Mercurial > repos > davidvanzessen > shm_csr
comparison shm_csr.r @ 5:012a738edf5a draft
Uploaded
author | davidvanzessen |
---|---|
date | Tue, 01 Nov 2016 10:15:37 -0400 |
parents | 477e95b098fd |
children | ad9be244b104 |
comparison
equal
deleted
inserted
replaced
4:477e95b098fd | 5:012a738edf5a |
---|---|
278 transition2 = merge(transition2, base.order, by.x="id", by.y="base") | 278 transition2 = merge(transition2, base.order, by.x="id", by.y="base") |
279 | 279 |
280 transition2 = merge(transition2, base.order, by.x="variable", by.y="base") | 280 transition2 = merge(transition2, base.order, by.x="variable", by.y="base") |
281 | 281 |
282 transition2[is.na(transition2$value),]$value = 0 | 282 transition2[is.na(transition2$value),]$value = 0 |
283 | |
284 print(transition2) | |
285 | 283 |
286 if(any(transition2$value != 0)){ #having rows of data but a transition table filled with 0 is bad | 284 if(any(transition2$value != 0)){ #having rows of data but a transition table filled with 0 is bad |
287 print("Plotting stacked transition") | 285 print("Plotting stacked transition") |
288 png(filename=paste("transitions_stacked_", name, ".png", sep="")) | 286 png(filename=paste("transitions_stacked_", name, ".png", sep="")) |
289 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar | 287 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar |
290 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL)) | 288 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL)) |
291 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4")) | 289 p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4")) |
292 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black")) | 290 #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black")) |
293 print(p) | 291 print(p) |
294 dev.off() | 292 dev.off() |
295 | 293 |
296 print("Plotting heatmap transition") | 294 print("Plotting heatmap transition") |
372 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | 370 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) |
373 | 371 |
374 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | 372 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) |
375 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4")) | 373 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4")) |
376 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) | 374 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) |
377 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black")) | 375 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank()) |
378 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclasses", "( n =", sum(genesForPlot$Freq), ")")) | 376 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclasses", "( n =", sum(genesForPlot$Freq), ")")) |
379 write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | 377 write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) |
380 | 378 |
381 png(filename="IGA.png") | 379 png(filename="IGA.png") |
382 print(pc) | 380 print(pc) |
393 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | 391 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) |
394 | 392 |
395 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) | 393 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene)) |
396 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred")) | 394 pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred")) |
397 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) | 395 pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL) |
398 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black")) | 396 pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank()) |
399 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclasses", "( n =", sum(genesForPlot$Freq), ")")) | 397 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclasses", "( n =", sum(genesForPlot$Freq), ")")) |
400 write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) | 398 write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T) |
401 | 399 |
402 png(filename="IGG.png") | 400 png(filename="IGG.png") |
403 print(pc) | 401 print(pc) |
413 | 411 |
414 dat.clss = rbind(dat, dat.clss) | 412 dat.clss = rbind(dat, dat.clss) |
415 | 413 |
416 p = ggplot(dat.clss, aes(best_match, percentage_mutations)) | 414 p = ggplot(dat.clss, aes(best_match, percentage_mutations)) |
417 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | 415 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) |
418 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black")) | 416 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) |
419 p = p + scale_fill_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "all" = "blue4")) | 417 p = p + scale_fill_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "all" = "blue4")) |
420 p = p + scale_colour_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "all" = "blue4")) | 418 p = p + scale_colour_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "all" = "blue4")) |
421 | 419 |
422 png(filename="scatter.png") | 420 png(filename="scatter.png") |
423 print(p) | 421 print(p) |
440 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class") | 438 frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class") |
441 | 439 |
442 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) | 440 frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2) |
443 | 441 |
444 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency)) | 442 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency)) |
445 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=13, colour="black")) | 443 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) |
446 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "black", "all" = "blue4")) | 444 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "black", "all" = "blue4")) |
447 | 445 |
448 png(filename="frequency_ranges.png") | 446 png(filename="frequency_ranges.png") |
449 print(p) | 447 print(p) |
450 dev.off() | 448 dev.off() |