Major_Gene", "CDR3_Sense_Sequence", "Clone_Sequence")] +dat$dsPerM = 0 +dat = dat[!is.na(dat$Patient),] +dat$Related_to_leukemia_clone = F + +setwd(outDir) +cat("", file=logfile, append=T) +dat$V_Segment_Major_Gene = as.factor(as.character(lapply(strsplit(as.character(dat$V_Segment_Major_Gene), "; "), "[[", 1))) +dat$J_Segment_Major_Gene = as.factor(as.character(lapply(strsplit(as.character(dat$J_Segment_Major_Gene), "; "), "[[", 1))) + +cat("", file=logfile, append=T) + +dat$Frequency = ((10^dat$Log10_Frequency)*100) + +dat = dat[dat$Frequency >= min_freq,] + +triplets = dat[grepl("VanDongen_cALL_14696", dat$Patient) | grepl("(16278)|(26402)|(26759)", dat$Sample),] + +cat("", file=logfile, append=T) + +dat$locus_V = substring(dat$V_Segment_Major_Gene, 0, 4) +dat$locus_J = substring(dat$J_Segment_Major_Gene, 0, 4) +min_cell_count = data.frame(data.table(dat)[, list(min_cell_count=min(.SD$Cell_Count)), by=c("Patient", "locus_V", "locus_J")]) + +dat$min_cell_paste = paste(dat$Patient, dat$locus_V, dat$locus_J) +min_cell_count$min_cell_paste = paste(min_cell_count$Patient, min_cell_count$locus_V, min_cell_count$locus_J) + +min_cell_count = min_cell_count[,c("min_cell_paste", "min_cell_count")] +print(paste("rows:", nrow(dat))) +dat = merge(dat, min_cell_count, by="min_cell_paste") +print(paste("rows:", nrow(dat))) +dat$normalized_read_count = round(dat$Clone_Molecule_Count_From_Spikes / dat$Cell_Count * dat$min_cell_count / 2, digits=2) #??????????????????????????????????? wel of geen / 2 + +dat = dat[dat$normalized_read_count >= min_cells,] + +dat$paste = paste(dat$Sample, dat$Clone_Sequence) + +patients = split(dat, dat$Patient, drop=T) +intervalReads = rev(c(0,10,25,50,100,250,500,750,1000,10000)) +intervalFreq = rev(c(0,0.01,0.05,0.1,0.5,1,5)) +V_Segments = c(".*", "IGHV", "IGHD", "IGKV", "IGKV", "IgKINTR", "TRGV", "TRDV", "TRDD" , "TRBV") +J_Segments = c(".*", ".*", ".*", "IGKJ", "KDE", ".*", ".*", ".*", ".*", ".*") +Titles = c("Total", "IGH-Vh-Jh", "IGH-Dh-Jh", "Vk-Jk", "Vk-Kde" , "Intron-Kde", "TCRG", "TCRD-Vd-Dd", "TCRD-Dd-Dd", "TCRB-Vb-Jb") +Titles = factor(Titles, levels=Titles) +TitlesOrder = data.frame("Title"=Titles, "TitlesOrder"=1:length(Titles)) + +single_patients = data.frame("Patient" = character(0),"Sample" = character(0), "on" = character(0), "Clone_Sequence" = character(0), "Frequency" = numeric(0), "normalized_read_count" = numeric(0), "V_Segment_Major_Gene" = character(0), "J_Segment_Major_Gene" = character(0), "Rearrangement" = character(0)) + +patient.merge.list = list() #cache the 'both' table, 2x speedup for more memory... +patient.merge.list.second = list() + scatter_locus_data_list = list() +cat(paste("
Starting analysis
Reading input
Selecting first V/J Genes
Calculating Frequency
Normalizing to lowest cell count within locus
", sep=""), file="multiple_matches.html", append=T) +cat(paste("
", sep=""), file="single_matches.html", append=T) +patientCountOnColumn <- function(x, product, interval, on, appendtxt=F){ + if (!is.data.frame(x) & is.list(x)){ + x = x[[1]] + } + #x$Sample = factor(x$Sample, levels=unique(x$Sample)) + x = data.frame(x,stringsAsFactors=F) + onShort = "reads" + if(on == "Frequency"){ + onShort = "freq" + } + onx = paste(on, ".x", sep="") + ony = paste(on, ".y", sep="") + splt = split(x, x$Sample, drop=T) + type="pair" + if(length(splt) == 1){ + print(paste(paste(x[1,which(colnames(x) == "Patient")]), "has one sample")) + splt[[2]] = data.frame("Patient" = character(0), "Receptor" = character(0), "Sample" = character(0), "Cell_Count" = numeric(0), "Clone_Molecule_Count_From_Spikes" = numeric(0), "Log10_Frequency" = numeric(0), "Total_Read_Count" = numeric(0), "dsMol_per_1e6_cells" = numeric(0), "J_Segment_Major_Gene" = character(0), "V_Segment_Major_Gene" = character(0), "Clone_Sequence" = character(0), "CDR3_Sense_Sequence" = character(0), "Related_to_leukemia_clone" = logical(0), "Frequency"= numeric(0), "normalized_read_count" = numeric(0), "paste" = character(0)) + type="single" + } + patient1 = splt[[1]] + patient2 = splt[[2]] + + threshholdIndex = which(colnames(product) == "interval") + V_SegmentIndex = which(colnames(product) == "V_Segments") + J_SegmentIndex = which(colnames(product) == "J_Segments") + titleIndex = which(colnames(product) == "Titles") + sampleIndex = which(colnames(x) == "Sample") + patientIndex = which(colnames(x) == "Patient") + oneSample = paste(patient1[1,sampleIndex], sep="") + twoSample = paste(patient2[1,sampleIndex], sep="") + patient = paste(x[1,patientIndex]) + + switched = F + if(length(grep(".*_Right$", twoSample)) == 1 || length(grep(".*_Dx_BM$", twoSample)) == 1 || length(grep(".*_Dx$", twoSample)) == 1 ){ + tmp = twoSample + twoSample = oneSample + oneSample = tmp + tmp = patient1 + patient1 = patient2 + patient2 = tmp + switched = T + } + if(appendtxt){ + cat(paste(patient, oneSample, twoSample, type, sep="\t"), file="patients.txt", append=T, sep="", fill=3) + } + cat(paste("", sep=""), file=logfile, append=T) + + if(mergeOn == "Clone_Sequence"){ + patient1$merge = paste(patient1$Clone_Sequence) + patient2$merge = paste(patient2$Clone_Sequence) + } else { + patient1$merge = paste(patient1$V_Segment_Major_Gene, patient1$J_Segment_Major_Gene, patient1$CDR3_Sense_Sequence) + patient2$merge = paste(patient2$V_Segment_Major_Gene, patient2$J_Segment_Major_Gene, patient2$CDR3_Sense_Sequence) + } + + scatterplot_data_columns = c("Patient", "Sample", "Frequency", "normalized_read_count", "V_Segment_Major_Gene", "J_Segment_Major_Gene", "merge") + #scatterplot_data = rbind(patient1[,scatterplot_data_columns], patient2[,scatterplot_data_columns]) + scatterplot_data = patient1[NULL,scatterplot_data_columns] + #scatterplot_data = scatterplot_data[!duplicated(scatterplot_data$merge),] + #scatterplot_data$type = factor(x=oneSample, levels=c(oneSample, twoSample, "In Both")) + scatterplot.data.type.factor = c(oneSample, twoSample, paste(c(oneSample, twoSample), "In Both")) + #scatterplot_data$type = factor(x=NULL, levels=scatterplot.data.type.factor) + scatterplot_data$type = character(0) + scatterplot_data$link = numeric(0) + scatterplot_data$on = character(0) + + #patientMerge = merge(patient1, patient2, by.x="merge", by.y="merge") #merge alles 'fuzzy' + patientMerge = merge(patient1, patient2, by.x="merge", by.y="merge")[NULL,] #blegh + + cs.exact.matches = patient1[patient1$Clone_Sequence %in% patient2$Clone_Sequence,]$Clone_Sequence + + start.time = proc.time() + merge.list = c() + + if(patient %in% names(patient.merge.list)){ + patientMerge = patient.merge.list[[patient]] + merge.list[["second"]] = patient.merge.list.second[[patient]] + scatterplot_data = scatter_locus_data_list[[patient]] + cat(paste("", sep=""), file=logfile, append=T) + + print(names(patient.merge.list)) + } else { + #fuzzy matching here... + #merge.list = patientMerge$merge + + #patient1.fuzzy = patient1[!(patient1$merge %in% merge.list),] + #patient2.fuzzy = patient2[!(patient2$merge %in% merge.list),] + + patient1.fuzzy = patient1 + patient2.fuzzy = patient2 + + #patient1.fuzzy$merge = paste(patient1.fuzzy$V_Segment_Major_Gene, patient1.fuzzy$J_Segment_Major_Gene, patient1.fuzzy$CDR3_Sense_Sequence) + #patient2.fuzzy$merge = paste(patient2.fuzzy$V_Segment_Major_Gene, patient2.fuzzy$J_Segment_Major_Gene, patient2.fuzzy$CDR3_Sense_Sequence) + + #patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J, patient1.fuzzy$CDR3_Sense_Sequence) + #patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J, patient2.fuzzy$CDR3_Sense_Sequence) + + patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J) + patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J) + + #merge.freq.table = data.frame(table(c(patient1.fuzzy[!duplicated(patient1.fuzzy$merge),"merge"], patient2.fuzzy[!duplicated(patient2.fuzzy$merge),"merge"]))) #also remove? + #merge.freq.table.gt.1 = merge.freq.table[merge.freq.table$Freq > 1,] + + #patient1.fuzzy = patient1.fuzzy[patient1.fuzzy$merge %in% merge.freq.table.gt.1$Var1,] + #patient2.fuzzy = patient2.fuzzy[patient2.fuzzy$merge %in% merge.freq.table.gt.1$Var1,] + + patient.fuzzy = rbind(patient1.fuzzy, patient2.fuzzy) + patient.fuzzy = patient.fuzzy[order(nchar(patient.fuzzy$Clone_Sequence)),] + + merge.list = list() + + merge.list[["second"]] = vector() + + link.count = 1 + + while(nrow(patient.fuzzy) > 1){ + first.merge = patient.fuzzy[1,"merge"] + first.clone.sequence = patient.fuzzy[1,"Clone_Sequence"] + first.sample = patient.fuzzy[1,"Sample"] + merge.filter = first.merge == patient.fuzzy$merge + + #length.filter = nchar(patient.fuzzy$Clone_Sequence) - nchar(first.clone.sequence) <= 9 + + first.sample.filter = first.sample == patient.fuzzy$Sample + second.sample.filter = first.sample != patient.fuzzy$Sample + + #first match same sample, sum to a single row, same for other sample + #then merge rows like 'normal' + + sequence.filter = grepl(paste("^", first.clone.sequence, sep=""), patient.fuzzy$Clone_Sequence) + + + + #match.filter = merge.filter & grepl(first.clone.sequence, patient.fuzzy$Clone_Sequence) & length.filter & sample.filter + first.match.filter = merge.filter & sequence.filter & first.sample.filter + second.match.filter = merge.filter & sequence.filter & second.sample.filter + + first.rows = patient.fuzzy[first.match.filter,] + second.rows = patient.fuzzy[second.match.filter,] + + first.rows.v = table(first.rows$V_Segment_Major_Gene) + first.rows.v = names(first.rows.v[which.max(first.rows.v)]) + first.rows.j = table(first.rows$J_Segment_Major_Gene) + first.rows.j = names(first.rows.j[which.max(first.rows.j)]) + + first.sum = data.frame(merge = first.clone.sequence, + Patient = patient, + Receptor = first.rows[1,"Receptor"], + Sample = first.rows[1,"Sample"], + Cell_Count = first.rows[1,"Cell_Count"], + Clone_Molecule_Count_From_Spikes = sum(first.rows$Clone_Molecule_Count_From_Spikes), + Log10_Frequency = log10(sum(first.rows$Frequency)), + Total_Read_Count = sum(first.rows$Total_Read_Count), + dsPerM = sum(first.rows$dsPerM), + J_Segment_Major_Gene = first.rows.j, + V_Segment_Major_Gene = first.rows.v, + Clone_Sequence = first.clone.sequence, + CDR3_Sense_Sequence = first.rows[1,"CDR3_Sense_Sequence"], + Related_to_leukemia_clone = F, + Frequency = sum(first.rows$Frequency), + locus_V = first.rows[1,"locus_V"], + locus_J = first.rows[1,"locus_J"], + min_cell_count = first.rows[1,"min_cell_count"], + normalized_read_count = sum(first.rows$normalized_read_count), + paste = first.rows[1,"paste"], + min_cell_paste = first.rows[1,"min_cell_paste"]) + + if(nrow(second.rows) > 0){ + second.rows.v = table(second.rows$V_Segment_Major_Gene) + second.rows.v = names(second.rows.v[which.max(second.rows.v)]) + second.rows.j = table(second.rows$J_Segment_Major_Gene) + second.rows.j = names(second.rows.j[which.max(second.rows.j)]) + + second.sum = data.frame(merge = first.clone.sequence, + Patient = patient, + Receptor = second.rows[1,"Receptor"], + Sample = second.rows[1,"Sample"], + Cell_Count = second.rows[1,"Cell_Count"], + Clone_Molecule_Count_From_Spikes = sum(second.rows$Clone_Molecule_Count_From_Spikes), + Log10_Frequency = log10(sum(second.rows$Frequency)), + Total_Read_Count = sum(second.rows$Total_Read_Count), + dsPerM = sum(second.rows$dsPerM), + J_Segment_Major_Gene = second.rows.j, + V_Segment_Major_Gene = second.rows.v, + Clone_Sequence = first.clone.sequence, + CDR3_Sense_Sequence = second.rows[1,"CDR3_Sense_Sequence"], + Related_to_leukemia_clone = F, + Frequency = sum(second.rows$Frequency), + locus_V = second.rows[1,"locus_V"], + locus_J = second.rows[1,"locus_J"], + min_cell_count = second.rows[1,"min_cell_count"], + normalized_read_count = sum(second.rows$normalized_read_count), + paste = second.rows[1,"paste"], + min_cell_paste = second.rows[1,"min_cell_paste"]) + + patientMerge = rbind(patientMerge, merge(first.sum, second.sum, by="merge")) + patient.fuzzy = patient.fuzzy[!(first.match.filter | second.match.filter),] + + hidden.clone.sequences = c(first.rows[-1,"Clone_Sequence"], second.rows[second.rows$Clone_Sequence != first.clone.sequence,"Clone_Sequence"]) + merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences) + + tmp.rows = rbind(first.rows, second.rows) + tmp.rows = tmp.rows[order(nchar(tmp.rows$Clone_Sequence)),] + + + #add to the scatterplot data + scatterplot.row = first.sum[,scatterplot_data_columns] + scatterplot.row$type = paste(first.sum[,"Sample"], "In Both") + scatterplot.row$link = link.count + scatterplot.row$on = onShort + + scatterplot_data = rbind(scatterplot_data, scatterplot.row) + + scatterplot.row = second.sum[,scatterplot_data_columns] + scatterplot.row$type = paste(second.sum[,"Sample"], "In Both") + scatterplot.row$link = link.count + scatterplot.row$on = onShort + + scatterplot_data = rbind(scatterplot_data, scatterplot.row) + + #write some information about the match to a log file + if (nrow(first.rows) > 1 | nrow(second.rows) > 1) { + cat(paste("", sep=""), file="multiple_matches.html", append=T) + } else { + second.clone.sequence = second.rows[1,"Clone_Sequence"] + if(nchar(first.clone.sequence) != nchar(second.clone.sequence)){ + cat(paste("", sep=""), file="single_matches.html", append=T) + } else { + #cat(paste("", sep=""), file="single_matches.html", append=T) + } + } + + } else if(nrow(first.rows) > 1) { + if(patient1[1,"Sample"] == first.sample){ + patient1 = patient1[!(patient1$Clone_Sequence %in% first.rows$Clone_Sequence),] + patient1 = rbind(patient1, first.sum) + } else { + patient2 = patient2[!(patient2$Clone_Sequence %in% first.rows$Clone_Sequence),] + patient2 = rbind(patient2, first.sum) + } + + hidden.clone.sequences = c(first.rows[-1,"Clone_Sequence"]) + merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences) + + patient.fuzzy = patient.fuzzy[-first.match.filter,] + + #add to the scatterplot data + scatterplot.row = first.sum[,scatterplot_data_columns] + scatterplot.row$type = first.sum[,"Sample"] + scatterplot.row$link = link.count + scatterplot.row$on = onShort + + scatterplot_data = rbind(scatterplot_data, scatterplot.row) + + cat(paste("", sep=""), file="single_matches.html", append=T) + } else { + patient.fuzzy = patient.fuzzy[-1,] + + #add to the scatterplot data + scatterplot.row = first.sum[,scatterplot_data_columns] + scatterplot.row$type = first.sum[,"Sample"] + scatterplot.row$link = link.count + scatterplot.row$on = onShort + + scatterplot_data = rbind(scatterplot_data, scatterplot.row) + } + link.count = link.count + 1 + } + patient.merge.list[[patient]] <<- patientMerge + patient.merge.list.second[[patient]] <<- merge.list[["second"]] + + sample.order = data.frame(type = c(oneSample, twoSample, paste(c(oneSample, twoSample), "In Both")),type.order = 1:4) + scatterplot_data = merge(scatterplot_data, sample.order, by="type") + + scatter_locus_data_list[[patient]] <<- scatterplot_data + cat(paste("", sep=""), file=logfile, append=T) + } + + patient1 = patient1[!(patient1$Clone_Sequence %in% patient.merge.list.second[[patient]]),] + patient2 = patient2[!(patient2$Clone_Sequence %in% patient.merge.list.second[[patient]]),] + + + patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony]) + #patientMerge$thresholdValue = pmin(patientMerge[,onx], patientMerge[,ony]) + res1 = vector() + res2 = vector() + resBoth = vector() + read1Count = vector() + read2Count = vector() + locussum1 = vector() + locussum2 = vector() + + #for(iter in 1){ + for(iter in 1:length(product[,1])){ + threshhold = product[iter,threshholdIndex] + V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="") + J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="") + #both = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,onx] > threshhold & patientMerge[,ony] > threshhold) #both higher than threshold + both = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge$thresholdValue > threshhold) #highest of both is higher than threshold + one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$merge %in% patientMerge[both,]$merge)) + two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$merge %in% patientMerge[both,]$merge)) + read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count)) + read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count)) + res1 = append(res1, sum(one)) + res2 = append(res2, sum(two)) + resBoth = append(resBoth, sum(both)) + locussum1 = append(locussum1, sum(patient1[(grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene)),]$normalized_read_count)) + locussum2 = append(locussum2, sum(patient2[(grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene)),]$normalized_read_count)) + #threshhold = 0 + if(threshhold != 0){ + if(sum(one) > 0){ + dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")] + colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone Sequence", "Related_to_leukemia_clone") + filenameOne = paste(oneSample, "_", product[iter, titleIndex], "_", threshhold, sep="") + write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + if(sum(two) > 0){ + dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")] + colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone Sequence", "Related_to_leukemia_clone") + filenameTwo = paste(twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="") + write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + } else { + scatterplot_locus_data = scatterplot_data[grepl(V_Segment, scatterplot_data$V_Segment_Major_Gene) & grepl(J_Segment, scatterplot_data$J_Segment_Major_Gene),] + if(nrow(scatterplot_locus_data) > 0){ + scatterplot_locus_data$Rearrangement = product[iter, titleIndex] + } + + + + p = NULL + print(paste("nrow scatterplot_locus_data", nrow(scatterplot_locus_data))) + if(nrow(scatterplot_locus_data) != 0){ + if(on == "normalized_read_count"){ + write.table(scatterplot_locus_data, file=paste(oneSample, twoSample, product[iter, titleIndex], "scatterplot_locus_data.txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count)))) + p = ggplot(scatterplot_locus_data, aes(factor(reorder(type, type.order)), normalized_read_count, group=link)) + geom_line() + scale_y_log10(breaks=scales,labels=scales, limits=c(1,1e6)) + scale_x_discrete(breaks=levels(scatterplot_data$type), labels=levels(scatterplot_data$type), drop=FALSE) + } else { + p = ggplot(scatterplot_locus_data, aes(factor(reorder(type, type.order)), Frequency, group=link)) + geom_line() + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + scale_x_discrete(breaks=levels(scatterplot_data$type), labels=levels(scatterplot_data$type), drop=FALSE) + } + p = p + geom_point(aes(colour=type), position="dodge") + p = p + xlab("In one or both samples") + ylab(onShort) + ggtitle(paste(patient1[1,patientIndex], patient1[1,sampleIndex], patient2[1,sampleIndex], onShort, product[iter, titleIndex])) + } else { + p = ggplot(NULL, aes(x=c("In one", "In Both"),y=0)) + geom_blank(NULL) + xlab("In one or both of the samples") + ylab(onShort) + ggtitle(paste(patient1[1,patientIndex], patient1[1,sampleIndex], patient2[1,sampleIndex], onShort, product[iter, titleIndex])) + } + png(paste(patient1[1,patientIndex], "_", patient1[1,sampleIndex], "_", patient2[1,sampleIndex], "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep="")) + print(p) + dev.off() + } + if(sum(both) > 0){ + dfBoth = patientMerge[both,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")] + colnames(dfBoth) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample)) + filenameBoth = paste(oneSample, "_", twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="") + write.table(dfBoth, file=paste(filenameBoth, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + } + patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "Both"=resBoth, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "Sum"=res1 + res2 + resBoth, "percentage" = round((resBoth/(res1 + res2 + resBoth)) * 100, digits=2), "Locus_sum1"=locussum1, "Locus_sum2"=locussum2) + if(sum(is.na(patientResult$percentage)) > 0){ + patientResult[is.na(patientResult$percentage),]$percentage = 0 + } + colnames(patientResult)[6] = oneSample + colnames(patientResult)[8] = twoSample + colnamesBak = colnames(patientResult) + colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", paste("Number of sequences ", patient, "_Both", sep=""), paste("Number of sequences", oneSample, sep=""), paste("Normalized Read Count", oneSample), paste("Number of sequences", twoSample, sep=""), paste("Normalized Read Count", twoSample), paste("Sum number of sequences", patient), paste("Percentage of sequences ", patient, "_Both", sep=""), paste("Locus Sum", oneSample), paste("Locus Sum", twoSample)) + write.table(patientResult, file=paste(patient, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + colnames(patientResult) = colnamesBak + + patientResult$Locus = factor(patientResult$Locus, Titles) + patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep="")) + + plt = ggplot(patientResult[,c("Locus", "cut_off_value", "Both")]) + plt = plt + geom_bar( aes( x=factor(cut_off_value), y=Both), stat='identity', position="dodge", fill="#79c36a") + plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + plt = plt + geom_text(aes(ymax=max(Both), x=cut_off_value,y=Both,label=Both), angle=90, hjust=0) + plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in both") + plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines")) + png(paste(patient, "_", onShort, ".png", sep=""), width=1920, height=1080) + print(plt) + dev.off() + #(t,r,b,l) + plt = ggplot(patientResult[,c("Locus", "cut_off_value", "percentage")]) + plt = plt + geom_bar( aes( x=factor(cut_off_value), y=percentage), stat='identity', position="dodge", fill="#79c36a") + plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + plt = plt + geom_text(aes(ymax=max(percentage), x=cut_off_value,y=percentage,label=percentage), angle=90, hjust=0) + plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("% clones in both left and right") + plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines")) + png(paste(patient, "_percent_", onShort, ".png", sep=""), width=1920, height=1080) + print(plt) + dev.off() + + patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample)] ,id.vars=1:2) + patientResult$relativeValue = patientResult$value * 10 + patientResult[patientResult$relativeValue == 0,]$relativeValue = 1 + plt = ggplot(patientResult) + plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge") + plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9))) + plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.2) + plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.8) + plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle(paste("Number of clones in only ", oneSample, " and only ", twoSample, sep="")) + png(paste(patient, "_", onShort, "_both.png", sep=""), width=1920, height=1080) + print(plt) + dev.off() +} + +cat("", file=logfile, append=T) + +interval = intervalFreq +intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval)) +product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval))) +lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="Frequency", appendtxt=T) + +cat("", file=logfile, append=T) + +interval = intervalReads +intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval)) +product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval))) +lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count") + +if(nrow(single_patients) > 0){ + scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count)))) + p = ggplot(single_patients, aes(Rearrangement, normalized_read_count)) + scale_y_log10(breaks=scales,labels=as.character(scales)) + expand_limits(y=c(0,1000000)) + p = p + geom_point(aes(colour=type), position="jitter") + p = p + xlab("In one or both samples") + ylab("Reads") + p = p + facet_grid(.~Patient) + ggtitle("Scatterplot of the reads of the patients with a single sample") + png("singles_reads_scatterplot.png", width=640 * length(unique(single_patients$Patient)) + 100, height=1080) + print(p) + dev.off() + + #p = ggplot(single_patients, aes(Rearrangement, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100)) + p = ggplot(single_patients, aes(Rearrangement, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100)) + p = p + geom_point(aes(colour=type), position="jitter") + p = p + xlab("In one or both samples") + ylab("Frequency") + p = p + facet_grid(.~Patient) + ggtitle("Scatterplot of the frequency of the patients with a single sample") + png("singles_freq_scatterplot.png", width=640 * length(unique(single_patients$Patient)) + 100, height=1080) + print(p) + dev.off() +} else { + empty <- data.frame() + p = ggplot(empty) + geom_point() + xlim(0, 10) + ylim(0, 100) + xlab("In one or both samples") + ylab("Frequency") + ggtitle("Scatterplot of the frequency of the patients with a single sample") + + png("singles_reads_scatterplot.png", width=400, height=300) + print(p) + dev.off() + + png("singles_freq_scatterplot.png", width=400, height=300) + print(p) + dev.off() +} + +patient.merge.list = list() #cache the 'both' table, 2x speedup for more memory... +patient.merge.list.second = list() + +tripletAnalysis <- function(patient1, label1, patient2, label2, patient3, label3, product, interval, on, appendTriplets= FALSE){ + onShort = "reads" + if(on == "Frequency"){ + onShort = "freq" + } + onx = paste(on, ".x", sep="") + ony = paste(on, ".y", sep="") + onz = paste(on, ".z", sep="") + type="triplet" + + threshholdIndex = which(colnames(product) == "interval") + V_SegmentIndex = which(colnames(product) == "V_Segments") + J_SegmentIndex = which(colnames(product) == "J_Segments") + titleIndex = which(colnames(product) == "Titles") + sampleIndex = which(colnames(patient1) == "Sample") + patientIndex = which(colnames(patient1) == "Patient") + oneSample = paste(patient1[1,sampleIndex], sep="") + twoSample = paste(patient2[1,sampleIndex], sep="") + threeSample = paste(patient3[1,sampleIndex], sep="") + + if(mergeOn == "Clone_Sequence"){ + patient1$merge = paste(patient1$Clone_Sequence) + patient2$merge = paste(patient2$Clone_Sequence) + patient3$merge = paste(patient3$Clone_Sequence) + + } else { + patient1$merge = paste(patient1$V_Segment_Major_Gene, patient1$J_Segment_Major_Gene, patient1$CDR3_Sense_Sequence) + patient2$merge = paste(patient2$V_Segment_Major_Gene, patient2$J_Segment_Major_Gene, patient2$CDR3_Sense_Sequence) + patient3$merge = paste(patient3$V_Segment_Major_Gene, patient3$J_Segment_Major_Gene, patient3$CDR3_Sense_Sequence) + } + + #patientMerge = merge(patient1, patient2, by="merge")[NULL,] + patient1.fuzzy = patient1 + patient2.fuzzy = patient2 + patient3.fuzzy = patient3 + + cat(paste("", sep=""), file=logfile, append=T) + + patient1.fuzzy$merge = paste(patient1.fuzzy$locus_V, patient1.fuzzy$locus_J) + patient2.fuzzy$merge = paste(patient2.fuzzy$locus_V, patient2.fuzzy$locus_J) + patient3.fuzzy$merge = paste(patient3.fuzzy$locus_V, patient3.fuzzy$locus_J) + + patient.fuzzy = rbind(patient1.fuzzy ,patient2.fuzzy, patient3.fuzzy) + patient.fuzzy = patient.fuzzy[order(nchar(patient.fuzzy$Clone_Sequence)),] + + other.sample.list = list() + other.sample.list[[oneSample]] = c(twoSample, threeSample) + other.sample.list[[twoSample]] = c(oneSample, threeSample) + other.sample.list[[threeSample]] = c(oneSample, twoSample) + + patientMerge = merge(patient1, patient2, by="merge") + patientMerge = merge(patientMerge, patient3, by="merge") + colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="") + #patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz]) + patientMerge = patientMerge[NULL,] + + duo.merge.list = list() + + patientMerge12 = merge(patient1, patient2, by="merge") + #patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony]) + patientMerge12 = patientMerge12[NULL,] + duo.merge.list[[paste(oneSample, twoSample)]] = patientMerge12 + duo.merge.list[[paste(twoSample, oneSample)]] = patientMerge12 + + patientMerge13 = merge(patient1, patient3, by="merge") + #patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony]) + patientMerge13 = patientMerge13[NULL,] + duo.merge.list[[paste(oneSample, threeSample)]] = patientMerge13 + duo.merge.list[[paste(threeSample, oneSample)]] = patientMerge13 + + patientMerge23 = merge(patient2, patient3, by="merge") + #patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony]) + patientMerge23 = patientMerge23[NULL,] + duo.merge.list[[paste(twoSample, threeSample)]] = patientMerge23 + duo.merge.list[[paste(threeSample, twoSample)]] = patientMerge23 + + merge.list = list() + merge.list[["second"]] = vector() + + start.time = proc.time() + if(paste(label1, "123") %in% names(patient.merge.list)){ + patientMerge = patient.merge.list[[paste(label1, "123")]] + patientMerge12 = patient.merge.list[[paste(label1, "12")]] + patientMerge13 = patient.merge.list[[paste(label1, "13")]] + patientMerge23 = patient.merge.list[[paste(label1, "23")]] + + merge.list[["second"]] = patient.merge.list.second[[label1]] + + cat(paste("", sep=""), file=logfile, append=T) + } else { + while(nrow(patient.fuzzy) > 0){ + first.merge = patient.fuzzy[1,"merge"] + first.clone.sequence = patient.fuzzy[1,"Clone_Sequence"] + first.sample = patient.fuzzy[1,"Sample"] + + merge.filter = first.merge == patient.fuzzy$merge + + second.sample = other.sample.list[[first.sample]][1] + third.sample = other.sample.list[[first.sample]][2] + + sample.filter.1 = first.sample == patient.fuzzy$Sample + sample.filter.2 = second.sample == patient.fuzzy$Sample + sample.filter.3 = third.sample == patient.fuzzy$Sample + + sequence.filter = grepl(paste("^", first.clone.sequence, sep=""), patient.fuzzy$Clone_Sequence) + + match.filter.1 = sample.filter.1 & sequence.filter & merge.filter + match.filter.2 = sample.filter.2 & sequence.filter & merge.filter + match.filter.3 = sample.filter.3 & sequence.filter & merge.filter + + matches.in.1 = any(match.filter.1) + matches.in.2 = any(match.filter.2) + matches.in.3 = any(match.filter.3) + + + + rows.1 = patient.fuzzy[match.filter.1,] + + sum.1 = data.frame(merge = first.clone.sequence, + Patient = label1, + Receptor = rows.1[1,"Receptor"], + Sample = rows.1[1,"Sample"], + Cell_Count = rows.1[1,"Cell_Count"], + Clone_Molecule_Count_From_Spikes = sum(rows.1$Clone_Molecule_Count_From_Spikes), + Log10_Frequency = log10(sum(rows.1$Frequency)), + Total_Read_Count = sum(rows.1$Total_Read_Count), + dsPerM = sum(rows.1$dsPerM), + J_Segment_Major_Gene = rows.1[1,"J_Segment_Major_Gene"], + V_Segment_Major_Gene = rows.1[1,"V_Segment_Major_Gene"], + Clone_Sequence = first.clone.sequence, + CDR3_Sense_Sequence = rows.1[1,"CDR3_Sense_Sequence"], + Related_to_leukemia_clone = F, + Frequency = sum(rows.1$Frequency), + locus_V = rows.1[1,"locus_V"], + locus_J = rows.1[1,"locus_J"], + uniqueID = rows.1[1,"uniqueID"], + normalized_read_count = sum(rows.1$normalized_read_count)) + sum.2 = sum.1[NULL,] + rows.2 = patient.fuzzy[match.filter.2,] + if(matches.in.2){ + sum.2 = data.frame(merge = first.clone.sequence, + Patient = label1, + Receptor = rows.2[1,"Receptor"], + Sample = rows.2[1,"Sample"], + Cell_Count = rows.2[1,"Cell_Count"], + Clone_Molecule_Count_From_Spikes = sum(rows.2$Clone_Molecule_Count_From_Spikes), + Log10_Frequency = log10(sum(rows.2$Frequency)), + Total_Read_Count = sum(rows.2$Total_Read_Count), + dsPerM = sum(rows.2$dsPerM), + J_Segment_Major_Gene = rows.2[1,"J_Segment_Major_Gene"], + V_Segment_Major_Gene = rows.2[1,"V_Segment_Major_Gene"], + Clone_Sequence = first.clone.sequence, + CDR3_Sense_Sequence = rows.2[1,"CDR3_Sense_Sequence"], + Related_to_leukemia_clone = F, + Frequency = sum(rows.2$Frequency), + locus_V = rows.2[1,"locus_V"], + locus_J = rows.2[1,"locus_J"], + uniqueID = rows.2[1,"uniqueID"], + normalized_read_count = sum(rows.2$normalized_read_count)) + } + + sum.3 = sum.1[NULL,] + rows.3 = patient.fuzzy[match.filter.3,] + if(matches.in.3){ + sum.3 = data.frame(merge = first.clone.sequence, + Patient = label1, + Receptor = rows.3[1,"Receptor"], + Sample = rows.3[1,"Sample"], + Cell_Count = rows.3[1,"Cell_Count"], + Clone_Molecule_Count_From_Spikes = sum(rows.3$Clone_Molecule_Count_From_Spikes), + Log10_Frequency = log10(sum(rows.3$Frequency)), + Total_Read_Count = sum(rows.3$Total_Read_Count), + dsPerM = sum(rows.3$dsPerM), + J_Segment_Major_Gene = rows.3[1,"J_Segment_Major_Gene"], + V_Segment_Major_Gene = rows.3[1,"V_Segment_Major_Gene"], + Clone_Sequence = first.clone.sequence, + CDR3_Sense_Sequence = rows.3[1,"CDR3_Sense_Sequence"], + Related_to_leukemia_clone = F, + Frequency = sum(rows.3$Frequency), + locus_V = rows.3[1,"locus_V"], + locus_J = rows.3[1,"locus_J"], + uniqueID = rows.3[1,"uniqueID"], + normalized_read_count = sum(rows.3$normalized_read_count)) + } + + if(matches.in.2 & matches.in.3){ + merge.123 = merge(sum.1, sum.2, by="merge") + merge.123 = merge(merge.123, sum.3, by="merge") + colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123)))] = paste(colnames(merge.123)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(merge.123), perl=T))], ".z", sep="") + #merge.123$thresholdValue = pmax(merge.123[,onx], merge.123[,ony], merge.123[,onz]) + + patientMerge = rbind(patientMerge, merge.123) + patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2 | match.filter.3),] + + hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"]) + merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences) + + } else if (matches.in.2) { + #other.sample1 = other.sample.list[[first.sample]][1] + #other.sample2 = other.sample.list[[first.sample]][2] + + second.sample = sum.2[,"Sample"] + + current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]] + + merge.12 = merge(sum.1, sum.2, by="merge") + + current.merge.list = rbind(current.merge.list, merge.12) + duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list + + patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.2),] + + hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.2[rows.2$Clone_Sequence != first.clone.sequence,"Clone_Sequence"]) + merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences) + + } else if (matches.in.3) { + + #other.sample1 = other.sample.list[[first.sample]][1] + #other.sample2 = other.sample.list[[first.sample]][2] + + second.sample = sum.3[,"Sample"] + + current.merge.list = duo.merge.list[[paste(first.sample, second.sample)]] + + merge.13 = merge(sum.1, sum.3, by="merge") + + current.merge.list = rbind(current.merge.list, merge.13) + duo.merge.list[[paste(first.sample, second.sample)]] = current.merge.list + + patient.fuzzy = patient.fuzzy[!(match.filter.1 | match.filter.3),] + + hidden.clone.sequences = c(rows.1[-1,"Clone_Sequence"], rows.3[rows.3$Clone_Sequence != first.clone.sequence,"Clone_Sequence"]) + merge.list[["second"]] = append(merge.list[["second"]], hidden.clone.sequences) + + } else if(nrow(rows.1) > 1){ + patient1 = patient1[!(patient1$Clone_Sequence %in% rows.1$Clone_Sequence),] + print(names(patient1)[names(patient1) %in% sum.1]) + print(names(patient1)[!(names(patient1) %in% sum.1)]) + print(names(patient1)) + print(names(sum.1)) + print(summary(sum.1)) + print(summary(patient1)) + print(dim(sum.1)) + print(dim(patient1)) + print(head(sum.1[,names(patient1)])) + patient1 = rbind(patient1, sum.1[,names(patient1)]) + patient.fuzzy = patient.fuzzy[-match.filter.1,] + } else { + patient.fuzzy = patient.fuzzy[-1,] + } + + tmp.rows = rbind(rows.1, rows.2, rows.3) + tmp.rows = tmp.rows[order(nchar(tmp.rows$Clone_Sequence)),] + + if (sum(match.filter.1) > 1 | sum(match.filter.2) > 1 | sum(match.filter.1) > 1) { + cat(paste("", sep=""), file="multiple_matches.html", append=T) + } else { + } + + } + patient.merge.list[[paste(label1, "123")]] = patientMerge + + patientMerge12 = duo.merge.list[[paste(oneSample, twoSample)]] + patientMerge13 = duo.merge.list[[paste(oneSample, threeSample)]] + patientMerge23 = duo.merge.list[[paste(twoSample, threeSample)]] + + patient.merge.list[[paste(label1, "12")]] = patientMerge12 + patient.merge.list[[paste(label1, "13")]] = patientMerge13 + patient.merge.list[[paste(label1, "23")]] = patientMerge23 + + patient.merge.list.second[[label1]] = merge.list[["second"]] + } + cat(paste("", sep=""), file=logfile, append=T) + patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz]) + patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony]) + patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony]) + patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony]) + + #patientMerge$thresholdValue = pmin(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz]) + #patientMerge12$thresholdValue = pmin(patientMerge12[,onx], patientMerge12[,ony]) + #patientMerge13$thresholdValue = pmin(patientMerge13[,onx], patientMerge13[,ony]) + #patientMerge23$thresholdValue = pmin(patientMerge23[,onx], patientMerge23[,ony]) + + patient1 = patient1[!(patient1$Clone_Sequence %in% merge.list[["second"]]),] + patient2 = patient2[!(patient2$Clone_Sequence %in% merge.list[["second"]]),] + patient3 = patient3[!(patient3$Clone_Sequence %in% merge.list[["second"]]),] + + if(F){ + patientMerge = merge(patient1, patient2, by="merge") + patientMerge = merge(patientMerge, patient3, by="merge") + colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge)))] = paste(colnames(patientMerge)[which(!grepl("(\\.x$)|(\\.y$)|(merge)", names(patientMerge), perl=T))], ".z", sep="") + patientMerge$thresholdValue = pmax(patientMerge[,onx], patientMerge[,ony], patientMerge[,onz]) + patientMerge12 = merge(patient1, patient2, by="merge") + patientMerge12$thresholdValue = pmax(patientMerge12[,onx], patientMerge12[,ony]) + patientMerge13 = merge(patient1, patient3, by="merge") + patientMerge13$thresholdValue = pmax(patientMerge13[,onx], patientMerge13[,ony]) + patientMerge23 = merge(patient2, patient3, by="merge") + patientMerge23$thresholdValue = pmax(patientMerge23[,onx], patientMerge23[,ony]) + } + + scatterplot_data_columns = c("Clone_Sequence", "Frequency", "normalized_read_count", "V_Segment_Major_Gene", "J_Segment_Major_Gene", "merge") + scatterplot_data = rbind(patient1[,scatterplot_data_columns], patient2[,scatterplot_data_columns], patient3[,scatterplot_data_columns]) + scatterplot_data = scatterplot_data[!duplicated(scatterplot_data$merge),] + scatterplot_data$type = factor(x="In one", levels=c("In one", "In two", "In three", "In multiple")) + + res1 = vector() + res2 = vector() + res3 = vector() + res12 = vector() + res13 = vector() + res23 = vector() + resAll = vector() + read1Count = vector() + read2Count = vector() + read3Count = vector() + + if(appendTriplets){ + cat(paste(label1, label2, label3, sep="\t"), file="triplets.txt", append=T, sep="", fill=3) + } + for(iter in 1:length(product[,1])){ + threshhold = product[iter,threshholdIndex] + V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="") + J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="") + #all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,onx] > threshhold & patientMerge[,ony] > threshhold & patientMerge[,onz] > threshhold) + all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge$thresholdValue > threshhold) + + one_two = (grepl(V_Segment, patientMerge12$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge12$J_Segment_Major_Gene.x) & patientMerge12$thresholdValue > threshhold & !(patientMerge12$merge %in% patientMerge[all,]$merge)) + one_three = (grepl(V_Segment, patientMerge13$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge13$J_Segment_Major_Gene.x) & patientMerge13$thresholdValue > threshhold & !(patientMerge13$merge %in% patientMerge[all,]$merge)) + two_three = (grepl(V_Segment, patientMerge23$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge23$J_Segment_Major_Gene.x) & patientMerge23$thresholdValue > threshhold & !(patientMerge23$merge %in% patientMerge[all,]$merge)) + + one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$merge %in% patientMerge[all,]$merge) & !(patient1$merge %in% patientMerge12[one_two,]$merge) & !(patient1$merge %in% patientMerge13[one_three,]$merge)) + two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$merge %in% patientMerge[all,]$merge) & !(patient2$merge %in% patientMerge12[one_two,]$merge) & !(patient2$merge %in% patientMerge23[two_three,]$merge)) + three = (grepl(V_Segment, patient3$V_Segment_Major_Gene) & grepl(J_Segment, patient3$J_Segment_Major_Gene) & patient3[,on] > threshhold & !(patient3$merge %in% patientMerge[all,]$merge) & !(patient3$merge %in% patientMerge13[one_three,]$merge) & !(patient3$merge %in% patientMerge23[two_three,]$merge)) + + read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.x)) + read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.y)) + read3Count = append(read3Count, sum(patient3[three,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.z)) + res1 = append(res1, sum(one)) + res2 = append(res2, sum(two)) + res3 = append(res3, sum(three)) + resAll = append(resAll, sum(all)) + res12 = append(res12, sum(one_two)) + res13 = append(res13, sum(one_three)) + res23 = append(res23, sum(two_three)) + #threshhold = 0 + if(threshhold != 0){ + if(sum(one) > 0){ + dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")] + colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone") + filenameOne = paste(label1, "_", product[iter, titleIndex], "_", threshhold, sep="") + write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + if(sum(two) > 0){ + dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")] + colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone") + filenameTwo = paste(label2, "_", product[iter, titleIndex], "_", threshhold, sep="") + write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + if(sum(three) > 0){ + dfThree = patient3[three,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone")] + colnames(dfThree) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Clone_Sequence", "Related_to_leukemia_clone") + filenameThree = paste(label3, "_", product[iter, titleIndex], "_", threshhold, sep="") + write.table(dfThree, file=paste(filenameThree, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + if(sum(one_two) > 0){ + dfOne_two = patientMerge12[one_two,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")] + colnames(dfOne_two) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample)) + filenameOne_two = paste(label1, "_", label2, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="") + write.table(dfOne_two, file=paste(filenameOne_two, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + if(sum(one_three) > 0){ + dfOne_three = patientMerge13[one_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")] + colnames(dfOne_three) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample)) + filenameOne_three = paste(label1, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="") + write.table(dfOne_three, file=paste(filenameOne_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + if(sum(two_three) > 0){ + dfTwo_three = patientMerge23[two_three,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")] + colnames(dfTwo_three) = c(paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample),"Clone_Sequence", paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample)) + filenameTwo_three = paste(label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, onShort, sep="") + write.table(dfTwo_three, file=paste(filenameTwo_three, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + } else { #scatterplot data + scatterplot_locus_data = scatterplot_data[grepl(V_Segment, scatterplot_data$V_Segment_Major_Gene) & grepl(J_Segment, scatterplot_data$J_Segment_Major_Gene),] + scatterplot_locus_data = scatterplot_locus_data[!(scatterplot_locus_data$merge %in% merge.list[["second"]]),] + in_two = (scatterplot_locus_data$merge %in% patientMerge12[one_two,]$merge) | (scatterplot_locus_data$merge %in% patientMerge13[one_three,]$merge) | (scatterplot_locus_data$merge %in% patientMerge23[two_three,]$merge) + if(sum(in_two) > 0){ + scatterplot_locus_data[in_two,]$type = "In two" + } + in_three = (scatterplot_locus_data$merge %in% patientMerge[all,]$merge) + if(sum(in_three)> 0){ + scatterplot_locus_data[in_three,]$type = "In three" + } + not_in_one = scatterplot_locus_data$type != "In one" + if(sum(not_in_one) > 0){ + #scatterplot_locus_data[not_in_one,]$type = "In multiple" + } + p = NULL + if(nrow(scatterplot_locus_data) != 0){ + if(on == "normalized_read_count"){ + scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count)))) + p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales, limits=c(1, 1e6)) + } else { + p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_log10(limits=c(0.0001,100), breaks=c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), labels=c("0.0001", "0.001", "0.01", "0.1", "1", "10", "100")) + expand_limits(y=c(0,100)) + #p = ggplot(scatterplot_locus_data, aes(type, Frequency)) + scale_y_continuous(limits = c(0, 100)) + expand_limits(y=c(0,100)) + } + p = p + geom_point(aes(colour=type), position="jitter") + p = p + xlab("In one or in multiple samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex])) + } else { + p = ggplot(NULL, aes(x=c("In one", "In multiple"),y=0)) + geom_blank(NULL) + xlab("In two or in three of the samples") + ylab(onShort) + ggtitle(paste(label1, label2, label3, onShort, product[iter, titleIndex])) + } + png(paste(label1, "_", label2, "_", label3, "_", onShort, "_", product[iter, titleIndex],"_scatter.png", sep="")) + print(p) + dev.off() + } + if(sum(all) > 0){ + dfAll = patientMerge[all,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "Clone_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y", "V_Segment_Major_Gene.z", "J_Segment_Major_Gene.z", "normalized_read_count.z", "Frequency.z", "Related_to_leukemia_clone.z")] + colnames(dfAll) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"Clone_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample), paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample)) + filenameAll = paste(label1, "_", label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, sep="") + write.table(dfAll, file=paste(filenameAll, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + } + } + #patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "tmp3"=res3, "read_count3"=round(read3Count)) + patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "tmp2"=res2, "tmp3"=res3, "tmp12"=res12, "tmp13"=res13, "tmp23"=res23) + colnames(patientResult)[6] = oneSample + colnames(patientResult)[7] = twoSample + colnames(patientResult)[8] = threeSample + colnames(patientResult)[9] = paste(oneSample, twoSample, sep="_") + colnames(patientResult)[10] = paste(oneSample, twoSample, sep="_") + colnames(patientResult)[11] = paste(oneSample, twoSample, sep="_") + + colnamesBak = colnames(patientResult) + colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", "Number of sequences All", paste("Number of sequences", oneSample), paste("Number of sequences", twoSample), paste("Number of sequences", threeSample), paste("Number of sequences", oneSample, twoSample), paste("Number of sequences", oneSample, threeSample), paste("Number of sequences", twoSample, threeSample)) + write.table(patientResult, file=paste(label1, "_", label2, "_", label3, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T) + colnames(patientResult) = colnamesBak + + patientResult$Locus = factor(patientResult$Locus, Titles) + patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep="")) + + plt = ggplot(patientResult[,c("Locus", "cut_off_value", "All")]) + plt = plt + geom_bar( aes( x=factor(cut_off_value), y=All), stat='identity', position="dodge", fill="#79c36a") + plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + plt = plt + geom_text(aes(ymax=max(All), x=cut_off_value,y=All,label=All), angle=90, hjust=0) + plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in All") + plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines")) + png(paste(label1, "_", label2, "_", label3, "_", onShort, "_total_all.png", sep=""), width=1920, height=1080) + print(plt) + dev.off() + + fontSize = 4 + + bak = patientResult + patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample, threeSample)] ,id.vars=1:2) + patientResult$relativeValue = patientResult$value * 10 + patientResult[patientResult$relativeValue == 0,]$relativeValue = 1 + plt = ggplot(patientResult) + plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge") + plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9))) + plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.7, size=fontSize) + plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.4, size=fontSize) + plt = plt + geom_text(data=patientResult[patientResult$variable == threeSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=1.5, size=fontSize) + plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in only one sample") + png(paste(label1, "_", label2, "_", label3, "_", onShort, "_indiv_all.png", sep=""), width=1920, height=1080) + print(plt) + dev.off() +} + +if(nrow(triplets) != 0){ + + cat("", file=logfile, append=T) + + triplets$uniqueID = "ID" + + triplets[grepl("16278_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left" + triplets[grepl("26402_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left" + triplets[grepl("26759_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left" + + triplets[grepl("16278_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right" + triplets[grepl("26402_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right" + triplets[grepl("26759_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right" + + triplets[grepl("14696", triplets$Patient),]$uniqueID = "14696" + + cat("", file=logfile, append=T) + + triplets$locus_V = substring(triplets$V_Segment_Major_Gene, 0, 4) + triplets$locus_J = substring(triplets$J_Segment_Major_Gene, 0, 4) + min_cell_count = data.frame(data.table(triplets)[, list(min_cell_count=min(.SD$Cell_Count)), by=c("uniqueID", "locus_V", "locus_J")]) + + triplets$min_cell_paste = paste(triplets$uniqueID, triplets$locus_V, triplets$locus_J) + min_cell_count$min_cell_paste = paste(min_cell_count$uniqueID, min_cell_count$locus_V, min_cell_count$locus_J) + + min_cell_count = min_cell_count[,c("min_cell_paste", "min_cell_count")] + + triplets = merge(triplets, min_cell_count, by="min_cell_paste") + + triplets$normalized_read_count = round(triplets$Clone_Molecule_Count_From_Spikes / triplets$Cell_Count * triplets$min_cell_count / 2, digits=2) #??????????????????????????????????? wel of geen / 2 + + triplets = triplets[triplets$normalized_read_count >= min_cells,] + + column_drops = c("min_cell_count", "min_cell_paste") + + triplets = triplets[,!(colnames(triplets) %in% column_drops)] + + cat("", file=logfile, append=T) + + interval = intervalReads + intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval)) + product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval))) + + one = triplets[triplets$Sample == "14696_reg_BM",] + two = triplets[triplets$Sample == "24536_reg_BM",] + three = triplets[triplets$Sample == "24062_reg_BM",] + tripletAnalysis(one, "14696_1_Trio", two, "14696_2_Trio", three, "14696_3_Trio", product=product, interval=interval, on="normalized_read_count", T) + + one = triplets[triplets$Sample == "16278_Left",] + two = triplets[triplets$Sample == "26402_Left",] + three = triplets[triplets$Sample == "26759_Left",] + tripletAnalysis(one, "16278_Left_Trio", two, "26402_Left_Trio", three, "26759_Left_Trio", product=product, interval=interval, on="normalized_read_count", T) + + one = triplets[triplets$Sample == "16278_Right",] + two = triplets[triplets$Sample == "26402_Right",] + three = triplets[triplets$Sample == "26759_Right",] + tripletAnalysis(one, "16278_Right_Trio", two, "26402_Right_Trio", three, "26759_Right_Trio", product=product, interval=interval, on="normalized_read_count", T) + + cat("", file=logfile, append=T) + + interval = intervalFreq + intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval)) + product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval))) + + one = triplets[triplets$Sample == "14696_reg_BM",] + two = triplets[triplets$Sample == "24536_reg_BM",] + three = triplets[triplets$Sample == "24062_reg_BM",] + tripletAnalysis(one, "14696_1_Trio", two, "14696_2_Trio", three, "14696_3_Trio", product=product, interval=interval, on="Frequency", F) + + one = triplets[triplets$Sample == "16278_Left",] + two = triplets[triplets$Sample == "26402_Left",] + three = triplets[triplets$Sample == "26759_Left",] + tripletAnalysis(one, "16278_Left_Trio", two, "26402_Left_Trio", three, "26759_Left_Trio", product=product, interval=interval, on="Frequency", F) + + one = triplets[triplets$Sample == "16278_Right",] + two = triplets[triplets$Sample == "26402_Right",] + three = triplets[triplets$Sample == "26759_Right",] + tripletAnalysis(one, "16278_Right_Trio", two, "26402_Right_Trio", three, "26759_Right_Trio", product=product, interval=interval, on="Frequency", F) +} else { + cat("", file="triplets.txt") +} +cat("
", patient, "", nrow(patient1), " in ", oneSample, " and ", nrow(patient2), " in ", twoSample, ", ", nrow(patientMerge), " in both (fetched from cache)
", patient, " row ", 1:nrow(tmp.rows), "", tmp.rows$Sample, ":", tmp.rows$Clone_Sequence, "", tmp.rows$normalized_read_count, "
", patient, " row ", 1:nrow(tmp.rows), "", tmp.rows$Sample, ":", tmp.rows$Clone_Sequence, "", tmp.rows$normalized_read_count, "
", patient, " row ", 1:nrow(tmp.rows), "", tmp.rows$Sample, ":", tmp.rows$Clone_Sequence, "", tmp.rows$normalized_read_count, "
", patient, " row ", 1:nrow(first.rows), "", first.rows$Sample, ":", first.rows$Clone_Sequence, "", first.rows$normalized_read_count, "
", nrow(patient1), " in ", oneSample, " and ", nrow(patient2), " in ", twoSample, ", ", nrow(patientMerge), " in both (finding both took ", (proc.time() - start.time)[[3]], "s)
Starting Frequency analysis
Starting Cell Count analysis
", label1, "", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (fetched from cache)
", label1, " row ", 1:nrow(tmp.rows), "", tmp.rows$Sample, ":", tmp.rows$Clone_Sequence, "", tmp.rows$normalized_read_count, "
", nrow(patient1), " in ", label1, " and ", nrow(patient2), " in ", label2, nrow(patient3), " in ", label3, ", ", nrow(patientMerge), " in both (finding both took ", (proc.time() - start.time)[[3]], "s)
Starting triplet analysis
Normalizing to lowest cell count within locus
Starting Cell Count analysis
Starting Frequency analysis
", file=logfile, append=T) diff -r 000000000000 -r ed6885c85660 jquery-1.11.0.min.js --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/jquery-1.11.0.min.js Wed Aug 31 05:31:47 2016 -0400 @@ -0,0 +1,4 @@ +/*! jQuery v1.11.0 | (c) 2005, 2014 jQuery Foundation, Inc. | jquery.org/license */ +!function(a,b){"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){var c=[],d=c.slice,e=c.concat,f=c.push,g=c.indexOf,h={},i=h.toString,j=h.hasOwnProperty,k="".trim,l={},m="1.11.0",n=function(a,b){return new n.fn.init(a,b)},o=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,p=/^-ms-/,q=/-([\da-z])/gi,r=function(a,b){return b.toUpperCase()};n.fn=n.prototype={jquery:m,constructor:n,selector:"",length:0,toArray:function(){return d.call(this)},get:function(a){return null!=a?0>a?this[a+this.length]:this[a]:d.call(this)},pushStack:function(a){var b=n.merge(this.constructor(),a);return b.prevObject=this,b.context=this.context,b},each:function(a,b){return n.each(this,a,b)},map:function(a){return this.pushStack(n.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(d.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0);return this.pushStack(c>=0&&b>c?[this[c]]:[])},end:function(){return this.prevObject||this.constructor(null)},push:f,sort:c.sort,splice:c.splice},n.extend=n.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||n.isFunction(g)||(g={}),h===i&&(g=this,h--);i>h;h++)if(null!=(e=arguments[h]))for(d in e)a=g[d],c=e[d],g!==c&&(j&&c&&(n.isPlainObject(c)||(b=n.isArray(c)))?(b?(b=!1,f=a&&n.isArray(a)?a:[]):f=a&&n.isPlainObject(a)?a:{},g[d]=n.extend(j,f,c)):void 0!==c&&(g[d]=c));return g},n.extend({expando:"jQuery"+(m+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===n.type(a)},isArray:Array.isArray||function(a){return"array"===n.type(a)},isWindow:function(a){return null!=a&&a==a.window},isNumeric:function(a){return a-parseFloat(a)>=0},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},isPlainObject:function(a){var b;if(!a||"object"!==n.type(a)||a.nodeType||n.isWindow(a))return!1;try{if(a.constructor&&!j.call(a,"constructor")&&!j.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}if(l.ownLast)for(b in a)return j.call(a,b);for(b in a);return void 0===b||j.call(a,b)},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?h[i.call(a)]||"object":typeof a},globalEval:function(b){b&&n.trim(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(p,"ms-").replace(q,r)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()},each:function(a,b,c){var d,e=0,f=a.length,g=s(a);if(c){if(g){for(;f>e;e++)if(d=b.apply(a[e],c),d===!1)break}else for(e in a)if(d=b.apply(a[e],c),d===!1)break}else if(g){for(;f>e;e++)if(d=b.call(a[e],e,a[e]),d===!1)break}else for(e in a)if(d=b.call(a[e],e,a[e]),d===!1)break;return a},trim:k&&!k.call("\ufeff\xa0")?function(a){return null==a?"":k.call(a)}:function(a){return null==a?"":(a+"").replace(o,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(s(Object(a))?n.merge(c,"string"==typeof a?[a]:a):f.call(c,a)),c},inArray:function(a,b,c){var d;if(b){if(g)return g.call(b,a,c);for(d=b.length,c=c?0>c?Math.max(0,d+c):c:0;d>c;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,b){var c=+b.length,d=0,e=a.length;while(c>d)a[e++]=b[d++];if(c!==c)while(void 0!==b[d])a[e++]=b[d++];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;g>f;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,f=0,g=a.length,h=s(a),i=[];if(h)for(;g>f;f++)d=b(a[f],f,c),null!=d&&i.push(d);else for(f in a)d=b(a[f],f,c),null!=d&&i.push(d);return e.apply([],i)},guid:1,proxy:function(a,b){var c,e,f;return"string"==typeof b&&(f=a[b],b=a,a=f),n.isFunction(a)?(c=d.call(arguments,2),e=function(){return a.apply(b||this,c.concat(d.call(arguments)))},e.guid=a.guid=a.guid||n.guid++,e):void 0},now:function(){return+new Date},support:l}),n.each("Boolean Number String Function Array Date RegExp Object Error".split(" "),function(a,b){h["[object "+b+"]"]=b.toLowerCase()});function s(a){var b=a.length,c=n.type(a);return"function"===c||n.isWindow(a)?!1:1===a.nodeType&&b?!0:"array"===c||0===b||"number"==typeof b&&b>0&&b-1 in a}var t=function(a){var b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s="sizzle"+-new Date,t=a.document,u=0,v=0,w=eb(),x=eb(),y=eb(),z=function(a,b){return a===b&&(j=!0),0},A="undefined",B=1<<31,C={}.hasOwnProperty,D=[],E=D.pop,F=D.push,G=D.push,H=D.slice,I=D.indexOf||function(a){for(var b=0,c=this.length;c>b;b++)if(this[b]===a)return b;return-1},J="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",K="[\\x20\\t\\r\\n\\f]",L="(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+",M=L.replace("w","w#"),N="\\["+K+"*("+L+")"+K+"*(?:([*^$|!~]?=)"+K+"*(?:(['\"])((?:\\\\.|[^\\\\])*?)\\3|("+M+")|)|)"+K+"*\\]",O=":("+L+")(?:\\(((['\"])((?:\\\\.|[^\\\\])*?)\\3|((?:\\\\.|[^\\\\()[\\]]|"+N.replace(3,8)+")*)|.*)\\)|)",P=new RegExp("^"+K+"+|((?:^|[^\\\\])(?:\\\\.)*)"+K+"+$","g"),Q=new RegExp("^"+K+"*,"+K+"*"),R=new RegExp("^"+K+"*([>+~]|"+K+")"+K+"*"),S=new RegExp("="+K+"*([^\\]'\"]*?)"+K+"*\\]","g"),T=new RegExp(O),U=new RegExp("^"+M+"$"),V={ID:new RegExp("^#("+L+")"),CLASS:new RegExp("^\\.("+L+")"),TAG:new RegExp("^("+L.replace("w","w*")+")"),ATTR:new RegExp("^"+N),PSEUDO:new RegExp("^"+O),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+K+"*(even|odd|(([+-]|)(\\d*)n|)"+K+"*(?:([+-]|)"+K+"*(\\d+)|))"+K+"*\\)|)","i"),bool:new RegExp("^(?:"+J+")$","i"),needsContext:new RegExp("^"+K+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+K+"*((?:-\\d)?\\d*)"+K+"*\\)|)(?=[^-]|$)","i")},W=/^(?:input|select|textarea|button)$/i,X=/^h\d$/i,Y=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,$=/[+~]/,_=/'|\\/g,ab=new RegExp("\\\\([\\da-f]{1,6}"+K+"?|("+K+")|.)","ig"),bb=function(a,b,c){var d="0x"+b-65536;return d!==d||c?b:0>d?String.fromCharCode(d+65536):String.fromCharCode(d>>10|55296,1023&d|56320)};try{G.apply(D=H.call(t.childNodes),t.childNodes),D[t.childNodes.length].nodeType}catch(cb){G={apply:D.length?function(a,b){F.apply(a,H.call(b))}:function(a,b){var c=a.length,d=0;while(a[c++]=b[d++]);a.length=c-1}}}function db(a,b,d,e){var f,g,h,i,j,m,p,q,u,v;if((b?b.ownerDocument||b:t)!==l&&k(b),b=b||l,d=d||[],!a||"string"!=typeof a)return d;if(1!==(i=b.nodeType)&&9!==i)return[];if(n&&!e){if(f=Z.exec(a))if(h=f[1]){if(9===i){if(g=b.getElementById(h),!g||!g.parentNode)return d;if(g.id===h)return d.push(g),d}else if(b.ownerDocument&&(g=b.ownerDocument.getElementById(h))&&r(b,g)&&g.id===h)return d.push(g),d}else{if(f[2])return G.apply(d,b.getElementsByTagName(a)),d;if((h=f[3])&&c.getElementsByClassName&&b.getElementsByClassName)return G.apply(d,b.getElementsByClassName(h)),d}if(c.qsa&&(!o||!o.test(a))){if(q=p=s,u=b,v=9===i&&a,1===i&&"object"!==b.nodeName.toLowerCase()){m=ob(a),(p=b.getAttribute("id"))?q=p.replace(_,"\\$&"):b.setAttribute("id",q),q="[id='"+q+"'] ",j=m.length;while(j--)m[j]=q+pb(m[j]);u=$.test(a)&&mb(b.parentNode)||b,v=m.join(",")}if(v)try{return G.apply(d,u.querySelectorAll(v)),d}catch(w){}finally{p||b.removeAttribute("id")}}}return xb(a.replace(P,"$1"),b,d,e)}function eb(){var a=[];function b(c,e){return a.push(c+" ")>d.cacheLength&&delete b[a.shift()],b[c+" "]=e}return b}function fb(a){return a[s]=!0,a}function gb(a){var b=l.createElement("div");try{return!!a(b)}catch(c){return!1}finally{b.parentNode&&b.parentNode.removeChild(b),b=null}}function hb(a,b){var c=a.split("|"),e=a.length;while(e--)d.attrHandle[c[e]]=b}function ib(a,b){var c=b&&a,d=c&&1===a.nodeType&&1===b.nodeType&&(~b.sourceIndex||B)-(~a.sourceIndex||B);if(d)return d;if(c)while(c=c.nextSibling)if(c===b)return-1;return a?1:-1}function jb(a){return function(b){var c=b.nodeName.toLowerCase();return"input"===c&&b.type===a}}function kb(a){return function(b){var c=b.nodeName.toLowerCase();return("input"===c||"button"===c)&&b.type===a}}function lb(a){return fb(function(b){return b=+b,fb(function(c,d){var e,f=a([],c.length,b),g=f.length;while(g--)c[e=f[g]]&&(c[e]=!(d[e]=c[e]))})})}function mb(a){return a&&typeof a.getElementsByTagName!==A&&a}c=db.support={},f=db.isXML=function(a){var b=a&&(a.ownerDocument||a).documentElement;return b?"HTML"!==b.nodeName:!1},k=db.setDocument=function(a){var b,e=a?a.ownerDocument||a:t,g=e.defaultView;return e!==l&&9===e.nodeType&&e.documentElement?(l=e,m=e.documentElement,n=!f(e),g&&g!==g.top&&(g.addEventListener?g.addEventListener("unload",function(){k()},!1):g.attachEvent&&g.attachEvent("onunload",function(){k()})),c.attributes=gb(function(a){return a.className="i",!a.getAttribute("className")}),c.getElementsByTagName=gb(function(a){return a.appendChild(e.createComment("")),!a.getElementsByTagName("*").length}),c.getElementsByClassName=Y.test(e.getElementsByClassName)&&gb(function(a){return a.innerHTML="
",a.firstChild.className="i",2===a.getElementsByClassName("i").length}),c.getById=gb(function(a){return m.appendChild(a).id=s,!e.getElementsByName||!e.getElementsByName(s).length}),c.getById?(d.find.ID=function(a,b){if(typeof b.getElementById!==A&&n){var c=b.getElementById(a);return c&&c.parentNode?[c]:[]}},d.filter.ID=function(a){var b=a.replace(ab,bb);return function(a){return a.getAttribute("id")===b}}):(delete d.find.ID,d.filter.ID=function(a){var b=a.replace(ab,bb);return function(a){var c=typeof a.getAttributeNode!==A&&a.getAttributeNode("id");return c&&c.value===b}}),d.find.TAG=c.getElementsByTagName?function(a,b){return typeof b.getElementsByTagName!==A?b.getElementsByTagName(a):void 0}:function(a,b){var c,d=[],e=0,f=b.getElementsByTagName(a);if("*"===a){while(c=f[e++])1===c.nodeType&&d.push(c);return d}return f},d.find.CLASS=c.getElementsByClassName&&function(a,b){return typeof b.getElementsByClassName!==A&&n?b.getElementsByClassName(a):void 0},p=[],o=[],(c.qsa=Y.test(e.querySelectorAll))&&(gb(function(a){a.innerHTML="",a.querySelectorAll("[t^='']").length&&o.push("[*^$]="+K+"*(?:''|\"\")"),a.querySelectorAll("[selected]").length||o.push("\\["+K+"*(?:value|"+J+")"),a.querySelectorAll(":checked").length||o.push(":checked")}),gb(function(a){var b=e.createElement("input");b.setAttribute("type","hidden"),a.appendChild(b).setAttribute("name","D"),a.querySelectorAll("[name=d]").length&&o.push("name"+K+"*[*^$|!~]?="),a.querySelectorAll(":enabled").length||o.push(":enabled",":disabled"),a.querySelectorAll("*,:x"),o.push(",.*:")})),(c.matchesSelector=Y.test(q=m.webkitMatchesSelector||m.mozMatchesSelector||m.oMatchesSelector||m.msMatchesSelector))&&gb(function(a){c.disconnectedMatch=q.call(a,"div"),q.call(a,"[s!='']:x"),p.push("!=",O)}),o=o.length&&new RegExp(o.join("|")),p=p.length&&new RegExp(p.join("|")),b=Y.test(m.compareDocumentPosition),r=b||Y.test(m.contains)?function(a,b){var c=9===a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a===d||!(!d||1!==d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)while(b=b.parentNode)if(b===a)return!0;return!1},z=b?function(a,b){if(a===b)return j=!0,0;var d=!a.compareDocumentPosition-!b.compareDocumentPosition;return d?d:(d=(a.ownerDocument||a)===(b.ownerDocument||b)?a.compareDocumentPosition(b):1,1&d||!c.sortDetached&&b.compareDocumentPosition(a)===d?a===e||a.ownerDocument===t&&r(t,a)?-1:b===e||b.ownerDocument===t&&r(t,b)?1:i?I.call(i,a)-I.call(i,b):0:4&d?-1:1)}:function(a,b){if(a===b)return j=!0,0;var c,d=0,f=a.parentNode,g=b.parentNode,h=[a],k=[b];if(!f||!g)return a===e?-1:b===e?1:f?-1:g?1:i?I.call(i,a)-I.call(i,b):0;if(f===g)return ib(a,b);c=a;while(c=c.parentNode)h.unshift(c);c=b;while(c=c.parentNode)k.unshift(c);while(h[d]===k[d])d++;return d?ib(h[d],k[d]):h[d]===t?-1:k[d]===t?1:0},e):l},db.matches=function(a,b){return db(a,null,null,b)},db.matchesSelector=function(a,b){if((a.ownerDocument||a)!==l&&k(a),b=b.replace(S,"='$1']"),!(!c.matchesSelector||!n||p&&p.test(b)||o&&o.test(b)))try{var d=q.call(a,b);if(d||c.disconnectedMatch||a.document&&11!==a.document.nodeType)return d}catch(e){}return db(b,l,null,[a]).length>0},db.contains=function(a,b){return(a.ownerDocument||a)!==l&&k(a),r(a,b)},db.attr=function(a,b){(a.ownerDocument||a)!==l&&k(a);var e=d.attrHandle[b.toLowerCase()],f=e&&C.call(d.attrHandle,b.toLowerCase())?e(a,b,!n):void 0;return void 0!==f?f:c.attributes||!n?a.getAttribute(b):(f=a.getAttributeNode(b))&&f.specified?f.value:null},db.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)},db.uniqueSort=function(a){var b,d=[],e=0,f=0;if(j=!c.detectDuplicates,i=!c.sortStable&&a.slice(0),a.sort(z),j){while(b=a[f++])b===a[f]&&(e=d.push(f));while(e--)a.splice(d[e],1)}return i=null,a},e=db.getText=function(a){var b,c="",d=0,f=a.nodeType;if(f){if(1===f||9===f||11===f){if("string"==typeof a.textContent)return a.textContent;for(a=a.firstChild;a;a=a.nextSibling)c+=e(a)}else if(3===f||4===f)return a.nodeValue}else while(b=a[d++])c+=e(b);return c},d=db.selectors={cacheLength:50,createPseudo:fb,match:V,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(a){return a[1]=a[1].replace(ab,bb),a[3]=(a[4]||a[5]||"").replace(ab,bb),"~="===a[2]&&(a[3]=" "+a[3]+" "),a.slice(0,4)},CHILD:function(a){return a[1]=a[1].toLowerCase(),"nth"===a[1].slice(0,3)?(a[3]||db.error(a[0]),a[4]=+(a[4]?a[5]+(a[6]||1):2*("even"===a[3]||"odd"===a[3])),a[5]=+(a[7]+a[8]||"odd"===a[3])):a[3]&&db.error(a[0]),a},PSEUDO:function(a){var b,c=!a[5]&&a[2];return V.CHILD.test(a[0])?null:(a[3]&&void 0!==a[4]?a[2]=a[4]:c&&T.test(c)&&(b=ob(c,!0))&&(b=c.indexOf(")",c.length-b)-c.length)&&(a[0]=a[0].slice(0,b),a[2]=c.slice(0,b)),a.slice(0,3))}},filter:{TAG:function(a){var b=a.replace(ab,bb).toLowerCase();return"*"===a?function(){return!0}:function(a){return a.nodeName&&a.nodeName.toLowerCase()===b}},CLASS:function(a){var b=w[a+" "];return b||(b=new RegExp("(^|"+K+")"+a+"("+K+"|$)"))&&w(a,function(a){return b.test("string"==typeof a.className&&a.className||typeof a.getAttribute!==A&&a.getAttribute("class")||"")})},ATTR:function(a,b,c){return function(d){var e=db.attr(d,a);return null==e?"!="===b:b?(e+="","="===b?e===c:"!="===b?e!==c:"^="===b?c&&0===e.indexOf(c):"*="===b?c&&e.indexOf(c)>-1:"$="===b?c&&e.slice(-c.length)===c:"~="===b?(" "+e+" ").indexOf(c)>-1:"|="===b?e===c||e.slice(0,c.length+1)===c+"-":!1):!0}},CHILD:function(a,b,c,d,e){var f="nth"!==a.slice(0,3),g="last"!==a.slice(-4),h="of-type"===b;return 1===d&&0===e?function(a){return!!a.parentNode}:function(b,c,i){var j,k,l,m,n,o,p=f!==g?"nextSibling":"previousSibling",q=b.parentNode,r=h&&b.nodeName.toLowerCase(),t=!i&&!h;if(q){if(f){while(p){l=b;while(l=l[p])if(h?l.nodeName.toLowerCase()===r:1===l.nodeType)return!1;o=p="only"===a&&!o&&"nextSibling"}return!0}if(o=[g?q.firstChild:q.lastChild],g&&t){k=q[s]||(q[s]={}),j=k[a]||[],n=j[0]===u&&j[1],m=j[0]===u&&j[2],l=n&&q.childNodes[n];while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if(1===l.nodeType&&++m&&l===b){k[a]=[u,n,m];break}}else if(t&&(j=(b[s]||(b[s]={}))[a])&&j[0]===u)m=j[1];else while(l=++n&&l&&l[p]||(m=n=0)||o.pop())if((h?l.nodeName.toLowerCase()===r:1===l.nodeType)&&++m&&(t&&((l[s]||(l[s]={}))[a]=[u,m]),l===b))break;return m-=e,m===d||m%d===0&&m/d>=0}}},PSEUDO:function(a,b){var c,e=d.pseudos[a]||d.setFilters[a.toLowerCase()]||db.error("unsupported pseudo: "+a);return e[s]?e(b):e.length>1?(c=[a,a,"",b],d.setFilters.hasOwnProperty(a.toLowerCase())?fb(function(a,c){var d,f=e(a,b),g=f.length;while(g--)d=I.call(a,f[g]),a[d]=!(c[d]=f[g])}):function(a){return e(a,0,c)}):e}},pseudos:{not:fb(function(a){var b=[],c=[],d=g(a.replace(P,"$1"));return d[s]?fb(function(a,b,c,e){var f,g=d(a,null,e,[]),h=a.length;while(h--)(f=g[h])&&(a[h]=!(b[h]=f))}):function(a,e,f){return b[0]=a,d(b,null,f,c),!c.pop()}}),has:fb(function(a){return function(b){return db(a,b).length>0}}),contains:fb(function(a){return function(b){return(b.textContent||b.innerText||e(b)).indexOf(a)>-1}}),lang:fb(function(a){return U.test(a||"")||db.error("unsupported lang: "+a),a=a.replace(ab,bb).toLowerCase(),function(b){var c;do if(c=n?b.lang:b.getAttribute("xml:lang")||b.getAttribute("lang"))return c=c.toLowerCase(),c===a||0===c.indexOf(a+"-");while((b=b.parentNode)&&1===b.nodeType);return!1}}),target:function(b){var c=a.location&&a.location.hash;return c&&c.slice(1)===b.id},root:function(a){return a===m},focus:function(a){return a===l.activeElement&&(!l.hasFocus||l.hasFocus())&&!!(a.type||a.href||~a.tabIndex)},enabled:function(a){return a.disabled===!1},disabled:function(a){return a.disabled===!0},checked:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&!!a.checked||"option"===b&&!!a.selected},selected:function(a){return a.parentNode&&a.parentNode.selectedIndex,a.selected===!0},empty:function(a){for(a=a.firstChild;a;a=a.nextSibling)if(a.nodeType<6)return!1;return!0},parent:function(a){return!d.pseudos.empty(a)},header:function(a){return X.test(a.nodeName)},input:function(a){return W.test(a.nodeName)},button:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&"button"===a.type||"button"===b},text:function(a){var b;return"input"===a.nodeName.toLowerCase()&&"text"===a.type&&(null==(b=a.getAttribute("type"))||"text"===b.toLowerCase())},first:lb(function(){return[0]}),last:lb(function(a,b){return[b-1]}),eq:lb(function(a,b,c){return[0>c?c+b:c]}),even:lb(function(a,b){for(var c=0;b>c;c+=2)a.push(c);return a}),odd:lb(function(a,b){for(var c=1;b>c;c+=2)a.push(c);return a}),lt:lb(function(a,b,c){for(var d=0>c?c+b:c;--d>=0;)a.push(d);return a}),gt:lb(function(a,b,c){for(var d=0>c?c+b:c;++db;b++)d+=a[b].value;return d}function qb(a,b,c){var d=b.dir,e=c&&"parentNode"===d,f=v++;return b.first?function(b,c,f){while(b=b[d])if(1===b.nodeType||e)return a(b,c,f)}:function(b,c,g){var h,i,j=[u,f];if(g){while(b=b[d])if((1===b.nodeType||e)&&a(b,c,g))return!0}else while(b=b[d])if(1===b.nodeType||e){if(i=b[s]||(b[s]={}),(h=i[d])&&h[0]===u&&h[1]===f)return j[2]=h[2];if(i[d]=j,j[2]=a(b,c,g))return!0}}}function rb(a){return a.length>1?function(b,c,d){var e=a.length;while(e--)if(!a[e](b,c,d))return!1;return!0}:a[0]}function sb(a,b,c,d,e){for(var f,g=[],h=0,i=a.length,j=null!=b;i>h;h++)(f=a[h])&&(!c||c(f,d,e))&&(g.push(f),j&&b.push(h));return g}function tb(a,b,c,d,e,f){return d&&!d[s]&&(d=tb(d)),e&&!e[s]&&(e=tb(e,f)),fb(function(f,g,h,i){var j,k,l,m=[],n=[],o=g.length,p=f||wb(b||"*",h.nodeType?[h]:h,[]),q=!a||!f&&b?p:sb(p,m,a,h,i),r=c?e||(f?a:o||d)?[]:g:q;if(c&&c(q,r,h,i),d){j=sb(r,n),d(j,[],h,i),k=j.length;while(k--)(l=j[k])&&(r[n[k]]=!(q[n[k]]=l))}if(f){if(e||a){if(e){j=[],k=r.length;while(k--)(l=r[k])&&j.push(q[k]=l);e(null,r=[],j,i)}k=r.length;while(k--)(l=r[k])&&(j=e?I.call(f,l):m[k])>-1&&(f[j]=!(g[j]=l))}}else r=sb(r===g?r.splice(o,r.length):r),e?e(null,g,r,i):G.apply(g,r)})}function ub(a){for(var b,c,e,f=a.length,g=d.relative[a[0].type],i=g||d.relative[" "],j=g?1:0,k=qb(function(a){return a===b},i,!0),l=qb(function(a){return I.call(b,a)>-1},i,!0),m=[function(a,c,d){return!g&&(d||c!==h)||((b=c).nodeType?k(a,c,d):l(a,c,d))}];f>j;j++)if(c=d.relative[a[j].type])m=[qb(rb(m),c)];else{if(c=d.filter[a[j].type].apply(null,a[j].matches),c[s]){for(e=++j;f>e;e++)if(d.relative[a[e].type])break;return tb(j>1&&rb(m),j>1&&pb(a.slice(0,j-1).concat({value:" "===a[j-2].type?"*":""})).replace(P,"$1"),c,e>j&&ub(a.slice(j,e)),f>e&&ub(a=a.slice(e)),f>e&&pb(a))}m.push(c)}return rb(m)}function vb(a,b){var c=b.length>0,e=a.length>0,f=function(f,g,i,j,k){var m,n,o,p=0,q="0",r=f&&[],s=[],t=h,v=f||e&&d.find.TAG("*",k),w=u+=null==t?1:Math.random()||.1,x=v.length;for(k&&(h=g!==l&&g);q!==x&&null!=(m=v[q]);q++){if(e&&m){n=0;while(o=a[n++])if(o(m,g,i)){j.push(m);break}k&&(u=w)}c&&((m=!o&&m)&&p--,f&&r.push(m))}if(p+=q,c&&q!==p){n=0;while(o=b[n++])o(r,s,g,i);if(f){if(p>0)while(q--)r[q]||s[q]||(s[q]=E.call(j));s=sb(s)}G.apply(j,s),k&&!f&&s.length>0&&p+b.length>1&&db.uniqueSort(j)}return k&&(u=w,h=t),r};return c?fb(f):f}g=db.compile=function(a,b){var c,d=[],e=[],f=y[a+" "];if(!f){b||(b=ob(a)),c=b.length;while(c--)f=ub(b[c]),f[s]?d.push(f):e.push(f);f=y(a,vb(e,d))}return f};function wb(a,b,c){for(var d=0,e=b.length;e>d;d++)db(a,b[d],c);return c}function xb(a,b,e,f){var h,i,j,k,l,m=ob(a);if(!f&&1===m.length){if(i=m[0]=m[0].slice(0),i.length>2&&"ID"===(j=i[0]).type&&c.getById&&9===b.nodeType&&n&&d.relative[i[1].type]){if(b=(d.find.ID(j.matches[0].replace(ab,bb),b)||[])[0],!b)return e;a=a.slice(i.shift().value.length)}h=V.needsContext.test(a)?0:i.length;while(h--){if(j=i[h],d.relative[k=j.type])break;if((l=d.find[k])&&(f=l(j.matches[0].replace(ab,bb),$.test(i[0].type)&&mb(b.parentNode)||b))){if(i.splice(h,1),a=f.length&&pb(i),!a)return G.apply(e,f),e;break}}}return g(a,m)(f,b,!n,e,$.test(a)&&mb(b.parentNode)||b),e}return c.sortStable=s.split("").sort(z).join("")===s,c.detectDuplicates=!!j,k(),c.sortDetached=gb(function(a){return 1&a.compareDocumentPosition(l.createElement("div"))}),gb(function(a){return a.innerHTML="","#"===a.firstChild.getAttribute("href")})||hb("type|href|height|width",function(a,b,c){return c?void 0:a.getAttribute(b,"type"===b.toLowerCase()?1:2)}),c.attributes&&gb(function(a){return a.innerHTML="",a.firstChild.setAttribute("value",""),""===a.firstChild.getAttribute("value")})||hb("value",function(a,b,c){return c||"input"!==a.nodeName.toLowerCase()?void 0:a.defaultValue}),gb(function(a){return null==a.getAttribute("disabled")})||hb(J,function(a,b,c){var d;return c?void 0:a[b]===!0?b.toLowerCase():(d=a.getAttributeNode(b))&&d.specified?d.value:null}),db}(a);n.find=t,n.expr=t.selectors,n.expr[":"]=n.expr.pseudos,n.unique=t.uniqueSort,n.text=t.getText,n.isXMLDoc=t.isXML,n.contains=t.contains;var u=n.expr.match.needsContext,v=/^<(\w+)\s*\/?>(?:<\/\1>|)$/,w=/^.[^:#\[\.,]*$/;function x(a,b,c){if(n.isFunction(b))return n.grep(a,function(a,d){return!!b.call(a,d,a)!==c});if(b.nodeType)return n.grep(a,function(a){return a===b!==c});if("string"==typeof b){if(w.test(b))return n.filter(b,a,c);b=n.filter(b,a)}return n.grep(a,function(a){return n.inArray(a,b)>=0!==c})}n.filter=function(a,b,c){var d=b[0];return c&&(a=":not("+a+")"),1===b.length&&1===d.nodeType?n.find.matchesSelector(d,a)?[d]:[]:n.find.matches(a,n.grep(b,function(a){return 1===a.nodeType}))},n.fn.extend({find:function(a){var b,c=[],d=this,e=d.length;if("string"!=typeof a)return this.pushStack(n(a).filter(function(){for(b=0;e>b;b++)if(n.contains(d[b],this))return!0}));for(b=0;e>b;b++)n.find(a,d[b],c);return c=this.pushStack(e>1?n.unique(c):c),c.selector=this.selector?this.selector+" "+a:a,c},filter:function(a){return this.pushStack(x(this,a||[],!1))},not:function(a){return this.pushStack(x(this,a||[],!0))},is:function(a){return!!x(this,"string"==typeof a&&u.test(a)?n(a):a||[],!1).length}});var y,z=a.document,A=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,B=n.fn.init=function(a,b){var c,d;if(!a)return this;if("string"==typeof a){if(c="<"===a.charAt(0)&&">"===a.charAt(a.length-1)&&a.length>=3?[null,a,null]:A.exec(a),!c||!c[1]&&b)return!b||b.jquery?(b||y).find(a):this.constructor(b).find(a);if(c[1]){if(b=b instanceof n?b[0]:b,n.merge(this,n.parseHTML(c[1],b&&b.nodeType?b.ownerDocument||b:z,!0)),v.test(c[1])&&n.isPlainObject(b))for(c in b)n.isFunction(this[c])?this[c](b[c]):this.attr(c,b[c]);return this}if(d=z.getElementById(c[2]),d&&d.parentNode){if(d.id!==c[2])return y.find(a);this.length=1,this[0]=d}return this.context=z,this.selector=a,this}return a.nodeType?(this.context=this[0]=a,this.length=1,this):n.isFunction(a)?"undefined"!=typeof y.ready?y.ready(a):a(n):(void 0!==a.selector&&(this.selector=a.selector,this.context=a.context),n.makeArray(a,this))};B.prototype=n.fn,y=n(z);var C=/^(?:parents|prev(?:Until|All))/,D={children:!0,contents:!0,next:!0,prev:!0};n.extend({dir:function(a,b,c){var d=[],e=a[b];while(e&&9!==e.nodeType&&(void 0===c||1!==e.nodeType||!n(e).is(c)))1===e.nodeType&&d.push(e),e=e[b];return d},sibling:function(a,b){for(var c=[];a;a=a.nextSibling)1===a.nodeType&&a!==b&&c.push(a);return c}}),n.fn.extend({has:function(a){var b,c=n(a,this),d=c.length;return this.filter(function(){for(b=0;d>b;b++)if(n.contains(this,c[b]))return!0})},closest:function(a,b){for(var c,d=0,e=this.length,f=[],g=u.test(a)||"string"!=typeof a?n(a,b||this.context):0;e>d;d++)for(c=this[d];c&&c!==b;c=c.parentNode)if(c.nodeType<11&&(g?g.index(c)>-1:1===c.nodeType&&n.find.matchesSelector(c,a))){f.push(c);break}return this.pushStack(f.length>1?n.unique(f):f)},index:function(a){return a?"string"==typeof a?n.inArray(this[0],n(a)):n.inArray(a.jquery?a[0]:a,this):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(a,b){return this.pushStack(n.unique(n.merge(this.get(),n(a,b))))},addBack:function(a){return this.add(null==a?this.prevObject:this.prevObject.filter(a))}});function E(a,b){do a=a[b];while(a&&1!==a.nodeType);return a}n.each({parent:function(a){var b=a.parentNode;return b&&11!==b.nodeType?b:null},parents:function(a){return n.dir(a,"parentNode")},parentsUntil:function(a,b,c){return n.dir(a,"parentNode",c)},next:function(a){return E(a,"nextSibling")},prev:function(a){return E(a,"previousSibling")},nextAll:function(a){return n.dir(a,"nextSibling")},prevAll:function(a){return n.dir(a,"previousSibling")},nextUntil:function(a,b,c){return n.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return n.dir(a,"previousSibling",c)},siblings:function(a){return n.sibling((a.parentNode||{}).firstChild,a)},children:function(a){return n.sibling(a.firstChild)},contents:function(a){return n.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:n.merge([],a.childNodes)}},function(a,b){n.fn[a]=function(c,d){var e=n.map(this,b,c);return"Until"!==a.slice(-5)&&(d=c),d&&"string"==typeof d&&(e=n.filter(d,e)),this.length>1&&(D[a]||(e=n.unique(e)),C.test(a)&&(e=e.reverse())),this.pushStack(e)}});var F=/\S+/g,G={};function H(a){var b=G[a]={};return n.each(a.match(F)||[],function(a,c){b[c]=!0}),b}n.Callbacks=function(a){a="string"==typeof a?G[a]||H(a):n.extend({},a);var b,c,d,e,f,g,h=[],i=!a.once&&[],j=function(l){for(c=a.memory&&l,d=!0,f=g||0,g=0,e=h.length,b=!0;h&&e>f;f++)if(h[f].apply(l[0],l[1])===!1&&a.stopOnFalse){c=!1;break}b=!1,h&&(i?i.length&&j(i.shift()):c?h=[]:k.disable())},k={add:function(){if(h){var d=h.length;!function f(b){n.each(b,function(b,c){var d=n.type(c);"function"===d?a.unique&&k.has(c)||h.push(c):c&&c.length&&"string"!==d&&f(c)})}(arguments),b?e=h.length:c&&(g=d,j(c))}return this},remove:function(){return h&&n.each(arguments,function(a,c){var d;while((d=n.inArray(c,h,d))>-1)h.splice(d,1),b&&(e>=d&&e--,f>=d&&f--)}),this},has:function(a){return a?n.inArray(a,h)>-1:!(!h||!h.length)},empty:function(){return h=[],e=0,this},disable:function(){return h=i=c=void 0,this},disabled:function(){return!h},lock:function(){return i=void 0,c||k.disable(),this},locked:function(){return!i},fireWith:function(a,c){return!h||d&&!i||(c=c||[],c=[a,c.slice?c.slice():c],b?i.push(c):j(c)),this},fire:function(){return k.fireWith(this,arguments),this},fired:function(){return!!d}};return k},n.extend({Deferred:function(a){var b=[["resolve","done",n.Callbacks("once memory"),"resolved"],["reject","fail",n.Callbacks("once memory"),"rejected"],["notify","progress",n.Callbacks("memory")]],c="pending",d={state:function(){return c},always:function(){return e.done(arguments).fail(arguments),this},then:function(){var a=arguments;return n.Deferred(function(c){n.each(b,function(b,f){var g=n.isFunction(a[b])&&a[b];e[f[1]](function(){var a=g&&g.apply(this,arguments);a&&n.isFunction(a.promise)?a.promise().done(c.resolve).fail(c.reject).progress(c.notify):c[f[0]+"With"](this===d?c.promise():this,g?[a]:arguments)})}),a=null}).promise()},promise:function(a){return null!=a?n.extend(a,d):d}},e={};return d.pipe=d.then,n.each(b,function(a,f){var g=f[2],h=f[3];d[f[1]]=g.add,h&&g.add(function(){c=h},b[1^a][2].disable,b[2][2].lock),e[f[0]]=function(){return e[f[0]+"With"](this===e?d:this,arguments),this},e[f[0]+"With"]=g.fireWith}),d.promise(e),a&&a.call(e,e),e},when:function(a){var b=0,c=d.call(arguments),e=c.length,f=1!==e||a&&n.isFunction(a.promise)?e:0,g=1===f?a:n.Deferred(),h=function(a,b,c){return function(e){b[a]=this,c[a]=arguments.length>1?d.call(arguments):e,c===i?g.notifyWith(b,c):--f||g.resolveWith(b,c)}},i,j,k;if(e>1)for(i=new Array(e),j=new Array(e),k=new Array(e);e>b;b++)c[b]&&n.isFunction(c[b].promise)?c[b].promise().done(h(b,k,c)).fail(g.reject).progress(h(b,j,i)):--f;return f||g.resolveWith(k,c),g.promise()}});var I;n.fn.ready=function(a){return n.ready.promise().done(a),this},n.extend({isReady:!1,readyWait:1,holdReady:function(a){a?n.readyWait++:n.ready(!0)},ready:function(a){if(a===!0?!--n.readyWait:!n.isReady){if(!z.body)return setTimeout(n.ready);n.isReady=!0,a!==!0&&--n.readyWait>0||(I.resolveWith(z,[n]),n.fn.trigger&&n(z).trigger("ready").off("ready"))}}});function J(){z.addEventListener?(z.removeEventListener("DOMContentLoaded",K,!1),a.removeEventListener("load",K,!1)):(z.detachEvent("onreadystatechange",K),a.detachEvent("onload",K))}function K(){(z.addEventListener||"load"===event.type||"complete"===z.readyState)&&(J(),n.ready())}n.ready.promise=function(b){if(!I)if(I=n.Deferred(),"complete"===z.readyState)setTimeout(n.ready);else if(z.addEventListener)z.addEventListener("DOMContentLoaded",K,!1),a.addEventListener("load",K,!1);else{z.attachEvent("onreadystatechange",K),a.attachEvent("onload",K);var c=!1;try{c=null==a.frameElement&&z.documentElement}catch(d){}c&&c.doScroll&&!function e(){if(!n.isReady){try{c.doScroll("left")}catch(a){return setTimeout(e,50)}J(),n.ready()}}()}return I.promise(b)};var L="undefined",M;for(M in n(l))break;l.ownLast="0"!==M,l.inlineBlockNeedsLayout=!1,n(function(){var a,b,c=z.getElementsByTagName("body")[0];c&&(a=z.createElement("div"),a.style.cssText="border:0;width:0;height:0;position:absolute;top:0;left:-9999px;margin-top:1px",b=z.createElement("div"),c.appendChild(a).appendChild(b),typeof b.style.zoom!==L&&(b.style.cssText="border:0;margin:0;width:1px;padding:1px;display:inline;zoom:1",(l.inlineBlockNeedsLayout=3===b.offsetWidth)&&(c.style.zoom=1)),c.removeChild(a),a=b=null)}),function(){var a=z.createElement("div");if(null==l.deleteExpando){l.deleteExpando=!0;try{delete a.test}catch(b){l.deleteExpando=!1}}a=null}(),n.acceptData=function(a){var b=n.noData[(a.nodeName+" ").toLowerCase()],c=+a.nodeType||1;return 1!==c&&9!==c?!1:!b||b!==!0&&a.getAttribute("classid")===b};var N=/^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,O=/([A-Z])/g;function P(a,b,c){if(void 0===c&&1===a.nodeType){var d="data-"+b.replace(O,"-$1").toLowerCase();if(c=a.getAttribute(d),"string"==typeof c){try{c="true"===c?!0:"false"===c?!1:"null"===c?null:+c+""===c?+c:N.test(c)?n.parseJSON(c):c}catch(e){}n.data(a,b,c)}else c=void 0}return c}function Q(a){var b;for(b in a)if(("data"!==b||!n.isEmptyObject(a[b]))&&"toJSON"!==b)return!1;return!0}function R(a,b,d,e){if(n.acceptData(a)){var f,g,h=n.expando,i=a.nodeType,j=i?n.cache:a,k=i?a[h]:a[h]&&h;if(k&&j[k]&&(e||j[k].data)||void 0!==d||"string"!=typeof b)return k||(k=i?a[h]=c.pop()||n.guid++:h),j[k]||(j[k]=i?{}:{toJSON:n.noop}),("object"==typeof b||"function"==typeof b)&&(e?j[k]=n.extend(j[k],b):j[k].data=n.extend(j[k].data,b)),g=j[k],e||(g.data||(g.data={}),g=g.data),void 0!==d&&(g[n.camelCase(b)]=d),"string"==typeof b?(f=g[b],null==f&&(f=g[n.camelCase(b)])):f=g,f +}}function S(a,b,c){if(n.acceptData(a)){var d,e,f=a.nodeType,g=f?n.cache:a,h=f?a[n.expando]:n.expando;if(g[h]){if(b&&(d=c?g[h]:g[h].data)){n.isArray(b)?b=b.concat(n.map(b,n.camelCase)):b in d?b=[b]:(b=n.camelCase(b),b=b in d?[b]:b.split(" ")),e=b.length;while(e--)delete d[b[e]];if(c?!Q(d):!n.isEmptyObject(d))return}(c||(delete g[h].data,Q(g[h])))&&(f?n.cleanData([a],!0):l.deleteExpando||g!=g.window?delete g[h]:g[h]=null)}}}n.extend({cache:{},noData:{"applet ":!0,"embed ":!0,"object ":"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"},hasData:function(a){return a=a.nodeType?n.cache[a[n.expando]]:a[n.expando],!!a&&!Q(a)},data:function(a,b,c){return R(a,b,c)},removeData:function(a,b){return S(a,b)},_data:function(a,b,c){return R(a,b,c,!0)},_removeData:function(a,b){return S(a,b,!0)}}),n.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=n.data(f),1===f.nodeType&&!n._data(f,"parsedAttrs"))){c=g.length;while(c--)d=g[c].name,0===d.indexOf("data-")&&(d=n.camelCase(d.slice(5)),P(f,d,e[d]));n._data(f,"parsedAttrs",!0)}return e}return"object"==typeof a?this.each(function(){n.data(this,a)}):arguments.length>1?this.each(function(){n.data(this,a,b)}):f?P(f,a,n.data(f,a)):void 0},removeData:function(a){return this.each(function(){n.removeData(this,a)})}}),n.extend({queue:function(a,b,c){var d;return a?(b=(b||"fx")+"queue",d=n._data(a,b),c&&(!d||n.isArray(c)?d=n._data(a,b,n.makeArray(c)):d.push(c)),d||[]):void 0},dequeue:function(a,b){b=b||"fx";var c=n.queue(a,b),d=c.length,e=c.shift(),f=n._queueHooks(a,b),g=function(){n.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return n._data(a,c)||n._data(a,c,{empty:n.Callbacks("once memory").add(function(){n._removeData(a,b+"queue"),n._removeData(a,c)})})}}),n.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.lengthh;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},X=/^(?:checkbox|radio)$/i;!function(){var a=z.createDocumentFragment(),b=z.createElement("div"),c=z.createElement("input");if(b.setAttribute("className","t"),b.innerHTML="
a",l.leadingWhitespace=3===b.firstChild.nodeType,l.tbody=!b.getElementsByTagName("tbody").length,l.htmlSerialize=!!b.getElementsByTagName("link").length,l.html5Clone="<:nav>"!==z.createElement("nav").cloneNode(!0).outerHTML,c.type="checkbox",c.checked=!0,a.appendChild(c),l.appendChecked=c.checked,b.innerHTML="",l.noCloneChecked=!!b.cloneNode(!0).lastChild.defaultValue,a.appendChild(b),b.innerHTML="",l.checkClone=b.cloneNode(!0).cloneNode(!0).lastChild.checked,l.noCloneEvent=!0,b.attachEvent&&(b.attachEvent("onclick",function(){l.noCloneEvent=!1}),b.cloneNode(!0).click()),null==l.deleteExpando){l.deleteExpando=!0;try{delete b.test}catch(d){l.deleteExpando=!1}}a=b=c=null}(),function(){var b,c,d=z.createElement("div");for(b in{submit:!0,change:!0,focusin:!0})c="on"+b,(l[b+"Bubbles"]=c in a)||(d.setAttribute(c,"t"),l[b+"Bubbles"]=d.attributes[c].expando===!1);d=null}();var Y=/^(?:input|select|textarea)$/i,Z=/^key/,$=/^(?:mouse|contextmenu)|click/,_=/^(?:focusinfocus|focusoutblur)$/,ab=/^([^.]*)(?:\.(.+)|)$/;function bb(){return!0}function cb(){return!1}function db(){try{return z.activeElement}catch(a){}}n.event={global:{},add:function(a,b,c,d,e){var f,g,h,i,j,k,l,m,o,p,q,r=n._data(a);if(r){c.handler&&(i=c,c=i.handler,e=i.selector),c.guid||(c.guid=n.guid++),(g=r.events)||(g=r.events={}),(k=r.handle)||(k=r.handle=function(a){return typeof n===L||a&&n.event.triggered===a.type?void 0:n.event.dispatch.apply(k.elem,arguments)},k.elem=a),b=(b||"").match(F)||[""],h=b.length;while(h--)f=ab.exec(b[h])||[],o=q=f[1],p=(f[2]||"").split(".").sort(),o&&(j=n.event.special[o]||{},o=(e?j.delegateType:j.bindType)||o,j=n.event.special[o]||{},l=n.extend({type:o,origType:q,data:d,handler:c,guid:c.guid,selector:e,needsContext:e&&n.expr.match.needsContext.test(e),namespace:p.join(".")},i),(m=g[o])||(m=g[o]=[],m.delegateCount=0,j.setup&&j.setup.call(a,d,p,k)!==!1||(a.addEventListener?a.addEventListener(o,k,!1):a.attachEvent&&a.attachEvent("on"+o,k))),j.add&&(j.add.call(a,l),l.handler.guid||(l.handler.guid=c.guid)),e?m.splice(m.delegateCount++,0,l):m.push(l),n.event.global[o]=!0);a=null}},remove:function(a,b,c,d,e){var f,g,h,i,j,k,l,m,o,p,q,r=n.hasData(a)&&n._data(a);if(r&&(k=r.events)){b=(b||"").match(F)||[""],j=b.length;while(j--)if(h=ab.exec(b[j])||[],o=q=h[1],p=(h[2]||"").split(".").sort(),o){l=n.event.special[o]||{},o=(d?l.delegateType:l.bindType)||o,m=k[o]||[],h=h[2]&&new RegExp("(^|\\.)"+p.join("\\.(?:.*\\.|)")+"(\\.|$)"),i=f=m.length;while(f--)g=m[f],!e&&q!==g.origType||c&&c.guid!==g.guid||h&&!h.test(g.namespace)||d&&d!==g.selector&&("**"!==d||!g.selector)||(m.splice(f,1),g.selector&&m.delegateCount--,l.remove&&l.remove.call(a,g));i&&!m.length&&(l.teardown&&l.teardown.call(a,p,r.handle)!==!1||n.removeEvent(a,o,r.handle),delete k[o])}else for(o in k)n.event.remove(a,o+b[j],c,d,!0);n.isEmptyObject(k)&&(delete r.handle,n._removeData(a,"events"))}},trigger:function(b,c,d,e){var f,g,h,i,k,l,m,o=[d||z],p=j.call(b,"type")?b.type:b,q=j.call(b,"namespace")?b.namespace.split("."):[];if(h=l=d=d||z,3!==d.nodeType&&8!==d.nodeType&&!_.test(p+n.event.triggered)&&(p.indexOf(".")>=0&&(q=p.split("."),p=q.shift(),q.sort()),g=p.indexOf(":")<0&&"on"+p,b=b[n.expando]?b:new n.Event(p,"object"==typeof b&&b),b.isTrigger=e?2:3,b.namespace=q.join("."),b.namespace_re=b.namespace?new RegExp("(^|\\.)"+q.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,b.result=void 0,b.target||(b.target=d),c=null==c?[b]:n.makeArray(c,[b]),k=n.event.special[p]||{},e||!k.trigger||k.trigger.apply(d,c)!==!1)){if(!e&&!k.noBubble&&!n.isWindow(d)){for(i=k.delegateType||p,_.test(i+p)||(h=h.parentNode);h;h=h.parentNode)o.push(h),l=h;l===(d.ownerDocument||z)&&o.push(l.defaultView||l.parentWindow||a)}m=0;while((h=o[m++])&&!b.isPropagationStopped())b.type=m>1?i:k.bindType||p,f=(n._data(h,"events")||{})[b.type]&&n._data(h,"handle"),f&&f.apply(h,c),f=g&&h[g],f&&f.apply&&n.acceptData(h)&&(b.result=f.apply(h,c),b.result===!1&&b.preventDefault());if(b.type=p,!e&&!b.isDefaultPrevented()&&(!k._default||k._default.apply(o.pop(),c)===!1)&&n.acceptData(d)&&g&&d[p]&&!n.isWindow(d)){l=d[g],l&&(d[g]=null),n.event.triggered=p;try{d[p]()}catch(r){}n.event.triggered=void 0,l&&(d[g]=l)}return b.result}},dispatch:function(a){a=n.event.fix(a);var b,c,e,f,g,h=[],i=d.call(arguments),j=(n._data(this,"events")||{})[a.type]||[],k=n.event.special[a.type]||{};if(i[0]=a,a.delegateTarget=this,!k.preDispatch||k.preDispatch.call(this,a)!==!1){h=n.event.handlers.call(this,a,j),b=0;while((f=h[b++])&&!a.isPropagationStopped()){a.currentTarget=f.elem,g=0;while((e=f.handlers[g++])&&!a.isImmediatePropagationStopped())(!a.namespace_re||a.namespace_re.test(e.namespace))&&(a.handleObj=e,a.data=e.data,c=((n.event.special[e.origType]||{}).handle||e.handler).apply(f.elem,i),void 0!==c&&(a.result=c)===!1&&(a.preventDefault(),a.stopPropagation()))}return k.postDispatch&&k.postDispatch.call(this,a),a.result}},handlers:function(a,b){var c,d,e,f,g=[],h=b.delegateCount,i=a.target;if(h&&i.nodeType&&(!a.button||"click"!==a.type))for(;i!=this;i=i.parentNode||this)if(1===i.nodeType&&(i.disabled!==!0||"click"!==a.type)){for(e=[],f=0;h>f;f++)d=b[f],c=d.selector+" ",void 0===e[c]&&(e[c]=d.needsContext?n(c,this).index(i)>=0:n.find(c,this,null,[i]).length),e[c]&&e.push(d);e.length&&g.push({elem:i,handlers:e})}return h]","i"),ib=/^\s+/,jb=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/gi,kb=/<([\w:]+)/,lb=/\s*$/g,sb={option:[1,""],legend:[1,"
","
"],area:[1,"",""],param:[1,"",""],thead:[1,"","
"],tr:[2,"","
"],col:[2,"","
"],td:[3,"","
"],_default:l.htmlSerialize?[0,"",""]:[1,"X
","
"]},tb=eb(z),ub=tb.appendChild(z.createElement("div"));sb.optgroup=sb.option,sb.tbody=sb.tfoot=sb.colgroup=sb.caption=sb.thead,sb.th=sb.td;function vb(a,b){var c,d,e=0,f=typeof a.getElementsByTagName!==L?a.getElementsByTagName(b||"*"):typeof a.querySelectorAll!==L?a.querySelectorAll(b||"*"):void 0;if(!f)for(f=[],c=a.childNodes||a;null!=(d=c[e]);e++)!b||n.nodeName(d,b)?f.push(d):n.merge(f,vb(d,b));return void 0===b||b&&n.nodeName(a,b)?n.merge([a],f):f}function wb(a){X.test(a.type)&&(a.defaultChecked=a.checked)}function xb(a,b){return n.nodeName(a,"table")&&n.nodeName(11!==b.nodeType?b:b.firstChild,"tr")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function yb(a){return a.type=(null!==n.find.attr(a,"type"))+"/"+a.type,a}function zb(a){var b=qb.exec(a.type);return b?a.type=b[1]:a.removeAttribute("type"),a}function Ab(a,b){for(var c,d=0;null!=(c=a[d]);d++)n._data(c,"globalEval",!b||n._data(b[d],"globalEval"))}function Bb(a,b){if(1===b.nodeType&&n.hasData(a)){var c,d,e,f=n._data(a),g=n._data(b,f),h=f.events;if(h){delete g.handle,g.events={};for(c in h)for(d=0,e=h[c].length;e>d;d++)n.event.add(b,c,h[c][d])}g.data&&(g.data=n.extend({},g.data))}}function Cb(a,b){var c,d,e;if(1===b.nodeType){if(c=b.nodeName.toLowerCase(),!l.noCloneEvent&&b[n.expando]){e=n._data(b);for(d in e.events)n.removeEvent(b,d,e.handle);b.removeAttribute(n.expando)}"script"===c&&b.text!==a.text?(yb(b).text=a.text,zb(b)):"object"===c?(b.parentNode&&(b.outerHTML=a.outerHTML),l.html5Clone&&a.innerHTML&&!n.trim(b.innerHTML)&&(b.innerHTML=a.innerHTML)):"input"===c&&X.test(a.type)?(b.defaultChecked=b.checked=a.checked,b.value!==a.value&&(b.value=a.value)):"option"===c?b.defaultSelected=b.selected=a.defaultSelected:("input"===c||"textarea"===c)&&(b.defaultValue=a.defaultValue)}}n.extend({clone:function(a,b,c){var d,e,f,g,h,i=n.contains(a.ownerDocument,a);if(l.html5Clone||n.isXMLDoc(a)||!hb.test("<"+a.nodeName+">")?f=a.cloneNode(!0):(ub.innerHTML=a.outerHTML,ub.removeChild(f=ub.firstChild)),!(l.noCloneEvent&&l.noCloneChecked||1!==a.nodeType&&11!==a.nodeType||n.isXMLDoc(a)))for(d=vb(f),h=vb(a),g=0;null!=(e=h[g]);++g)d[g]&&Cb(e,d[g]);if(b)if(c)for(h=h||vb(a),d=d||vb(f),g=0;null!=(e=h[g]);g++)Bb(e,d[g]);else Bb(a,f);return d=vb(f,"script"),d.length>0&&Ab(d,!i&&vb(a,"script")),d=h=e=null,f},buildFragment:function(a,b,c,d){for(var e,f,g,h,i,j,k,m=a.length,o=eb(b),p=[],q=0;m>q;q++)if(f=a[q],f||0===f)if("object"===n.type(f))n.merge(p,f.nodeType?[f]:f);else if(mb.test(f)){h=h||o.appendChild(b.createElement("div")),i=(kb.exec(f)||["",""])[1].toLowerCase(),k=sb[i]||sb._default,h.innerHTML=k[1]+f.replace(jb,"<$1>")+k[2],e=k[0];while(e--)h=h.lastChild;if(!l.leadingWhitespace&&ib.test(f)&&p.push(b.createTextNode(ib.exec(f)[0])),!l.tbody){f="table"!==i||lb.test(f)?""!==k[1]||lb.test(f)?0:h:h.firstChild,e=f&&f.childNodes.length;while(e--)n.nodeName(j=f.childNodes[e],"tbody")&&!j.childNodes.length&&f.removeChild(j)}n.merge(p,h.childNodes),h.textContent="";while(h.firstChild)h.removeChild(h.firstChild);h=o.lastChild}else p.push(b.createTextNode(f));h&&o.removeChild(h),l.appendChecked||n.grep(vb(p,"input"),wb),q=0;while(f=p[q++])if((!d||-1===n.inArray(f,d))&&(g=n.contains(f.ownerDocument,f),h=vb(o.appendChild(f),"script"),g&&Ab(h),c)){e=0;while(f=h[e++])pb.test(f.type||"")&&c.push(f)}return h=null,o},cleanData:function(a,b){for(var d,e,f,g,h=0,i=n.expando,j=n.cache,k=l.deleteExpando,m=n.event.special;null!=(d=a[h]);h++)if((b||n.acceptData(d))&&(f=d[i],g=f&&j[f])){if(g.events)for(e in g.events)m[e]?n.event.remove(d,e):n.removeEvent(d,e,g.handle);j[f]&&(delete j[f],k?delete d[i]:typeof d.removeAttribute!==L?d.removeAttribute(i):d[i]=null,c.push(f))}}}),n.fn.extend({text:function(a){return W(this,function(a){return void 0===a?n.text(this):this.empty().append((this[0]&&this[0].ownerDocument||z).createTextNode(a))},null,a,arguments.length)},append:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=xb(this,a);b.appendChild(a)}})},prepend:function(){return this.domManip(arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=xb(this,a);b.insertBefore(a,b.firstChild)}})},before:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this)})},after:function(){return this.domManip(arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this.nextSibling)})},remove:function(a,b){for(var c,d=a?n.filter(a,this):this,e=0;null!=(c=d[e]);e++)b||1!==c.nodeType||n.cleanData(vb(c)),c.parentNode&&(b&&n.contains(c.ownerDocument,c)&&Ab(vb(c,"script")),c.parentNode.removeChild(c));return this},empty:function(){for(var a,b=0;null!=(a=this[b]);b++){1===a.nodeType&&n.cleanData(vb(a,!1));while(a.firstChild)a.removeChild(a.firstChild);a.options&&n.nodeName(a,"select")&&(a.options.length=0)}return this},clone:function(a,b){return a=null==a?!1:a,b=null==b?a:b,this.map(function(){return n.clone(this,a,b)})},html:function(a){return W(this,function(a){var b=this[0]||{},c=0,d=this.length;if(void 0===a)return 1===b.nodeType?b.innerHTML.replace(gb,""):void 0;if(!("string"!=typeof a||nb.test(a)||!l.htmlSerialize&&hb.test(a)||!l.leadingWhitespace&&ib.test(a)||sb[(kb.exec(a)||["",""])[1].toLowerCase()])){a=a.replace(jb,"<$1>");try{for(;d>c;c++)b=this[c]||{},1===b.nodeType&&(n.cleanData(vb(b,!1)),b.innerHTML=a);b=0}catch(e){}}b&&this.empty().append(a)},null,a,arguments.length)},replaceWith:function(){var a=arguments[0];return this.domManip(arguments,function(b){a=this.parentNode,n.cleanData(vb(this)),a&&a.replaceChild(b,this)}),a&&(a.length||a.nodeType)?this:this.remove()},detach:function(a){return this.remove(a,!0)},domManip:function(a,b){a=e.apply([],a);var c,d,f,g,h,i,j=0,k=this.length,m=this,o=k-1,p=a[0],q=n.isFunction(p);if(q||k>1&&"string"==typeof p&&!l.checkClone&&ob.test(p))return this.each(function(c){var d=m.eq(c);q&&(a[0]=p.call(this,c,d.html())),d.domManip(a,b)});if(k&&(i=n.buildFragment(a,this[0].ownerDocument,!1,this),c=i.firstChild,1===i.childNodes.length&&(i=c),c)){for(g=n.map(vb(i,"script"),yb),f=g.length;k>j;j++)d=i,j!==o&&(d=n.clone(d,!0,!0),f&&n.merge(g,vb(d,"script"))),b.call(this[j],d,j);if(f)for(h=g[g.length-1].ownerDocument,n.map(g,zb),j=0;f>j;j++)d=g[j],pb.test(d.type||"")&&!n._data(d,"globalEval")&&n.contains(h,d)&&(d.src?n._evalUrl&&n._evalUrl(d.src):n.globalEval((d.text||d.textContent||d.innerHTML||"").replace(rb,"")));i=c=null}return this}}),n.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){n.fn[a]=function(a){for(var c,d=0,e=[],g=n(a),h=g.length-1;h>=d;d++)c=d===h?this:this.clone(!0),n(g[d])[b](c),f.apply(e,c.get());return this.pushStack(e)}});var Db,Eb={};function Fb(b,c){var d=n(c.createElement(b)).appendTo(c.body),e=a.getDefaultComputedStyle?a.getDefaultComputedStyle(d[0]).display:n.css(d[0],"display");return d.detach(),e}function Gb(a){var b=z,c=Eb[a];return c||(c=Fb(a,b),"none"!==c&&c||(Db=(Db||n("