1
+ − 1 library(data.table)
+ − 2 library(ggplot2)
+ − 3 library(reshape2)
+ − 4
+ − 5 args <- commandArgs(trailingOnly = TRUE)
+ − 6
+ − 7 input = args[1]
+ − 8 genes = unlist(strsplit(args[2], ","))
+ − 9 outputdir = args[3]
+ − 10 empty.region.filter = args[4]
+ − 11 setwd(outputdir)
+ − 12
+ − 13 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F)
+ − 14
+ − 15 if(length(dat$Sequence.ID) == 0){
+ − 16 setwd(outputdir)
+ − 17 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5))
+ − 18 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)")
+ − 19 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
+ − 20 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4))
+ − 21 row.names(transitionTable) = c("A", "C", "G", "T")
+ − 22 transitionTable["A","A"] = NA
+ − 23 transitionTable["C","C"] = NA
+ − 24 transitionTable["G","G"] = NA
+ − 25 transitionTable["T","T"] = NA
+ − 26
+ − 27 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
+ − 28 cat("0", file="n.txt")
+ − 29 stop("No data")
+ − 30 }
+ − 31
+ − 32 cleanup_columns = c("FR1.IMGT.c.a",
+ − 33 "FR2.IMGT.g.t",
+ − 34 "CDR1.IMGT.Nb.of.nucleotides",
+ − 35 "CDR2.IMGT.t.a",
+ − 36 "FR1.IMGT.c.g",
+ − 37 "CDR1.IMGT.c.t",
+ − 38 "FR2.IMGT.a.c",
+ − 39 "FR2.IMGT.Nb.of.mutations",
+ − 40 "FR2.IMGT.g.c",
+ − 41 "FR2.IMGT.a.g",
+ − 42 "FR3.IMGT.t.a",
+ − 43 "FR3.IMGT.t.c",
+ − 44 "FR2.IMGT.g.a",
+ − 45 "FR3.IMGT.c.g",
+ − 46 "FR1.IMGT.Nb.of.mutations",
+ − 47 "CDR1.IMGT.g.a",
+ − 48 "CDR1.IMGT.t.g",
+ − 49 "CDR1.IMGT.g.c",
+ − 50 "CDR2.IMGT.Nb.of.nucleotides",
+ − 51 "FR2.IMGT.a.t",
+ − 52 "CDR1.IMGT.Nb.of.mutations",
+ − 53 "CDR3.IMGT.Nb.of.nucleotides",
+ − 54 "CDR1.IMGT.a.g",
+ − 55 "FR3.IMGT.a.c",
+ − 56 "FR1.IMGT.g.a",
+ − 57 "FR3.IMGT.a.g",
+ − 58 "FR1.IMGT.a.t",
+ − 59 "CDR2.IMGT.a.g",
+ − 60 "CDR2.IMGT.Nb.of.mutations",
+ − 61 "CDR2.IMGT.g.t",
+ − 62 "CDR2.IMGT.a.c",
+ − 63 "CDR1.IMGT.t.c",
+ − 64 "FR3.IMGT.g.c",
+ − 65 "FR1.IMGT.g.t",
+ − 66 "FR3.IMGT.g.t",
+ − 67 "CDR1.IMGT.a.t",
+ − 68 "FR1.IMGT.a.g",
+ − 69 "FR3.IMGT.a.t",
+ − 70 "FR3.IMGT.Nb.of.nucleotides",
+ − 71 "FR2.IMGT.t.c",
+ − 72 "CDR2.IMGT.g.a",
+ − 73 "FR2.IMGT.t.a",
+ − 74 "CDR1.IMGT.t.a",
+ − 75 "FR2.IMGT.t.g",
+ − 76 "FR3.IMGT.t.g",
+ − 77 "FR2.IMGT.Nb.of.nucleotides",
+ − 78 "FR1.IMGT.t.a",
+ − 79 "FR1.IMGT.t.g",
+ − 80 "FR3.IMGT.c.t",
+ − 81 "FR1.IMGT.t.c",
+ − 82 "CDR2.IMGT.a.t",
+ − 83 "FR2.IMGT.c.t",
+ − 84 "CDR1.IMGT.g.t",
+ − 85 "CDR2.IMGT.t.g",
+ − 86 "FR1.IMGT.Nb.of.nucleotides",
+ − 87 "CDR1.IMGT.c.g",
+ − 88 "CDR2.IMGT.t.c",
+ − 89 "FR3.IMGT.g.a",
+ − 90 "CDR1.IMGT.a.c",
+ − 91 "FR2.IMGT.c.a",
+ − 92 "FR3.IMGT.Nb.of.mutations",
+ − 93 "FR2.IMGT.c.g",
+ − 94 "CDR2.IMGT.g.c",
+ − 95 "FR1.IMGT.g.c",
+ − 96 "CDR2.IMGT.c.t",
+ − 97 "FR3.IMGT.c.a",
+ − 98 "CDR1.IMGT.c.a",
+ − 99 "CDR2.IMGT.c.g",
+ − 100 "CDR2.IMGT.c.a",
+ − 101 "FR1.IMGT.c.t",
+ − 102 "FR1.IMGT.Nb.of.silent.mutations",
+ − 103 "FR2.IMGT.Nb.of.silent.mutations",
+ − 104 "FR3.IMGT.Nb.of.silent.mutations",
+ − 105 "FR1.IMGT.Nb.of.nonsilent.mutations",
+ − 106 "FR2.IMGT.Nb.of.nonsilent.mutations",
+ − 107 "FR3.IMGT.Nb.of.nonsilent.mutations")
+ − 108
+ − 109 print("Cleaning up columns")
+ − 110
+ − 111 for(col in cleanup_columns){
+ − 112 dat[,col] = gsub("\\(.*\\)", "", dat[,col])
+ − 113 #dat[dat[,col] == "",] = "0"
+ − 114 dat[,col] = as.numeric(dat[,col])
+ − 115 dat[is.na(dat[,col]),col] = 0
+ − 116 }
+ − 117
+ − 118 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3")
+ − 119 if(empty.region.filter == "FR1") {
+ − 120 regions = c("CDR1", "FR2", "CDR2", "FR3")
+ − 121 } else if (empty.region.filter == "CDR1") {
+ − 122 regions = c("FR2", "CDR2", "FR3", "CDR3")
+ − 123 } else if (empty.region.filter == "FR2") {
+ − 124 regions = c("CDR2", "FR3", "CDR3")
+ − 125 }
+ − 126
+ − 127 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) }
+ − 128
+ − 129 print("aggregating data into new columns")
+ − 130
+ − 131 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="")
+ − 132 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns)
+ − 133
+ − 134 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="")
+ − 135 dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq)
+ − 136 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns)
+ − 137
+ − 138 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="")
+ − 139 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns)
+ − 140
+ − 141 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="")
+ − 142 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns)
+ − 143
+ − 144 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
+ − 145 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
+ − 146
+ − 147 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="")
+ − 148 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="")
+ − 149 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
+ − 150
+ − 151 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="")
+ − 152 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns)
+ − 153
+ − 154 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="")
+ − 155 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="")
+ − 156 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns)
+ − 157
+ − 158 FRRegions = regions[grepl("FR", regions)]
+ − 159 CDRRegions = regions[grepl("CDR", regions)]
+ − 160
+ − 161 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+ − 162 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns)
+ − 163
+ − 164 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+ − 165 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns)
+ − 166
+ − 167 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+ − 168 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns)
+ − 169
+ − 170 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+ − 171 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
+ − 172
+ − 173 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
+ − 174 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 175
+ − 176 setwd(outputdir)
+ − 177
+ − 178 base.order = data.frame(base=c("A", "T", "C", "G"), order=1:4)
+ − 179
+ − 180 calculate_result = function(i, gene, dat, matrx, f, fname, name){
+ − 181 tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),]
+ − 182
+ − 183 j = i - 1
+ − 184 x = (j * 3) + 1
+ − 185 y = (j * 3) + 2
+ − 186 z = (j * 3) + 3
+ − 187
+ − 188 if(nrow(tmp) > 0){
+ − 189 if(fname == "sum"){
+ − 190 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 191 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 192 matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1)
+ − 193 } else {
+ − 194 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 195 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 196 matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1)
+ − 197 }
+ − 198
+ − 199 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
+ − 200 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 201 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+ − 202
+ − 203 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
+ − 204 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 205 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+ − 206
+ − 207 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
+ − 208 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ − 209 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+ − 210
+ − 211 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ − 212 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 213 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
+ − 214
+ − 215 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
+ − 216 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ − 217 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+ − 218
+ − 219 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ − 220 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 221 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+ − 222
+ − 223 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
+ − 224 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
+ − 225 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+ − 226
+ − 227 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
+ − 228 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
+ − 229 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
+ − 230
+ − 231 if(fname == "sum"){
+ − 232 matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
+ − 233 matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 234 matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1)
+ − 235
+ − 236 matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
+ − 237 matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 238 matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1)
+ − 239 }
+ − 240 }
+ − 241
+ − 242 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
+ − 243 row.names(transitionTable) = c("A", "C", "G", "T")
+ − 244 transitionTable["A","A"] = NA
+ − 245 transitionTable["C","C"] = NA
+ − 246 transitionTable["G","G"] = NA
+ − 247 transitionTable["T","T"] = NA
+ − 248
+ − 249 if(nrow(tmp) > 0){
+ − 250 for(nt1 in nts){
+ − 251 for(nt2 in nts){
+ − 252 if(nt1 == nt2){
+ − 253 next
+ − 254 }
+ − 255 NT1 = LETTERS[letters == nt1]
+ − 256 NT2 = LETTERS[letters == nt2]
+ − 257 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
+ − 258 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
+ − 259 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
+ − 260 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
+ − 261 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
+ − 262 if (empty.region.filter == "leader"){
+ − 263 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
+ − 264 } else if (empty.region.filter == "FR1") {
+ − 265 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
+ − 266 } else if (empty.region.filter == "CDR1") {
+ − 267 transitionTable[NT1,NT2] = sum(tmp[,c(FR2, CDR2, FR3)])
+ − 268 } else if (empty.region.filter == "FR2") {
+ − 269 transitionTable[NT1,NT2] = sum(tmp[,c(CDR2, FR3)])
+ − 270 }
+ − 271 }
+ − 272 }
+ − 273 transition = transitionTable
+ − 274 transition$id = names(transition)
+ − 275
+ − 276 transition2 = melt(transition, id.vars="id")
+ − 277
+ − 278 transition2 = merge(transition2, base.order, by.x="id", by.y="base")
+ − 279
+ − 280 transition2 = merge(transition2, base.order, by.x="variable", by.y="base")
+ − 281
+ − 282 transition2[is.na(transition2$value),]$value = 0
4
+ − 283
+ − 284 print(transition2)
1
+ − 285
4
+ − 286 if(any(transition2$value != 0)){ #having rows of data but a transition table filled with 0 is bad
1
+ − 287 print("Plotting stacked transition")
+ − 288 png(filename=paste("transitions_stacked_", name, ".png", sep=""))
+ − 289 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar
+ − 290 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL))
+ − 291 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4"))
+ − 292 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black"))
+ − 293 print(p)
+ − 294 dev.off()
+ − 295
+ − 296 print("Plotting heatmap transition")
+ − 297
+ − 298 png(filename=paste("transitions_heatmap_", name, ".png", sep=""))
+ − 299 p = ggplot(transition2, aes(factor(reorder(id, order.x)), factor(reorder(variable, order.y)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap
+ − 300 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black"))
+ − 301 print(p)
+ − 302 dev.off()
+ − 303 } else {
+ − 304 print("No data to plot")
+ − 305 }
+ − 306 }
+ − 307
+ − 308 #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
+ − 309 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+ − 310 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+ − 311 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
+ − 312 cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep=""))
+ − 313 #print(paste(fname, name, nrow(tmp)))
+ − 314 matrx
+ − 315 }
+ − 316 nts = c("a", "c", "g", "t")
+ − 317 zeros=rep(0, 4)
+ − 318 funcs = c(median, sum, mean)
+ − 319 fnames = c("median", "sum", "mean")
+ − 320
+ − 321 print("Creating result tables")
+ − 322
+ − 323 for(i in 1:length(funcs)){
+ − 324 func = funcs[[i]]
+ − 325 fname = fnames[[i]]
+ − 326
+ − 327 rows = 9
+ − 328 if(fname == "sum"){
+ − 329 rows = 11
+ − 330 }
+ − 331 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows)
+ − 332 for(i in 1:length(genes)){
+ − 333 print(paste("Creating table for", fname, genes[i]))
+ − 334 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i])
+ − 335 }
+ − 336 matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all")
+ − 337
+ − 338 result = data.frame(matrx)
+ − 339 if(fname == "sum"){
+ − 340 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR")
+ − 341 } else {
+ − 342 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
+ − 343 }
+ − 344 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F)
+ − 345 }
+ − 346
+ − 347 print("Adding median number of mutations to sum table")
+ − 348 sum.table = read.table("mutations_sum.txt", sep=",", header=F)
+ − 349 median.table = read.table("mutations_median.txt", sep=",", header=F)
+ − 350
+ − 351 new.table = sum.table[1,]
+ − 352 new.table[2,] = median.table[1,]
+ − 353 new.table[3:12,] = sum.table[2:11,]
+ − 354 new.table[,1] = as.character(new.table[,1])
+ − 355 new.table[2,1] = "Median of Number of Mutations (%)"
+ − 356
+ − 357 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),]
+ − 358
+ − 359 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F)
+ − 360
+ − 361 print("Plotting IGA piechart")
+ − 362
+ − 363 dat = dat[!grepl("^unmatched", dat$best_match),]
+ − 364
+ − 365 #blegh
+ − 366
+ − 367 genesForPlot = dat[grepl("IGA", dat$best_match),]$best_match
+ − 368
+ − 369 if(length(genesForPlot) > 0){
+ − 370 genesForPlot = data.frame(table(genesForPlot))
+ − 371 colnames(genesForPlot) = c("Gene","Freq")
+ − 372 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+ − 373
+ − 374 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
+ − 375 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4"))
+ − 376 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL)
+ − 377 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black"))
+ − 378 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclasses", "( n =", sum(genesForPlot$Freq), ")"))
2
+ − 379 write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T)
1
+ − 380
+ − 381 png(filename="IGA.png")
+ − 382 print(pc)
+ − 383 dev.off()
+ − 384 }
+ − 385
+ − 386 print("Plotting IGG piechart")
+ − 387
+ − 388 genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match
+ − 389
+ − 390 if(length(genesForPlot) > 0){
+ − 391 genesForPlot = data.frame(table(genesForPlot))
+ − 392 colnames(genesForPlot) = c("Gene","Freq")
+ − 393 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+ − 394
+ − 395 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
+ − 396 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred"))
+ − 397 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL)
+ − 398 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black"))
+ − 399 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclasses", "( n =", sum(genesForPlot$Freq), ")"))
2
+ − 400 write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T)
1
+ − 401
+ − 402 png(filename="IGG.png")
+ − 403 print(pc)
+ − 404 dev.off()
+ − 405 }
+ − 406
+ − 407 print("Plotting scatterplot")
+ − 408
+ − 409 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2)
+ − 410 dat.clss = dat
+ − 411
+ − 412 dat.clss$best_match = substr(dat.clss$best_match, 0, 3)
+ − 413
+ − 414 dat.clss = rbind(dat, dat.clss)
+ − 415
+ − 416 p = ggplot(dat.clss, aes(best_match, percentage_mutations))
+ − 417 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA)
+ − 418 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black"))
3
+ − 419 p = p + scale_fill_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "all" = "blue4"))
+ − 420 p = p + scale_colour_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "all" = "blue4"))
1
+ − 421
+ − 422 png(filename="scatter.png")
+ − 423 print(p)
+ − 424 dev.off()
+ − 425
+ − 426 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 427
+ − 428 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T)
+ − 429
+ − 430 print("Plotting frequency ranges plot")
+ − 431
+ − 432 dat$best_match_class = substr(dat$best_match, 0, 3)
+ − 433 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20")
+ − 434 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels)
+ − 435
+ − 436 frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match_class")])
+ − 437
+ − 438 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")])
+ − 439
+ − 440 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class")
+ − 441
+ − 442 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
+ − 443
+ − 444 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency))
+ − 445 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black"))
3
+ − 446 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "black", "all" = "blue4"))
1
+ − 447
+ − 448 png(filename="frequency_ranges.png")
+ − 449 print(p)
+ − 450 dev.off()
+ − 451
+ − 452 frequency_bins_data_by_class = frequency_bins_data
+ − 453
+ − 454 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 455
+ − 456 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "best_match_class", "frequency_bins")])
+ − 457
+ − 458 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class")
+ − 459
+ − 460 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
+ − 461
+ − 462 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 463
+ − 464
+ − 465
+ − 466
+ − 467
+ − 468
+ − 469
+ − 470
+ − 471
+ − 472
+ − 473
+ − 474
+ − 475
+ − 476
+ − 477
+ − 478
+ − 479
+ − 480
+ − 481
+ − 482
+ − 483
+ − 484
+ − 485
+ − 486
+ − 487
+ − 488
+ − 489
+ − 490
+ − 491
+ − 492
+ − 493
+ − 494
+ − 495
+ − 496
+ − 497
+ − 498
+ − 499
+ − 500
+ − 501
+ − 502
+ − 503
+ − 504
+ − 505
+ − 506
+ − 507
+ − 508
+ − 509
+ − 510
+ − 511
+ − 512
+ − 513
+ − 514
+ − 515
+ − 516
+ − 517
+ − 518