| 0 | 1 library(reshape2) | 
|  | 2 | 
|  | 3 args <- commandArgs(trailingOnly = TRUE) | 
|  | 4 | 
|  | 5 before.unique.file = args[1] | 
|  | 6 merged.file = args[2] | 
|  | 7 outputdir = args[3] | 
|  | 8 gene.classes = unlist(strsplit(args[4], ",")) | 
|  | 9 hotspot.analysis.sum.file = args[5] | 
|  | 10 NToverview.file = paste(outputdir, "ntoverview.txt", sep="/") | 
|  | 11 NTsum.file = paste(outputdir, "ntsum.txt", sep="/") | 
|  | 12 main.html = "index.html" | 
|  | 13 | 
|  | 14 setwd(outputdir) | 
|  | 15 | 
|  | 16 before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="") | 
|  | 17 merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="") | 
|  | 18 hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="") | 
|  | 19 | 
|  | 20 #before.unique = before.unique[!grepl("unmatched", before.unique$best_match),] | 
|  | 21 | 
|  | 22 before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq) | 
|  | 23 | 
|  | 24 IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")] | 
|  | 25 IDs$best_match = as.character(IDs$best_match) | 
|  | 26 | 
|  | 27 #dat = data.frame(data.table(dat)[, list(freq=.N), by=c("best_match", "seq_conc")]) | 
|  | 28 | 
|  | 29 dat = data.frame(table(before.unique$seq_conc)) | 
|  | 30 #dat = data.frame(table(merged$seq_conc, merged$Functionality)) | 
|  | 31 | 
|  | 32 #dat = dat[dat$Freq > 1,] | 
|  | 33 | 
|  | 34 #names(dat) = c("seq_conc", "Functionality", "Freq") | 
|  | 35 names(dat) = c("seq_conc", "Freq") | 
|  | 36 | 
|  | 37 dat$seq_conc = factor(dat$seq_conc) | 
|  | 38 | 
|  | 39 dat = dat[order(as.character(dat$seq_conc)),] | 
|  | 40 | 
|  | 41 #writing html from R... | 
|  | 42 get.bg.color = function(val){ | 
|  | 43 	if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color | 
|  | 44 		return(ifelse(val,"#eafaf1","#f9ebea")) | 
|  | 45 	} else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0 | 
|  | 46 		return(ifelse(val > 0,"#eaecee","white")) | 
|  | 47 	} else { | 
|  | 48 		return("white") | 
|  | 49 	} | 
|  | 50 } | 
|  | 51 td = function(val) { | 
|  | 52   return(paste("<td bgcolor='", get.bg.color(val), "'>", val, "</td>", sep="")) | 
|  | 53 } | 
|  | 54 tr = function(val) { | 
|  | 55 	return(paste(c("<tr>", sapply(val, td), "</tr>"), collapse="")) | 
|  | 56 } | 
|  | 57 | 
|  | 58 make.link = function(id, clss, val) { | 
|  | 59 	paste("<a href='", clss, "_", id, ".html'>", val, "</a>", sep="") | 
|  | 60 } | 
|  | 61 tbl = function(df) { | 
|  | 62 	res = "<table border='1'>" | 
|  | 63 	for(i in 1:nrow(df)){ | 
|  | 64 		res = paste(res, tr(df[i,]), sep="") | 
|  | 65 	} | 
|  | 66 	res = paste(res, "</table>") | 
|  | 67 } | 
|  | 68 | 
|  | 69 cat("<table border='1' class='pure-table pure-table-striped'>", file=main.html, append=F) | 
|  | 70 #cat("<caption>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</caption>", file=main.html, append=T) | 
|  | 71 cat("<tr>", file=main.html, append=T) | 
|  | 72 cat("<th>Sequence</th><th>Functionality</th><th>ca1</th><th>ca2</th><th>cg1</th><th>cg2</th><th>cg3</th><th>cg4</th><th>cm</th><th>un</th>", file=main.html, append=T) | 
|  | 73 cat("<th>total CA</th><th>total CG</th><th>number of subclasses</th><th>present in both Ca and Cg</th><th>Ca1+Ca2</th>", file=main.html, append=T) | 
|  | 74 cat("<th>Cg1+Cg2</th><th>Cg1+Cg3</th><th>Cg1+Cg4</th><th>Cg2+Cg3</th><th>Cg2+Cg4</th><th>Cg3+Cg4</th>", file=main.html, append=T) | 
|  | 75 cat("<th>Cg1+Cg2+Cg3</th><th>Cg2+Cg3+Cg4</th><th>Cg1+Cg2+Cg4</th><th>Cg1+Cg3+Cg4</th><th>Cg1+Cg2+Cg3+Cg4</th>", file=main.html, append=T) | 
|  | 76 cat("</tr>", file=main.html, append=T) | 
|  | 77 | 
|  | 78 | 
|  | 79 | 
|  | 80 single.sequences=0 #sequence only found once, skipped | 
|  | 81 in.multiple=0 #same sequence across multiple subclasses | 
|  | 82 multiple.in.one=0 #same sequence multiple times in one subclass | 
|  | 83 unmatched=0 #all of the sequences are unmatched | 
|  | 84 some.unmatched=0 #one or more sequences in a clone are unmatched | 
|  | 85 matched=0 #should be the same als matched sequences | 
|  | 86 | 
|  | 87 sequence.id.page="by_id.html" | 
|  | 88 | 
|  | 89 for(i in 1:nrow(dat)){ | 
|  | 90 | 
|  | 91 	ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),] | 
|  | 92 	ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),] | 
|  | 93 | 
|  | 94 	cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),] | 
|  | 95 	cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),] | 
|  | 96 	cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),] | 
|  | 97 	cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),] | 
|  | 98 | 
|  | 99 	cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),] | 
|  | 100 | 
|  | 101 	un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),] | 
|  | 102 	allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, un) | 
|  | 103 | 
|  | 104 	ca1.n = nrow(ca1) | 
|  | 105 	ca2.n = nrow(ca2) | 
|  | 106 | 
|  | 107 	cg1.n = nrow(cg1) | 
|  | 108 	cg2.n = nrow(cg2) | 
|  | 109 	cg3.n = nrow(cg3) | 
|  | 110 	cg4.n = nrow(cg4) | 
|  | 111 | 
|  | 112 	cm.n = nrow(cm) | 
|  | 113 | 
|  | 114 	un.n = nrow(un) | 
|  | 115 | 
|  | 116 	classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, un.n) | 
|  | 117 | 
|  | 118 	classes.sum = sum(classes) | 
|  | 119 | 
|  | 120 	if(classes.sum == 1){ | 
|  | 121 		single.sequences = single.sequences + 1 | 
|  | 122 		next | 
|  | 123 	} | 
|  | 124 | 
|  | 125 	if(un.n == classes.sum){ | 
|  | 126 		unmatched = unmatched + 1 | 
|  | 127 		next | 
|  | 128 	} | 
|  | 129 | 
|  | 130 	in.classes = sum(classes > 0) | 
|  | 131 | 
|  | 132 	matched = matched + in.classes #count in how many subclasses the sequence occurs. | 
|  | 133 | 
|  | 134 	if(any(classes  == classes.sum)){ | 
|  | 135 		multiple.in.one = multiple.in.one + 1 | 
|  | 136 	} else if (un.n > 0) { | 
|  | 137 		some.unmatched = some.unmatched + 1 | 
|  | 138 	} else { | 
|  | 139 		in.multiple = in.multiple + 1 | 
|  | 140 	} | 
|  | 141 | 
|  | 142 	id = as.numeric(dat[i,"seq_conc"]) | 
|  | 143 | 
|  | 144 	functionality = paste(unique(allc[,"Functionality"]), collapse=",") | 
|  | 145 | 
|  | 146 	by.id.row = c() | 
|  | 147 | 
|  | 148 	if(ca1.n > 0){ | 
|  | 149 		cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep="")) | 
|  | 150 	} | 
|  | 151 | 
|  | 152 	if(ca2.n > 0){ | 
|  | 153 		cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep="")) | 
|  | 154 	} | 
|  | 155 | 
|  | 156 	if(cg1.n > 0){ | 
|  | 157 		cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep="")) | 
|  | 158 	} | 
|  | 159 | 
|  | 160 	if(cg2.n > 0){ | 
|  | 161 		cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep="")) | 
|  | 162 	} | 
|  | 163 | 
|  | 164 	if(cg3.n > 0){ | 
|  | 165 		cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep="")) | 
|  | 166 	} | 
|  | 167 | 
|  | 168 	if(cg4.n > 0){ | 
|  | 169 		cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep="")) | 
|  | 170 	} | 
|  | 171 | 
|  | 172 	if(cm.n > 0){ | 
|  | 173 		cat(tbl(cm), file=paste("IGM_", id, ".html", sep="")) | 
|  | 174 	} | 
|  | 175 | 
|  | 176 	if(un.n > 0){ | 
|  | 177 		cat(tbl(un), file=paste("un_", id, ".html", sep="")) | 
|  | 178 	} | 
|  | 179 | 
|  | 180 	ca1.html = make.link(id, "IGA1", ca1.n) | 
|  | 181 	ca2.html = make.link(id, "IGA2", ca2.n) | 
|  | 182 | 
|  | 183 	cg1.html = make.link(id, "IGG1", cg1.n) | 
|  | 184 	cg2.html = make.link(id, "IGG2", cg2.n) | 
|  | 185 	cg3.html = make.link(id, "IGG3", cg3.n) | 
|  | 186 	cg4.html = make.link(id, "IGG4", cg4.n) | 
|  | 187 | 
|  | 188 	cm.html = make.link(id, "IGM", cm.n) | 
|  | 189 | 
|  | 190 	un.html = make.link(id, "un", un.n) | 
|  | 191 | 
|  | 192 	#extra columns | 
|  | 193 	ca.n = ca1.n + ca2.n | 
|  | 194 | 
|  | 195 	cg.n = cg1.n + cg2.n + cg3.n + cg4.n | 
|  | 196 | 
|  | 197 	#in.classes | 
|  | 198 | 
|  | 199 	in.ca.cg = (ca.n > 0 & cg.n > 0) | 
|  | 200 | 
|  | 201 	in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0) | 
|  | 202 | 
|  | 203 	in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0) | 
|  | 204 	in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0) | 
|  | 205 	in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0) | 
|  | 206 	in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0) | 
|  | 207 	in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0) | 
|  | 208 	in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0) | 
|  | 209 | 
|  | 210 	in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0) | 
|  | 211 	in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0) | 
|  | 212 	in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0) | 
|  | 213 	in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0) | 
|  | 214 | 
|  | 215 	in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0) | 
|  | 216 | 
|  | 217 | 
|  | 218 | 
|  | 219 | 
|  | 220 	#rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html) | 
|  | 221 	rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html) | 
|  | 222 	rw = c(rw, ca.n, cg.n, in.classes, in.ca.cg, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all) | 
|  | 223 | 
|  | 224 	cat(tr(rw), file=main.html, append=T) | 
|  | 225 | 
|  | 226 | 
|  | 227 	for(i in 1:nrow(allc)){ #generate html by id | 
|  | 228 		html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"]) | 
|  | 229 		cat(paste(html, "<br />"), file=sequence.id.page, append=T) | 
|  | 230 	} | 
|  | 231 } | 
|  | 232 | 
|  | 233 cat("</table>", file=main.html, append=T) | 
|  | 234 | 
|  | 235 print(paste("Single sequences:", single.sequences)) | 
|  | 236 print(paste("Sequences in multiple subclasses:", in.multiple)) | 
|  | 237 print(paste("Multiple sequences in one subclass:", multiple.in.one)) | 
|  | 238 print(paste("Matched with unmatched:", some.unmatched)) | 
|  | 239 print(paste("Count that should match 'matched' sequences:", matched)) | 
|  | 240 | 
|  | 241 #ACGT overview | 
|  | 242 | 
|  | 243 NToverview = merged[!grepl("^unmatched", merged$best_match),] | 
|  | 244 | 
|  | 245 NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq, sep="_") | 
|  | 246 | 
|  | 247 NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq)) | 
|  | 248 NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq)) | 
|  | 249 NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq)) | 
|  | 250 NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq)) | 
|  | 251 | 
|  | 252 #Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T)) | 
|  | 253 | 
|  | 254 #NToverview = rbind(NToverview, NTsum) | 
|  | 255 | 
|  | 256 NTresult = data.frame(nt=c("A", "C", "T", "G")) | 
|  | 257 | 
|  | 258 for(clazz in gene.classes){ | 
|  | 259 	NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),] | 
|  | 260 	new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G)) | 
|  | 261 	new.col.y = sum(new.col.x) | 
|  | 262 	new.col.z = round(new.col.x / new.col.y * 100, 2) | 
|  | 263 | 
|  | 264 	tmp = names(NTresult) | 
|  | 265 	NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z)) | 
|  | 266 	names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep="")) | 
|  | 267 } | 
|  | 268 | 
|  | 269 write.table(NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")], NToverview.file, quote=F, sep="\t", row.names=F, col.names=T) | 
|  | 270 | 
|  | 271 NToverview = NToverview[!grepl("unmatched", NToverview$best_match),] | 
|  | 272 | 
|  | 273 new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G)) | 
|  | 274 new.col.y = sum(new.col.x) | 
|  | 275 new.col.z = round(new.col.x / new.col.y * 100, 2) | 
|  | 276 | 
|  | 277 tmp = names(NTresult) | 
|  | 278 NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z)) | 
|  | 279 names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep="")) | 
|  | 280 | 
|  | 281 names(hotspot.analysis.sum) = names(NTresult) | 
|  | 282 | 
|  | 283 hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult) | 
|  | 284 | 
|  | 285 write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0") | 
|  | 286 | 
|  | 287 | 
|  | 288 | 
|  | 289 | 
|  | 290 | 
|  | 291 | 
|  | 292 | 
|  | 293 | 
|  | 294 | 
|  | 295 | 
|  | 296 | 
|  | 297 | 
|  | 298 | 
|  | 299 | 
|  | 300 | 
|  | 301 | 
|  | 302 | 
|  | 303 | 
|  | 304 | 
|  | 305 | 
|  | 306 | 
|  | 307 | 
|  | 308 | 
|  | 309 | 
|  | 310 | 
|  | 311 | 
|  | 312 | 
|  | 313 | 
|  | 314 | 
|  | 315 |