0
+ − 1 library(data.table)
+ − 2 library(ggplot2)
+ − 3 library(reshape2)
+ − 4
+ − 5 args <- commandArgs(trailingOnly = TRUE)
+ − 6
+ − 7 input = args[1]
+ − 8 genes = unlist(strsplit(args[2], ","))
+ − 9 outputdir = args[3]
+ − 10 include_fr1 = ifelse(args[4] == "yes", T, F)
+ − 11 setwd(outputdir)
+ − 12
+ − 13 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F)
+ − 14
+ − 15 if(length(dat$Sequence.ID) == 0){
+ − 16 setwd(outputdir)
+ − 17 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5))
+ − 18 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)")
+ − 19 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
+ − 20 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4))
+ − 21 row.names(transitionTable) = c("A", "C", "G", "T")
+ − 22 transitionTable["A","A"] = NA
+ − 23 transitionTable["C","C"] = NA
+ − 24 transitionTable["G","G"] = NA
+ − 25 transitionTable["T","T"] = NA
+ − 26 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
+ − 27 cat("0", file="n.txt")
+ − 28 stop("No data")
+ − 29 }
+ − 30
+ − 31 cleanup_columns = c("FR1.IMGT.c.a",
+ − 32 "FR2.IMGT.g.t",
+ − 33 "CDR1.IMGT.Nb.of.nucleotides",
+ − 34 "CDR2.IMGT.t.a",
+ − 35 "FR1.IMGT.c.g",
+ − 36 "CDR1.IMGT.c.t",
+ − 37 "FR2.IMGT.a.c",
+ − 38 "FR2.IMGT.Nb.of.mutations",
+ − 39 "FR2.IMGT.g.c",
+ − 40 "FR2.IMGT.a.g",
+ − 41 "FR3.IMGT.t.a",
+ − 42 "FR3.IMGT.t.c",
+ − 43 "FR2.IMGT.g.a",
+ − 44 "FR3.IMGT.c.g",
+ − 45 "FR1.IMGT.Nb.of.mutations",
+ − 46 "CDR1.IMGT.g.a",
+ − 47 "CDR1.IMGT.t.g",
+ − 48 "CDR1.IMGT.g.c",
+ − 49 "CDR2.IMGT.Nb.of.nucleotides",
+ − 50 "FR2.IMGT.a.t",
+ − 51 "CDR1.IMGT.Nb.of.mutations",
+ − 52 "CDR3.IMGT.Nb.of.nucleotides",
+ − 53 "CDR1.IMGT.a.g",
+ − 54 "FR3.IMGT.a.c",
+ − 55 "FR1.IMGT.g.a",
+ − 56 "FR3.IMGT.a.g",
+ − 57 "FR1.IMGT.a.t",
+ − 58 "CDR2.IMGT.a.g",
+ − 59 "CDR2.IMGT.Nb.of.mutations",
+ − 60 "CDR2.IMGT.g.t",
+ − 61 "CDR2.IMGT.a.c",
+ − 62 "CDR1.IMGT.t.c",
+ − 63 "FR3.IMGT.g.c",
+ − 64 "FR1.IMGT.g.t",
+ − 65 "FR3.IMGT.g.t",
+ − 66 "CDR1.IMGT.a.t",
+ − 67 "FR1.IMGT.a.g",
+ − 68 "FR3.IMGT.a.t",
+ − 69 "FR3.IMGT.Nb.of.nucleotides",
+ − 70 "FR2.IMGT.t.c",
+ − 71 "CDR2.IMGT.g.a",
+ − 72 "FR2.IMGT.t.a",
+ − 73 "CDR1.IMGT.t.a",
+ − 74 "FR2.IMGT.t.g",
+ − 75 "FR3.IMGT.t.g",
+ − 76 "FR2.IMGT.Nb.of.nucleotides",
+ − 77 "FR1.IMGT.t.a",
+ − 78 "FR1.IMGT.t.g",
+ − 79 "FR3.IMGT.c.t",
+ − 80 "FR1.IMGT.t.c",
+ − 81 "CDR2.IMGT.a.t",
+ − 82 "FR2.IMGT.c.t",
+ − 83 "CDR1.IMGT.g.t",
+ − 84 "CDR2.IMGT.t.g",
+ − 85 "FR1.IMGT.Nb.of.nucleotides",
+ − 86 "CDR1.IMGT.c.g",
+ − 87 "CDR2.IMGT.t.c",
+ − 88 "FR3.IMGT.g.a",
+ − 89 "CDR1.IMGT.a.c",
+ − 90 "FR2.IMGT.c.a",
+ − 91 "FR3.IMGT.Nb.of.mutations",
+ − 92 "FR2.IMGT.c.g",
+ − 93 "CDR2.IMGT.g.c",
+ − 94 "FR1.IMGT.g.c",
+ − 95 "CDR2.IMGT.c.t",
+ − 96 "FR3.IMGT.c.a",
+ − 97 "CDR1.IMGT.c.a",
+ − 98 "CDR2.IMGT.c.g",
+ − 99 "CDR2.IMGT.c.a",
+ − 100 "FR1.IMGT.c.t",
+ − 101 "FR1.IMGT.Nb.of.silent.mutations",
+ − 102 "FR2.IMGT.Nb.of.silent.mutations",
+ − 103 "FR3.IMGT.Nb.of.silent.mutations",
+ − 104 "FR1.IMGT.Nb.of.nonsilent.mutations",
+ − 105 "FR2.IMGT.Nb.of.nonsilent.mutations",
+ − 106 "FR3.IMGT.Nb.of.nonsilent.mutations")
+ − 107
+ − 108
+ − 109 print("Cleaning up columns")
+ − 110 for(col in cleanup_columns){
+ − 111 dat[,col] = gsub("\\(.*\\)", "", dat[,col])
+ − 112 #dat[dat[,col] == "",] = "0"
+ − 113 dat[,col] = as.numeric(dat[,col])
+ − 114 dat[is.na(dat[,col]),col] = 0
+ − 115 }
+ − 116
+ − 117 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3")
+ − 118 if(!include_fr1){
+ − 119 regions = c("CDR1", "FR2", "CDR2", "FR3")
+ − 120 }
+ − 121
+ − 122 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) }
+ − 123
+ − 124 print("aggregating data into new columns")
+ − 125
+ − 126 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="")
+ − 127 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns)
+ − 128
+ − 129 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="")
+ − 130 dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq)
+ − 131 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns)
+ − 132
+ − 133 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="")
+ − 134 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns)
+ − 135
+ − 136 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="")
+ − 137 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns)
+ − 138
+ − 139
+ − 140 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
+ − 141 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
+ − 142
+ − 143
+ − 144 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="")
+ − 145 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="")
+ − 146 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
+ − 147
+ − 148 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="")
+ − 149 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns)
+ − 150
+ − 151 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="")
+ − 152 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="")
+ − 153 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns)
+ − 154
+ − 155
+ − 156 FRRegions = regions[grepl("FR", regions)]
+ − 157 CDRRegions = regions[grepl("CDR", regions)]
+ − 158
+ − 159 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+ − 160 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns)
+ − 161
+ − 162 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+ − 163 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns)
+ − 164
+ − 165 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+ − 166 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns)
+ − 167
+ − 168 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+ − 169 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
+ − 170
+ − 171 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
+ − 172
+ − 173 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 174
+ − 175 setwd(outputdir)
+ − 176
+ − 177 base.order = data.frame(base=c("A", "T", "C", "G"), order=1:4)
+ − 178
+ − 179 calculate_result = function(i, gene, dat, matrx, f, fname, name){
+ − 180 tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),]
+ − 181
+ − 182 j = i - 1
+ − 183 x = (j * 3) + 1
+ − 184 y = (j * 3) + 2
+ − 185 z = (j * 3) + 3
+ − 186
+ − 187 if(nrow(tmp) > 0){
+ − 188
+ − 189 if(fname == "sum"){
+ − 190 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 191 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 192 matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1)
+ − 193 } else {
+ − 194 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 195 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 196 matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1)
+ − 197 }
+ − 198
+ − 199 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
+ − 200 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 201 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+ − 202
+ − 203 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
+ − 204 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 205 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+ − 206
+ − 207 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
+ − 208 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ − 209 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+ − 210
+ − 211 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ − 212 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 213 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
+ − 214
+ − 215 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
+ − 216 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ − 217 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+ − 218
+ − 219 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ − 220 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ − 221 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+ − 222
+ − 223 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
+ − 224 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
+ − 225 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+ − 226
+ − 227 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
+ − 228 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
+ − 229 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
+ − 230
+ − 231 if(fname == "sum"){
+ − 232 matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
+ − 233 matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 234 matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1)
+ − 235
+ − 236 matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
+ − 237 matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ − 238 matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1)
+ − 239 }
+ − 240 }
+ − 241
+ − 242 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
+ − 243 row.names(transitionTable) = c("A", "C", "G", "T")
+ − 244 transitionTable["A","A"] = NA
+ − 245 transitionTable["C","C"] = NA
+ − 246 transitionTable["G","G"] = NA
+ − 247 transitionTable["T","T"] = NA
+ − 248
+ − 249 if(nrow(tmp) > 0){
+ − 250 for(nt1 in nts){
+ − 251 for(nt2 in nts){
+ − 252 if(nt1 == nt2){
+ − 253 next
+ − 254 }
+ − 255 NT1 = LETTERS[letters == nt1]
+ − 256 NT2 = LETTERS[letters == nt2]
+ − 257 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
+ − 258 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
+ − 259 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
+ − 260 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
+ − 261 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
+ − 262 if(include_fr1){
+ − 263 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
+ − 264 } else {
+ − 265 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
+ − 266 }
+ − 267 }
+ − 268 }
+ − 269 transition = transitionTable
+ − 270 transition$id = names(transition)
+ − 271
+ − 272 transition2 = melt(transition, id.vars="id")
+ − 273
+ − 274 transition2 = merge(transition2, base.order, by.x="id", by.y="base")
+ − 275 transition2 = merge(transition2, base.order, by.x="variable", by.y="base")
+ − 276
+ − 277 transition2[is.na(transition2$value),]$value = 0
+ − 278
+ − 279 if(!all(transition2$value == 0)){ #having rows of data but a transition table filled with 0 is bad
+ − 280
+ − 281 print("Plotting stacked transition")
+ − 282
+ − 283 png(filename=paste("transitions_stacked_", name, ".png", sep=""))
+ − 284 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar
+ − 285 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL))
+ − 286 p = p + theme(panel.background = element_rect(fill = "white", colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4"))
+ − 287 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black"))
+ − 288 print(p)
+ − 289 dev.off()
+ − 290
+ − 291 print("Plotting heatmap transition")
+ − 292
+ − 293 png(filename=paste("transitions_heatmap_", name, ".png", sep=""))
+ − 294 p = ggplot(transition2, aes(factor(reorder(id, order.x)), factor(reorder(variable, order.y)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap
+ − 295 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + theme(panel.background = element_rect(fill = "white", colour="black"))
+ − 296 print(p)
+ − 297 dev.off()
+ − 298 } else {
+ − 299 print("No data to plot")
+ − 300 }
+ − 301 }
+ − 302
+ − 303 #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
+ − 304
+ − 305 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+ − 306 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+ − 307
+ − 308 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
+ − 309 cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep=""))
+ − 310
+ − 311 #print(paste(fname, name, nrow(tmp)))
+ − 312
+ − 313 matrx
+ − 314 }
+ − 315
+ − 316 nts = c("a", "c", "g", "t")
+ − 317 zeros=rep(0, 4)
+ − 318
+ − 319 funcs = c(median, sum, mean)
+ − 320 fnames = c("median", "sum", "mean")
+ − 321
+ − 322 print("Creating result tables")
+ − 323
+ − 324 for(i in 1:length(funcs)){
+ − 325 func = funcs[[i]]
+ − 326 fname = fnames[[i]]
+ − 327
+ − 328 rows = 9
+ − 329 if(fname == "sum"){
+ − 330 rows = 11
+ − 331 }
+ − 332 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows)
+ − 333
+ − 334 for(i in 1:length(genes)){
+ − 335 print(paste("Creating table for", fname, genes[i]))
+ − 336 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i])
+ − 337 }
+ − 338
+ − 339 matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all")
+ − 340
+ − 341 result = data.frame(matrx)
+ − 342 if(fname == "sum"){
+ − 343 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR")
+ − 344 } else {
+ − 345 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
+ − 346 }
+ − 347
+ − 348 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F)
+ − 349 }
+ − 350
+ − 351 print("Adding median number of mutations to sum table")
+ − 352
+ − 353 sum.table = read.table("mutations_sum.txt", sep=",", header=F)
+ − 354 median.table = read.table("mutations_median.txt", sep=",", header=F)
+ − 355
+ − 356 new.table = sum.table[1,]
+ − 357 new.table[2,] = median.table[1,]
+ − 358 new.table[3:12,] = sum.table[2:11,]
+ − 359 new.table[,1] = as.character(new.table[,1])
+ − 360 new.table[2,1] = "Median of Number of Mutations (%)"
+ − 361
+ − 362 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),]
+ − 363
+ − 364 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F)
+ − 365
+ − 366
+ − 367 print("Plotting IGA piechart")
+ − 368
+ − 369 dat = dat[!grepl("^unmatched", dat$best_match),]
+ − 370
+ − 371 #blegh
+ − 372 genesForPlot = dat[grepl("IGA", dat$best_match),]$best_match
+ − 373 if(length(genesForPlot) > 0){
+ − 374 genesForPlot = data.frame(table(genesForPlot))
+ − 375 colnames(genesForPlot) = c("Gene","Freq")
+ − 376 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+ − 377
+ − 378 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
+ − 379 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4"))
+ − 380 pc = pc + coord_polar(theta="y")
+ − 381 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"))
+ − 382 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclasses", "( n =", sum(genesForPlot$Freq), ")"))
+ − 383 write.table(genesForPlot, "IGA.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 384
+ − 385 png(filename="IGA.png")
+ − 386 print(pc)
+ − 387 dev.off()
+ − 388 }
+ − 389
+ − 390 print("Plotting IGG piechart")
+ − 391
+ − 392 genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match
+ − 393 if(length(genesForPlot) > 0){
+ − 394 genesForPlot = data.frame(table(genesForPlot))
+ − 395 colnames(genesForPlot) = c("Gene","Freq")
+ − 396 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+ − 397
+ − 398 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
+ − 399 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred"))
+ − 400 pc = pc + coord_polar(theta="y")
+ − 401 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"))
+ − 402 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclasses", "( n =", sum(genesForPlot$Freq), ")"))
+ − 403 write.table(genesForPlot, "IGG.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 404
+ − 405 png(filename="IGG.png")
+ − 406 print(pc)
+ − 407 dev.off()
+ − 408 }
+ − 409
+ − 410
+ − 411 print("Plotting scatterplot")
+ − 412
+ − 413 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2)
+ − 414
+ − 415 p = ggplot(dat, aes(best_match, percentage_mutations))
+ − 416 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA)
+ − 417 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"))
+ − 418 p = p + scale_fill_manual(values=c("IGA1" = "lightblue1", "IGA2" = "blue4", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "black"))
+ − 419 p = p + scale_colour_manual(values=c("IGA1" = "lightblue1", "IGA2" = "blue4", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "black"))
+ − 420
+ − 421 png(filename="scatter.png")
+ − 422 print(p)
+ − 423 dev.off()
+ − 424
+ − 425 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 426
+ − 427 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T)
+ − 428
+ − 429
+ − 430 print("Plotting frequency ranges plot")
+ − 431
+ − 432 dat$best_match_class = substr(dat$best_match, 0, 3)
+ − 433 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20")
+ − 434 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels)
+ − 435
+ − 436 frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match_class")])
+ − 437
+ − 438 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")])
+ − 439
+ − 440 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class")
+ − 441
+ − 442 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
+ − 443
+ − 444 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency))
+ − 445 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"))
+ − 446 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "black"))
+ − 447
+ − 448 png(filename="frequency_ranges.png")
+ − 449 print(p)
+ − 450 dev.off()
+ − 451
+ − 452 frequency_bins_data_by_class = frequency_bins_data
+ − 453
+ − 454 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 455
+ − 456 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "best_match_class", "frequency_bins")])
+ − 457
+ − 458 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class")
+ − 459
+ − 460 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
+ − 461
+ − 462 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T)
+ − 463
+ − 464
+ − 465 #frequency_bins_data_by_class
+ − 466 #frequency_ranges_subclasses.txt
+ − 467
+ − 468
+ − 469
+ − 470
+ − 471
+ − 472
+ − 473
+ − 474
+ − 475
+ − 476
+ − 477
+ − 478
+ − 479
+ − 480
+ − 481
+ − 482
+ − 483
+ − 484
+ − 485
+ − 486
+ − 487
+ − 488
+ − 489
+ − 490
+ − 491
+ − 492
+ − 493