Mercurial > repos > davidvanzessen > shm_csr
view change_o/DefineClones.py @ 7:ad9be244b104 draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 07 Nov 2016 03:04:07 -0500 |
parents | c33d93683a09 |
children | 22dddabe3637 |
line wrap: on
line source
#!/usr/bin/env python3 """ Assign Ig sequences into clones """ # Info __author__ = 'Namita Gupta, Jason Anthony Vander Heiden, Gur Yaari, Mohamed Uduman' from changeo import __version__, __date__ # Imports import os import re import sys import numpy as np from argparse import ArgumentParser from collections import OrderedDict from itertools import chain from textwrap import dedent from time import time from Bio import pairwise2 from Bio.Seq import translate # Presto and changeo imports from presto.Defaults import default_out_args from presto.IO import getFileType, getOutputHandle, printLog, printProgress from presto.Multiprocessing import manageProcesses from presto.Sequence import getDNAScoreDict from changeo.Commandline import CommonHelpFormatter, getCommonArgParser, parseCommonArgs from changeo.Distance import getDNADistMatrix, getAADistMatrix, \ hs1f_model, m1n_model, hs5f_model, \ calcDistances, formClusters from changeo.IO import getDbWriter, readDbFile, countDbFile from changeo.Multiprocessing import DbData, DbResult # Defaults default_translate = False default_distance = 0.0 default_bygroup_model = 'hs1f' default_hclust_model = 'chen2010' default_seq_field = 'JUNCTION' default_norm = 'len' default_sym = 'avg' default_linkage = 'single' # TODO: should be in Distance, but need to be after function definitions # Amino acid Hamming distance aa_model = getAADistMatrix(mask_dist=1, gap_dist=0) # DNA Hamming distance ham_model = getDNADistMatrix(mask_dist=0, gap_dist=0) # TODO: this function is an abstraction to facilitate later cleanup def getModelMatrix(model): """ Simple wrapper to get distance matrix from model name Arguments: model = model name Return: a pandas.DataFrame containing the character distance matrix """ if model == 'aa': return(aa_model) elif model == 'ham': return(ham_model) elif model == 'm1n': return(m1n_model) elif model == 'hs1f': return(hs1f_model) elif model == 'hs5f': return(hs5f_model) else: sys.stderr.write('Unrecognized distance model: %s.\n' % model) def indexJunctions(db_iter, fields=None, mode='gene', action='first'): """ Identifies preclonal groups by V, J and junction length Arguments: db_iter = an iterator of IgRecords defined by readDbFile fields = additional annotation fields to use to group preclones; if None use only V, J and junction length mode = specificity of alignment call to use for assigning preclones; one of ('allele', 'gene') action = how to handle multiple value fields when assigning preclones; one of ('first', 'set') Returns: a dictionary of {(V, J, junction length):[IgRecords]} """ # Define functions for grouping keys if mode == 'allele' and fields is None: def _get_key(rec, act): return (rec.getVAllele(act), rec.getJAllele(act), None if rec.junction is None else len(rec.junction)) elif mode == 'gene' and fields is None: def _get_key(rec, act): return (rec.getVGene(act), rec.getJGene(act), None if rec.junction is None else len(rec.junction)) elif mode == 'allele' and fields is not None: def _get_key(rec, act): vdj = [rec.getVAllele(act), rec.getJAllele(act), None if rec.junction is None else len(rec.junction)] ann = [rec.toDict().get(k, None) for k in fields] return tuple(chain(vdj, ann)) elif mode == 'gene' and fields is not None: def _get_key(rec, act): vdj = [rec.getVGene(act), rec.getJGene(act), None if rec.junction is None else len(rec.junction)] ann = [rec.toDict().get(k, None) for k in fields] return tuple(chain(vdj, ann)) start_time = time() clone_index = {} rec_count = 0 for rec in db_iter: key = _get_key(rec, action) # Print progress if rec_count == 0: print('PROGRESS> Grouping sequences') printProgress(rec_count, step=1000, start_time=start_time) rec_count += 1 # Assigned passed preclone records to key and failed to index None if all([k is not None and k != '' for k in key]): #print key # TODO: Has much slow. Should have less slow. if action == 'set': f_range = list(range(2, 3 + (len(fields) if fields else 0))) vdj_range = list(range(2)) # Check for any keys that have matching columns and junction length and overlapping genes/alleles to_remove = [] if len(clone_index) > (1 if None in clone_index else 0) and key not in clone_index: key = list(key) for k in clone_index: if k is not None and all([key[i] == k[i] for i in f_range]): if all([not set(key[i]).isdisjoint(set(k[i])) for i in vdj_range]): for i in vdj_range: key[i] = tuple(set(key[i]).union(set(k[i]))) to_remove.append(k) # Remove original keys, replace with union of all genes/alleles and append values to new key val = [rec] val += list(chain(*(clone_index.pop(k) for k in to_remove))) clone_index[tuple(key)] = clone_index.get(tuple(key),[]) + val elif action == 'first': clone_index.setdefault(key, []).append(rec) else: clone_index.setdefault(None, []).append(rec) printProgress(rec_count, step=1000, start_time=start_time, end=True) return clone_index def distanceClones(records, model=default_bygroup_model, distance=default_distance, dist_mat=None, norm=default_norm, sym=default_sym, linkage=default_linkage, seq_field=default_seq_field): """ Separates a set of IgRecords into clones Arguments: records = an iterator of IgRecords model = substitution model used to calculate distance distance = the distance threshold to assign clonal groups dist_mat = pandas DataFrame of pairwise nucleotide or amino acid distances norm = normalization method sym = symmetry method linkage = type of linkage seq_field = sequence field used to calculate distance between records Returns: a dictionary of lists defining {clone number: [IgRecords clonal group]} """ # Get distance matrix if not provided if dist_mat is None: dist_mat = getModelMatrix(model) # Determine length of n-mers if model in ['hs1f', 'm1n', 'aa', 'ham']: nmer_len = 1 elif model in ['hs5f']: nmer_len = 5 else: sys.stderr.write('Unrecognized distance model: %s.\n' % model) # Define unique junction mapping seq_map = {} for ig in records: seq = ig.getSeqField(seq_field) # Check if sequence length is 0 if len(seq) == 0: return None seq = re.sub('[\.-]','N', str(seq)) if model == 'aa': seq = translate(seq) seq_map.setdefault(seq, []).append(ig) # Process records if len(seq_map) == 1: return {1:records} # Define sequences seqs = list(seq_map.keys()) # Calculate pairwise distance matrix dists = calcDistances(seqs, nmer_len, dist_mat, norm, sym) # Perform hierarchical clustering clusters = formClusters(dists, linkage, distance) # Turn clusters into clone dictionary clone_dict = {} for i, c in enumerate(clusters): clone_dict.setdefault(c, []).extend(seq_map[seqs[i]]) return clone_dict def distChen2010(records): """ Calculate pairwise distances as defined in Chen 2010 Arguments: records = list of IgRecords where first is query to be compared to others in list Returns: list of distances """ # Pull out query sequence and V/J information query = records.popitem(last=False) query_cdr3 = query.junction[3:-3] query_v_allele = query.getVAllele() query_v_gene = query.getVGene() query_v_family = query.getVFamily() query_j_allele = query.getJAllele() query_j_gene = query.getJGene() # Create alignment scoring dictionary score_dict = getDNAScoreDict() scores = [0]*len(records) for i in range(len(records)): ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3], score_dict, -1, -1, one_alignment_only=True) # Check V similarity if records[i].getVAllele() == query_v_allele: ld += 0 elif records[i].getVGene() == query_v_gene: ld += 1 elif records[i].getVFamily() == query_v_family: ld += 3 else: ld += 5 # Check J similarity if records[i].getJAllele() == query_j_allele: ld += 0 elif records[i].getJGene() == query_j_gene: ld += 1 else: ld += 3 # Divide by length scores[i] = ld/max(len(records[i].junction[3:-3]), query_cdr3) return scores def distAdemokun2011(records): """ Calculate pairwise distances as defined in Ademokun 2011 Arguments: records = list of IgRecords where first is query to be compared to others in list Returns: list of distances """ # Pull out query sequence and V family information query = records.popitem(last=False) query_cdr3 = query.junction[3:-3] query_v_family = query.getVFamily() # Create alignment scoring dictionary score_dict = getDNAScoreDict() scores = [0]*len(records) for i in range(len(records)): if abs(len(query_cdr3) - len(records[i].junction[3:-3])) > 10: scores[i] = 1 elif query_v_family != records[i].getVFamily(): scores[i] = 1 else: ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3], score_dict, -1, -1, one_alignment_only=True) scores[i] = ld/min(len(records[i].junction[3:-3]), query_cdr3) return scores def hierClust(dist_mat, method='chen2010'): """ Calculate hierarchical clustering Arguments: dist_mat = square-formed distance matrix of pairwise CDR3 comparisons Returns: list of cluster ids """ if method == 'chen2010': clusters = formClusters(dist_mat, 'average', 0.32) elif method == 'ademokun2011': clusters = formClusters(dist_mat, 'complete', 0.25) else: clusters = np.ones(dist_mat.shape[0]) return clusters # TODO: Merge duplicate feed, process and collect functions. def feedQueue(alive, data_queue, db_file, group_func, group_args={}): """ Feeds the data queue with Ig records Arguments: alive = a multiprocessing.Value boolean controlling whether processing continues if False exit process data_queue = a multiprocessing.Queue to hold data for processing db_file = the Ig record database file group_func = the function to use for assigning preclones group_args = a dictionary of arguments to pass to group_func Returns: None """ # Open input file and perform grouping try: # Iterate over Ig records and assign groups db_iter = readDbFile(db_file) clone_dict = group_func(db_iter, **group_args) except: #sys.stderr.write('Exception in feeder grouping step\n') alive.value = False raise # Add groups to data queue try: #print 'START FEED', alive.value # Iterate over groups and feed data queue clone_iter = iter(clone_dict.items()) while alive.value: # Get data from queue if data_queue.full(): continue else: data = next(clone_iter, None) # Exit upon reaching end of iterator if data is None: break #print "FEED", alive.value, k # Feed queue data_queue.put(DbData(*data)) else: sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ % os.getpid()) return None except: #sys.stderr.write('Exception in feeder queue feeding step\n') alive.value = False raise return None def feedQueueClust(alive, data_queue, db_file, group_func=None, group_args={}): """ Feeds the data queue with Ig records Arguments: alive = a multiprocessing.Value boolean controlling whether processing continues if False exit process data_queue = a multiprocessing.Queue to hold data for processing db_file = the Ig record database file Returns: None """ # Open input file and perform grouping try: # Iterate over Ig records and order by junction length records = {} db_iter = readDbFile(db_file) for rec in db_iter: records[rec.id] = rec records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length)) dist_dict = {} for __ in range(len(records)): k,v = records.popitem(last=False) dist_dict[k] = [v].append(list(records.values())) except: #sys.stderr.write('Exception in feeder grouping step\n') alive.value = False raise # Add groups to data queue try: # print 'START FEED', alive.value # Iterate over groups and feed data queue dist_iter = iter(dist_dict.items()) while alive.value: # Get data from queue if data_queue.full(): continue else: data = next(dist_iter, None) # Exit upon reaching end of iterator if data is None: break #print "FEED", alive.value, k # Feed queue data_queue.put(DbData(*data)) else: sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ % os.getpid()) return None except: #sys.stderr.write('Exception in feeder queue feeding step\n') alive.value = False raise return None def processQueue(alive, data_queue, result_queue, clone_func, clone_args): """ Pulls from data queue, performs calculations, and feeds results queue Arguments: alive = a multiprocessing.Value boolean controlling whether processing continues if False exit process data_queue = a multiprocessing.Queue holding data to process result_queue = a multiprocessing.Queue to hold processed results clone_func = the function to call for clonal assignment clone_args = a dictionary of arguments to pass to clone_func Returns: None """ try: # Iterator over data queue until sentinel object reached while alive.value: # Get data from queue if data_queue.empty(): continue else: data = data_queue.get() # Exit upon reaching sentinel if data is None: break # Define result object for iteration and get data records records = data.data result = DbResult(data.id, records) # Check for invalid data (due to failed indexing) and add failed result if not data: result_queue.put(result) continue # Add V(D)J to log result.log['ID'] = ','.join([str(x) for x in data.id]) result.log['VALLELE'] = ','.join(set([(r.getVAllele() or '') for r in records])) result.log['DALLELE'] = ','.join(set([(r.getDAllele() or '') for r in records])) result.log['JALLELE'] = ','.join(set([(r.getJAllele() or '') for r in records])) result.log['JUNCLEN'] = ','.join(set([(str(len(r.junction)) or '0') for r in records])) result.log['SEQUENCES'] = len(records) # Checking for preclone failure and assign clones clones = clone_func(records, **clone_args) if data else None # import cProfile # prof = cProfile.Profile() # clones = prof.runcall(clone_func, records, **clone_args) # prof.dump_stats('worker-%d.prof' % os.getpid()) if clones is not None: result.results = clones result.valid = True result.log['CLONES'] = len(clones) else: result.log['CLONES'] = 0 # Feed results to result queue result_queue.put(result) else: sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ % os.getpid()) return None except: #sys.stderr.write('Exception in worker\n') alive.value = False raise return None def processQueueClust(alive, data_queue, result_queue, clone_func, clone_args): """ Pulls from data queue, performs calculations, and feeds results queue Arguments: alive = a multiprocessing.Value boolean controlling whether processing continues if False exit process data_queue = a multiprocessing.Queue holding data to process result_queue = a multiprocessing.Queue to hold processed results clone_func = the function to call for calculating pairwise distances between sequences clone_args = a dictionary of arguments to pass to clone_func Returns: None """ try: # print 'START WORK', alive.value # Iterator over data queue until sentinel object reached while alive.value: # Get data from queue if data_queue.empty(): continue else: data = data_queue.get() # Exit upon reaching sentinel if data is None: break # print "WORK", alive.value, data['id'] # Define result object for iteration and get data records records = data.data result = DbResult(data.id, records) # Create row of distance matrix and check for error dist_row = clone_func(records, **clone_args) if data else None if dist_row is not None: result.results = dist_row result.valid = True # Feed results to result queue result_queue.put(result) else: sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ % os.getpid()) return None except: #sys.stderr.write('Exception in worker\n') alive.value = False raise return None def collectQueue(alive, result_queue, collect_queue, db_file, out_args, cluster_func=None, cluster_args={}): """ Assembles results from a queue of individual sequence results and manages log/file I/O Arguments: alive = a multiprocessing.Value boolean controlling whether processing continues if False exit process result_queue = a multiprocessing.Queue holding processQueue results collect_queue = a multiprocessing.Queue to store collector return values db_file = the input database file name out_args = common output argument dictionary from parseCommonArgs cluster_func = the function to call for carrying out clustering on distance matrix cluster_args = a dictionary of arguments to pass to cluster_func Returns: None (adds 'log' and 'out_files' to collect_dict) """ # Open output files try: # Count records and define output format out_type = getFileType(db_file) if out_args['out_type'] is None \ else out_args['out_type'] result_count = countDbFile(db_file) # Defined successful output handle pass_handle = getOutputHandle(db_file, out_label='clone-pass', out_dir=out_args['out_dir'], out_name=out_args['out_name'], out_type=out_type) pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE') # Defined failed alignment output handle if out_args['failed']: fail_handle = getOutputHandle(db_file, out_label='clone-fail', out_dir=out_args['out_dir'], out_name=out_args['out_name'], out_type=out_type) fail_writer = getDbWriter(fail_handle, db_file) else: fail_handle = None fail_writer = None # Define log handle if out_args['log_file'] is None: log_handle = None else: log_handle = open(out_args['log_file'], 'w') except: #sys.stderr.write('Exception in collector file opening step\n') alive.value = False raise # Get results from queue and write to files try: #print 'START COLLECT', alive.value # Iterator over results queue until sentinel object reached start_time = time() rec_count = clone_count = pass_count = fail_count = 0 while alive.value: # Get result from queue if result_queue.empty(): continue else: result = result_queue.get() # Exit upon reaching sentinel if result is None: break #print "COLLECT", alive.value, result['id'] # Print progress for previous iteration and update record count if rec_count == 0: print('PROGRESS> Assigning clones') printProgress(rec_count, result_count, 0.05, start_time) rec_count += len(result.data) # Write passed and failed records if result: for clone in result.results.values(): clone_count += 1 for i, rec in enumerate(clone): rec.annotations['CLONE'] = clone_count pass_writer.writerow(rec.toDict()) pass_count += 1 result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction) else: for i, rec in enumerate(result.data): if fail_writer is not None: fail_writer.writerow(rec.toDict()) fail_count += 1 result.log['CLONE0-%i' % (i + 1)] = str(rec.junction) # Write log printLog(result.log, handle=log_handle) else: sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ % os.getpid()) return None # Print total counts printProgress(rec_count, result_count, 0.05, start_time) # Close file handles pass_handle.close() if fail_handle is not None: fail_handle.close() if log_handle is not None: log_handle.close() # Update return list log = OrderedDict() log['OUTPUT'] = os.path.basename(pass_handle.name) log['CLONES'] = clone_count log['RECORDS'] = rec_count log['PASS'] = pass_count log['FAIL'] = fail_count collect_dict = {'log':log, 'out_files': [pass_handle.name]} collect_queue.put(collect_dict) except: #sys.stderr.write('Exception in collector result processing step\n') alive.value = False raise return None def collectQueueClust(alive, result_queue, collect_queue, db_file, out_args, cluster_func, cluster_args): """ Assembles results from a queue of individual sequence results and manages log/file I/O Arguments: alive = a multiprocessing.Value boolean controlling whether processing continues if False exit process result_queue = a multiprocessing.Queue holding processQueue results collect_queue = a multiprocessing.Queue to store collector return values db_file = the input database file name out_args = common output argument dictionary from parseCommonArgs cluster_func = the function to call for carrying out clustering on distance matrix cluster_args = a dictionary of arguments to pass to cluster_func Returns: None (adds 'log' and 'out_files' to collect_dict) """ # Open output files try: # Iterate over Ig records to count and order by junction length result_count = 0 records = {} # print 'Reading file...' db_iter = readDbFile(db_file) for rec in db_iter: records[rec.id] = rec result_count += 1 records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length)) # Define empty matrix to store assembled results dist_mat = np.zeros((result_count,result_count)) # Count records and define output format out_type = getFileType(db_file) if out_args['out_type'] is None \ else out_args['out_type'] # Defined successful output handle pass_handle = getOutputHandle(db_file, out_label='clone-pass', out_dir=out_args['out_dir'], out_name=out_args['out_name'], out_type=out_type) pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE') # Defined failed cloning output handle if out_args['failed']: fail_handle = getOutputHandle(db_file, out_label='clone-fail', out_dir=out_args['out_dir'], out_name=out_args['out_name'], out_type=out_type) fail_writer = getDbWriter(fail_handle, db_file) else: fail_handle = None fail_writer = None # Open log file if out_args['log_file'] is None: log_handle = None else: log_handle = open(out_args['log_file'], 'w') except: alive.value = False raise try: # Iterator over results queue until sentinel object reached start_time = time() row_count = rec_count = 0 while alive.value: # Get result from queue if result_queue.empty(): continue else: result = result_queue.get() # Exit upon reaching sentinel if result is None: break # Print progress for previous iteration if row_count == 0: print('PROGRESS> Assigning clones') printProgress(row_count, result_count, 0.05, start_time) # Update counts for iteration row_count += 1 rec_count += len(result) # Add result row to distance matrix if result: dist_mat[list(range(result_count-len(result),result_count)),result_count-len(result)] = result.results else: sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ % os.getpid()) return None # Calculate linkage and carry out clustering # print dist_mat clusters = cluster_func(dist_mat, **cluster_args) if dist_mat is not None else None clones = {} # print clusters for i, c in enumerate(clusters): clones.setdefault(c, []).append(records[list(records.keys())[i]]) # Write passed and failed records clone_count = pass_count = fail_count = 0 if clones: for clone in clones.values(): clone_count += 1 for i, rec in enumerate(clone): rec.annotations['CLONE'] = clone_count pass_writer.writerow(rec.toDict()) pass_count += 1 #result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction) else: for i, rec in enumerate(result.data): fail_writer.writerow(rec.toDict()) fail_count += 1 #result.log['CLONE0-%i' % (i + 1)] = str(rec.junction) # Print final progress printProgress(row_count, result_count, 0.05, start_time) # Close file handles pass_handle.close() if fail_handle is not None: fail_handle.close() if log_handle is not None: log_handle.close() # Update return list log = OrderedDict() log['OUTPUT'] = os.path.basename(pass_handle.name) log['CLONES'] = clone_count log['RECORDS'] = rec_count log['PASS'] = pass_count log['FAIL'] = fail_count collect_dict = {'log':log, 'out_files': [pass_handle.name]} collect_queue.put(collect_dict) except: alive.value = False raise return None def defineClones(db_file, feed_func, work_func, collect_func, clone_func, cluster_func=None, group_func=None, group_args={}, clone_args={}, cluster_args={}, out_args=default_out_args, nproc=None, queue_size=None): """ Define clonally related sequences Arguments: db_file = filename of input database feed_func = the function that feeds the queue work_func = the worker function that will run on each CPU collect_func = the function that collects results from the workers group_func = the function to use for assigning preclones clone_func = the function to use for determining clones within preclonal groups group_args = a dictionary of arguments to pass to group_func clone_args = a dictionary of arguments to pass to clone_func out_args = common output argument dictionary from parseCommonArgs nproc = the number of processQueue processes; if None defaults to the number of CPUs queue_size = maximum size of the argument queue; if None defaults to 2*nproc Returns: a list of successful output file names """ # Print parameter info log = OrderedDict() log['START'] = 'DefineClones' log['DB_FILE'] = os.path.basename(db_file) if group_func is not None: log['GROUP_FUNC'] = group_func.__name__ log['GROUP_ARGS'] = group_args log['CLONE_FUNC'] = clone_func.__name__ # TODO: this is yucky, but can be fixed by using a model class clone_log = clone_args.copy() if 'dist_mat' in clone_log: del clone_log['dist_mat'] log['CLONE_ARGS'] = clone_log if cluster_func is not None: log['CLUSTER_FUNC'] = cluster_func.__name__ log['CLUSTER_ARGS'] = cluster_args log['NPROC'] = nproc printLog(log) # Define feeder function and arguments feed_args = {'db_file': db_file, 'group_func': group_func, 'group_args': group_args} # Define worker function and arguments work_args = {'clone_func': clone_func, 'clone_args': clone_args} # Define collector function and arguments collect_args = {'db_file': db_file, 'out_args': out_args, 'cluster_func': cluster_func, 'cluster_args': cluster_args} # Call process manager result = manageProcesses(feed_func, work_func, collect_func, feed_args, work_args, collect_args, nproc, queue_size) # Print log result['log']['END'] = 'DefineClones' printLog(result['log']) return result['out_files'] def getArgParser(): """ Defines the ArgumentParser Arguments: None Returns: an ArgumentParser object """ # Define input and output fields fields = dedent( ''' output files: clone-pass database with assigned clonal group numbers. clone-fail database with records failing clonal grouping. required fields: SEQUENCE_ID, V_CALL or V_CALL_GENOTYPED, D_CALL, J_CALL, JUNCTION_LENGTH <field> sequence field specified by the --sf parameter output fields: CLONE ''') # Define ArgumentParser parser = ArgumentParser(description=__doc__, epilog=fields, formatter_class=CommonHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s:' + ' %s-%s' %(__version__, __date__)) subparsers = parser.add_subparsers(title='subcommands', dest='command', metavar='', help='Cloning method') # TODO: This is a temporary fix for Python issue 9253 subparsers.required = True # Parent parser parser_parent = getCommonArgParser(seq_in=False, seq_out=False, db_in=True, multiproc=True) # Distance cloning method parser_bygroup = subparsers.add_parser('bygroup', parents=[parser_parent], formatter_class=CommonHelpFormatter, help='''Defines clones as having same V assignment, J assignment, and junction length with specified substitution distance model.''') parser_bygroup.add_argument('-f', nargs='+', action='store', dest='fields', default=None, help='Additional fields to use for grouping clones (non VDJ)') parser_bygroup.add_argument('--mode', action='store', dest='mode', choices=('allele', 'gene'), default='gene', help='''Specifies whether to use the V(D)J allele or gene for initial grouping.''') parser_bygroup.add_argument('--act', action='store', dest='action', default='set', choices=('first', 'set'), help='''Specifies how to handle multiple V(D)J assignments for initial grouping.''') parser_bygroup.add_argument('--model', action='store', dest='model', choices=('aa', 'ham', 'm1n', 'hs1f', 'hs5f'), default=default_bygroup_model, help='''Specifies which substitution model to use for calculating distance between sequences. Where m1n is the mouse single nucleotide transition/trasversion model of Smith et al, 1996; hs1f is the human single nucleotide model derived from Yaari et al, 2013; hs5f is the human S5F model of Yaari et al, 2013; ham is nucleotide Hamming distance; and aa is amino acid Hamming distance. The hs5f data should be considered experimental.''') parser_bygroup.add_argument('--dist', action='store', dest='distance', type=float, default=default_distance, help='The distance threshold for clonal grouping') parser_bygroup.add_argument('--norm', action='store', dest='norm', choices=('len', 'mut', 'none'), default=default_norm, help='''Specifies how to normalize distances. One of none (do not normalize), len (normalize by length), or mut (normalize by number of mutations between sequences).''') parser_bygroup.add_argument('--sym', action='store', dest='sym', choices=('avg', 'min'), default=default_sym, help='''Specifies how to combine asymmetric distances. One of avg (average of A->B and B->A) or min (minimum of A->B and B->A).''') parser_bygroup.add_argument('--link', action='store', dest='linkage', choices=('single', 'average', 'complete'), default=default_linkage, help='''Type of linkage to use for hierarchical clustering.''') parser_bygroup.add_argument('--sf', action='store', dest='seq_field', default=default_seq_field, help='''The name of the field to be used to calculate distance between records''') parser_bygroup.set_defaults(feed_func=feedQueue) parser_bygroup.set_defaults(work_func=processQueue) parser_bygroup.set_defaults(collect_func=collectQueue) parser_bygroup.set_defaults(group_func=indexJunctions) parser_bygroup.set_defaults(clone_func=distanceClones) # Hierarchical clustering cloning method parser_hclust = subparsers.add_parser('hclust', parents=[parser_parent], formatter_class=CommonHelpFormatter, help='Defines clones by specified distance metric on CDR3s and \ cutting of hierarchical clustering tree') # parser_hclust.add_argument('-f', nargs='+', action='store', dest='fields', default=None, # help='Fields to use for grouping clones (non VDJ)') parser_hclust.add_argument('--method', action='store', dest='method', choices=('chen2010', 'ademokun2011'), default=default_hclust_model, help='Specifies which cloning method to use for calculating distance \ between CDR3s, computing linkage, and cutting clusters') parser_hclust.set_defaults(feed_func=feedQueueClust) parser_hclust.set_defaults(work_func=processQueueClust) parser_hclust.set_defaults(collect_func=collectQueueClust) parser_hclust.set_defaults(cluster_func=hierClust) return parser if __name__ == '__main__': """ Parses command line arguments and calls main function """ # Parse arguments parser = getArgParser() args = parser.parse_args() args_dict = parseCommonArgs(args) # Convert case of fields if 'seq_field' in args_dict: args_dict['seq_field'] = args_dict['seq_field'].upper() if 'fields' in args_dict and args_dict['fields'] is not None: args_dict['fields'] = [f.upper() for f in args_dict['fields']] # Define clone_args if args.command == 'bygroup': args_dict['group_args'] = {'fields': args_dict['fields'], 'action': args_dict['action'], 'mode':args_dict['mode']} args_dict['clone_args'] = {'model': args_dict['model'], 'distance': args_dict['distance'], 'norm': args_dict['norm'], 'sym': args_dict['sym'], 'linkage': args_dict['linkage'], 'seq_field': args_dict['seq_field']} # TODO: can be cleaned up with abstract model class args_dict['clone_args']['dist_mat'] = getModelMatrix(args_dict['model']) del args_dict['fields'] del args_dict['action'] del args_dict['mode'] del args_dict['model'] del args_dict['distance'] del args_dict['norm'] del args_dict['sym'] del args_dict['linkage'] del args_dict['seq_field'] # Define clone_args if args.command == 'hclust': dist_funcs = {'chen2010':distChen2010, 'ademokun2011':distAdemokun2011} args_dict['clone_func'] = dist_funcs[args_dict['method']] args_dict['cluster_args'] = {'method': args_dict['method']} #del args_dict['fields'] del args_dict['method'] # Call defineClones del args_dict['command'] del args_dict['db_files'] for f in args.__dict__['db_files']: args_dict['db_file'] = f defineClones(**args_dict)