0
+ − 1 library(reshape2)
+ − 2
+ − 3 args <- commandArgs(trailingOnly = TRUE)
+ − 4
+ − 5 before.unique.file = args[1]
+ − 6 merged.file = args[2]
+ − 7 outputdir = args[3]
+ − 8 gene.classes = unlist(strsplit(args[4], ","))
+ − 9 hotspot.analysis.sum.file = args[5]
+ − 10 NToverview.file = paste(outputdir, "ntoverview.txt", sep="/")
+ − 11 NTsum.file = paste(outputdir, "ntsum.txt", sep="/")
+ − 12 main.html = "index.html"
+ − 13
+ − 14 setwd(outputdir)
+ − 15
+ − 16 before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+ − 17 merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+ − 18 hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="")
+ − 19
+ − 20 #before.unique = before.unique[!grepl("unmatched", before.unique$best_match),]
+ − 21
+ − 22 before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
+ − 23
+ − 24 IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")]
+ − 25 IDs$best_match = as.character(IDs$best_match)
+ − 26
+ − 27 #dat = data.frame(data.table(dat)[, list(freq=.N), by=c("best_match", "seq_conc")])
+ − 28
+ − 29 dat = data.frame(table(before.unique$seq_conc))
+ − 30 #dat = data.frame(table(merged$seq_conc, merged$Functionality))
+ − 31
+ − 32 #dat = dat[dat$Freq > 1,]
+ − 33
+ − 34 #names(dat) = c("seq_conc", "Functionality", "Freq")
+ − 35 names(dat) = c("seq_conc", "Freq")
+ − 36
+ − 37 dat$seq_conc = factor(dat$seq_conc)
+ − 38
+ − 39 dat = dat[order(as.character(dat$seq_conc)),]
+ − 40
+ − 41 #writing html from R...
+ − 42 get.bg.color = function(val){
+ − 43 if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color
+ − 44 return(ifelse(val,"#eafaf1","#f9ebea"))
+ − 45 } else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0
+ − 46 return(ifelse(val > 0,"#eaecee","white"))
+ − 47 } else {
+ − 48 return("white")
+ − 49 }
+ − 50 }
+ − 51 td = function(val) {
+ − 52 return(paste("<td bgcolor='", get.bg.color(val), "'>", val, "</td>", sep=""))
+ − 53 }
+ − 54 tr = function(val) {
+ − 55 return(paste(c("<tr>", sapply(val, td), "</tr>"), collapse=""))
+ − 56 }
+ − 57
+ − 58 make.link = function(id, clss, val) {
+ − 59 paste("<a href='", clss, "_", id, ".html'>", val, "</a>", sep="")
+ − 60 }
+ − 61 tbl = function(df) {
+ − 62 res = "<table border='1'>"
+ − 63 for(i in 1:nrow(df)){
+ − 64 res = paste(res, tr(df[i,]), sep="")
+ − 65 }
+ − 66 res = paste(res, "</table>")
+ − 67 }
+ − 68
+ − 69 cat("<table border='1' class='pure-table pure-table-striped'>", file=main.html, append=F)
+ − 70 #cat("<caption>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T)
+ − 71 cat("<tr>", file=main.html, append=T)
+ − 72 cat("<th>Sequence</th><th>Functionality</th><th>ca1</th><th>ca2</th><th>cg1</th><th>cg2</th><th>cg3</th><th>cg4</th><th>cm</th><th>un</th>", file=main.html, append=T)
+ − 73 cat("<th>total CA</th><th>total CG</th><th>number of subclasses</th><th>present in both Ca and Cg</th><th>Ca1+Ca2</th>", file=main.html, append=T)
+ − 74 cat("<th>Cg1+Cg2</th><th>Cg1+Cg3</th><th>Cg1+Cg4</th><th>Cg2+Cg3</th><th>Cg2+Cg4</th><th>Cg3+Cg4</th>", file=main.html, append=T)
+ − 75 cat("<th>Cg1+Cg2+Cg3</th><th>Cg2+Cg3+Cg4</th><th>Cg1+Cg2+Cg4</th><th>Cg1+Cg3+Cg4</th><th>Cg1+Cg2+Cg3+Cg4</th>", file=main.html, append=T)
+ − 76 cat("</tr>", file=main.html, append=T)
+ − 77
+ − 78
+ − 79
+ − 80 single.sequences=0 #sequence only found once, skipped
+ − 81 in.multiple=0 #same sequence across multiple subclasses
+ − 82 multiple.in.one=0 #same sequence multiple times in one subclass
+ − 83 unmatched=0 #all of the sequences are unmatched
+ − 84 some.unmatched=0 #one or more sequences in a clone are unmatched
+ − 85 matched=0 #should be the same als matched sequences
+ − 86
+ − 87 sequence.id.page="by_id.html"
+ − 88
+ − 89 for(i in 1:nrow(dat)){
+ − 90
+ − 91 ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),]
+ − 92 ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),]
+ − 93
+ − 94 cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),]
+ − 95 cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),]
+ − 96 cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),]
+ − 97 cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),]
+ − 98
+ − 99 cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),]
+ − 100
+ − 101 un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),]
+ − 102 allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, un)
+ − 103
+ − 104 ca1.n = nrow(ca1)
+ − 105 ca2.n = nrow(ca2)
+ − 106
+ − 107 cg1.n = nrow(cg1)
+ − 108 cg2.n = nrow(cg2)
+ − 109 cg3.n = nrow(cg3)
+ − 110 cg4.n = nrow(cg4)
+ − 111
+ − 112 cm.n = nrow(cm)
+ − 113
+ − 114 un.n = nrow(un)
+ − 115
+ − 116 classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, un.n)
+ − 117
+ − 118 classes.sum = sum(classes)
+ − 119
+ − 120 if(classes.sum == 1){
+ − 121 single.sequences = single.sequences + 1
+ − 122 next
+ − 123 }
+ − 124
+ − 125 if(un.n == classes.sum){
+ − 126 unmatched = unmatched + 1
+ − 127 next
+ − 128 }
+ − 129
+ − 130 in.classes = sum(classes > 0)
+ − 131
+ − 132 matched = matched + in.classes #count in how many subclasses the sequence occurs.
+ − 133
+ − 134 if(any(classes == classes.sum)){
+ − 135 multiple.in.one = multiple.in.one + 1
+ − 136 } else if (un.n > 0) {
+ − 137 some.unmatched = some.unmatched + 1
+ − 138 } else {
+ − 139 in.multiple = in.multiple + 1
+ − 140 }
+ − 141
+ − 142 id = as.numeric(dat[i,"seq_conc"])
+ − 143
+ − 144 functionality = paste(unique(allc[,"Functionality"]), collapse=",")
+ − 145
+ − 146 by.id.row = c()
+ − 147
+ − 148 if(ca1.n > 0){
+ − 149 cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep=""))
+ − 150 }
+ − 151
+ − 152 if(ca2.n > 0){
+ − 153 cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep=""))
+ − 154 }
+ − 155
+ − 156 if(cg1.n > 0){
+ − 157 cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep=""))
+ − 158 }
+ − 159
+ − 160 if(cg2.n > 0){
+ − 161 cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep=""))
+ − 162 }
+ − 163
+ − 164 if(cg3.n > 0){
+ − 165 cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep=""))
+ − 166 }
+ − 167
+ − 168 if(cg4.n > 0){
+ − 169 cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep=""))
+ − 170 }
+ − 171
+ − 172 if(cm.n > 0){
+ − 173 cat(tbl(cm), file=paste("IGM_", id, ".html", sep=""))
+ − 174 }
+ − 175
+ − 176 if(un.n > 0){
+ − 177 cat(tbl(un), file=paste("un_", id, ".html", sep=""))
+ − 178 }
+ − 179
+ − 180 ca1.html = make.link(id, "IGA1", ca1.n)
+ − 181 ca2.html = make.link(id, "IGA2", ca2.n)
+ − 182
+ − 183 cg1.html = make.link(id, "IGG1", cg1.n)
+ − 184 cg2.html = make.link(id, "IGG2", cg2.n)
+ − 185 cg3.html = make.link(id, "IGG3", cg3.n)
+ − 186 cg4.html = make.link(id, "IGG4", cg4.n)
+ − 187
+ − 188 cm.html = make.link(id, "IGM", cm.n)
+ − 189
+ − 190 un.html = make.link(id, "un", un.n)
+ − 191
+ − 192 #extra columns
+ − 193 ca.n = ca1.n + ca2.n
+ − 194
+ − 195 cg.n = cg1.n + cg2.n + cg3.n + cg4.n
+ − 196
+ − 197 #in.classes
+ − 198
+ − 199 in.ca.cg = (ca.n > 0 & cg.n > 0)
+ − 200
+ − 201 in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0)
+ − 202
+ − 203 in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0)
+ − 204 in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0)
+ − 205 in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0)
+ − 206 in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0)
+ − 207 in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0)
+ − 208 in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0)
+ − 209
+ − 210 in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0)
+ − 211 in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
+ − 212 in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0)
+ − 213 in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0)
+ − 214
+ − 215 in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
+ − 216
+ − 217
+ − 218
+ − 219
+ − 220 #rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
+ − 221 rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
+ − 222 rw = c(rw, ca.n, cg.n, in.classes, in.ca.cg, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all)
+ − 223
+ − 224 cat(tr(rw), file=main.html, append=T)
+ − 225
+ − 226
+ − 227 for(i in 1:nrow(allc)){ #generate html by id
+ − 228 html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"])
+ − 229 cat(paste(html, "<br />"), file=sequence.id.page, append=T)
+ − 230 }
+ − 231 }
+ − 232
+ − 233 cat("</table>", file=main.html, append=T)
+ − 234
+ − 235 print(paste("Single sequences:", single.sequences))
+ − 236 print(paste("Sequences in multiple subclasses:", in.multiple))
+ − 237 print(paste("Multiple sequences in one subclass:", multiple.in.one))
+ − 238 print(paste("Matched with unmatched:", some.unmatched))
+ − 239 print(paste("Count that should match 'matched' sequences:", matched))
+ − 240
+ − 241 #ACGT overview
+ − 242
+ − 243 NToverview = merged[!grepl("^unmatched", merged$best_match),]
+ − 244
+ − 245 NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq, sep="_")
+ − 246
+ − 247 NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq))
+ − 248 NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq))
+ − 249 NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq))
+ − 250 NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq))
+ − 251
+ − 252 #Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T))
+ − 253
+ − 254 #NToverview = rbind(NToverview, NTsum)
+ − 255
+ − 256 NTresult = data.frame(nt=c("A", "C", "T", "G"))
+ − 257
+ − 258 for(clazz in gene.classes){
+ − 259 NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),]
+ − 260 new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G))
+ − 261 new.col.y = sum(new.col.x)
+ − 262 new.col.z = round(new.col.x / new.col.y * 100, 2)
+ − 263
+ − 264 tmp = names(NTresult)
+ − 265 NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
+ − 266 names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep=""))
+ − 267 }
+ − 268
+ − 269 write.table(NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")], NToverview.file, quote=F, sep="\t", row.names=F, col.names=T)
+ − 270
+ − 271 NToverview = NToverview[!grepl("unmatched", NToverview$best_match),]
+ − 272
+ − 273 new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G))
+ − 274 new.col.y = sum(new.col.x)
+ − 275 new.col.z = round(new.col.x / new.col.y * 100, 2)
+ − 276
+ − 277 tmp = names(NTresult)
+ − 278 NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
+ − 279 names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep=""))
+ − 280
+ − 281 names(hotspot.analysis.sum) = names(NTresult)
+ − 282
+ − 283 hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult)
+ − 284
+ − 285 write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0")
+ − 286
+ − 287
+ − 288
+ − 289
+ − 290
+ − 291
+ − 292
+ − 293
+ − 294
+ − 295
+ − 296
+ − 297
+ − 298
+ − 299
+ − 300
+ − 301
+ − 302
+ − 303
+ − 304
+ − 305
+ − 306
+ − 307
+ − 308
+ − 309
+ − 310
+ − 311
+ − 312
+ − 313
+ − 314
+ − 315