Mercurial > repos > davidvanzessen > shm_csr
annotate shm_csr.r @ 99:5b79485234e1 draft default tip
planemo upload commit 0d652311f9c4ccc26b27eebc44a3ae91a72e57b0
| author | rhpvorderman | 
|---|---|
| date | Mon, 03 Feb 2025 13:37:26 +0000 | 
| parents | 8fcf31272f6e | 
| children | 
| rev | line source | 
|---|---|
| 81 | 1 library(data.table) | 
| 2 library(ggplot2) | |
| 3 library(reshape2) | |
| 4 | |
| 5 args <- commandArgs(trailingOnly = TRUE) | |
| 6 | |
| 7 input = args[1] | |
| 8 genes = unlist(strsplit(args[2], ",")) | |
| 9 outputdir = args[3] | |
| 10 empty.region.filter = args[4] | |
| 11 setwd(outputdir) | |
| 12 | |
| 13 #dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | |
| 14 | |
| 15 dat = data.frame(fread(input, sep="\t", header=T, stringsAsFactors=F)) #fread because read.table suddenly skips certain rows... | |
| 16 | |
| 17 if(length(dat$Sequence.ID) == 0){ | |
| 18 setwd(outputdir) | |
| 19 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) | |
| 20 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)") | |
| 21 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
| 22 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) | |
| 23 row.names(transitionTable) = c("A", "C", "G", "T") | |
| 24 transitionTable["A","A"] = NA | |
| 25 transitionTable["C","C"] = NA | |
| 26 transitionTable["G","G"] = NA | |
| 27 transitionTable["T","T"] = NA | |
| 28 | |
| 29 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | |
| 30 cat("0", file="n.txt") | |
| 31 stop("No data") | |
| 32 } | |
| 33 | |
| 34 cleanup_columns = c("FR1.IMGT.c.a", | |
| 35 "FR2.IMGT.g.t", | |
| 36 "CDR1.IMGT.Nb.of.nucleotides", | |
| 37 "CDR2.IMGT.t.a", | |
| 38 "FR1.IMGT.c.g", | |
| 39 "CDR1.IMGT.c.t", | |
| 40 "FR2.IMGT.a.c", | |
| 41 "FR2.IMGT.Nb.of.mutations", | |
| 42 "FR2.IMGT.g.c", | |
| 43 "FR2.IMGT.a.g", | |
| 44 "FR3.IMGT.t.a", | |
| 45 "FR3.IMGT.t.c", | |
| 46 "FR2.IMGT.g.a", | |
| 47 "FR3.IMGT.c.g", | |
| 48 "FR1.IMGT.Nb.of.mutations", | |
| 49 "CDR1.IMGT.g.a", | |
| 50 "CDR1.IMGT.t.g", | |
| 51 "CDR1.IMGT.g.c", | |
| 52 "CDR2.IMGT.Nb.of.nucleotides", | |
| 53 "FR2.IMGT.a.t", | |
| 54 "CDR1.IMGT.Nb.of.mutations", | |
| 55 "CDR3.IMGT.Nb.of.nucleotides", | |
| 56 "CDR1.IMGT.a.g", | |
| 57 "FR3.IMGT.a.c", | |
| 58 "FR1.IMGT.g.a", | |
| 59 "FR3.IMGT.a.g", | |
| 60 "FR1.IMGT.a.t", | |
| 61 "CDR2.IMGT.a.g", | |
| 62 "CDR2.IMGT.Nb.of.mutations", | |
| 63 "CDR2.IMGT.g.t", | |
| 64 "CDR2.IMGT.a.c", | |
| 65 "CDR1.IMGT.t.c", | |
| 66 "FR3.IMGT.g.c", | |
| 67 "FR1.IMGT.g.t", | |
| 68 "FR3.IMGT.g.t", | |
| 69 "CDR1.IMGT.a.t", | |
| 70 "FR1.IMGT.a.g", | |
| 71 "FR3.IMGT.a.t", | |
| 72 "FR3.IMGT.Nb.of.nucleotides", | |
| 73 "FR2.IMGT.t.c", | |
| 74 "CDR2.IMGT.g.a", | |
| 75 "FR2.IMGT.t.a", | |
| 76 "CDR1.IMGT.t.a", | |
| 77 "FR2.IMGT.t.g", | |
| 78 "FR3.IMGT.t.g", | |
| 79 "FR2.IMGT.Nb.of.nucleotides", | |
| 80 "FR1.IMGT.t.a", | |
| 81 "FR1.IMGT.t.g", | |
| 82 "FR3.IMGT.c.t", | |
| 83 "FR1.IMGT.t.c", | |
| 84 "CDR2.IMGT.a.t", | |
| 85 "FR2.IMGT.c.t", | |
| 86 "CDR1.IMGT.g.t", | |
| 87 "CDR2.IMGT.t.g", | |
| 88 "FR1.IMGT.Nb.of.nucleotides", | |
| 89 "CDR1.IMGT.c.g", | |
| 90 "CDR2.IMGT.t.c", | |
| 91 "FR3.IMGT.g.a", | |
| 92 "CDR1.IMGT.a.c", | |
| 93 "FR2.IMGT.c.a", | |
| 94 "FR3.IMGT.Nb.of.mutations", | |
| 95 "FR2.IMGT.c.g", | |
| 96 "CDR2.IMGT.g.c", | |
| 97 "FR1.IMGT.g.c", | |
| 98 "CDR2.IMGT.c.t", | |
| 99 "FR3.IMGT.c.a", | |
| 100 "CDR1.IMGT.c.a", | |
| 101 "CDR2.IMGT.c.g", | |
| 102 "CDR2.IMGT.c.a", | |
| 103 "FR1.IMGT.c.t", | |
| 104 "FR1.IMGT.Nb.of.silent.mutations", | |
| 105 "FR2.IMGT.Nb.of.silent.mutations", | |
| 106 "FR3.IMGT.Nb.of.silent.mutations", | |
| 107 "FR1.IMGT.Nb.of.nonsilent.mutations", | |
| 108 "FR2.IMGT.Nb.of.nonsilent.mutations", | |
| 109 "FR3.IMGT.Nb.of.nonsilent.mutations") | |
| 110 | |
| 111 print("Cleaning up columns") | |
| 112 | |
| 113 for(col in cleanup_columns){ | |
| 114 dat[,col] = gsub("\\(.*\\)", "", dat[,col]) | |
| 115 #dat[dat[,col] == "",] = "0" | |
| 116 dat[,col] = as.numeric(dat[,col]) | |
| 117 dat[is.na(dat[,col]),col] = 0 | |
| 118 } | |
| 119 | |
| 120 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") | |
| 121 if(empty.region.filter == "FR1") { | |
| 122 regions = c("CDR1", "FR2", "CDR2", "FR3") | |
| 123 } else if (empty.region.filter == "CDR1") { | |
| 124 regions = c("FR2", "CDR2", "FR3") | |
| 125 } else if (empty.region.filter == "FR2") { | |
| 126 regions = c("CDR2", "FR3") | |
| 127 } | |
| 128 | |
| 129 pdfplots = list() #save() this later to create the pdf plots in another script (maybe avoids the "address (nil), cause memory not mapped") | |
| 130 | |
| 131 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } | |
| 132 | |
| 133 print("aggregating data into new columns") | |
| 134 | |
| 135 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") | |
| 136 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) | |
| 137 | |
| 138 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") | |
| 139 dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq) | |
| 140 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) | |
| 141 | |
| 142 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") | |
| 143 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) | |
| 144 | |
| 145 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") | |
| 146 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) | |
| 147 | |
| 148 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | |
| 149 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | |
| 150 | |
| 151 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") | |
| 152 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") | |
| 153 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | |
| 154 | |
| 155 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") | |
| 156 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) | |
| 157 | |
| 158 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") | |
| 159 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") | |
| 160 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) | |
| 161 | |
| 162 FRRegions = regions[grepl("FR", regions)] | |
| 163 CDRRegions = regions[grepl("CDR", regions)] | |
| 164 | |
| 165 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
| 166 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) | |
| 167 | |
| 168 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
| 169 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) | |
| 170 | |
| 171 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
| 172 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | |
| 173 | |
| 174 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
| 175 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | |
| 176 | |
| 177 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") | |
| 178 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 179 | |
| 180 setwd(outputdir) | |
| 181 | |
| 182 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) | |
| 183 | |
| 184 base.order.x = data.frame(base=c("A", "C", "G", "T"), order.x=1:4) | |
| 185 base.order.y = data.frame(base=c("T", "G", "C", "A"), order.y=1:4) | |
| 186 | |
| 187 calculate_result = function(i, gene, dat, matrx, f, fname, name){ | |
| 188 tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),] | |
| 189 | |
| 190 j = i - 1 | |
| 191 x = (j * 3) + 1 | |
| 192 y = (j * 3) + 2 | |
| 193 z = (j * 3) + 3 | |
| 194 | |
| 195 if(nrow(tmp) > 0){ | |
| 196 if(fname == "sum"){ | |
| 197 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 198 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
| 199 matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1) | |
| 200 } else { | |
| 201 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 202 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
| 203 matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1) | |
| 204 } | |
| 205 | |
| 206 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) | |
| 207 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 208 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | |
| 209 | |
| 210 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) | |
| 211 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 212 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | |
| 213 | |
| 214 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) | |
| 215 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
| 216 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
| 217 | |
| 218 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | |
| 219 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 220 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
| 221 | |
| 222 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) | |
| 223 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
| 224 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | |
| 225 | |
| 226 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | |
| 227 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | |
| 228 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
| 229 | |
| 230 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) | |
| 231 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) | |
| 232 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
| 233 | |
| 234 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) | |
| 235 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | |
| 236 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
| 237 | |
| 238 if(fname == "sum"){ | |
| 239 | |
| 240 regions.fr = regions[grepl("FR", regions)] | |
| 241 regions.fr = paste(regions.fr, ".IMGT.Nb.of.nucleotides", sep="") | |
| 242 regions.cdr = regions[grepl("CDR", regions)] | |
| 243 regions.cdr = paste(regions.cdr, ".IMGT.Nb.of.nucleotides", sep="") | |
| 244 | |
| 245 if(length(regions.fr) > 1){ #in case there is only on FR region (rowSums needs >1 column) | |
| 246 matrx[10,x] = round(f(rowSums(tmp[,regions.fr], na.rm=T)), digits=1) | |
| 247 } else { | |
| 248 matrx[10,x] = round(f(tmp[,regions.fr], na.rm=T), digits=1) | |
| 249 } | |
| 250 matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
| 251 matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1) | |
| 252 | |
| 253 if(length(regions.cdr) > 1){ #in case there is only on CDR region | |
| 254 matrx[11,x] = round(f(rowSums(tmp[,regions.cdr], na.rm=T)), digits=1) | |
| 255 } else { | |
| 256 matrx[11,x] = round(f(tmp[,regions.cdr], na.rm=T), digits=1) | |
| 257 } | |
| 258 matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | |
| 259 matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1) | |
| 260 } | |
| 261 } | |
| 262 | |
| 263 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | |
| 264 row.names(transitionTable) = c("A", "C", "G", "T") | |
| 265 transitionTable["A","A"] = NA | |
| 266 transitionTable["C","C"] = NA | |
| 267 transitionTable["G","G"] = NA | |
| 268 transitionTable["T","T"] = NA | |
| 269 | |
| 270 if(nrow(tmp) > 0){ | |
| 271 for(nt1 in nts){ | |
| 272 for(nt2 in nts){ | |
| 273 if(nt1 == nt2){ | |
| 274 next | |
| 275 } | |
| 276 NT1 = LETTERS[letters == nt1] | |
| 277 NT2 = LETTERS[letters == nt2] | |
| 278 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
| 279 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
| 280 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
| 281 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
| 282 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
| 283 if (empty.region.filter == "leader"){ | |
| 284 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
| 285 } else if (empty.region.filter == "FR1") { | |
| 286 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
| 287 } else if (empty.region.filter == "CDR1") { | |
| 288 transitionTable[NT1,NT2] = sum(tmp[,c(FR2, CDR2, FR3)]) | |
| 289 } else if (empty.region.filter == "FR2") { | |
| 290 transitionTable[NT1,NT2] = sum(tmp[,c(CDR2, FR3)]) | |
| 291 } | |
| 292 } | |
| 293 } | |
| 294 transition = transitionTable | |
| 295 transition$id = names(transition) | |
| 296 | |
| 297 transition2 = melt(transition, id.vars="id") | |
| 298 | |
| 299 transition2 = merge(transition2, base.order.x, by.x="id", by.y="base") | |
| 300 | |
| 301 transition2 = merge(transition2, base.order.y, by.x="variable", by.y="base") | |
| 302 | |
| 303 transition2[is.na(transition2$value),]$value = 0 | |
| 304 | |
| 305 if(any(transition2$value != 0)){ #having a transition table filled with 0 is bad | |
| 306 print("Plotting heatmap and transition") | |
| 307 png(filename=paste("transitions_stacked_", name, ".png", sep="")) | |
| 308 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar | |
| 309 p = p + xlab("From base") + ylab("") + ggtitle("Bargraph transition information") + guides(fill=guide_legend(title=NULL)) | |
| 310 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4")) | |
| 311 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black")) | |
| 312 print(p) | |
| 313 dev.off() | |
| 314 | |
| 315 pdfplots[[paste("transitions_stacked_", name, ".pdf", sep="")]] <<- p | |
| 316 | |
| 317 png(filename=paste("transitions_heatmap_", name, ".png", sep="")) | |
| 318 p = ggplot(transition2, aes(factor(reorder(variable, -order.y)), factor(reorder(id, -order.x)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap | |
| 319 p = p + xlab("To base") + ylab("From Base") + ggtitle("Heatmap transition information") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) | |
| 320 print(p) | |
| 321 dev.off() | |
| 322 | |
| 323 pdfplots[[paste("transitions_heatmap_", name, ".pdf", sep="")]] <<- p | |
| 324 } else { | |
| 325 #print("No data to plot") | |
| 326 } | |
| 327 } | |
| 328 | |
| 329 #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | |
| 330 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 331 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
| 332 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | |
| 333 cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep="")) | |
| 334 #print(paste(fname, name, nrow(tmp))) | |
| 335 matrx | |
| 336 } | |
| 337 nts = c("a", "c", "g", "t") | |
| 338 zeros=rep(0, 4) | |
| 339 funcs = c(median, sum, mean) | |
| 340 fnames = c("median", "sum", "mean") | |
| 341 | |
| 342 print("Creating result tables") | |
| 343 | |
| 344 for(i in 1:length(funcs)){ | |
| 345 func = funcs[[i]] | |
| 346 fname = fnames[[i]] | |
| 347 | |
| 348 print(paste("Creating table for", fname)) | |
| 349 | |
| 350 rows = 9 | |
| 351 if(fname == "sum"){ | |
| 352 rows = 11 | |
| 353 } | |
| 354 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows) | |
| 355 for(i in 1:length(genes)){ | |
| 356 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i]) | |
| 357 } | |
| 358 matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all") | |
| 359 | |
| 360 result = data.frame(matrx) | |
| 361 if(fname == "sum"){ | |
| 362 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR") | |
| 363 } else { | |
| 364 row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | |
| 365 } | |
| 366 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) | |
| 367 } | |
| 368 | |
| 369 print("Adding median number of mutations to sum table") | |
| 370 sum.table = read.table("mutations_sum.txt", sep=",", header=F) | |
| 371 median.table = read.table("mutations_median.txt", sep=",", header=F) | |
| 372 | |
| 373 new.table = sum.table[1,] | |
| 374 new.table[2,] = median.table[1,] | |
| 375 new.table[3:12,] = sum.table[2:11,] | |
| 376 new.table[,1] = as.character(new.table[,1]) | |
| 377 new.table[2,1] = "Median of Number of Mutations (%)" | |
| 378 | |
| 379 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),] | |
| 380 | |
| 381 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F) | |
| 382 | |
| 383 print("Plotting IGA piechart") | |
| 384 | |
| 385 dat = dat[!grepl("^unmatched", dat$best_match),] | |
| 386 | |
| 387 #blegh | |
| 388 | |
| 389 genesForPlot = dat[grepl("IGA", dat$best_match),]$best_match | |
| 390 | |
| 391 if(length(genesForPlot) > 0){ | |
| 392 genesForPlot = data.frame(table(genesForPlot)) | |
| 393 colnames(genesForPlot) = c("Gene","Freq") | |
| 394 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 395 | |
| 396 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | |
| 397 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4")) | |
| 398 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) | |
| 399 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank()) | |
| 400 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclass distribution", "( n =", sum(genesForPlot$Freq), ")")) | |
| 401 write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 402 | |
| 403 png(filename="IGA.png") | |
| 404 print(pc) | |
| 405 dev.off() | |
| 406 | |
| 407 pdfplots[["IGA.pdf"]] <- pc | |
| 408 } | |
| 409 | |
| 410 print("Plotting IGG piechart") | |
| 411 | |
| 412 genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match | |
| 413 | |
| 414 if(length(genesForPlot) > 0){ | |
| 415 genesForPlot = data.frame(table(genesForPlot)) | |
| 416 colnames(genesForPlot) = c("Gene","Freq") | |
| 417 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 418 | |
| 419 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | |
| 420 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred")) | |
| 421 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) | |
| 422 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank()) | |
| 423 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclass distribution", "( n =", sum(genesForPlot$Freq), ")")) | |
| 424 write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 425 | |
| 426 png(filename="IGG.png") | |
| 427 print(pc) | |
| 428 dev.off() | |
| 429 | |
| 430 pdfplots[["IGG.pdf"]] <- pc | |
| 431 } | |
| 432 | |
| 433 print("Plotting scatterplot") | |
| 434 | |
| 435 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | |
| 436 dat.clss = dat | |
| 437 | |
| 438 dat.clss$best_match = substr(dat.clss$best_match, 0, 3) | |
| 439 | |
| 440 dat.clss = rbind(dat, dat.clss) | |
| 441 | |
| 93 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 442 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 443 | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 444 if (nrow(dat) > 0) { | 
| 81 | 445 p = ggplot(dat.clss, aes(best_match, percentage_mutations)) | 
| 446 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | |
| 447 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) | |
| 448 p = p + scale_fill_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) | |
| 449 p = p + scale_colour_manual(guide = guide_legend(title = "Subclass"), values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) | |
| 450 png(filename="scatter.png") | |
| 451 print(p) | |
| 452 dev.off() | |
| 453 | |
| 454 pdfplots[["scatter.pdf"]] <- p | |
| 93 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 455 } | 
| 81 | 456 | 
| 457 print("Plotting frequency ranges plot") | |
| 458 | |
| 459 dat$best_match_class = substr(dat$best_match, 0, 3) | |
| 460 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") | |
| 461 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) | |
| 462 | |
| 463 frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match_class")]) | |
| 464 | |
| 465 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) | |
| 466 | |
| 467 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class") | |
| 468 | |
| 469 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) | |
| 470 | |
| 93 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 471 if (nrow(frequency_bins_data) > 0) { | 
| 81 | 472 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency)) | 
| 473 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) | |
| 474 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(guide = guide_legend(title = "Class"), values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4")) | |
| 475 | |
| 476 png(filename="frequency_ranges.png") | |
| 477 print(p) | |
| 478 dev.off() | |
| 479 | |
| 480 pdfplots[["frequency_ranges.pdf"]] <- p | |
| 93 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 481 } | 
| 81 | 482 | 
| 483 save(pdfplots, file="pdfplots.RData") | |
| 484 | |
| 485 frequency_bins_data_by_class = frequency_bins_data | |
| 486 | |
| 487 frequency_bins_data_by_class = frequency_bins_data_by_class[order(frequency_bins_data_by_class$best_match_class, frequency_bins_data_by_class$frequency_bins),] | |
| 488 | |
| 93 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 489 | 
| 81 | 490 frequency_bins_data_by_class$frequency_bins = gsub("-", " to ", frequency_bins_data_by_class$frequency_bins) | 
| 93 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 491 if (nrow(frequency_bins_data_by_class) > 0) { | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 492 frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "20", c("frequency_bins")] = "20 or higher" | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 493 frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "0", c("frequency_bins")] = "0 or lower" | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 494 } | 
| 81 | 495 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
| 496 | |
| 497 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "best_match_class", "frequency_bins")]) | |
| 498 | |
| 499 frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match")]) | |
| 500 | |
| 501 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match") | |
| 502 | |
| 503 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) | |
| 504 | |
| 505 frequency_bins_data = frequency_bins_data[order(frequency_bins_data$best_match, frequency_bins_data$frequency_bins),] | |
| 506 frequency_bins_data$frequency_bins = gsub("-", " to ", frequency_bins_data$frequency_bins) | |
| 93 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 507 if (nrow(frequency_bins_data) > 0) { | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 508 frequency_bins_data[frequency_bins_data$frequency_bins == "20", c("frequency_bins")] = "20 or higher" | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 509 frequency_bins_data[frequency_bins_data$frequency_bins == "0", c("frequency_bins")] = "0 or lower" | 
| 
8fcf31272f6e
planemo upload commit a43893724cc769bed8a1f19a5b19ec1ba20cb63c
 rhpvorderman parents: 
81diff
changeset | 510 } | 
| 81 | 511 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) | 
| 512 | |
| 513 | |
| 514 | |
| 515 | |
| 516 | |
| 517 | |
| 518 | |
| 519 | |
| 520 | |
| 521 | |
| 522 | |
| 523 | |
| 524 | |
| 525 | |
| 526 | |
| 527 | |
| 528 | |
| 529 | |
| 530 | |
| 531 | |
| 532 | |
| 533 | |
| 534 | |
| 535 | |
| 536 | |
| 537 | |
| 538 | |
| 539 | |
| 540 | |
| 541 | |
| 542 | |
| 543 | |
| 544 | |
| 545 | |
| 546 | |
| 547 | |
| 548 | |
| 549 | |
| 550 | |
| 551 | |
| 552 | |
| 553 | |
| 554 | |
| 555 | |
| 556 | |
| 557 | |
| 558 | |
| 559 | |
| 560 | |
| 561 | |
| 562 | |
| 563 | |
| 564 | |
| 565 | |
| 566 | |
| 567 | 
