# HG changeset patch
# User davidvanzessen
# Date 1613747454 0
# Node ID b6f9a640e0983ffaa444d41c48f88f87aceaa0b2
# Parent a4617f1d1d89beba6d5da99bf57da7299b6b3496
Uploaded
diff -r a4617f1d1d89 -r b6f9a640e098 .gitattributes
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/.gitattributes Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,2 @@
+# Auto detect text files and perform LF normalization
+* text=auto
diff -r a4617f1d1d89 -r b6f9a640e098 .gitignore
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/.gitignore Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,4 @@
+
+shm_csr\.tar\.gz
+
+\.vscode/settings\.json
diff -r a4617f1d1d89 -r b6f9a640e098 LICENSE
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/LICENSE Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2019 david
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
\ No newline at end of file
diff -r a4617f1d1d89 -r b6f9a640e098 README.md
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/README.md Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,13 @@
+# SHM CSR
+
+Somatic hypermutation and class switch recombination pipeline.
+The docker version can be found [here](https://github.com/ErasmusMC-Bioinformatics/ARGalaxy-docker).
+
+# Dependencies
+--------------------
+[Python 2.7](https://www.python.org/)
+[Change-O](https://changeo.readthedocs.io/en/version-0.4.4/)
+[Baseline](http://selection.med.yale.edu/baseline/)
+[R data.table](https://cran.r-project.org/web/packages/data.table/data.table.pdf)
+[R ggplot2](https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf)
+[R reshape2](https://cran.r-project.org/web/packages/reshape/reshape.pdf)
diff -r a4617f1d1d89 -r b6f9a640e098 aa_histogram.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/aa_histogram.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,69 @@
+library(ggplot2)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+mutations.by.id.file = args[1]
+absent.aa.by.id.file = args[2]
+genes = strsplit(args[3], ",")[[1]]
+genes = c(genes, "")
+outdir = args[4]
+
+
+print("---------------- read input ----------------")
+
+mutations.by.id = read.table(mutations.by.id.file, sep="\t", fill=T, header=T, quote="")
+absent.aa.by.id = read.table(absent.aa.by.id.file, sep="\t", fill=T, header=T, quote="")
+
+for(gene in genes){
+ graph.title = paste(gene, "AA mutation frequency")
+ if(gene == ""){
+ mutations.by.id.gene = mutations.by.id[!grepl("unmatched", mutations.by.id$best_match),]
+ absent.aa.by.id.gene = absent.aa.by.id[!grepl("unmatched", absent.aa.by.id$best_match),]
+
+ graph.title = "AA mutation frequency all"
+ } else {
+ mutations.by.id.gene = mutations.by.id[grepl(paste("^", gene, sep=""), mutations.by.id$best_match),]
+ absent.aa.by.id.gene = absent.aa.by.id[grepl(paste("^", gene, sep=""), absent.aa.by.id$best_match),]
+ }
+ print(paste("nrow", gene, nrow(absent.aa.by.id.gene)))
+ if(nrow(mutations.by.id.gene) == 0){
+ next
+ }
+
+ mutations.at.position = colSums(mutations.by.id.gene[,-c(1,2)])
+ aa.at.position = colSums(absent.aa.by.id.gene[,-c(1,2,3,4)])
+
+ dat_freq = mutations.at.position / aa.at.position
+ dat_freq[is.na(dat_freq)] = 0
+ dat_dt = data.frame(i=1:length(dat_freq), freq=dat_freq)
+
+
+ print("---------------- plot ----------------")
+
+ m = ggplot(dat_dt, aes(x=i, y=freq)) + theme(axis.text.x = element_text(angle = 90, hjust = 1), text = element_text(size=13, colour="black"))
+ m = m + geom_bar(stat="identity", colour = "black", fill = "darkgrey", alpha=0.8) + scale_x_continuous(breaks=dat_dt$i, labels=dat_dt$i)
+ m = m + annotate("segment", x = 0.5, y = -0.05, xend=26.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.1, label="FR1")
+ m = m + annotate("segment", x = 26.5, y = -0.07, xend=38.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.15, label="CDR1")
+ m = m + annotate("segment", x = 38.5, y = -0.05, xend=55.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.1, label="FR2")
+ m = m + annotate("segment", x = 55.5, y = -0.07, xend=65.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.15, label="CDR2")
+ m = m + annotate("segment", x = 65.5, y = -0.05, xend=104.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.1, label="FR3")
+ m = m + expand_limits(y=c(-0.1,1)) + xlab("AA position") + ylab("Frequency") + ggtitle(graph.title)
+ m = m + theme(panel.background = element_rect(fill = "white", colour="black"), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
+ #m = m + scale_colour_manual(values=c("black"))
+
+ print("---------------- write/print ----------------")
+
+
+ dat.sums = data.frame(index=1:length(mutations.at.position), mutations.at.position=mutations.at.position, aa.at.position=aa.at.position)
+
+ write.table(dat.sums, paste(outdir, "/aa_histogram_sum_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+ write.table(mutations.by.id.gene, paste(outdir, "/aa_histogram_count_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+ write.table(absent.aa.by.id.gene, paste(outdir, "/aa_histogram_absent_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+ write.table(dat_dt, paste(outdir, "/aa_histogram_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+
+ png(filename=paste(outdir, "/aa_histogram_", gene, ".png", sep=""), width=1280, height=720)
+ print(m)
+ dev.off()
+
+ ggsave(paste(outdir, "/aa_histogram_", gene, ".pdf", sep=""), m, width=14, height=7)
+}
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/Baseline_Functions.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/Baseline_Functions.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,2287 @@
+#########################################################################################
+# License Agreement
+#
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE
+# OR COPYRIGHT LAW IS PROHIBITED.
+#
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+# Global variables
+
+ FILTER_BY_MUTATIONS = 1000
+
+ # Nucleotides
+ NUCLEOTIDES = c("A","C","G","T")
+
+ # Amino Acids
+ AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
+ names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
+ names(AMINO_ACIDS) <- names(AMINO_ACIDS)
+
+ #Amino Acid Traits
+ #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
+ #B = "Hydrophobic/Burried" N = "Intermediate/Neutral" S="Hydrophilic/Surface")
+ TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
+ names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
+ TRAITS_AMINO_ACIDS <- array(NA,21)
+
+ # Codon Table
+ CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
+
+ # Substitution Model: Smith DS et al. 1996
+ substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+ substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+ substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+ load("FiveS_Substitution.RData")
+
+ # Mutability Models: Shapiro GS et al. 2002
+ triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
+ triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
+ triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
+ load("FiveS_Mutability.RData")
+
+# Functions
+
+ # Translate codon to amino acid
+ translateCodonToAminoAcid<-function(Codon){
+ return(AMINO_ACIDS[Codon])
+ }
+
+ # Translate amino acid to trait change
+ translateAminoAcidToTraitChange<-function(AminoAcid){
+ return(TRAITS_AMINO_ACIDS[AminoAcid])
+ }
+
+ # Initialize Amino Acid Trait Changes
+ initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
+ if(!is.null(traitChangeFileName)){
+ tryCatch(
+ traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
+ , error = function(ex){
+ cat("Error|Error reading trait changes. Please check file name/path and format.\n")
+ q()
+ }
+ )
+ }else{
+ traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
+ }
+ TRAITS_AMINO_ACIDS <<- traitChange
+ }
+
+ # Read in formatted nucleotide substitution matrix
+ initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
+ if(!is.null(subsMatFileName)){
+ tryCatch(
+ subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
+ , error = function(ex){
+ cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
+ q()
+ }
+ )
+ if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
+ }else{
+ if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
+ if(substitutionModel==2)subsMat <- substitution_Flu_Human
+ if(substitutionModel==3)subsMat <- substitution_Flu25_Human
+
+ }
+
+ if(substitutionModel==0){
+ subsMat <- matrix(1,4,4)
+ subsMat[,] = 1/3
+ subsMat[1,1] = 0
+ subsMat[2,2] = 0
+ subsMat[3,3] = 0
+ subsMat[4,4] = 0
+ }
+
+
+ NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
+ if(substitutionModel==5){
+ subsMat <- FiveS_Substitution
+ return(subsMat)
+ }else{
+ subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
+ return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
+ }
+ }
+
+
+ # Read in formatted Mutability file
+ initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
+ if(!is.null(mutabilityMatFileName)){
+ tryCatch(
+ mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
+ , error = function(ex){
+ cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
+ q()
+ }
+ )
+ }else{
+ mutabilityMat <- triMutability_Literature_Human
+ if(species==2) mutabilityMat <- triMutability_Literature_Mouse
+ }
+
+ if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
+
+ if(mutabilityModel==5){
+ mutabilityMat <- FiveS_Mutability
+ return(mutabilityMat)
+ }else{
+ return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
+ }
+ }
+
+ # Read FASTA file formats
+ # Modified from read.fasta from the seqinR package
+ baseline.read.fasta <-
+ function (file = system.file("sequences/sample.fasta", package = "seqinr"),
+ seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE,
+ set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE,
+ strip.desc = FALSE, sizeof.longlong = .Machine$sizeof.longlong,
+ endian = .Platform$endian, apply.mask = TRUE)
+ {
+ seqtype <- match.arg(seqtype)
+
+ lines <- readLines(file)
+
+ if (legacy.mode) {
+ comments <- grep("^;", lines)
+ if (length(comments) > 0)
+ lines <- lines[-comments]
+ }
+
+
+ ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
+ lines_mod<-lines
+
+ if(!length(ind_groups)){
+ lines_mod<-c(">>>All sequences combined",lines)
+ }
+
+ ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
+
+ lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
+ id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
+ lines[id] <- "THIS IS A FAKE SEQUENCE"
+ lines[-id] <- lines_mod
+ rm(lines_mod)
+
+ ind <- which(substr(lines, 1L, 1L) == ">")
+ nseq <- length(ind)
+ if (nseq == 0) {
+ stop("no line starting with a > character found")
+ }
+ start <- ind + 1
+ end <- ind - 1
+
+ while( any(which(ind%in%end)) ){
+ ind=ind[-which(ind%in%end)]
+ nseq <- length(ind)
+ if (nseq == 0) {
+ stop("no line starting with a > character found")
+ }
+ start <- ind + 1
+ end <- ind - 1
+ }
+
+ end <- c(end[-1], length(lines))
+ sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
+ if (seqonly)
+ return(sequences)
+ nomseq <- lapply(seq_len(nseq), function(i) {
+
+ #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
+ substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
+
+ })
+ if (seqtype == "DNA") {
+ if (forceDNAtolower) {
+ sequences <- as.list(tolower(chartr(".","-",sequences)))
+ }else{
+ sequences <- as.list(toupper(chartr(".","-",sequences)))
+ }
+ }
+ if (as.string == FALSE)
+ sequences <- lapply(sequences, s2c)
+ if (set.attributes) {
+ for (i in seq_len(nseq)) {
+ Annot <- lines[ind[i]]
+ if (strip.desc)
+ Annot <- substr(Annot, 2L, nchar(Annot))
+ attributes(sequences[[i]]) <- list(name = nomseq[[i]],
+ Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA",
+ DNA = "SeqFastadna"))
+ }
+ }
+ names(sequences) <- nomseq
+ return(sequences)
+ }
+
+
+ # Replaces non FASTA characters in input files with N
+ replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
+ gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
+ }
+
+ # Find the germlines in the FASTA list
+ germlinesInFile <- function(seqIDs){
+ firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
+ secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
+ return(firstChar==">" & secondChar!=">")
+ }
+
+ # Find the groups in the FASTA list
+ groupsInFile <- function(seqIDs){
+ sapply(seqIDs,function(x){substr(x,1,2)})==">>"
+ }
+
+ # In the process of finding germlines/groups, expand from the start to end of the group
+ expandTillNext <- function(vecPosToID){
+ IDs = names(vecPosToID)
+ posOfInterests = which(vecPosToID)
+
+ expandedID = rep(NA,length(IDs))
+ expandedIDNames = gsub(">","",IDs[posOfInterests])
+ startIndexes = c(1,posOfInterests[-1])
+ stopIndexes = c(posOfInterests[-1]-1,length(IDs))
+ expandedID = unlist(sapply(1:length(startIndexes),function(i){
+ rep(i,stopIndexes[i]-startIndexes[i]+1)
+ }))
+ names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
+ rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
+ }))
+ return(expandedID)
+ }
+
+ # Process FASTA (list) to return a matrix[input, germline)
+ processInputAdvanced <- function(inputFASTA){
+
+ seqIDs = names(inputFASTA)
+ numbSeqs = length(seqIDs)
+ posGermlines1 = germlinesInFile(seqIDs)
+ numbGermlines = sum(posGermlines1)
+ posGroups1 = groupsInFile(seqIDs)
+ numbGroups = sum(posGroups1)
+ consDef = NA
+
+ if(numbGermlines==0){
+ posGermlines = 2
+ numbGermlines = 1
+ }
+
+ glPositionsSum = cumsum(posGermlines1)
+ glPositions = table(glPositionsSum)
+ #Find the position of the conservation row
+ consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1
+ if( length(consDefPos)> 0 ){
+ consDefID = match(consDefPos, glPositionsSum)
+ #The coservation rows need to be pulled out and stores seperately
+ consDef = inputFASTA[consDefID]
+ inputFASTA = inputFASTA[-consDefID]
+
+ seqIDs = names(inputFASTA)
+ numbSeqs = length(seqIDs)
+ posGermlines1 = germlinesInFile(seqIDs)
+ numbGermlines = sum(posGermlines1)
+ posGroups1 = groupsInFile(seqIDs)
+ numbGroups = sum(posGroups1)
+ if(numbGermlines==0){
+ posGermlines = 2
+ numbGermlines = 1
+ }
+ }
+
+ posGroups <- expandTillNext(posGroups1)
+ posGermlines <- expandTillNext(posGermlines1)
+ posGermlines[posGroups1] = 0
+ names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
+ posInput = rep(TRUE,numbSeqs)
+ posInput[posGroups1 | posGermlines1] = FALSE
+
+ matInput = matrix(NA, nrow=sum(posInput), ncol=2)
+ rownames(matInput) = seqIDs[posInput]
+ colnames(matInput) = c("Input","Germline")
+
+ vecInputFASTA = unlist(inputFASTA)
+ matInput[,1] = vecInputFASTA[posInput]
+ matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
+
+ germlines = posGermlines[posInput]
+ groups = posGroups[posInput]
+
+ return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))
+ }
+
+
+ # Replace leading and trailing dashes in the sequence
+ replaceLeadingTrailingDashes <- function(x,readEnd){
+ iiGap = unlist(gregexpr("-",x[1]))
+ ggGap = unlist(gregexpr("-",x[2]))
+ #posToChange = intersect(iiGap,ggGap)
+
+
+ seqIn = replaceLeadingTrailingDashesHelper(x[1])
+ seqGL = replaceLeadingTrailingDashesHelper(x[2])
+ seqTemplate = rep('N',readEnd)
+ seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
+ seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
+# if(posToChange!=-1){
+# seqIn[posToChange] = "-"
+# seqGL[posToChange] = "-"
+# }
+
+ seqIn = c2s(seqIn[1:readEnd])
+ seqGL = c2s(seqGL[1:readEnd])
+
+ lenGL = nchar(seqGL)
+ if(lenGL seqLen )
+ trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
+
+ return(trimmedSeq)
+ }
+
+ # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
+ # e.g. nuc 86 is part of nucs 85,86,87
+ getCodonPos <- function(nucPos){
+ codonNum = (ceiling(nucPos/3))*3
+ return( (codonNum-2):codonNum)
+ }
+
+ # Given a nuclotide position, returns the codon number
+ # e.g. nuc 86 = codon 29
+ getCodonNumb <- function(nucPos){
+ return( ceiling(nucPos/3) )
+ }
+
+ # Given a codon, returns all the nuc positions that make the codon
+ getCodonNucs <- function(codonNumb){
+ getCodonPos(codonNumb*3)
+ }
+
+ computeCodonTable <- function(testID=1){
+
+ if(testID<=4){
+ # Pre-compute every codons
+ intCounter = 1
+ for(pOne in NUCLEOTIDES){
+ for(pTwo in NUCLEOTIDES){
+ for(pThree in NUCLEOTIDES){
+ codon = paste(pOne,pTwo,pThree,sep="")
+ colnames(CODON_TABLE)[intCounter] = codon
+ intCounter = intCounter + 1
+ CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
+ }
+ }
+ }
+ chars = c("N","A","C","G","T", "-")
+ for(a in chars){
+ for(b in chars){
+ for(c in chars){
+ if(a=="N" | b=="N" | c=="N"){
+ #cat(paste(a,b,c),sep="","\n")
+ CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+ }
+ }
+ }
+ }
+
+ chars = c("-","A","C","G","T")
+ for(a in chars){
+ for(b in chars){
+ for(c in chars){
+ if(a=="-" | b=="-" | c=="-"){
+ #cat(paste(a,b,c),sep="","\n")
+ CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+ }
+ }
+ }
+ }
+ CODON_TABLE <<- as.matrix(CODON_TABLE)
+ }
+ }
+
+ collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
+ #print(length(vecInputSeqs))
+ vecInputSeqs = unique(vecInputSeqs)
+ if(length(vecInputSeqs)==1){
+ return( list( c(vecInputSeqs,glSeq), F) )
+ }else{
+ charInputSeqs <- sapply(vecInputSeqs, function(x){
+ s2c(x)[1:readEnd]
+ })
+ charGLSeq <- s2c(glSeq)
+ matClone <- sapply(1:readEnd, function(i){
+ posNucs = unique(charInputSeqs[i,])
+ posGL = charGLSeq[i]
+ error = FALSE
+ if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
+ return(c("-",error))
+ }
+ if(length(posNucs)==1)
+ return(c(posNucs[1],error))
+ else{
+ if("N"%in%posNucs){
+ error=TRUE
+ }
+ if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
+ return( c(posGL,error) )
+ }else{
+ #return( c(sample(posNucs[posNucs!="N"],1),error) )
+ if(nonTerminalOnly==0){
+ return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )
+ }else{
+ posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
+ posNucsTable = table(posNucs)
+ if(sum(posNucsTable>1)==0){
+ return( c(posGL,error) )
+ }else{
+ return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
+ }
+ }
+
+ }
+ }
+ })
+
+
+ #print(length(vecInputSeqs))
+ return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
+ }
+ }
+
+ # Compute the expected for each sequence-germline pair
+ getExpectedIndividual <- function(matInput){
+ if( any(grep("multicore",search())) ){
+ facGL <- factor(matInput[,2])
+ facLevels = levels(facGL)
+ LisGLs_MutabilityU = mclapply(1:length(facLevels), function(x){
+ computeMutabilities(facLevels[x])
+ })
+ facIndex = match(facGL,facLevels)
+
+ LisGLs_Mutability = mclapply(1:nrow(matInput), function(x){
+ cInput = rep(NA,nchar(matInput[x,1]))
+ cInput[s2c(matInput[x,1])!="N"] = 1
+ LisGLs_MutabilityU[[facIndex[x]]] * cInput
+ })
+
+ LisGLs_Targeting = mclapply(1:dim(matInput)[1], function(x){
+ computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+ })
+
+ LisGLs_MutationTypes = mclapply(1:length(matInput[,2]),function(x){
+ #print(x)
+ computeMutationTypes(matInput[x,2])
+ })
+
+ LisGLs_Exp = mclapply(1:dim(matInput)[1], function(x){
+ computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+ })
+
+ ul_LisGLs_Exp = unlist(LisGLs_Exp)
+ return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+ }else{
+ facGL <- factor(matInput[,2])
+ facLevels = levels(facGL)
+ LisGLs_MutabilityU = lapply(1:length(facLevels), function(x){
+ computeMutabilities(facLevels[x])
+ })
+ facIndex = match(facGL,facLevels)
+
+ LisGLs_Mutability = lapply(1:nrow(matInput), function(x){
+ cInput = rep(NA,nchar(matInput[x,1]))
+ cInput[s2c(matInput[x,1])!="N"] = 1
+ LisGLs_MutabilityU[[facIndex[x]]] * cInput
+ })
+
+ LisGLs_Targeting = lapply(1:dim(matInput)[1], function(x){
+ computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+ })
+
+ LisGLs_MutationTypes = lapply(1:length(matInput[,2]),function(x){
+ #print(x)
+ computeMutationTypes(matInput[x,2])
+ })
+
+ LisGLs_Exp = lapply(1:dim(matInput)[1], function(x){
+ computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+ })
+
+ ul_LisGLs_Exp = unlist(LisGLs_Exp)
+ return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+
+ }
+ }
+
+ # Compute mutabilities of sequence based on the tri-nucleotide model
+ computeMutabilities <- function(paramSeq){
+ seqLen = nchar(paramSeq)
+ seqMutabilites = rep(NA,seqLen)
+
+ gaplessSeq = gsub("-", "", paramSeq)
+ gaplessSeqLen = nchar(gaplessSeq)
+ gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
+
+ if(mutabilityModel!=5){
+ pos<- 3:(gaplessSeqLen)
+ subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))
+ gaplessSeqMutabilites[pos] =
+ tapply( c(
+ getMutability( substr(subSeq,1,3), 3) ,
+ getMutability( substr(subSeq,2,4), 2),
+ getMutability( substr(subSeq,3,5), 1)
+ ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
+ )
+ #Pos 1
+ subSeq = substr(gaplessSeq,1,3)
+ gaplessSeqMutabilites[1] = getMutability(subSeq , 1)
+ #Pos 2
+ subSeq = substr(gaplessSeq,1,4)
+ gaplessSeqMutabilites[2] = mean( c(
+ getMutability( substr(subSeq,1,3), 2) ,
+ getMutability( substr(subSeq,2,4), 1)
+ ),na.rm=T
+ )
+ seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+ return(seqMutabilites)
+ }else{
+
+ pos<- 3:(gaplessSeqLen)
+ subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))
+ gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
+ seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+ return(seqMutabilites)
+ }
+
+ }
+
+ # Returns the mutability of a triplet at a given position
+ getMutability <- function(codon, pos=1:3){
+ triplets <- rownames(mutability)
+ mutability[ match(codon,triplets) ,pos]
+ }
+
+ getMutability5 <- function(fivemer){
+ return(mutability[fivemer])
+ }
+
+ # Returns the substitution probabilty
+ getTransistionProb <- function(nuc){
+ substitution[nuc,]
+ }
+
+ getTransistionProb5 <- function(fivemer){
+ if(any(which(fivemer==colnames(substitution)))){
+ return(substitution[,fivemer])
+ }else{
+ return(array(NA,4))
+ }
+ }
+
+ # Given a nuc, returns the other 3 nucs it can mutate to
+ canMutateTo <- function(nuc){
+ NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
+ }
+
+ # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to
+ canMutateToProb <- function(nuc){
+ substitution[nuc,canMutateTo(nuc)]
+ }
+
+ # Compute targeting, based on precomputed mutatbility & substitution
+ computeTargeting <- function(param_strSeq,param_vecMutabilities){
+
+ if(substitutionModel!=5){
+ vecSeq = s2c(param_strSeq)
+ matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )
+ #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
+ dimnames( matTargeting ) = list(NUCLEOTIDES,1:(length(vecSeq)))
+ return (matTargeting)
+ }else{
+
+ seqLen = nchar(param_strSeq)
+ seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
+ paramSeq <- param_strSeq
+ gaplessSeq = gsub("-", "", paramSeq)
+ gaplessSeqLen = nchar(gaplessSeq)
+ gaplessSeqSubstitution = matrix(NA,ncol=gaplessSeqLen,nrow=4)
+
+ pos<- 3:(gaplessSeqLen)
+ subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))
+ gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
+ seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
+ #matTargeting <- param_vecMutabilities %*% seqsubstitution
+ matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
+ dimnames( matTargeting ) = list(NUCLEOTIDES,1:(seqLen))
+ return (matTargeting)
+ }
+ }
+
+ # Compute the mutations types
+ computeMutationTypes <- function(param_strSeq){
+ #cat(param_strSeq,"\n")
+ #vecSeq = trimToLastCodon(param_strSeq)
+ lenSeq = nchar(param_strSeq)
+ vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
+ matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
+ dimnames( matMutationTypes ) = list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
+ return(matMutationTypes)
+ }
+ computeMutationTypesFast <- function(param_strSeq){
+ matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
+ #dimnames( matMutationTypes ) = list(NUCLEOTIDES,1:(length(vecSeq)))
+ return(matMutationTypes)
+ }
+ mutationTypeOptimized <- function( matOfCodons ){
+ apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } )
+ }
+
+ # Returns a vector of codons 1 mutation away from the given codon
+ permutateAllCodon <- function(codon){
+ cCodon = s2c(codon)
+ matCodons = t(array(cCodon,dim=c(3,12)))
+ matCodons[1:4,1] = NUCLEOTIDES
+ matCodons[5:8,2] = NUCLEOTIDES
+ matCodons[9:12,3] = NUCLEOTIDES
+ apply(matCodons,1,c2s)
+ }
+
+ # Given two codons, tells you if the mutation is R or S (based on your definition)
+ mutationType <- function(codonFrom,codonTo){
+ if(testID==4){
+ if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+ return(NA)
+ }else{
+ mutationType = "S"
+ if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
+ mutationType = "R"
+ }
+ if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+ mutationType = "Stop"
+ }
+ return(mutationType)
+ }
+ }else if(testID==5){
+ if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+ return(NA)
+ }else{
+ if(codonFrom==codonTo){
+ mutationType = "S"
+ }else{
+ codonFrom = s2c(codonFrom)
+ codonTo = s2c(codonTo)
+ mutationType = "Stop"
+ nucOfI = codonFrom[which(codonTo!=codonFrom)]
+ if(nucOfI=="C"){
+ mutationType = "R"
+ }else if(nucOfI=="G"){
+ mutationType = "S"
+ }
+ }
+ return(mutationType)
+ }
+ }else{
+ if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+ return(NA)
+ }else{
+ mutationType = "S"
+ if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
+ mutationType = "R"
+ }
+ if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+ mutationType = "Stop"
+ }
+ return(mutationType)
+ }
+ }
+ }
+
+
+ #given a mat of targeting & it's corresponding mutationtypes returns
+ #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
+ computeExpected <- function(paramTargeting,paramMutationTypes){
+ # Replacements
+ RPos = which(paramMutationTypes=="R")
+ #FWR
+ Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+ #CDR
+ Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+ # Silents
+ SPos = which(paramMutationTypes=="S")
+ #FWR
+ Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+ #CDR
+ Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+
+ return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
+ }
+
+ # Count the mutations in a sequence
+ # each mutation is treated independently
+ analyzeMutations2NucUri_website <- function( rev_in_matrix ){
+ paramGL = rev_in_matrix[2,]
+ paramSeq = rev_in_matrix[1,]
+
+ #Fill seq with GL seq if gapped
+ #if( any(paramSeq=="-") ){
+ # gapPos_Seq = which(paramSeq=="-")
+ # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
+ # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
+ #}
+
+
+ #if( any(paramSeq=="N") ){
+ # gapPos_Seq = which(paramSeq=="N")
+ # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+ # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
+ #}
+
+ analyzeMutations2NucUri( matrix(c( paramGL, paramSeq ),2,length(paramGL),byrow=T) )
+
+ }
+
+ #1 = GL
+ #2 = Seq
+ analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
+ paramGL = in_matrix[2,]
+ paramSeq = in_matrix[1,]
+ paramSeqUri = paramGL
+ #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
+ mutations_val = paramGL != paramSeq
+ if(any(mutations_val)){
+ mutationPos = {1:length(mutations_val)}[mutations_val]
+ mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
+ length_mutations =length(mutationPos)
+ mutationInfo = rep(NA,length_mutations)
+ if(any(mutationPos)){
+
+ pos<- mutationPos
+ pos_array<-array(sapply(pos,getCodonPos))
+ codonGL = paramGL[pos_array]
+
+ codonSeq = sapply(pos,function(x){
+ seqP = paramGL[getCodonPos(x)]
+ muCodonPos = {x-1}%%3+1
+ seqP[muCodonPos] = paramSeq[x]
+ return(seqP)
+ })
+ GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+ Seqcodons = apply(codonSeq,2,c2s)
+ mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
+ names(mutationInfo) = mutationPos
+ }
+ if(any(!is.na(mutationInfo))){
+ return(mutationInfo[!is.na(mutationInfo)])
+ }else{
+ return(NA)
+ }
+
+
+ }else{
+ return (NA)
+ }
+ }
+
+ processNucMutations2 <- function(mu){
+ if(!is.na(mu)){
+ #R
+ if(any(mu=="R")){
+ Rs = mu[mu=="R"]
+ nucNumbs = as.numeric(names(Rs))
+ R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+ R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)
+ }else{
+ R_CDR = 0
+ R_FWR = 0
+ }
+
+ #S
+ if(any(mu=="S")){
+ Ss = mu[mu=="S"]
+ nucNumbs = as.numeric(names(Ss))
+ S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+ S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)
+ }else{
+ S_CDR = 0
+ S_FWR = 0
+ }
+
+
+ retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
+ retVec[is.na(retVec)]=0
+ return(retVec)
+ }else{
+ return(rep(0,4))
+ }
+ }
+
+
+ ## Z-score Test
+ computeZScore <- function(mat, test="Focused"){
+ matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
+ if(test=="Focused"){
+ #Z_Focused_CDR
+ #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+ P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
+ R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+ R_sd=sqrt(R_mean*(1-P))
+ matRes[,1] = (mat[,1]-R_mean)/R_sd
+
+ #Z_Focused_FWR
+ #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+ P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
+ R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+ R_sd=sqrt(R_mean*(1-P))
+ matRes[,2] = (mat[,3]-R_mean)/R_sd
+ }
+
+ if(test=="Local"){
+ #Z_Focused_CDR
+ #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+ P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
+ R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
+ R_sd=sqrt(R_mean*(1-P))
+ matRes[,1] = (mat[,1]-R_mean)/R_sd
+
+ #Z_Focused_FWR
+ #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+ P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
+ R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
+ R_sd=sqrt(R_mean*(1-P))
+ matRes[,2] = (mat[,3]-R_mean)/R_sd
+ }
+
+ if(test=="Imbalanced"){
+ #Z_Focused_CDR
+ #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+ P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
+ R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+ R_sd=sqrt(R_mean*(1-P))
+ matRes[,1] = (mat[,1]-R_mean)/R_sd
+
+ #Z_Focused_FWR
+ #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+ P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
+ R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+ R_sd=sqrt(R_mean*(1-P))
+ matRes[,2] = (mat[,3]-R_mean)/R_sd
+ }
+
+ matRes[is.nan(matRes)] = NA
+ return(matRes)
+ }
+
+ # Return a p-value for a z-score
+ z2p <- function(z){
+ p=NA
+ if( !is.nan(z) && !is.na(z)){
+ if(z>0){
+ p = (1 - pnorm(z,0,1))
+ } else if(z<0){
+ p = (-1 * pnorm(z,0,1))
+ } else{
+ p = 0.5
+ }
+ }else{
+ p = NA
+ }
+ return(p)
+ }
+
+
+ ## Bayesian Test
+
+ # Fitted parameter for the bayesian framework
+BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
+ CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
+
+ # Given x, M & p, returns a pdf
+ calculate_bayes <- function ( x=3, N=10, p=0.33,
+ i=CONST_i,
+ max_sigma=20,length_sigma=4001
+ ){
+ if(!0%in%N){
+ G <- max(length(x),length(N),length(p))
+ x=array(x,dim=G)
+ N=array(N,dim=G)
+ p=array(p,dim=G)
+ sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
+ sigma_1<-log({i/{1-i}}/{p/{1-p}})
+ index<-min(N,60)
+ y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
+ if(!sum(is.na(y))){
+ tmp<-approx(sigma_1,y,sigma_s)$y
+ tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
+ }else{
+ return(NA)
+ }
+ }else{
+ return(NA)
+ }
+ }
+ # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
+ computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
+ flagOneSeq = F
+ if(nrow(mat)==1){
+ mat=rbind(mat,mat)
+ flagOneSeq = T
+ }
+ if(test=="Focused"){
+ #CDR
+ P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+ N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
+ X = c(mat[,1],0)
+ bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesCDR = bayesCDR[-length(bayesCDR)]
+
+ #FWR
+ P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+ N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
+ X = c(mat[,3],0)
+ bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesFWR = bayesFWR[-length(bayesFWR)]
+ }
+
+ if(test=="Local"){
+ #CDR
+ P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
+ N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
+ X = c(mat[,1],0)
+ bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesCDR = bayesCDR[-length(bayesCDR)]
+
+ #FWR
+ P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
+ N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
+ X = c(mat[,3],0)
+ bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesFWR = bayesFWR[-length(bayesFWR)]
+ }
+
+ if(test=="Imbalanced"){
+ #CDR
+ P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
+ N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+ X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
+ bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesCDR = bayesCDR[-length(bayesCDR)]
+
+ #FWR
+ P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
+ N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+ X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
+ bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesFWR = bayesFWR[-length(bayesFWR)]
+ }
+
+ if(test=="ImbalancedSilent"){
+ #CDR
+ P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
+ N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+ X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
+ bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesCDR = bayesCDR[-length(bayesCDR)]
+
+ #FWR
+ P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
+ N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+ X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
+ bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
+ bayesFWR = bayesFWR[-length(bayesFWR)]
+ }
+
+ if(flagOneSeq==T){
+ bayesCDR = bayesCDR[1]
+ bayesFWR = bayesFWR[1]
+ }
+ return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
+ }
+
+ ##Covolution
+ break2chunks<-function(G=1000){
+ base<-2^round(log(sqrt(G),2),0)
+ return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
+ }
+
+ PowersOfTwo <- function(G=100){
+ exponents <- array()
+ i = 0
+ while(G > 0){
+ i=i+1
+ exponents[i] <- floor( log2(G) )
+ G <- G-2^exponents[i]
+ }
+ return(exponents)
+ }
+
+ convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
+ G = ncol(cons)
+ if(G>1){
+ for(gen in log(G,2):1){
+ ll<-seq(from=2,to=2^gen,by=2)
+ sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
+ }
+ }
+ return( cons[,1] )
+ }
+
+ convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
+ if(length(ncol(cons))) G<-ncol(cons)
+ groups <- PowersOfTwo(G)
+ matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
+ startIndex = 1
+ for( i in 1:length(groups) ){
+ stopIndex <- 2^groups[i] + startIndex - 1
+ if(stopIndex!=startIndex){
+ matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
+ startIndex = stopIndex + 1
+ }
+ else {
+ if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
+ else matG[,i] <- cons
+ #startIndex = stopIndex + 1
+ }
+ }
+ return( list( matG, groups ) )
+ }
+
+ weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
+ lx<-length(x)
+ ly<-length(y)
+ if({lx1){
+ while( i1 & Length_Postrior<=Threshold){
+ cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+ listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+ y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+ return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+ }else if(Length_Postrior==1) return(listPosteriors[[1]])
+ else if(Length_Postrior==0) return(NA)
+ else {
+ cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+ y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
+ return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+ }
+ }
+
+ fastConv<-function(cons, max_sigma=20, length_sigma=4001){
+ chunks<-break2chunks(G=ncol(cons))
+ if(ncol(cons)==3) chunks<-2:1
+ index_chunks_end <- cumsum(chunks)
+ index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
+ index_chunks <- cbind(index_chunks_start,index_chunks_end)
+
+ case <- sum(chunks!=chunks[1])
+ if(case==1) End <- max(1,((length(index_chunks)/2)-1))
+ else End <- max(1,((length(index_chunks)/2)))
+
+ firsts <- sapply(1:End,function(i){
+ indexes<-index_chunks[i,1]:index_chunks[i,2]
+ convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
+ })
+ if(case==0){
+ result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
+ }else if(case==1){
+ last<-list(calculate_bayesGHelper(
+ convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
+ ),0)
+ result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
+ result<-calculate_bayesGHelper(
+ list(
+ cbind(
+ result_first,last[[1]]),
+ c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
+ )
+ )
+ }
+ return(as.vector(result))
+ }
+
+ # Computes the 95% CI for a pdf
+ calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+ if(length(Pdf)!=length_sigma) return(NA)
+ sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+ cdf = cumsum(Pdf)
+ cdf = cdf/cdf[length(cdf)]
+ return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) )
+ }
+
+ # Computes a mean for a pdf
+ calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
+ if(length(Pdf)!=length_sigma) return(NA)
+ sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+ norm = {length_sigma-1}/2/max_sigma
+ return( (Pdf%*%sigma_s/norm) )
+ }
+
+ # Returns the mean, and the 95% CI for a pdf
+ calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+ if(is.na(Pdf))
+ return(rep(NA,3))
+ bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
+ bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
+ return(c(bMean, bCI))
+ }
+
+ # Computes the p-value of a pdf
+ computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
+ if(length(Pdf)>1){
+ norm = {length_sigma-1}/2/max_sigma
+ pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
+ if(pVal>0.5){
+ pVal = pVal-1
+ }
+ return(pVal)
+ }else{
+ return(NA)
+ }
+ }
+
+ # Compute p-value of two distributions
+ compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+ #print(c(length(dens1),length(dens2)))
+ if(length(dens1)>1 & length(dens2)>1 ){
+ dens1<-dens1/sum(dens1)
+ dens2<-dens2/sum(dens2)
+ cum2 <- cumsum(dens2)-dens2/2
+ tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+ #print(tmp)
+ if(tmp>0.5)tmp<-tmp-1
+ return( tmp )
+ }
+ else {
+ return(NA)
+ }
+ #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+ }
+
+ # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
+ numberOfSeqsWithMutations <- function(matMutations,test=1){
+ if(test==4)test=2
+ cdrSeqs <- 0
+ fwrSeqs <- 0
+ if(test==1){#focused
+ cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
+ fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
+ if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+ if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0)
+ }
+ if(test==2){#local
+ cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
+ fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
+ if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+ if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0)
+ }
+ return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
+}
+
+
+
+shadeColor <- function(sigmaVal=NA,pVal=NA){
+ if(is.na(sigmaVal) & is.na(pVal)) return(NA)
+ if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
+ if(is.na(pVal) || pVal==1 || pVal==0){
+ returnColor = "#FFFFFF";
+ }else{
+ colVal=abs(pVal);
+
+ if(sigmaVal<0){
+ if(colVal>0.1)
+ returnColor = "#CCFFCC";
+ if(colVal<=0.1)
+ returnColor = "#99FF99";
+ if(colVal<=0.050)
+ returnColor = "#66FF66";
+ if(colVal<=0.010)
+ returnColor = "#33FF33";
+ if(colVal<=0.005)
+ returnColor = "#00FF00";
+
+ }else{
+ if(colVal>0.1)
+ returnColor = "#FFCCCC";
+ if(colVal<=0.1)
+ returnColor = "#FF9999";
+ if(colVal<=0.05)
+ returnColor = "#FF6666";
+ if(colVal<=0.01)
+ returnColor = "#FF3333";
+ if(colVal<0.005)
+ returnColor = "#FF0000";
+ }
+ }
+
+ return(returnColor)
+}
+
+
+
+plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
+ if(!log){
+ x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+ y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+ }else {
+ if(log==2){
+ x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+ y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+ }
+ if(log==1){
+ x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+ y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+ }
+ if(log==3){
+ x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+ y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+ }
+ }
+ return(c("x"=x,"y"=y))
+}
+
+# SHMulation
+
+ # Based on targeting, introduce a single mutation & then update the targeting
+ oneMutation <- function(){
+ # Pick a postion + mutation
+ posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
+ posNucNumb = ceiling(posMutation/4) # Nucleotide number
+ posNucKind = 4 - ( (posNucNumb*4) - posMutation ) # Nuc the position mutates to
+
+ #mutate the simulation sequence
+ seqSimVec <- s2c(seqSim)
+ seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
+ seqSim <<- c2s(seqSimVec)
+
+ #update Mutability, Targeting & MutationsTypes
+ updateMutabilityNTargeting(posNucNumb)
+
+ #return(c(posNucNumb,NUCLEOTIDES[posNucKind]))
+ return(posNucNumb)
+ }
+
+ updateMutabilityNTargeting <- function(position){
+ min_i<-max((position-2),1)
+ max_i<-min((position+2),nchar(seqSim))
+ min_ii<-min(min_i,3)
+
+ #mutability - update locally
+ seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
+
+
+ #targeting - compute locally
+ seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])
+ seqTargeting[is.na(seqTargeting)] <<- 0
+ #mutCodonPos = getCodonPos(position)
+ mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
+ #cat(mutCodonPos,"\n")
+ mutTypeCodon = getCodonPos(position)
+ seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) )
+ # Stop = 0
+ if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
+ seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
+ }
+
+
+ #Selection
+ selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))
+ # CDR
+ selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
+ seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR] * exp(selCDR)
+ seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
+
+ # FWR
+ selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
+ seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR] * exp(selFWR)
+ seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K
+
+ }
+
+
+
+ # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.
+ validateMutation <- function(){
+ if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
+ uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
+ mutatedPositions[uniqueMutationsIntroduced] <<- mutatedPos
+ }else{
+ if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
+ mutatedPositions <<- mutatedPositions[-which(mutatedPositions==mutatedPos)]
+ uniqueMutationsIntroduced <<- uniqueMutationsIntroduced - 1
+ }
+ }
+ }
+
+
+
+ # Places text (labels) at normalized coordinates
+ myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
+ par(xpd=TRUE)
+ if(!log)
+ text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
+ else {
+ if(log==2)
+ text(
+ par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
+ 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+ w,cex=cex,adj=adj,col=thecol)
+ if(log==1)
+ text(
+ 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+ par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
+ w,cex=cex,adj=adj,col=thecol)
+ if(log==3)
+ text(
+ 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+ 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+ w,cex=cex,adj=adj,col=thecol)
+ }
+ par(xpd=FALSE)
+ }
+
+
+
+ # Count the mutations in a sequence
+ analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
+
+ paramGL = s2c(matInput[inputMatrixIndex,2])
+ paramSeq = s2c(matInput[inputMatrixIndex,1])
+
+ #if( any(paramSeq=="N") ){
+ # gapPos_Seq = which(paramSeq=="N")
+ # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+ # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
+ #}
+ mutations_val = paramGL != paramSeq
+
+ if(any(mutations_val)){
+ mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]
+ length_mutations =length(mutationPos)
+ mutationInfo = rep(NA,length_mutations)
+
+ pos<- mutationPos
+ pos_array<-array(sapply(pos,getCodonPos))
+ codonGL = paramGL[pos_array]
+ codonSeqWhole = paramSeq[pos_array]
+ codonSeq = sapply(pos,function(x){
+ seqP = paramGL[getCodonPos(x)]
+ muCodonPos = {x-1}%%3+1
+ seqP[muCodonPos] = paramSeq[x]
+ return(seqP)
+ })
+ GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+ SeqcodonsWhole = apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)
+ Seqcodons = apply(codonSeq,2,c2s)
+
+ mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
+ names(mutationInfo) = mutationPos
+
+ mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
+ names(mutationInfoWhole) = mutationPos
+
+ mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+ mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+
+ if(any(!is.na(mutationInfo))){
+
+ #Filter based on Stop (at the codon level)
+ if(seqWithStops==1){
+ nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+ mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+ mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+ }else{
+ countStops = sum(mutationInfoWhole=="Stop")
+ if(seqWithStops==2 & countStops==0) mutationInfo = NA
+ if(seqWithStops==3 & countStops>0) mutationInfo = NA
+ }
+
+ if(any(!is.na(mutationInfo))){
+ #Filter mutations based on multipleMutation
+ if(multipleMutation==1 & !is.na(mutationInfo)){
+ mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+ tableMutationCodons <- table(mutationCodons)
+ codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+ if(any(codonsWithMultipleMutations)){
+ #remove the nucleotide mutations in the codons with multiple mutations
+ mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+ #replace those codons with Ns in the input sequence
+ paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+ matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+ }
+ }
+
+ #Filter mutations based on the model
+ if(any(mutationInfo)==T | is.na(any(mutationInfo))){
+
+ if(model==1 & !is.na(mutationInfo)){
+ mutationInfo <- mutationInfo[mutationInfo=="S"]
+ }
+ if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
+ else return(NA)
+ }else{
+ return(NA)
+ }
+ }else{
+ return(NA)
+ }
+
+
+ }else{
+ return(NA)
+ }
+
+
+ }else{
+ return (NA)
+ }
+ }
+
+ analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
+
+ paramGL = s2c(inputArray[2])
+ paramSeq = s2c(inputArray[1])
+ inputSeq <- inputArray[1]
+ #if( any(paramSeq=="N") ){
+ # gapPos_Seq = which(paramSeq=="N")
+ # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+ # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
+ #}
+ mutations_val = paramGL != paramSeq
+
+ if(any(mutations_val)){
+ mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]
+ length_mutations =length(mutationPos)
+ mutationInfo = rep(NA,length_mutations)
+
+ pos<- mutationPos
+ pos_array<-array(sapply(pos,getCodonPos))
+ codonGL = paramGL[pos_array]
+ codonSeqWhole = paramSeq[pos_array]
+ codonSeq = sapply(pos,function(x){
+ seqP = paramGL[getCodonPos(x)]
+ muCodonPos = {x-1}%%3+1
+ seqP[muCodonPos] = paramSeq[x]
+ return(seqP)
+ })
+ GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+ SeqcodonsWhole = apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)
+ Seqcodons = apply(codonSeq,2,c2s)
+
+ mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
+ names(mutationInfo) = mutationPos
+
+ mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
+ names(mutationInfoWhole) = mutationPos
+
+ mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+ mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+
+ if(any(!is.na(mutationInfo))){
+
+ #Filter based on Stop (at the codon level)
+ if(seqWithStops==1){
+ nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+ mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+ mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+ }else{
+ countStops = sum(mutationInfoWhole=="Stop")
+ if(seqWithStops==2 & countStops==0) mutationInfo = NA
+ if(seqWithStops==3 & countStops>0) mutationInfo = NA
+ }
+
+ if(any(!is.na(mutationInfo))){
+ #Filter mutations based on multipleMutation
+ if(multipleMutation==1 & !is.na(mutationInfo)){
+ mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+ tableMutationCodons <- table(mutationCodons)
+ codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+ if(any(codonsWithMultipleMutations)){
+ #remove the nucleotide mutations in the codons with multiple mutations
+ mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+ #replace those codons with Ns in the input sequence
+ paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+ #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+ inputSeq <- c2s(paramSeq)
+ }
+ }
+
+ #Filter mutations based on the model
+ if(any(mutationInfo)==T | is.na(any(mutationInfo))){
+
+ if(model==1 & !is.na(mutationInfo)){
+ mutationInfo <- mutationInfo[mutationInfo=="S"]
+ }
+ if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
+ else return(list(NA,inputSeq))
+ }else{
+ return(list(NA,inputSeq))
+ }
+ }else{
+ return(list(NA,inputSeq))
+ }
+
+
+ }else{
+ return(list(NA,inputSeq))
+ }
+
+
+ }else{
+ return (list(NA,inputSeq))
+ }
+ }
+
+ # triMutability Background Count
+ buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
+
+ #rowOrigMatInput = matInput[inputMatrixIndex,]
+ seqGL = gsub("-", "", matInput[inputMatrixIndex,2])
+ seqInput = gsub("-", "", matInput[inputMatrixIndex,1])
+ #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
+ tempInput <- cbind(seqInput,seqGL)
+ seqLength = nchar(seqGL)
+ list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
+ mutationCount <- list_analyzeMutationsFixed[[1]]
+ seqInput <- list_analyzeMutationsFixed[[2]]
+ BackgroundMatrix = mutabilityMatrix
+ MutationMatrix = mutabilityMatrix
+ MutationCountMatrix = mutabilityMatrix
+ if(!is.na(mutationCount)){
+ if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")0)) ){
+
+ fivermerStartPos = 1:(seqLength-4)
+ fivemerLength <- length(fivermerStartPos)
+ fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+ fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+
+ #Background
+ for(fivemerIndex in 1:fivemerLength){
+ fivemer = fivemerGL[fivemerIndex]
+ if(!any(grep("N",fivemer))){
+ fivemerCodonPos = fivemerCodon(fivemerIndex)
+ fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3])
+ fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])
+
+ # All mutations model
+ #if(!any(grep("N",fivemerReadingFrameCodon))){
+ if(model==0){
+ if(stopMutations==0){
+ if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
+ BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)
+ }else{
+ if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
+ positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
+ BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
+ }
+ }
+ }else{ # Only silent mutations
+ if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
+ positionWithinCodon = which(fivemerCodonPos==3)
+ BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
+ }
+ }
+ #}
+ }
+ }
+
+ #Mutations
+ if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+ if(model==1) mutationCount = mutationCount[mutationCount=="S"]
+ mutationPositions = as.numeric(names(mutationCount))
+ mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+ mutationPositions = mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+ countMutations = 0
+ for(mutationPosition in mutationPositions){
+ fivemerIndex = mutationPosition-2
+ fivemer = fivemerSeq[fivemerIndex]
+ GLfivemer = fivemerGL[fivemerIndex]
+ fivemerCodonPos = fivemerCodon(fivemerIndex)
+ fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3])
+ fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
+ if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
+ if(model==0){
+ countMutations = countMutations + 1
+ MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
+ MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)
+ }else{
+ if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
+ countMutations = countMutations + 1
+ positionWithinCodon = which(fivemerCodonPos==3)
+ glNuc = substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+ inputNuc = substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+ MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
+ MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)
+ }
+ }
+ }
+ }
+
+ seqMutability = MutationMatrix/BackgroundMatrix
+ seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+ #cat(inputMatrixIndex,"\t",countMutations,"\n")
+ return(list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))
+
+ }
+ }
+
+ }
+
+ #Returns the codon position containing the middle nucleotide
+ fivemerCodon <- function(fivemerIndex){
+ codonPos = list(2:4,1:3,3:5)
+ fivemerType = fivemerIndex%%3
+ return(codonPos[[fivemerType+1]])
+ }
+
+ #returns probability values for one mutation in codons resulting in R, S or Stop
+ probMutations <- function(typeOfMutation){
+ matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))
+ for(codon in rownames(matMutationProb)){
+ if( !any(grep("N",codon)) ){
+ for(muPos in 1:3){
+ matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
+ glNuc = matCodon[1,muPos]
+ matCodon[,muPos] = canMutateTo(glNuc)
+ substitutionRate = substitution[glNuc,matCodon[,muPos]]
+ typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
+ matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
+ }
+ }
+ }
+
+ return(matMutationProb)
+ }
+
+
+
+
+#Mapping Trinucleotides to fivemers
+mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
+ rownames(triMutability) <- triMutability_Names
+ Fivemer<-rep(NA,1024)
+ names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
+ Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
+ Fivemer<-Fivemer/sum(Fivemer)
+ return(Fivemer)
+}
+
+collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+ Indices<-substring(names(Fivemer),3,3)==NUC
+ Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+ tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
+}
+
+
+
+CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+ Indices<-substring(names(Fivemer),3,3)==NUC
+ Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+ tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
+}
+
+#Uses the real counts of the mutated fivemers
+CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
+ Indices<-substring(names(Fivemer),3,3)==NUC
+ Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+ tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
+}
+
+bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
+N<-sum(x)
+if(N){
+p<-x/N
+k<-length(x)-1
+tmp<-rmultinom(M, size = N, prob=p)
+tmp_p<-apply(tmp,2,function(y)y/N)
+(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
+}
+else return(matrix(0,2,length(x)))
+}
+
+
+
+
+bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
+
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
+(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
+}
+
+
+
+p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
+n=sum(x_obs)
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
+tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
+sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
+sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
+}
+
+#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
+# Remove SNPs from IMGT germline segment alleles
+generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
+ repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+ alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
+ SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
+ Indices<-NULL
+ for(i in 1:length(x)){
+ firstSeq = s2c(x[[1]])
+ iSeq = s2c(x[[i]])
+ Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="." ))
+ }
+ return(sort(unique(Indices)))
+ })
+ repertoireOut <- repertoireIn
+ repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
+ alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
+ geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
+ alleleSeq <- s2c(repertoireOut[[repertoireName]])
+ alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
+ alleleSeq <- c2s(alleleSeq)
+ repertoireOut[[repertoireName]] <- alleleSeq
+ })
+ names(repertoireOut) <- names(repertoireIn)
+ write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)
+
+}
+
+
+
+
+
+
+############
+groupBayes2 = function(indexes, param_resultMat){
+
+ BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
+ BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
+ #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
+ #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
+ #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
+ #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
+ return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
+ "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
+ #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
+ #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
+# "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
+# "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
+
+
+}
+
+
+calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
+ G <- max(length(x),length(N),length(p))
+ x=array(x,dim=G)
+ N=array(N,dim=G)
+ p=array(p,dim=G)
+
+ indexOfZero = N>0 & p>0
+ N = N[indexOfZero]
+ x = x[indexOfZero]
+ p = p[indexOfZero]
+ G <- length(x)
+
+ if(G){
+
+ cons<-array( dim=c(length_sigma,G) )
+ if(G==1) {
+ return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
+ }
+ else {
+ for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
+ listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+ y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+ return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+ }
+ }else{
+ return(NA)
+ }
+}
+
+
+calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
+ matG <- listMatG[[1]]
+ groups <- listMatG[[2]]
+ i = 1
+ resConv <- matG[,i]
+ denom <- 2^groups[i]
+ if(length(groups)>1){
+ while( i0)) ){
+
+# ONEmerStartPos = 1:(seqLength)
+# ONEmerLength <- length(ONEmerStartPos)
+ ONEmerGL <- s2c(seqGL)
+ ONEmerSeq <- s2c(seqInput)
+
+ #Background
+ for(ONEmerIndex in 1:seqLength){
+ ONEmer = ONEmerGL[ONEmerIndex]
+ if(ONEmer!="N"){
+ ONEmerCodonPos = getCodonPos(ONEmerIndex)
+ ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos])
+ ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )
+
+ # All mutations model
+ #if(!any(grep("N",ONEmerReadingFrameCodon))){
+ if(model==0){
+ if(stopMutations==0){
+ if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
+ BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)
+ }else{
+ if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
+ positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
+ BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+ }
+ }
+ }else{ # Only silent mutations
+ if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
+ positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+ BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+ }
+ }
+ }
+ }
+ }
+
+ #Mutations
+ if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+ if(model==1) mutationCount = mutationCount[mutationCount=="S"]
+ mutationPositions = as.numeric(names(mutationCount))
+ mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+ mutationPositions = mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+ countMutations = 0
+ for(mutationPosition in mutationPositions){
+ ONEmerIndex = mutationPosition
+ ONEmer = ONEmerSeq[ONEmerIndex]
+ GLONEmer = ONEmerGL[ONEmerIndex]
+ ONEmerCodonPos = getCodonPos(ONEmerIndex)
+ ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])
+ ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])
+ if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
+ if(model==0){
+ countMutations = countMutations + 1
+ MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
+ MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)
+ }else{
+ if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
+ countMutations = countMutations + 1
+ positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+ glNuc = substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+ inputNuc = substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+ MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
+ MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)
+ }
+ }
+ }
+ }
+
+ seqMutability = MutationMatrix/BackgroundMatrix
+ seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+ #cat(inputMatrixIndex,"\t",countMutations,"\n")
+ return(list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))
+# tmp<-list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
+ }
+ }
+
+################
+# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
+
+trim <- function(s, recode.factor=TRUE, ...)
+ UseMethod("trim", s)
+
+trim.default <- function(s, recode.factor=TRUE, ...)
+ s
+
+trim.character <- function(s, recode.factor=TRUE, ...)
+{
+ s <- sub(pattern="^ +", replacement="", x=s)
+ s <- sub(pattern=" +$", replacement="", x=s)
+ s
+}
+
+trim.factor <- function(s, recode.factor=TRUE, ...)
+{
+ levels(s) <- trim(levels(s))
+ if(recode.factor) {
+ dots <- list(x=s, ...)
+ if(is.null(dots$sort)) dots$sort <- sort
+ s <- do.call(what=reorder.factor, args=dots)
+ }
+ s
+}
+
+trim.list <- function(s, recode.factor=TRUE, ...)
+ lapply(s, trim, recode.factor=recode.factor, ...)
+
+trim.data.frame <- function(s, recode.factor=TRUE, ...)
+{
+ s[] <- trim.list(s, recode.factor=recode.factor, ...)
+ s
+}
+#######################################
+# Compute the expected for each sequence-germline pair by codon
+getExpectedIndividualByCodon <- function(matInput){
+if( any(grep("multicore",search())) ){
+ facGL <- factor(matInput[,2])
+ facLevels = levels(facGL)
+ LisGLs_MutabilityU = mclapply(1:length(facLevels), function(x){
+ computeMutabilities(facLevels[x])
+ })
+ facIndex = match(facGL,facLevels)
+
+ LisGLs_Mutability = mclapply(1:nrow(matInput), function(x){
+ cInput = rep(NA,nchar(matInput[x,1]))
+ cInput[s2c(matInput[x,1])!="N"] = 1
+ LisGLs_MutabilityU[[facIndex[x]]] * cInput
+ })
+
+ LisGLs_Targeting = mclapply(1:dim(matInput)[1], function(x){
+ computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+ })
+
+ LisGLs_MutationTypes = mclapply(1:length(matInput[,2]),function(x){
+ #print(x)
+ computeMutationTypes(matInput[x,2])
+ })
+
+ LisGLs_R_Exp = mclapply(1:nrow(matInput), function(x){
+ Exp_R <- rollapply(as.zoo(1:readEnd),width=3,by=3,
+ function(codonNucs){
+ RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R")
+ sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T )
+ }
+ )
+ })
+
+ LisGLs_S_Exp = mclapply(1:nrow(matInput), function(x){
+ Exp_S <- rollapply(as.zoo(1:readEnd),width=3,by=3,
+ function(codonNucs){
+ SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")
+ sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+ }
+ )
+ })
+
+ Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
+ Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
+ return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
+ }else{
+ facGL <- factor(matInput[,2])
+ facLevels = levels(facGL)
+ LisGLs_MutabilityU = lapply(1:length(facLevels), function(x){
+ computeMutabilities(facLevels[x])
+ })
+ facIndex = match(facGL,facLevels)
+
+ LisGLs_Mutability = lapply(1:nrow(matInput), function(x){
+ cInput = rep(NA,nchar(matInput[x,1]))
+ cInput[s2c(matInput[x,1])!="N"] = 1
+ LisGLs_MutabilityU[[facIndex[x]]] * cInput
+ })
+
+ LisGLs_Targeting = lapply(1:dim(matInput)[1], function(x){
+ computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+ })
+
+ LisGLs_MutationTypes = lapply(1:length(matInput[,2]),function(x){
+ #print(x)
+ computeMutationTypes(matInput[x,2])
+ })
+
+ LisGLs_R_Exp = lapply(1:nrow(matInput), function(x){
+ Exp_R <- rollapply(as.zoo(1:readEnd),width=3,by=3,
+ function(codonNucs){
+ RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R")
+ sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T )
+ }
+ )
+ })
+
+ LisGLs_S_Exp = lapply(1:nrow(matInput), function(x){
+ Exp_S <- rollapply(as.zoo(1:readEnd),width=3,by=3,
+ function(codonNucs){
+ SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")
+ sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+ }
+ )
+ })
+
+ Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
+ Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
+ return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
+ }
+}
+
+# getObservedMutationsByCodon <- function(listMutations){
+# numbSeqs <- length(listMutations)
+# obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+# obsMu_S <- obsMu_R
+# temp <- mclapply(1:length(listMutations), function(i){
+# arrMutations = listMutations[[i]]
+# RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+# RPos <- sapply(RPos,getCodonNumb)
+# if(any(RPos)){
+# tabR <- table(RPos)
+# obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+# }
+#
+# SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+# SPos <- sapply(SPos,getCodonNumb)
+# if(any(SPos)){
+# tabS <- table(SPos)
+# obsMu_S[i,names(tabS)] <<- tabS
+# }
+# }
+# )
+# return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) )
+# }
+
+getObservedMutationsByCodon <- function(listMutations){
+ numbSeqs <- length(listMutations)
+ obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+ obsMu_S <- obsMu_R
+ temp <- lapply(1:length(listMutations), function(i){
+ arrMutations = listMutations[[i]]
+ RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+ RPos <- sapply(RPos,getCodonNumb)
+ if(any(RPos)){
+ tabR <- table(RPos)
+ obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+ }
+
+ SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+ SPos <- sapply(SPos,getCodonNumb)
+ if(any(SPos)){
+ tabS <- table(SPos)
+ obsMu_S[i,names(tabS)] <<- tabS
+ }
+ }
+ )
+ return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) )
+}
+
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/Baseline_Main.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/Baseline_Main.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,388 @@
+#########################################################################################
+# License Agreement
+#
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE
+# OR COPYRIGHT LAW IS PROHIBITED.
+#
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+op <- options();
+options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
+library('seqinr')
+if( F & Sys.info()[1]=="Linux"){
+ library("multicore")
+}
+
+# Load functions and initialize global variables
+source("Baseline_Functions.r")
+
+# Initialize parameters with user provided arguments
+ arg <- commandArgs(TRUE)
+ #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
+ #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
+ #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
+ testID <- as.numeric(arg[1]) # 1 = Focused, 2 = Local
+ species <- as.numeric(arg[2]) # 1 = Human. 2 = Mouse
+ substitutionModel <- as.numeric(arg[3]) # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
+ mutabilityModel <- as.numeric(arg[4]) # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002) , 5 = FiveS
+ clonal <- as.numeric(arg[5]) # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
+ fixIndels <- as.numeric(arg[6]) # 0 = Do nothing, 1 = Try and fix Indels
+ region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
+ inputFilePath <- arg[8] # Full path to input file
+ outputPath <- arg[9] # Full path to location of output files
+ outputID <- arg[10] # ID for session output
+
+
+ if(testID==5){
+ traitChangeModel <- 1
+ if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11]) # 1 <- Chothia 1998
+ initializeTraitChange(traitChangeModel)
+ }
+
+# Initialize other parameters/variables
+
+ # Initialzie the codon table ( definitions of R/S )
+ computeCodonTable(testID)
+
+ # Initialize
+ # Test Name
+ testName<-"Focused"
+ if(testID==2) testName<-"Local"
+ if(testID==3) testName<-"Imbalanced"
+ if(testID==4) testName<-"ImbalancedSilent"
+
+ # Indel placeholders initialization
+ indelPos <- NULL
+ delPos <- NULL
+ insPos <- NULL
+
+ # Initialize in Tranistion & Mutability matrixes
+ substitution <- initializeSubstitutionMatrix(substitutionModel,species)
+ mutability <- initializeMutabilityMatrix(mutabilityModel,species)
+
+ # FWR/CDR boundaries
+ flagTrim <- F
+ if( is.na(region[7])){
+ flagTrim <- T
+ region[7]<-region[6]
+ }
+ readStart = min(region,na.rm=T)
+ readEnd = max(region,na.rm=T)
+ if(readStart>1){
+ region = region - (readStart - 1)
+ }
+ region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
+ region_Cod = region
+
+ readStart = (readStart*3)-2
+ readEnd = (readEnd*3)
+
+ FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
+ rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
+ rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
+ rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
+ rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
+ rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
+ )
+ CDR_Nuc <- (1-FWR_Nuc)
+ CDR_Nuc <- as.logical(CDR_Nuc)
+ FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
+ CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
+
+ FWR_Codon <- c( rep(TRUE,(region[2])),
+ rep(FALSE,(region[3]-region[2])),
+ rep(TRUE,(region[4]-region[3])),
+ rep(FALSE,(region[5]-region[4])),
+ rep(TRUE,(region[6]-region[5])),
+ rep(FALSE,(region[7]-region[6]))
+ )
+ CDR_Codon <- (1-FWR_Codon)
+ CDR_Codon <- as.logical(CDR_Codon)
+
+
+# Read input FASTA file
+ tryCatch(
+ inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+ , error = function(ex){
+ cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+ q()
+ }
+ )
+
+ if (length(inputFASTA)==1) {
+ cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+ q()
+ }
+
+ # Process sequence IDs/names
+ names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
+
+ # Convert non nucleotide characters to N
+ inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
+ inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
+
+ # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
+ processedInput <- processInputAdvanced(inputFASTA)
+ matInput <- processedInput[[1]]
+ germlines <- processedInput[[2]]
+ lenGermlines = length(unique(germlines))
+ groups <- processedInput[[3]]
+ lenGroups = length(unique(groups))
+ rm(processedInput)
+ rm(inputFASTA)
+
+# # remove clones with less than 2 seqeunces
+# tableGL <- table(germlines)
+# singletons <- which(tableGL<8)
+# rowsToRemove <- match(singletons,germlines)
+# if(any(rowsToRemove)){
+# matInput <- matInput[-rowsToRemove,]
+# germlines <- germlines[-rowsToRemove]
+# groups <- groups[-rowsToRemove]
+# }
+#
+# # remove unproductive seqs
+# nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
+# if(any(nonFuctionalSeqs)){
+# if(sum(nonFuctionalSeqs)==length(germlines)){
+# write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+# q()
+# }
+# matInput <- matInput[-which(nonFuctionalSeqs),]
+# germlines <- germlines[-which(nonFuctionalSeqs)]
+# germlines[1:length(germlines)] <- 1:length(germlines)
+# groups <- groups[-which(nonFuctionalSeqs)]
+# }
+#
+# if(class(matInput)=="character"){
+# write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+# q()
+# }
+#
+# if(nrow(matInput)<10 | is.null(nrow(matInput))){
+# write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+# q()
+# }
+
+# replace leading & trailing "-" with "N:
+ matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
+
+ # Trim (nucleotide) input sequences to the last codon
+ #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon)
+
+# # Check for Indels
+# if(fixIndels){
+# delPos <- fixDeletions(matInput)
+# insPos <- fixInsertions(matInput)
+# }else{
+# # Check for indels
+# indelPos <- checkForInDels(matInput)
+# indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
+# }
+
+ # If indels are present, remove mutations in the seqeunce & throw warning at end
+ #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
+
+ colnames(matInput)=c("Input","Germline")
+
+ # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
+ germlinesOriginal = NULL
+ if(clonal){
+ germlinesOriginal <- germlines
+ collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
+ collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
+ })
+ matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
+ names_groups = tapply(groups,germlines,function(x){names(x[1])})
+ groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})
+ names(groups) = names_groups
+
+ names_germlines = tapply(germlines,germlines,function(x){names(x[1])})
+ germlines = tapply( germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))} )
+ names(germlines) = names_germlines
+ matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})
+ }
+
+
+# Selection Analysis
+
+
+# if (length(germlines)>sequenceLimit) {
+# # Code to parallelize processing goes here
+# stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
+# }
+
+# if (length(germlines)1){
+ groups <- c(groups,lenGroups+1)
+ names(groups)[length(groups)] = "All sequences combined"
+ bayesPDF_groups_cdr[[lenGroups+1]] = groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
+ bayesPDF_groups_fwr[[lenGroups+1]] = groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
+ }
+
+ #Bayesian Outputs
+ bayes_cdr = t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
+ bayes_fwr = t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
+ bayes_germlines_cdr = t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
+ bayes_germlines_fwr = t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
+ bayes_groups_cdr = t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
+ bayes_groups_fwr = t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
+
+ #P-values
+ simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
+ simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
+
+ simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
+ simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
+
+ simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
+ simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
+
+
+ #Format output
+
+ # Round expected mutation frequencies to 3 decimal places
+ matMutationInfo[germlinesOriginal[indelPos],] = NA
+ if(nrow(matMutationInfo)==1){
+ matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
+ }else{
+ matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
+ }
+
+ listPDFs = list()
+ nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
+
+ matOutput = matrix(NA,ncol=18,nrow=nRows)
+ rowNumb = 1
+ for(G in unique(groups)){
+ #print(G)
+ matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
+ listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
+ names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
+ #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
+ gs = unique(germlines[groups==G])
+ rowNumb = rowNumb+1
+ if( !is.na(gs) ){
+ for( g in gs ){
+ matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
+ listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
+ names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
+ rowNumb = rowNumb+1
+ indexesOfInterest = which(germlines==g)
+ numbSeqsOfInterest = length(indexesOfInterest)
+ rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
+ matOutput[rowNumb,] = matrix( c( rep("Sequence",numbSeqsOfInterest),
+ rownames(matInput)[indexesOfInterest],
+ c(matMutationInfo[indexesOfInterest,1:4]),
+ c(matMutationInfo[indexesOfInterest,5:8]),
+ c(bayes_cdr[indexesOfInterest,]),
+ c(bayes_fwr[indexesOfInterest,]),
+ c(simgaP_cdr[indexesOfInterest]),
+ c(simgaP_fwr[indexesOfInterest])
+ ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
+ increment=0
+ for( ioi in indexesOfInterest){
+ listPDFs[[min(rowNumb)+increment]] = list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
+ names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
+ increment = increment + 1
+ }
+ rowNumb=max(rowNumb)+1
+
+ }
+ }
+ }
+ colsToFormat = 11:18
+ matOutput[,colsToFormat] = formatC( matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) , digits=3)
+ matOutput[matOutput== " NaN"] = NA
+
+
+
+ colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
+ "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
+ paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
+ paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
+ )
+ fileName = paste(outputPath,outputID,".txt",sep="")
+ write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
+ fileName = paste(outputPath,outputID,".RData",sep="")
+ save(listPDFs,file=fileName)
+
+indelWarning = FALSE
+if(sum(indelPos)>0){
+ indelWarning = "Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
+ indelWarning = paste( indelWarning , "
", sep="" )
+ for(indels in names(indelPos)[indelPos]){
+ indelWarning = paste( indelWarning , "", indels, " ", sep="" )
+ }
+ indelWarning = paste( indelWarning , "
", sep="" )
+}
+
+cloneWarning = FALSE
+if(clonal==1){
+ if(sum(matInputErrors)>0){
+ cloneWarning = "Warning: The following clones have sequences of unequal length.";
+ cloneWarning = paste( cloneWarning , "
", sep="" )
+ for(clone in names(matInputErrors)[matInputErrors]){
+ cloneWarning = paste( cloneWarning , "", names(germlines)[as.numeric(clone)], " ", sep="" )
+ }
+ cloneWarning = paste( cloneWarning , " ", sep="" )
+ }
+}
+cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/FiveS_Mutability.RData
Binary file baseline/FiveS_Mutability.RData has changed
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/FiveS_Substitution.RData
Binary file baseline/FiveS_Substitution.RData has changed
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,703 @@
+>IGHV1-18*01
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-18*02
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
+>IGHV1-18*03
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1-18*04
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
+>IGHV1-2*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*04
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*05
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
+>IGHV1-24*01
+caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
+>IGHV1-3*01
+caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
+>IGHV1-3*02
+caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
+>IGHV1-38-4*01
+caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
+>IGHV1-45*01
+cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
+>IGHV1-45*02
+cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
+>IGHV1-45*03
+.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
+>IGHV1-46*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-46*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-46*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
+>IGHV1-58*01
+caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
+>IGHV1-58*02
+caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
+>IGHV1-68*01
+caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
+>IGHV1-69*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*02
+caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1-69*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
+>IGHV1-69*04
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*05
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1-69*06
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*07
+.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
+>IGHV1-69*08
+caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*09
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*10
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*11
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*12
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*13
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*14
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69-2*01
+gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
+>IGHV1-69-2*02
+.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
+>IGHV1-69D*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-8*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
+>IGHV1-8*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
+>IGHV1-NL1*01
+caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
+>IGHV1/OR15-1*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
+>IGHV1/OR15-1*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
+>IGHV1/OR15-1*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
+>IGHV1/OR15-1*04
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
+>IGHV1/OR15-2*01
+caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1/OR15-2*02
+caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1/OR15-2*03
+caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1/OR15-3*01
+caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1/OR15-3*02
+caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1/OR15-3*03
+caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1/OR15-4*01
+caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1/OR15-5*01
+.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
+>IGHV1/OR15-5*02
+caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
+>IGHV1/OR15-9*01
+caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
+>IGHV1/OR21-1*01
+caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
+>IGHV2-10*01
+caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
+>IGHV2-26*01
+caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
+>IGHV2-5*01
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*02
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*03
+................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
+>IGHV2-5*04|
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
+>IGHV2-5*05
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*06
+cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
+>IGHV2-5*08
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*09
+caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-70*01
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70*02
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*03
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*04
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
+>IGHV2-70*05
+..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
+>IGHV2-70*06
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*07
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*08
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*09
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
+>IGHV2-70*10
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70*11
+cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70*12
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-70*13
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
+>IGHV2-70D*04
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70D*14
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2/OR16-5*01
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
+>IGHV3-11*01
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-11*03
+caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
+>IGHV3-11*04
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-11*05
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-11*06
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-13*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-13*02
+gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-13*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
+>IGHV3-13*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-13*05
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-15*01
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*02
+gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*03
+gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*04
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*05
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*06
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*07
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*08
+gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
+>IGHV3-16*01
+gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
+>IGHV3-16*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
+>IGHV3-19*01
+acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
+>IGHV3-20*01
+gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
+>IGHV3-20*02
+gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
+>IGHV3-21*01
+gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-21*02
+gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-21*03
+gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
+>IGHV3-21*04
+gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-22*01
+gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
+>IGHV3-22*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
+>IGHV3-23*01
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*02
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*03
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*05
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
+>IGHV3-23D*01
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23D*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-25*01
+gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
+>IGHV3-25*02
+gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
+>IGHV3-25*03
+gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
+>IGHV3-25*04
+gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
+>IGHV3-25*05
+gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
+>IGHV3-29*01
+gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
+>IGHV3-30*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*02
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30*03
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*04
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*05
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
+>IGHV3-30*06
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*07
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*08
+caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
+>IGHV3-30*09
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*10
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*11
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*12
+caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*13
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*14
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*15
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*16
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*17
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*18
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30*19
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30-2*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
+>IGHV3-30-22*01
+gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
+>IGHV3-30-3*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30-3*02
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30-3*03
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30-33*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
+>IGHV3-30-42*01
+gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
+>IGHV3-30-5*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30-5*02
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30-52*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
+>IGHV3-32*01
+gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
+>AIGHV3-33*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*02
+caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*03
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-33*04
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*05
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*06
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-33-2*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
+>IGHV3-35*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
+>IGHV3-38*01|
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
+>IGHV3-38*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
+>IGHV3-38*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
+>IGHV3-38-3*01
+gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
+>IGHV3-43*01
+gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
+>IGHV3-43*02
+gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
+>IGHV3-43D*01
+gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
+>IGHV3-47*01
+gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
+>IGHV3-47*02
+gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
+>IGHV3-48*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-48*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-48*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
+>IGHV3-48*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-49*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*05
+gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-52*01
+gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
+>IGHV3-52*02
+gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
+>IGHV3-52*03
+gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
+>IGHV3-53*01
+gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-53*02
+gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-53*03
+gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
+>IGHV3-53*04
+gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-54*01
+gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
+>IGHV3-54*02
+gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
+>IGHV3-54*04
+gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
+>IGHV3-62*01
+gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
+>IGHV3-63*01
+gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
+>IGHV3-63*02
+gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
+>IGHV3-64*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
+>IGHV3-64*02
+gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
+>IGHV3-64*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
+>IGHV3-64*04
+caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-64*05
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
+>IGHV3-64D*06
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
+>IGHV3-66*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-66*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
+>IGHV3-66*03
+gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-66*04
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
+>IGHV3-69-1*01
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-69-1*02
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
+>IGHV3-7*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-7*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
+>IGHV3-7*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-71*01
+gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-71*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
+>IGHV3-71*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-72*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
+>IGHV3-72*02
+....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
+>IGHV3-73*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
+>IGHV3-73*02
+gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
+>IGHV3-74*01
+gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
+>IGHV3-74*02
+gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
+>IGHV3-74*03
+gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
+>IGHV3-9*01
+gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
+>IGHV3-9*02
+gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
+>IGHV3-9*03
+gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
+>IGHV3-NL1*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3/OR15-7*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
+>IGHV3/OR15-7*02
+gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
+>IGHV3/OR15-7*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
+>IGHV3/OR15-7*05
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
+>IGHV3/OR16-10*01
+gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
+>IGHV3/OR16-10*02
+gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
+>IGHV3/OR16-10*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
+>IGHV3/OR16-12*01
+gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
+>IGHV3/OR16-13*01
+gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
+>IGHV3/OR16-14*01
+gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
+>IGHV3/OR16-15*01
+gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
+>IGHV3/OR16-15*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
+>IGHV3/OR16-16*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
+>IGHV3/OR16-6*02
+gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
+>IGHV3/OR16-8*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
+>IGHV3/OR16-8*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
+>IGHV3/OR16-9*01
+gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
+>IGHV4-28*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
+>IGHV4-28*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
+>IGHV4-28*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*06
+caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*07
+caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-30-2*01
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-30-2*02
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
+>IGHV4-30-2*03
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
+>IGHV4-30-2*04
+...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-30-2*05
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-2*06
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>XIGHV4-30-4*04
+caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
+>IGHV4-30-4*05
+..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*06
+...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-31*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-31*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-31*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-31*04
+caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
+>IGHV4-31*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
+>IGHV4-31*06
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>IGHV4-31*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>IGHV4-31*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>IGHV4-31*09
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-31*10
+caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
+>IGHV4-34*01
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*02
+caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*03
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-34*04
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*05
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*06
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-34*07
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-34*08
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
+>IGHV4-34*09
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-34*10
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-34*11
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
+>IGHV4-34*12
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
+>IGHV4-34*13
+...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-38-2*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
+>IGHV4-38-2*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-39*01
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
+>IGHV4-39*02
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
+>IGHV4-39*03
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
+>IGHV4-39*04
+..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
+>IGHV4-39*05
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
+>IGHV4-39*06
+cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-39*07
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
+>IGHV4-4*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-4*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-4*05
+caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-4*06
+............................................................
+...............tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-55*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-55*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-55*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-55*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-55*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-55*06
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
+>IGHV4-55*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
+>IGHV4-55*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-55*09
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-59*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-59*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-59*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
+>IGHV4-59*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
+>IGHV4-59*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
+>IGHV4-59*06
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
+>IGHV4-59*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
+>IGHV4-59*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
+>IGHV4-59*09
+...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
+>IGHV4-59*10
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-61*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-61*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-61*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-61*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
+>IGHV4-61*05
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
+>IGHV4-61*06
+...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-61*07
+...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
+>IGHV4-61*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4/OR15-8*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4/OR15-8*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4/OR15-8*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV5-10-1*01
+gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-10-1*02
+gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
+>IGHV5-10-1*03
+gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-10-1*04
+gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-51*01
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
+>IGHV5-51*02
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
+>IGHV5-51*03
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-51*04
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-51*05
+.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
+>IGHV5-78*01
+gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
+>IGHV6-1*01
+caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
+>IGHV6-1*02
+caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
+>IGHV7-34-1*01
+...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
+>IGHV7-34-1*02
+...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
+>IGHV7-4-1*01
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
+>IGHV7-4-1*02
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
+>IGHV7-4-1*03
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
+>IGHV7-4-1*04
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
+>IGHV7-4-1*05
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
+>AIGHV7-40*03|
+ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
+>IGHV7-81*01
+caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/IMGTVHreferencedataset20161215.fa
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/IMGTVHreferencedataset20161215.fa Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,1 @@
+>IGHV1-18*01
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-18*02
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
>IGHV1-18*03
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1-18*04
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-2*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*05
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-24*01
caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-3*01
caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
>IGHV1-3*02
caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
>IGHV1-38-4*01
caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
>IGHV1-45*01
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
>IGHV1-45*02
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
>IGHV1-45*03
.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
>IGHV1-46*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
>IGHV1-58*01
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-58*02
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-68*01
caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
>IGHV1-69*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*02
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
>IGHV1-69*04
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*05
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*06
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*07
.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69*08
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*09
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*10
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*11
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*12
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*13
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*14
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69-2*01
gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-69-2*02
.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69D*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-8*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-8*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-NL1*01
caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
>IGHV1/OR15-1*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
>IGHV1/OR15-1*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-1*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
>IGHV1/OR15-1*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-2*01
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*02
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*03
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*01
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-3*02
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*03
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-4*01
caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-5*01
.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-5*02
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-9*01
caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV1/OR21-1*01
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV2-10*01
caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
>IGHV2-26*01
caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
>IGHV2-5*01
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*02
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*03
................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
>IGHV2-5*04
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
>IGHV2-5*05
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*06
cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
>IGHV2-5*08
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*09
caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*01
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*02
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*03
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
>IGHV2-70*05
..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
>IGHV2-70*06
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*07
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*08
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*09
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
>IGHV2-70*10
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*11
cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*12
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*13
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
>IGHV2-70D*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70D*14
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2/OR16-5*01
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
>IGHV3-11*01
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*03
caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
>IGHV3-11*04
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-11*05
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*06
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-13*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*02
gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
>IGHV3-13*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*05
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-15*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*02
gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*03
gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*04
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*06
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*07
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*08
gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3-16*01
gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-16*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-19*01
acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-20*01
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-20*02
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-21*01
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*02
gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*03
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
>IGHV3-21*04
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-22*01
gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-22*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-23*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*02
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*03
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*05
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
>IGHV3-23D*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-25*01
gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*02
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*03
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
>IGHV3-25*04
gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
>IGHV3-25*05
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-29*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
>IGHV3-30*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*07
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*08
caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-30*09
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*10
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*11
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*12
caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*13
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*14
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*15
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*16
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*17
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*18
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*19
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
>IGHV3-30-22*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
>IGHV3-30-3*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-3*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-3*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-33*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
>IGHV3-30-42*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30-5*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-5*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-52*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
>IGHV3-32*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
>IGHV3-33*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*02
caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
>IGHV3-35*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
>IGHV3-38*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
>IGHV3-38*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38-3*01
gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
>IGHV3-43*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43*02
gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43D*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-47*01
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
>IGHV3-47*02
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
>IGHV3-48*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-48*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-49*01
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*02
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*03
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*04
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-52*01
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
>IGHV3-52*02
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-52*03
gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-53*01
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*02
gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
>IGHV3-53*04
gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
>IGHV3-54*01
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-54*02
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
>IGHV3-54*04
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-62*01
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
>IGHV3-63*01
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
>IGHV3-63*02
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
>IGHV3-64*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*02
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64*04
caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-64*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64D*06
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-66*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-66*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*04
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
>IGHV3-69-1*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-69-1*02
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-7*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
>IGHV3-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*01
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
>IGHV3-71*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-72*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
>IGHV3-72*02
....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
>IGHV3-73*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-73*02
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-74*01
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-74*02
gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
>IGHV3-74*03
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-9*01
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*02
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*03
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
>IGHV3-NL1*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3/OR15-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*02
gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
>IGHV3/OR16-10*01
gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*02
gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
>IGHV3/OR16-12*01
gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
>IGHV3/OR16-13*01
gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-14*01
gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-15*01
gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
>IGHV3/OR16-15*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
>IGHV3/OR16-16*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
>IGHV3/OR16-6*02
gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3/OR16-8*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
>IGHV3/OR16-8*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
>IGHV3/OR16-9*01
gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
>IGHV4-28*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
>IGHV4-28*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
>IGHV4-28*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*06
caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*07
caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-30-2*01
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-2*02
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-30-2*03
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
>IGHV4-30-2*04
...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-30-2*05
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-2*06
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-30-4*04
caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
>IGHV4-30-4*05
..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*06
...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-31*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*04
caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-31*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
>IGHV4-31*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-31*10
caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
>IGHV4-34*01
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*02
caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*03
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*04
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*05
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*06
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*07
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*08
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
>IGHV4-34*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-34*10
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-34*11
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-34*12
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
>IGHV4-34*13
...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-38-2*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
>IGHV4-38-2*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-39*01
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
>IGHV4-39*02
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
>IGHV4-39*03
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-39*04
..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
>IGHV4-39*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-39*06
cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-39*07
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*05
caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*06
...........................................................................tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-55*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
>IGHV4-55*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-55*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-55*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-59*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-59*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-59*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
>IGHV4-59*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
>IGHV4-59*09
...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
>IGHV4-59*10
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-61*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-61*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
>IGHV4-61*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
>IGHV4-61*06
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-61*07
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
>IGHV4-61*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV5-10-1*01
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*02
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
>IGHV5-10-1*03
gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*04
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*01
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*02
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*03
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*04
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*05
.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
>IGHV5-78*01
gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
>IGHV6-1*01
caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV6-1*02
caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV7-34-1*01
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-34-1*02
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-4-1*01
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
>IGHV7-4-1*02
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*03
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
>IGHV7-4-1*04
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*05
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
>IGHV7-40*03
ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
>IGHV7-81*01
caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/IMGTVHreferencedataset20161215.fasta
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/IMGTVHreferencedataset20161215.fasta Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,1 @@
+>IGHV1-18*01
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-18*02
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
>IGHV1-18*03
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1-18*04
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-2*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*05
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-24*01
caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-3*01
caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
>IGHV1-3*02
caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
>IGHV1-38-4*01
caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
>IGHV1-45*01
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
>IGHV1-45*02
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
>IGHV1-45*03
.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
>IGHV1-46*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
>IGHV1-58*01
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-58*02
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-68*01
caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
>IGHV1-69*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*02
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
>IGHV1-69*04
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*05
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*06
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*07
.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69*08
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*09
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*10
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*11
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*12
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*13
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*14
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69-2*01
gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-69-2*02
.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69D*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-8*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-8*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-NL1*01
caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
>IGHV1/OR15-1*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
>IGHV1/OR15-1*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-1*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
>IGHV1/OR15-1*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-2*01
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*02
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*03
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*01
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-3*02
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*03
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-4*01
caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-5*01
.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-5*02
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-9*01
caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV1/OR21-1*01
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV2-10*01
caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
>IGHV2-26*01
caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
>IGHV2-5*01
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*02
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*03
................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
>IGHV2-5*04
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
>IGHV2-5*05
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*06
cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
>IGHV2-5*08
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*09
caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*01
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*02
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*03
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
>IGHV2-70*05
..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
>IGHV2-70*06
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*07
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*08
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*09
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
>IGHV2-70*10
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*11
cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*12
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*13
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
>IGHV2-70D*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70D*14
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2/OR16-5*01
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
>IGHV3-11*01
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*03
caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
>IGHV3-11*04
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-11*05
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*06
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-13*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*02
gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
>IGHV3-13*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*05
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-15*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*02
gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*03
gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*04
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*06
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*07
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*08
gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3-16*01
gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-16*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-19*01
acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-20*01
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-20*02
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-21*01
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*02
gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*03
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
>IGHV3-21*04
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-22*01
gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-22*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-23*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*02
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*03
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*05
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
>IGHV3-23D*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-25*01
gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*02
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*03
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
>IGHV3-25*04
gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
>IGHV3-25*05
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-29*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
>IGHV3-30*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*07
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*08
caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-30*09
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*10
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*11
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*12
caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*13
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*14
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*15
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*16
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*17
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*18
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*19
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
>IGHV3-30-22*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
>IGHV3-30-3*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-3*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-3*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-33*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
>IGHV3-30-42*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30-5*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-5*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-52*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
>IGHV3-32*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
>IGHV3-33*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*02
caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
>IGHV3-35*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
>IGHV3-38*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
>IGHV3-38*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38-3*01
gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
>IGHV3-43*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43*02
gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43D*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-47*01
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
>IGHV3-47*02
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
>IGHV3-48*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-48*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-49*01
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*02
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*03
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*04
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-52*01
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
>IGHV3-52*02
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-52*03
gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-53*01
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*02
gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
>IGHV3-53*04
gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
>IGHV3-54*01
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-54*02
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
>IGHV3-54*04
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-62*01
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
>IGHV3-63*01
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
>IGHV3-63*02
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
>IGHV3-64*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*02
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64*04
caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-64*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64D*06
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-66*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-66*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*04
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
>IGHV3-69-1*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-69-1*02
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-7*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
>IGHV3-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*01
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
>IGHV3-71*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-72*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
>IGHV3-72*02
....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
>IGHV3-73*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-73*02
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-74*01
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-74*02
gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
>IGHV3-74*03
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-9*01
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*02
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*03
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
>IGHV3-NL1*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3/OR15-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*02
gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
>IGHV3/OR16-10*01
gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*02
gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
>IGHV3/OR16-12*01
gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
>IGHV3/OR16-13*01
gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-14*01
gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-15*01
gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
>IGHV3/OR16-15*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
>IGHV3/OR16-16*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
>IGHV3/OR16-6*02
gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3/OR16-8*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
>IGHV3/OR16-8*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
>IGHV3/OR16-9*01
gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
>IGHV4-28*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
>IGHV4-28*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
>IGHV4-28*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*06
caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*07
caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-30-2*01
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-2*02
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-30-2*03
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
>IGHV4-30-2*04
...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-30-2*05
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-2*06
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-30-4*04
caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
>IGHV4-30-4*05
..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*06
...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-31*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*04
caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-31*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
>IGHV4-31*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-31*10
caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
>IGHV4-34*01
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*02
caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*03
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*04
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*05
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*06
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*07
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*08
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
>IGHV4-34*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-34*10
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-34*11
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-34*12
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
>IGHV4-34*13
...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-38-2*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
>IGHV4-38-2*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-39*01
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
>IGHV4-39*02
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
>IGHV4-39*03
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-39*04
..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
>IGHV4-39*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-39*06
cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-39*07
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*05
caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*06
...........................................................................tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-55*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
>IGHV4-55*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-55*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-55*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-59*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-59*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-59*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
>IGHV4-59*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
>IGHV4-59*09
...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
>IGHV4-59*10
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-61*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-61*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
>IGHV4-61*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
>IGHV4-61*06
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-61*07
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
>IGHV4-61*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV5-10-1*01
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*02
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
>IGHV5-10-1*03
gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*04
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*01
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*02
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*03
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*04
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*05
.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
>IGHV5-78*01
gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
>IGHV6-1*01
caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV6-1*02
caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV7-34-1*01
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-34-1*02
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-4-1*01
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
>IGHV7-4-1*02
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*03
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
>IGHV7-4-1*04
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*05
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
>IGHV7-40*03
ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
>IGHV7-81*01
caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/baseline_url.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/baseline_url.txt Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,1 @@
+http://selection.med.yale.edu/baseline/
\ No newline at end of file
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/comparePDFs.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/comparePDFs.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,225 @@
+options("warn"=-1)
+
+#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
+# Compute p-value of two distributions
+compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+#print(c(length(dens1),length(dens2)))
+if(length(dens1)>1 & length(dens2)>1 ){
+ dens1<-dens1/sum(dens1)
+ dens2<-dens2/sum(dens2)
+ cum2 <- cumsum(dens2)-dens2/2
+ tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+ #print(tmp)
+ if(tmp>0.5)tmp<-tmp-1
+ return( tmp )
+ }
+ else {
+ return(NA)
+ }
+ #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+}
+
+
+require("grid")
+arg <- commandArgs(TRUE)
+#arg <- c("300143","4","5")
+arg[!arg=="clonal"]
+input <- arg[1]
+output <- arg[2]
+rowIDs <- as.numeric( sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } ) )
+
+numbSeqs = length(rowIDs)
+
+if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
+ stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
+}
+
+#load( paste("output/",sessionID,".RData",sep="") )
+load( input )
+#input
+
+xMarks = seq(-20,20,length.out=4001)
+
+plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
+ yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
+
+ if(length(xlim==2)){
+ xMin=xlim[1]
+ xMax=xlim[2]
+ } else {
+ xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+ xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+ xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+ xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+
+ xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
+ xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
+ xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
+ xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
+
+ xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
+ xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
+ }
+
+ sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
+ grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
+ x <- sigma
+ pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
+ #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
+ pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
+ grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
+ grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
+ grid.rect()
+ grid.xaxis(gp = gpar(cex=cex/1.1))
+ yticks = pretty(c(-yMax,yMax),8)
+ yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
+ grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
+ if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
+ ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+ grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
+ }
+ if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
+ yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+ grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
+ }
+
+ if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
+ ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+ grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
+ }
+ if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
+ yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+ grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
+ }
+
+ grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
+ grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
+
+ grid.text("All", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
+ grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
+
+ if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
+ pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])
+ pval = formatC(as.numeric(pCDRFWR),digits=3)
+ grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
+ }
+ grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
+ grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
+ popViewport(2)
+}
+#plot_grid_s(1)
+
+
+p2col<-function(p=0.01){
+ breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
+ i<-findInterval(p,breaks)
+ cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
+ rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
+ return(cols[i])
+}
+
+
+plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
+ if(upper){
+ pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])
+ pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
+ pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])
+ pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
+ grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
+ grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
+ grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
+ grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
+
+ grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
+ grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
+
+ grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+ grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+ grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+ grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+
+
+ # grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
+ # grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
+ }
+ else{
+ }
+}
+
+
+##################################################################################
+################## The whole OCD's matrix ########################################
+##################################################################################
+
+#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
+pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
+
+pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
+
+for( seqOne in 1:numbSeqs+1){
+ pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
+ if(seqOne>2){
+ grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+ grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+ grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
+
+ grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
+ grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
+ }
+ grid.rect(gp = gpar(col=grey(0.9)))
+ grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
+ popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+ pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
+ if(seqOne<=numbSeqs){
+ grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+ grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+ grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
+ grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
+ grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
+ }
+ grid.rect(gp = gpar(col=grey(0.9)))
+ grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
+ popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+ for(seqTwo in 1:numbSeqs+1){
+ pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
+ if(seqTwo>seqOne){
+ plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
+ grid.rect()
+ }
+ popViewport(1)
+ }
+}
+
+
+xMin=0
+xMax=0.01
+for(pdf1 in rowIDs){
+ xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+ xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+ xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+ xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+ xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
+ xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
+}
+
+
+
+for(i in 1:numbSeqs+1){
+ for(j in (i-1):numbSeqs){
+ pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
+ grid.rect()
+ plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
+ popViewport(1)
+ }
+}
+
+dev.off()
+
+cat("Success", paste(rowIDs,collapse="_"),sep=":")
+
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/filter.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/filter.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,55 @@
+arg = commandArgs(TRUE)
+summaryfile = arg[1]
+gappedfile = arg[2]
+selection = arg[3]
+output = arg[4]
+print(paste("selection = ", selection))
+
+
+summarydat = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote = "")
+gappeddat = read.table(gappedfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote = "")
+
+fix_column_names = function(df){
+ if("V.DOMAIN.Functionality" %in% names(df)){
+ names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
+ print("found V.DOMAIN.Functionality, changed")
+ }
+ if("V.DOMAIN.Functionality.comment" %in% names(df)){
+ names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
+ print("found V.DOMAIN.Functionality.comment, changed")
+ }
+ return(df)
+}
+
+gappeddat = fix_column_names(gappeddat)
+
+#dat = data.frame(merge(gappeddat, summarydat, by="Sequence.ID", all.x=T))
+
+dat = cbind(gappeddat, summarydat$AA.JUNCTION)
+
+colnames(dat)[length(dat)] = "AA.JUNCTION"
+
+dat$VGene = gsub("^Homsap ", "", dat$V.GENE.and.allele)
+dat$VGene = gsub("[*].*", "", dat$VGene)
+
+dat$DGene = gsub("^Homsap ", "", dat$D.GENE.and.allele)
+dat$DGene = gsub("[*].*", "", dat$DGene)
+
+dat$JGene = gsub("^Homsap ", "", dat$J.GENE.and.allele)
+dat$JGene = gsub("[*].*", "", dat$JGene)
+
+print(str(dat))
+
+dat$past = do.call(paste, c(dat[unlist(strsplit(selection, ","))], sep = ":"))
+
+dat = dat[!duplicated(dat$past), ]
+
+print(paste("Sequences remaining after duplicate filter:", nrow(dat)))
+
+dat = dat[dat$Functionality != "No results" & dat$Functionality != "unproductive",]
+
+print(paste("Sequences remaining after functionality filter:", nrow(dat)))
+
+print(paste("Sequences remaining:", nrow(dat)))
+
+write.table(x=dat, file=output, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/script_imgt.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/script_imgt.py Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,86 @@
+#import xlrd #avoid dep
+import argparse
+import re
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
+
+args = parser.parse_args()
+
+print "script_imgt.py"
+print "input:", args.input
+print "ref:", args.ref
+print "output:", args.output
+print "id:", args.id
+
+refdic = dict()
+with open(args.ref, 'rU') as ref:
+ currentSeq = ""
+ currentId = ""
+ for line in ref:
+ if line.startswith(">"):
+ if currentSeq is not "" and currentId is not "":
+ refdic[currentId[1:]] = currentSeq
+ currentId = line.rstrip()
+ currentSeq = ""
+ else:
+ currentSeq += line.rstrip()
+ refdic[currentId[1:]] = currentSeq
+
+print "Have", str(len(refdic)), "reference sequences"
+
+vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
+# r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
+# r"(IGKV[0-3]D?-[0-9]{1,2})",
+# r"(IGLV[0-9]-[0-9]{1,2})",
+# r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
+# r"(TRGV[234589])",
+# r"(TRDV[1-3])"]
+
+#vPattern = re.compile(r"|".join(vPattern))
+vPattern = re.compile("|".join(vPattern))
+
+def filterGene(s, pattern):
+ if type(s) is not str:
+ return None
+ res = pattern.search(s)
+ if res:
+ return res.group(0)
+ return None
+
+
+
+currentSeq = ""
+currentId = ""
+first=True
+with open(args.input, 'r') as i:
+ with open(args.output, 'a') as o:
+ o.write(">>>" + args.id + "\n")
+ outputdic = dict()
+ for line in i:
+ if first:
+ first = False
+ continue
+ linesplt = line.split("\t")
+ ref = filterGene(linesplt[1], vPattern)
+ if not ref or not linesplt[2].rstrip():
+ continue
+ if ref in outputdic:
+ outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+ else:
+ outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+ #print outputdic
+
+ for k in outputdic.keys():
+ if k in refdic:
+ o.write(">>" + k + "\n")
+ o.write(refdic[k] + "\n")
+ for seq in outputdic[k]:
+ #print seq
+ o.write(">" + seq[0] + "\n")
+ o.write(seq[1] + "\n")
+ else:
+ print k + " not in reference, skipping " + k
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/script_xlsx.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/script_xlsx.py Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,58 @@
+import xlrd
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+
+args = parser.parse_args()
+
+gene_column = 6
+id_column = 7
+seq_column = 8
+LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
+
+
+refdic = dict()
+with open(args.ref, 'r') as ref:
+ currentSeq = ""
+ currentId = ""
+ for line in ref.readlines():
+ if line[0] is ">":
+ if currentSeq is not "" and currentId is not "":
+ refdic[currentId[1:]] = currentSeq
+ currentId = line.rstrip()
+ currentSeq = ""
+ else:
+ currentSeq += line.rstrip()
+ refdic[currentId[1:]] = currentSeq
+
+currentSeq = ""
+currentId = ""
+with xlrd.open_workbook(args.input, 'r') as wb:
+ with open(args.output, 'a') as o:
+ for sheet in wb.sheets():
+ if sheet.cell(1,gene_column).value.find("IGHV") < 0:
+ print "Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name
+ continue
+ o.write(">>>" + sheet.name + "\n")
+ outputdic = dict()
+ for rowindex in range(1, sheet.nrows):
+ ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
+ if ref in outputdic:
+ outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+ else:
+ outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+ #print outputdic
+
+ for k in outputdic.keys():
+ if k in refdic:
+ o.write(">>" + k + "\n")
+ o.write(refdic[k] + "\n")
+ for seq in outputdic[k]:
+ #print seq
+ o.write(">" + seq[0] + "\n")
+ o.write(seq[1] + "\n")
+ else:
+ print k + " not in reference, skipping " + k
diff -r a4617f1d1d89 -r b6f9a640e098 baseline/wrapper.sh
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/wrapper.sh Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,92 @@
+#!/bin/bash
+dir="$(cd "$(dirname "$0")" && pwd)"
+
+testID=$1
+species=$2
+substitutionModel=$3
+mutabilityModel=$4
+clonal=$5
+fixIndels=$6
+region=$7
+inputs=$8
+inputs=($inputs)
+IDs=$9
+IDs=($IDs)
+ref=${10}
+output=${11}
+selection=${12}
+output_table=${13}
+outID="result"
+
+echo "$PWD"
+
+echo "testID = $testID"
+echo "species = $species"
+echo "substitutionModel = $substitutionModel"
+echo "mutabilityModel = $mutabilityModel"
+echo "clonal = $clonal"
+echo "fixIndels = $fixIndels"
+echo "region = $region"
+echo "inputs = ${inputs[@]}"
+echo "IDs = ${IDs[@]}"
+echo "ref = $ref"
+echo "output = $output"
+echo "outID = $outID"
+
+fasta="$PWD/baseline.fasta"
+
+
+count=0
+for current in ${inputs[@]}
+do
+ f=$(file $current)
+ zipType="Zip archive"
+ if [[ "$f" == *"Zip archive"* ]] || [[ "$f" == *"XZ compressed data"* ]]
+ then
+ id=${IDs[$count]}
+ echo "id=$id"
+ if [[ "$f" == *"Zip archive"* ]] ; then
+ echo "Zip archive"
+ echo "unzip $input -d $PWD/files/"
+ unzip $current -d "$PWD/$id/"
+ elif [[ "$f" == *"XZ compressed data"* ]] ; then
+ echo "ZX archive"
+ echo "tar -xJf $input -C $PWD/files/"
+ mkdir -p "$PWD/$id/files"
+ tar -xJf $current -C "$PWD/$id/files/"
+ fi
+ filtered="$PWD/filtered_${id}.txt"
+ imgt_1_file="`find $PWD/$id -name '1_*.txt'`"
+ imgt_2_file="`find $PWD/$id -name '2_*.txt'`"
+ echo "1_Summary file: ${imgt_1_file}"
+ echo "2_IMGT-gapped file: ${imgt_2_file}"
+ echo "filter.r for $id"
+ Rscript $dir/filter.r ${imgt_1_file} ${imgt_2_file} "$selection" $filtered 2>&1
+
+ final="$PWD/final_${id}.txt"
+ cat $filtered | cut -f2,4,7 > $final
+ python $dir/script_imgt.py --input $final --ref $ref --output $fasta --id $id
+ else
+ python $dir/script_xlsx.py --input $current --ref $ref --output $fasta
+ fi
+ count=$((count+1))
+done
+workdir="$PWD"
+cd $dir
+echo "file: ${inputs[0]}"
+#Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region ${inputs[0]} $workdir/ $outID 2>&1
+Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region $fasta $workdir/ $outID 2>&1
+
+echo "$workdir/${outID}.txt"
+
+rows=`tail -n +2 $workdir/${outID}.txt | grep -v "All sequences combined" | grep -n 'Group' | grep -Eoh '^[0-9]+' | tr '\n' ' '`
+rows=($rows)
+#unset rows[${#rows[@]}-1]
+
+cd $dir
+Rscript --verbose $dir/comparePDFs.r $workdir/${outID}.RData $output ${rows[@]} 2>&1
+cp $workdir/result.txt ${output_table}
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 change_o/change_o_url.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/change_o/change_o_url.txt Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,1 @@
+https://changeo.readthedocs.io/en/version-0.4.4/
\ No newline at end of file
diff -r a4617f1d1d89 -r b6f9a640e098 change_o/define_clones.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/change_o/define_clones.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,15 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+input=args[1]
+output=args[2]
+
+change.o = read.table(input, header=T, sep="\t", quote="", stringsAsFactors=F)
+
+freq = data.frame(table(change.o$CLONE))
+freq2 = data.frame(table(freq$Freq))
+
+freq2$final = as.numeric(freq2$Freq) * as.numeric(as.character(freq2$Var1))
+
+names(freq2) = c("Clone size", "Nr of clones", "Nr of sequences")
+
+write.table(x=freq2, file=output, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 change_o/define_clones.sh
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/change_o/define_clones.sh Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,39 @@
+#!/bin/bash
+dir="$(cd "$(dirname "$0")" && pwd)"
+
+#define_clones.sh $input $noparse $scores $regions $out_file
+
+type=$1
+input=$2
+
+mkdir -p $PWD/outdir
+
+cp $input $PWD/input.tab #file has to have a ".tab" extension
+
+if [ "bygroup" == "$type" ] ; then
+ mode=$3
+ act=$4
+ model=$5
+ norm=$6
+ sym=$7
+ link=$8
+ dist=$9
+ output=${10}
+ output2=${11}
+
+ DefineClones.py -d $PWD/input.tab --nproc 4 --outdir $PWD/outdir --outname output --mode $mode --act $act --model $model --dist $dist --norm $norm --sym $sym --link $link
+
+ Rscript $dir/define_clones.r $PWD/outdir/output_clone-pass.tab $output2 2>&1
+else
+ method=$3
+ output=$4
+ output2=$5
+
+ DefineClones.py hclust -d $PWD/input.tab --nproc 4 --outdir $PWD/outdir --outname output --method $method
+
+ Rscript $dir/define_clones.r $PWD/outdir/output_clone-pass.tab $output2 2>&1
+fi
+
+cp $PWD/outdir/output_clone-pass.tab $output
+
+rm -rf $PWD/outdir/
diff -r a4617f1d1d89 -r b6f9a640e098 change_o/makedb.sh
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/change_o/makedb.sh Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,36 @@
+#!/bin/bash
+dir="$(cd "$(dirname "$0")" && pwd)"
+
+input=$1
+noparse=$2
+scores=$3
+regions=$4
+output=$5
+
+if [ "true" == "$noparse" ] ; then
+ noparse="--noparse"
+else
+ noparse=""
+fi
+
+if [ "true" == "$scores" ] ; then
+ scores="--scores"
+else
+ scores=""
+fi
+
+if [ "true" == "$regions" ] ; then
+ regions="--regions"
+else
+ regions=""
+fi
+
+mkdir $PWD/outdir
+
+echo "makedb: $PWD/outdir"
+
+MakeDb.py imgt -i $input --outdir $PWD/outdir --outname output $noparse $scores $regions
+
+mv $PWD/outdir/output_db-pass.tab $output
+
+rm -rf $PWD/outdir/
diff -r a4617f1d1d89 -r b6f9a640e098 change_o/select_first_in_clone.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/change_o/select_first_in_clone.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,16 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+input.file = args[1]
+output.file = args[2]
+
+print("select_in_first_clone.r")
+print(input.file)
+print(output.file)
+
+input = read.table(input.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+
+input = input[!duplicated(input$CLONE),]
+
+names(input)[1] = "Sequence.ID"
+
+write.table(input, output.file, quote=F, sep="\t", row.names=F, col.names=T, na="")
diff -r a4617f1d1d89 -r b6f9a640e098 check_unique_id.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/check_unique_id.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,25 @@
+args <- commandArgs(trailingOnly = TRUE) #first argument must be the summary file so it can grab the
+
+current_file = args[1]
+
+current = read.table(current_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="", check.names=F)
+
+if(!("Sequence number" %in% names(current))){
+ stop("First argument doesn't contain the 'Sequence number' column")
+}
+
+tbl = table(current[,"Sequence ID"])
+l_tbl = length(tbl)
+check = any(tbl > 1)
+
+#if(l_tbl != nrow(current)){ # non unique IDs?
+if(check){
+ print("Sequence.ID is not unique for every sequence, adding sequence number to IDs")
+ for(i in 1:length(args)){
+ current_file = args[i]
+ print(paste("Appending 'Sequence number' column to 'Sequence ID' column in", current_file))
+ current = read.table(current_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="", check.names=F)
+ current[,"Sequence ID"] = paste(current[,"Sequence ID"], current[,"Sequence number"], sep="_")
+ write.table(x = current, file = current_file, quote = F, sep = "\t", na = "", row.names = F, col.names = T)
+ }
+}
diff -r a4617f1d1d89 -r b6f9a640e098 datatypes_conf.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/datatypes_conf.xml Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,6 @@
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 gene_identification.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/gene_identification.py Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,226 @@
+import re
+import argparse
+import time
+starttime= int(time.time() * 1000)
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file")
+parser.add_argument("--output", help="The annotated output file to be merged back with the summary file")
+
+args = parser.parse_args()
+
+infile = args.input
+#infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt"
+output = args.output
+#outfile = "identified.txt"
+
+dic = dict()
+total = 0
+
+
+first = True
+IDIndex = 0
+seqIndex = 0
+
+with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
+ for line in f:
+ total += 1
+ linesplt = line.split("\t")
+ if first:
+ print "linesplt", linesplt
+ IDIndex = linesplt.index("Sequence ID")
+ seqIndex = linesplt.index("Sequence")
+ first = False
+ continue
+
+ ID = linesplt[IDIndex]
+ if len(linesplt) < 28: #weird rows without a sequence
+ dic[ID] = ""
+ else:
+ dic[ID] = linesplt[seqIndex]
+
+print "Number of input sequences:", len(dic)
+
+#old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc
+#old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag
+
+#lambda/kappa reference sequence
+searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg",
+ "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggcc",
+ "ce": "gcctccacacagagcccatccgtcttccccttgacccgctgctgcaaaaacattccctcc",
+ "cm": "gggagtgcatccgccccaacc"} #new (shorter) cm sequence
+
+compiledregex = {"ca": [],
+ "cg": [],
+ "ce": [],
+ "cm": []}
+
+#lambda/kappa reference sequence variable nucleotides
+ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'}
+ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'}
+cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
+cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'}
+cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
+cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'}
+
+#remove last snp for shorter cg sequence --- note, also change varsInCG
+del cg1[132]
+del cg2[132]
+del cg3[132]
+del cg4[132]
+
+#reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap
+chunklength = 8
+
+#create the chunks of the reference sequence with regular expressions for the variable nucleotides
+for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2):
+ pos = i
+ chunk = searchstrings["ca"][i:i+chunklength]
+ result = ""
+ varsInResult = 0
+ for c in chunk:
+ if pos in ca1.keys():
+ varsInResult += 1
+ result += "[" + ca1[pos] + ca2[pos] + "]"
+ else:
+ result += c
+ pos += 1
+ compiledregex["ca"].append((re.compile(result), varsInResult))
+
+for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2):
+ pos = i
+ chunk = searchstrings["cg"][i:i+chunklength]
+ result = ""
+ varsInResult = 0
+ for c in chunk:
+ if pos in cg1.keys():
+ varsInResult += 1
+ result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]"
+ else:
+ result += c
+ pos += 1
+ compiledregex["cg"].append((re.compile(result), varsInResult))
+
+for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2):
+ compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False))
+
+for i in range(0, len(searchstrings["ce"]) - chunklength + 1, chunklength / 2):
+ compiledregex["ce"].append((re.compile(searchstrings["ce"][i:i+chunklength]), False))
+
+def removeAndReturnMaxIndex(x): #simplifies a list comprehension
+ m = max(x)
+ index = x.index(m)
+ x[index] = 0
+ return index
+
+
+start_location = dict()
+hits = dict()
+alltotal = 0
+for key in compiledregex.keys(): #for ca/cg/cm/ce
+ regularexpressions = compiledregex[key] #get the compiled regular expressions
+ for ID in dic.keys()[0:]: #for every ID
+ if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists
+ hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ce_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0}
+ currentIDHits = hits[ID]
+ seq = dic[ID]
+ lastindex = 0
+ start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0)
+ start = [0] * (len(seq) + start_zero)
+ for i, regexp in enumerate(regularexpressions): #for every regular expression
+ relativeStartLocation = lastindex - (chunklength / 2) * i
+ if relativeStartLocation >= len(seq):
+ break
+ regex, hasVar = regexp
+ matches = regex.finditer(seq[lastindex:])
+ for match in matches: #for every match with the current regex, only uses the first hit because of the break at the end of this loop
+ lastindex += match.start()
+ start[relativeStartLocation + start_zero] += 1
+ if hasVar: #if the regex has a variable nt in it
+ chunkstart = chunklength / 2 * i #where in the reference does this chunk start
+ chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end
+ if key == "ca": #just calculate the variable nt score for 'ca', cheaper
+ currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]])
+ currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]])
+ elif key == "cg": #just calculate the variable nt score for 'cg', cheaper
+ currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]])
+ currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]])
+ currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]])
+ currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]])
+ else: #key == "cm" #no variable regions in 'cm' or 'ce'
+ pass
+ break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped
+ else: #only runs if there were no hits
+ continue
+ #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i]
+ currentIDHits[key + "_hits"] += 1
+ start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1])
+ #start_location[ID + "_" + key] = str(start.index(max(start)))
+
+
+varsInCA = float(len(ca1.keys()) * 2)
+varsInCG = float(len(cg1.keys()) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice
+varsInCM = 0
+varsInCE = 0
+
+def round_int(val):
+ return int(round(val))
+
+first = True
+seq_write_count=0
+with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
+ with open(output, 'w') as o:
+ for line in f:
+ total += 1
+ if first:
+ o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
+ first = False
+ continue
+ linesplt = line.split("\t")
+ if linesplt[2] == "No results":
+ pass
+ ID = linesplt[1]
+ currentIDHits = hits[ID]
+ possibleca = float(len(compiledregex["ca"]))
+ possiblecg = float(len(compiledregex["cg"]))
+ possiblecm = float(len(compiledregex["cm"]))
+ possiblece = float(len(compiledregex["ce"]))
+ cahits = currentIDHits["ca_hits"]
+ cghits = currentIDHits["cg_hits"]
+ cmhits = currentIDHits["cm_hits"]
+ cehits = currentIDHits["ce_hits"]
+ if cahits >= cghits and cahits >= cmhits and cahits >= cehits: #its a ca gene
+ ca1hits = currentIDHits["ca1"]
+ ca2hits = currentIDHits["ca2"]
+ if ca1hits >= ca2hits:
+ o.write(ID + "\tIGA1\t" + str(round_int(ca1hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
+ else:
+ o.write(ID + "\tIGA2\t" + str(round_int(ca2hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
+ elif cghits >= cahits and cghits >= cmhits and cghits >= cehits: #its a cg gene
+ cg1hits = currentIDHits["cg1"]
+ cg2hits = currentIDHits["cg2"]
+ cg3hits = currentIDHits["cg3"]
+ cg4hits = currentIDHits["cg4"]
+ if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene
+ o.write(ID + "\tIGG1\t" + str(round_int(cg1hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+ elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene
+ o.write(ID + "\tIGG2\t" + str(round_int(cg2hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+ elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene
+ o.write(ID + "\tIGG3\t" + str(round_int(cg3hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+ else: #cg4 gene
+ o.write(ID + "\tIGG4\t" + str(round_int(cg4hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+ else: #its a cm or ce gene
+ if cmhits >= cehits:
+ o.write(ID + "\tIGM\t100\t" + str(round_int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n")
+ else:
+ o.write(ID + "\tIGE\t100\t" + str(round_int(cehits / possiblece * 100)) + "\t" + start_location[ID + "_ce"] + "\n")
+ seq_write_count += 1
+
+print "Time: %i" % (int(time.time() * 1000) - starttime)
+
+print "Number of sequences written to file:", seq_write_count
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 imgt_loader.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/imgt_loader.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,98 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+summ.file = args[1]
+aa.file = args[2]
+junction.file = args[3]
+out.file = args[4]
+
+summ = read.table(summ.file, sep="\t", header=T, quote="", fill=T)
+aa = read.table(aa.file, sep="\t", header=T, quote="", fill=T)
+junction = read.table(junction.file, sep="\t", header=T, quote="", fill=T)
+
+fix_column_names = function(df){
+ if("V.DOMAIN.Functionality" %in% names(df)){
+ names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
+ print("found V.DOMAIN.Functionality, changed")
+ }
+ if("V.DOMAIN.Functionality.comment" %in% names(df)){
+ names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
+ print("found V.DOMAIN.Functionality.comment, changed")
+ }
+ return(df)
+}
+
+summ = fix_column_names(summ)
+aa = fix_column_names(aa)
+junction = fix_column_names(junction)
+
+old_summary_columns=c('Sequence.ID','JUNCTION.frame','V.GENE.and.allele','D.GENE.and.allele','J.GENE.and.allele','CDR1.IMGT.length','CDR2.IMGT.length','CDR3.IMGT.length','Orientation')
+old_sequence_columns=c('CDR1.IMGT','CDR2.IMGT','CDR3.IMGT')
+old_junction_columns=c('JUNCTION')
+
+added_summary_columns=c('Functionality','V.REGION.identity..','V.REGION.identity.nt','D.REGION.reading.frame','AA.JUNCTION','Functionality.comment','Sequence')
+added_sequence_columns=c('FR1.IMGT','FR2.IMGT','FR3.IMGT','CDR3.IMGT','JUNCTION','J.REGION','FR4.IMGT')
+
+added_junction_columns=c('P3.V.nt.nb','N.REGION.nt.nb','N1.REGION.nt.nb','P5.D.nt.nb','P3.D.nt.nb','N2.REGION.nt.nb','P5.J.nt.nb','X3.V.REGION.trimmed.nt.nb','X5.D.REGION.trimmed.nt.nb','X3.D.REGION.trimmed.nt.nb','X5.J.REGION.trimmed.nt.nb','N.REGION','N1.REGION','N2.REGION')
+added_junction_columns=c(added_junction_columns, 'P5.D1.nt.nb', 'P3.D1.nt.nb', 'N2.REGION.nt.nb', 'P5.D2.nt.nb', 'P3.D2.nt.nb', 'N3.REGION.nt.nb', 'P5.D3.nt.nb', 'P3.D2.nt.nb', 'N4.REGION.nt.nb', 'X5.D1.REGION.trimmed.nt.nb', 'X3.D1.REGION.trimmed.nt.nb', 'X5.D2.REGION.trimmed.nt.nb', 'X3.D2.REGION.trimmed.nt.nb', 'X5.D3.REGION.trimmed.nt.nb', 'X3.D3.REGION.trimmed.nt.nb', 'D.REGION.nt.nb', 'D1.REGION.nt.nb', 'D2.REGION.nt.nb', 'D3.REGION.nt.nb')
+
+out=summ[,c("Sequence.ID","JUNCTION.frame","V.GENE.and.allele","D.GENE.and.allele","J.GENE.and.allele")]
+
+out[,"CDR1.Seq"] = aa[,"CDR1.IMGT"]
+out[,"CDR1.Length"] = summ[,"CDR1.IMGT.length"]
+
+out[,"CDR2.Seq"] = aa[,"CDR2.IMGT"]
+out[,"CDR2.Length"] = summ[,"CDR2.IMGT.length"]
+
+out[,"CDR3.Seq"] = aa[,"CDR3.IMGT"]
+out[,"CDR3.Length"] = summ[,"CDR3.IMGT.length"]
+
+out[,"CDR3.Seq.DNA"] = junction[,"JUNCTION"]
+out[,"CDR3.Length.DNA"] = nchar(as.character(junction[,"JUNCTION"]))
+out[,"Strand"] = summ[,"Orientation"]
+out[,"CDR3.Found.How"] = "a"
+
+out[,added_summary_columns] = summ[,added_summary_columns]
+
+out[,added_sequence_columns] = aa[,added_sequence_columns]
+
+out[,added_junction_columns] = junction[,added_junction_columns]
+
+out[,"Top V Gene"] = gsub(".* ", "", gsub("\\*.*", "", summ[,"V.GENE.and.allele"]))
+out[,"Top D Gene"] = gsub(".* ", "", gsub("\\*.*", "", summ[,"D.GENE.and.allele"]))
+out[,"Top J Gene"] = gsub(".* ", "", gsub("\\*.*", "", summ[,"J.GENE.and.allele"]))
+
+out = out[,c('Sequence.ID','JUNCTION.frame','Top V Gene','Top D Gene','Top J Gene','CDR1.Seq','CDR1.Length','CDR2.Seq','CDR2.Length','CDR3.Seq','CDR3.Length','CDR3.Seq.DNA','CDR3.Length.DNA','Strand','CDR3.Found.How','Functionality','V.REGION.identity..','V.REGION.identity.nt','D.REGION.reading.frame','AA.JUNCTION','Functionality.comment','Sequence','FR1.IMGT','FR2.IMGT','FR3.IMGT','CDR3.IMGT','JUNCTION','J.REGION','FR4.IMGT','P3.V.nt.nb','N.REGION.nt.nb','N1.REGION.nt.nb','P5.D.nt.nb','P3.D.nt.nb','N2.REGION.nt.nb','P5.J.nt.nb','X3.V.REGION.trimmed.nt.nb','X5.D.REGION.trimmed.nt.nb','X3.D.REGION.trimmed.nt.nb','X5.J.REGION.trimmed.nt.nb','N.REGION','N1.REGION','N2.REGION', 'P5.D1.nt.nb', 'P3.D1.nt.nb', 'N2.REGION.nt.nb', 'P5.D2.nt.nb', 'P3.D2.nt.nb', 'N3.REGION.nt.nb', 'P5.D3.nt.nb', 'P3.D2.nt.nb', 'N4.REGION.nt.nb', 'X5.D1.REGION.trimmed.nt.nb', 'X3.D1.REGION.trimmed.nt.nb', 'X5.D2.REGION.trimmed.nt.nb', 'X3.D2.REGION.trimmed.nt.nb', 'X5.D3.REGION.trimmed.nt.nb', 'X3.D3.REGION.trimmed.nt.nb', 'D.REGION.nt.nb', 'D1.REGION.nt.nb', 'D2.REGION.nt.nb', 'D3.REGION.nt.nb')]
+
+names(out) = c('ID','VDJ Frame','Top V Gene','Top D Gene','Top J Gene','CDR1 Seq','CDR1 Length','CDR2 Seq','CDR2 Length','CDR3 Seq','CDR3 Length','CDR3 Seq DNA','CDR3 Length DNA','Strand','CDR3 Found How','Functionality','V-REGION identity %','V-REGION identity nt','D-REGION reading frame','AA JUNCTION','Functionality comment','Sequence','FR1-IMGT','FR2-IMGT','FR3-IMGT','CDR3-IMGT','JUNCTION','J-REGION','FR4-IMGT','P3V-nt nb','N-REGION-nt nb','N1-REGION-nt nb','P5D-nt nb','P3D-nt nb','N2-REGION-nt nb','P5J-nt nb','3V-REGION trimmed-nt nb','5D-REGION trimmed-nt nb','3D-REGION trimmed-nt nb','5J-REGION trimmed-nt nb','N-REGION','N1-REGION','N2-REGION', 'P5.D1.nt.nb', 'P3.D1.nt.nb', 'N2.REGION.nt.nb', 'P5.D2.nt.nb', 'P3.D2.nt.nb', 'N3.REGION.nt.nb', 'P5.D3.nt.nb', 'P3.D2.nt.nb', 'N4.REGION.nt.nb', 'X5.D1.REGION.trimmed.nt.nb', 'X3.D1.REGION.trimmed.nt.nb', 'X5.D2.REGION.trimmed.nt.nb', 'X3.D2.REGION.trimmed.nt.nb', 'X5.D3.REGION.trimmed.nt.nb', 'X3.D3.REGION.trimmed.nt.nb', 'D.REGION.nt.nb', 'D1.REGION.nt.nb', 'D2.REGION.nt.nb', 'D3.REGION.nt.nb')
+
+out[,"VDJ Frame"] = as.character(out[,"VDJ Frame"])
+
+fltr = out[,"VDJ Frame"] == "in-frame"
+if(any(fltr, na.rm = T)){
+ out[fltr, "VDJ Frame"] = "In-frame"
+}
+
+fltr = out[,"VDJ Frame"] == "null"
+if(any(fltr, na.rm = T)){
+ out[fltr, "VDJ Frame"] = "Out-of-frame"
+}
+
+fltr = out[,"VDJ Frame"] == "out-of-frame"
+if(any(fltr, na.rm = T)){
+ out[fltr, "VDJ Frame"] = "Out-of-frame"
+}
+
+fltr = out[,"VDJ Frame"] == ""
+if(any(fltr, na.rm = T)){
+ out[fltr, "VDJ Frame"] = "Out-of-frame"
+}
+
+for(col in c('Top V Gene','Top D Gene','Top J Gene')){
+ out[,col] = as.character(out[,col])
+ fltr = out[,col] == ""
+ if(any(fltr, na.rm = T)){
+ out[fltr,col] = "NA"
+ }
+}
+
+write.table(out, out.file, sep="\t", quote=F, row.names=F, col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 merge.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/merge.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,27 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+input.1 = args[1]
+input.2 = args[2]
+
+fields.1 = args[3]
+fields.2 = args[4]
+
+field.1 = args[5]
+field.2 = args[6]
+
+output = args[7]
+
+dat1 = read.table(input.1, header=T, sep="\t", quote="", stringsAsFactors=F, fill=T, row.names=NULL)
+if(fields.1 != "all"){
+ fields.1 = unlist(strsplit(fields.1, ","))
+ dat1 = dat1[,fields.1]
+}
+dat2 = read.table(input.2, header=T, sep="\t", quote="", stringsAsFactors=F, fill=T, row.names=NULL)
+if(fields.2 != "all"){
+ fields.2 = unlist(strsplit(fields.2, ","))
+ dat2 = dat2[,fields.2]
+}
+
+dat3 = merge(dat1, dat2, by.x=field.1, by.y=field.2)
+
+write.table(dat3, output, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 merge_and_filter.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/merge_and_filter.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,304 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+
+summaryfile = args[1]
+sequencesfile = args[2]
+mutationanalysisfile = args[3]
+mutationstatsfile = args[4]
+hotspotsfile = args[5]
+aafile = args[6]
+gene_identification_file= args[7]
+output = args[8]
+before.unique.file = args[9]
+unmatchedfile = args[10]
+method=args[11]
+functionality=args[12]
+unique.type=args[13]
+filter.unique=args[14]
+filter.unique.count=as.numeric(args[15])
+class.filter=args[16]
+empty.region.filter=args[17]
+
+print(paste("filter.unique.count:", filter.unique.count))
+
+summ = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+sequences = read.table(sequencesfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+mutationanalysis = read.table(mutationanalysisfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+mutationstats = read.table(mutationstatsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+hotspots = read.table(hotspotsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+AAs = read.table(aafile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+gene_identification = read.table(gene_identification_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+
+fix_column_names = function(df){
+ if("V.DOMAIN.Functionality" %in% names(df)){
+ names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
+ print("found V.DOMAIN.Functionality, changed")
+ }
+ if("V.DOMAIN.Functionality.comment" %in% names(df)){
+ names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
+ print("found V.DOMAIN.Functionality.comment, changed")
+ }
+ return(df)
+}
+
+fix_non_unique_ids = function(df){
+ df$Sequence.ID = paste(df$Sequence.ID, 1:nrow(df))
+ return(df)
+}
+
+summ = fix_column_names(summ)
+sequences = fix_column_names(sequences)
+mutationanalysis = fix_column_names(mutationanalysis)
+mutationstats = fix_column_names(mutationstats)
+hotspots = fix_column_names(hotspots)
+AAs = fix_column_names(AAs)
+
+if(method == "blastn"){
+ #"qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore"
+ gene_identification = gene_identification[!duplicated(gene_identification$qseqid),]
+ ref_length = data.frame(sseqid=c("ca1", "ca2", "cg1", "cg2", "cg3", "cg4", "cm"), ref.length=c(81,81,141,141,141,141,52))
+ gene_identification = merge(gene_identification, ref_length, by="sseqid", all.x=T)
+ gene_identification$chunk_hit_percentage = (gene_identification$length / gene_identification$ref.length) * 100
+ gene_identification = gene_identification[,c("qseqid", "chunk_hit_percentage", "pident", "qstart", "sseqid")]
+ colnames(gene_identification) = c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")
+}
+
+#print("Summary analysis files columns")
+#print(names(summ))
+
+
+
+input.sequence.count = nrow(summ)
+print(paste("Number of sequences in summary file:", input.sequence.count))
+
+filtering.steps = data.frame(character(0), numeric(0))
+
+filtering.steps = rbind(filtering.steps, c("Input", input.sequence.count))
+
+filtering.steps[,1] = as.character(filtering.steps[,1])
+filtering.steps[,2] = as.character(filtering.steps[,2])
+#filtering.steps[,3] = as.numeric(filtering.steps[,3])
+
+#print("summary files columns")
+#print(names(summ))
+
+summ = merge(summ, gene_identification, by="Sequence.ID")
+
+print(paste("Number of sequences after merging with gene identification:", nrow(summ)))
+
+summ = summ[summ$Functionality != "No results",]
+
+print(paste("Number of sequences after 'No results' filter:", nrow(summ)))
+
+filtering.steps = rbind(filtering.steps, c("After 'No results' filter", nrow(summ)))
+
+if(functionality == "productive"){
+ summ = summ[summ$Functionality == "productive (see comment)" | summ$Functionality == "productive",]
+} else if (functionality == "unproductive"){
+ summ = summ[summ$Functionality == "unproductive (see comment)" | summ$Functionality == "unproductive",]
+} else if (functionality == "remove_unknown"){
+ summ = summ[summ$Functionality != "No results" & summ$Functionality != "unknown (see comment)" & summ$Functionality != "unknown",]
+}
+
+print(paste("Number of sequences after functionality filter:", nrow(summ)))
+
+filtering.steps = rbind(filtering.steps, c("After functionality filter", nrow(summ)))
+
+if(F){ #to speed up debugging
+ set.seed(1)
+ summ = summ[sample(nrow(summ), floor(nrow(summ) * 0.03)),]
+ print(paste("Number of sequences after sampling 3%:", nrow(summ)))
+
+ filtering.steps = rbind(filtering.steps, c("Number of sequences after sampling 3%", nrow(summ)))
+}
+
+print("mutation analysis files columns")
+print(names(mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])]))
+
+result = merge(summ, mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with mutation analysis file:", nrow(result)))
+
+#print("mutation stats files columns")
+#print(names(mutationstats[,!(names(mutationstats) %in% names(result)[-1])]))
+
+result = merge(result, mutationstats[,!(names(mutationstats) %in% names(result)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with mutation stats file:", nrow(result)))
+
+print("hotspots files columns")
+print(names(hotspots[,!(names(hotspots) %in% names(result)[-1])]))
+
+result = merge(result, hotspots[,!(names(hotspots) %in% names(result)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with hotspots file:", nrow(result)))
+
+print("sequences files columns")
+print(c("FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT"))
+
+sequences = sequences[,c("Sequence.ID", "FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT")]
+names(sequences) = c("Sequence.ID", "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq")
+result = merge(result, sequences, by="Sequence.ID", all.x=T)
+
+AAs = AAs[,c("Sequence.ID", "CDR3.IMGT")]
+names(AAs) = c("Sequence.ID", "CDR3.IMGT.AA")
+result = merge(result, AAs, by="Sequence.ID", all.x=T)
+
+print(paste("Number of sequences in result after merging with sequences:", nrow(result)))
+
+result$VGene = gsub("^Homsap ", "", result$V.GENE.and.allele)
+result$VGene = gsub("[*].*", "", result$VGene)
+result$DGene = gsub("^Homsap ", "", result$D.GENE.and.allele)
+result$DGene = gsub("[*].*", "", result$DGene)
+result$JGene = gsub("^Homsap ", "", result$J.GENE.and.allele)
+result$JGene = gsub("[*].*", "", result$JGene)
+
+splt = strsplit(class.filter, "_")[[1]]
+chunk_hit_threshold = as.numeric(splt[1])
+nt_hit_threshold = as.numeric(splt[2])
+
+higher_than=(result$chunk_hit_percentage >= chunk_hit_threshold & result$nt_hit_percentage >= nt_hit_threshold)
+
+if(!all(higher_than, na.rm=T)){ #check for no unmatched
+ result[!higher_than,"best_match"] = paste("unmatched,", result[!higher_than,"best_match"])
+}
+
+if(class.filter == "101_101"){
+ result$best_match = "all"
+}
+
+write.table(x=result, file=gsub("merged.txt$", "before_filters.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
+
+print(paste("Number of empty CDR1 sequences:", sum(result$CDR1.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty FR2 sequences:", sum(result$FR2.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "", na.rm=T)))
+
+if(empty.region.filter == "leader"){
+ result = result[result$FR1.IMGT.seq != "" & result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "FR1"){
+ result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "CDR1"){
+ result = result[result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "FR2"){
+ result = result[result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+}
+
+print(paste("After removal sequences that are missing a gene region:", nrow(result)))
+filtering.steps = rbind(filtering.steps, c("After removal sequences that are missing a gene region", nrow(result)))
+
+if(empty.region.filter == "leader"){
+ result = result[!(grepl("n|N", result$FR1.IMGT.seq) | grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "FR1"){
+ result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "CDR1"){
+ result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "FR2"){
+ result = result[!(grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+}
+
+print(paste("Number of sequences in result after n filtering:", nrow(result)))
+filtering.steps = rbind(filtering.steps, c("After N filter", nrow(result)))
+
+cleanup_columns = c("FR1.IMGT.Nb.of.mutations",
+ "CDR1.IMGT.Nb.of.mutations",
+ "FR2.IMGT.Nb.of.mutations",
+ "CDR2.IMGT.Nb.of.mutations",
+ "FR3.IMGT.Nb.of.mutations")
+
+for(col in cleanup_columns){
+ result[,col] = gsub("\\(.*\\)", "", result[,col])
+ result[,col] = as.numeric(result[,col])
+ result[is.na(result[,col]),] = 0
+}
+
+write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T)
+
+
+if(filter.unique != "no"){
+ clmns = names(result)
+ if(filter.unique == "remove_vjaa"){
+ result$unique.def = paste(result$VGene, result$JGene, result$CDR3.IMGT.AA)
+ } else if(empty.region.filter == "leader"){
+ result$unique.def = paste(result$FR1.IMGT.seq, result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+ } else if(empty.region.filter == "FR1"){
+ result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+ } else if(empty.region.filter == "CDR1"){
+ result$unique.def = paste(result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+ } else if(empty.region.filter == "FR2"){
+ result$unique.def = paste(result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+ }
+
+ if(grepl("remove", filter.unique)){
+ result = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),]
+ unique.defs = data.frame(table(result$unique.def))
+ unique.defs = unique.defs[unique.defs$Freq >= filter.unique.count,]
+ result = result[result$unique.def %in% unique.defs$Var1,]
+ }
+
+ if(filter.unique != "remove_vjaa"){
+ result$unique.def = paste(result$unique.def, gsub(",.*", "", result$best_match)) #keep the unique sequences that are in multiple classes, gsub so the unmatched don't have a class after it
+ }
+
+ result = result[!duplicated(result$unique.def),]
+}
+
+write.table(result, gsub("before_unique_filter.txt", "after_unique_filter.txt", before.unique.file), sep="\t", quote=F,row.names=F,col.names=T)
+
+filtering.steps = rbind(filtering.steps, c("After filter unique sequences", nrow(result)))
+
+print(paste("Number of sequences in result after unique filtering:", nrow(result)))
+
+if(nrow(summ) == 0){
+ stop("No data remaining after filter")
+}
+
+result$best_match_class = gsub(",.*", "", result$best_match) #gsub so the unmatched don't have a class after it
+
+#result$past = ""
+#cls = unlist(strsplit(unique.type, ","))
+#for (i in 1:nrow(result)){
+# result[i,"past"] = paste(result[i,cls], collapse=":")
+#}
+
+
+
+result$past = do.call(paste, c(result[unlist(strsplit(unique.type, ","))], sep = ":"))
+
+result.matched = result[!grepl("unmatched", result$best_match),]
+result.unmatched = result[grepl("unmatched", result$best_match),]
+
+result = rbind(result.matched, result.unmatched)
+
+result = result[!(duplicated(result$past)), ]
+
+result = result[,!(names(result) %in% c("past", "best_match_class"))]
+
+print(paste("Number of sequences in result after", unique.type, "filtering:", nrow(result)))
+
+filtering.steps = rbind(filtering.steps, c("After remove duplicates based on filter", nrow(result)))
+
+unmatched = result[grepl("^unmatched", result$best_match),c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")]
+
+print(paste("Number of rows in result:", nrow(result)))
+print(paste("Number of rows in unmatched:", nrow(unmatched)))
+
+matched.sequences = result[!grepl("^unmatched", result$best_match),]
+
+write.table(x=matched.sequences, file=gsub("merged.txt$", "filtered.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
+
+matched.sequences.count = nrow(matched.sequences)
+unmatched.sequences.count = sum(grepl("^unmatched", result$best_match))
+if(matched.sequences.count <= unmatched.sequences.count){
+ print("WARNING NO MATCHED (SUB)CLASS SEQUENCES!!")
+}
+
+filtering.steps = rbind(filtering.steps, c("Number of matched sequences", matched.sequences.count))
+filtering.steps = rbind(filtering.steps, c("Number of unmatched sequences", unmatched.sequences.count))
+filtering.steps[,2] = as.numeric(filtering.steps[,2])
+filtering.steps$perc = round(filtering.steps[,2] / input.sequence.count * 100, 2)
+
+write.table(x=filtering.steps, file=gsub("unmatched", "filtering_steps", unmatchedfile), sep="\t",quote=F,row.names=F,col.names=F)
+
+write.table(x=result, file=output, sep="\t",quote=F,row.names=F,col.names=T)
+write.table(x=unmatched, file=unmatchedfile, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 mutation_column_checker.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mutation_column_checker.py Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,27 @@
+import re
+
+mutationMatcher = re.compile("^([nactg])(\d+).([nactg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
+
+with open("7_V-REGION-mutation-and-AA-change-table.txt", 'r') as file_handle:
+ first = True
+ fr3_index = -1
+ for i, line in enumerate(file_handle):
+ line_split = line.split("\t")
+ if first:
+ fr3_index = line_split.index("FR3-IMGT")
+ first = False
+ continue
+
+ if len(line_split) < fr3_index:
+ continue
+
+ fr3_data = line_split[fr3_index]
+ if len(fr3_data) > 5:
+ try:
+ test = [mutationMatcher.match(x).groups() for x in fr3_data.split("|") if x]
+ except:
+ print(line_split[1])
+ print("Something went wrong at line {line} with:".format(line=line_split[0]))
+ #print([x for x in fr3_data.split("|") if not mutationMatcher.match(x)])
+ if i % 100000 == 0:
+ print(i)
diff -r a4617f1d1d89 -r b6f9a640e098 naive_output.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/naive_output.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,45 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+naive.file = args[1]
+shm.file = args[2]
+output.file.ca = args[3]
+output.file.cg = args[4]
+output.file.cm = args[5]
+
+naive = read.table(naive.file, sep="\t", header=T, quote="", fill=T)
+shm.merge = read.table(shm.file, sep="\t", header=T, quote="", fill=T)
+
+
+final = merge(naive, shm.merge[,c("Sequence.ID", "best_match")], by.x="ID", by.y="Sequence.ID")
+print(paste("nrow final:", nrow(final)))
+names(final)[names(final) == "best_match"] = "Sample"
+final.numeric = final[,sapply(final, is.numeric)]
+final.numeric[is.na(final.numeric)] = 0
+final[,sapply(final, is.numeric)] = final.numeric
+
+final.ca = final[grepl("^ca", final$Sample),]
+final.cg = final[grepl("^cg", final$Sample),]
+final.cm = final[grepl("^cm", final$Sample),]
+
+if(nrow(final.ca) > 0){
+ final.ca$Replicate = 1
+}
+
+if(nrow(final.cg) > 0){
+ final.cg$Replicate = 1
+}
+
+if(nrow(final.cm) > 0){
+ final.cm$Replicate = 1
+}
+
+#print(paste("nrow final:", nrow(final)))
+#final2 = final
+#final2$Sample = gsub("[0-9]", "", final2$Sample)
+#final = rbind(final, final2)
+#final$Replicate = 1
+
+write.table(final.ca, output.file.ca, quote=F, sep="\t", row.names=F, col.names=T)
+write.table(final.cg, output.file.cg, quote=F, sep="\t", row.names=F, col.names=T)
+write.table(final.cm, output.file.cm, quote=F, sep="\t", row.names=F, col.names=T)
+
diff -r a4617f1d1d89 -r b6f9a640e098 new_imgt.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/new_imgt.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,40 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+imgt.dir = args[1]
+merged.file = args[2]
+gene = args[3]
+
+merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, comment.char="", quote="")
+
+if(!("Sequence.ID" %in% names(merged))){ #change-o db
+ print("Change-O DB changing 'SEQUENCE_ID' to 'Sequence.ID'")
+ names(merged)[which(names[merged] == "SEQUENCE_ID")] = "Sequence.ID"
+}
+
+if(gene != "-"){
+ merged = merged[grepl(paste("^", gene, sep=""), merged$best_match),]
+}
+
+if("best_match" %in% names(merged)){
+ merged = merged[!grepl("unmatched", merged$best_match),]
+}
+
+nrow_dat = 0
+
+for(f in list.files(imgt.dir, pattern="*.txt$")){
+ #print(paste("filtering", f))
+ path = file.path(imgt.dir, f)
+ dat = read.table(path, header=T, sep="\t", fill=T, quote="", stringsAsFactors=F, check.names=FALSE, comment.char="")
+
+ dat = dat[dat[,"Sequence ID"] %in% merged$Sequence.ID,]
+
+ nrow_dat = nrow(dat)
+
+ if(nrow(dat) > 0 & grepl("^8_", f)){ #change the FR1 columns to 0 in the "8_..." file
+ dat[,grepl("^FR1", names(dat))] = 0
+ }
+
+ write.table(dat, path, quote=F, sep="\t", row.names=F, col.names=T, na="")
+}
+
+print(paste("Creating new zip for ", gene, "with", nrow_dat, "sequences"))
diff -r a4617f1d1d89 -r b6f9a640e098 pattern_plots.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/pattern_plots.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,178 @@
+library(ggplot2)
+library(reshape2)
+library(scales)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt"
+
+plot1.path = args[2]
+plot1.png = paste(plot1.path, ".png", sep="")
+plot1.txt = paste(plot1.path, ".txt", sep="")
+plot1.pdf = paste(plot1.path, ".pdf", sep="")
+
+plot2.path = args[3]
+plot2.png = paste(plot2.path, ".png", sep="")
+plot2.txt = paste(plot2.path, ".txt", sep="")
+plot2.pdf = paste(plot2.path, ".pdf", sep="")
+
+plot3.path = args[4]
+plot3.png = paste(plot3.path, ".png", sep="")
+plot3.txt = paste(plot3.path, ".txt", sep="")
+plot3.pdf = paste(plot3.path, ".pdf", sep="")
+
+clean.output = args[5]
+
+dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1)
+
+classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE")
+xyz = c("x", "y", "z")
+new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep="."))
+
+names(dat) = new.names
+
+clean.dat = dat
+clean.dat = clean.dat[,c(paste(rep(classes, each=3), xyz, sep="."), paste("all", xyz, sep="."), paste("un", xyz, sep="."))]
+
+write.table(clean.dat, clean.output, quote=F, sep="\t", na="", row.names=T, col.names=NA)
+
+dat["RGYW.WRCY",] = colSums(dat[c(14,15),], na.rm=T)
+dat["TW.WA",] = colSums(dat[c(16,17),], na.rm=T)
+
+data1 = dat[c("RGYW.WRCY", "TW.WA"),]
+
+data1 = data1[,names(data1)[grepl(".z", names(data1))]]
+names(data1) = gsub("\\..*", "", names(data1))
+
+data1 = melt(t(data1))
+
+names(data1) = c("Class", "Type", "value")
+
+chk = is.na(data1$value)
+if(any(chk)){
+ data1[chk, "value"] = 0
+}
+
+data1 = data1[order(data1$Type),]
+
+write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
+
+p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) + ggtitle("Percentage of mutations in AID and pol eta motives")
+p = p + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("RGYW.WRCY" = "white", "TW.WA" = "blue4"))
+#p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4"))
+png(filename=plot1.png, width=510, height=300)
+print(p)
+dev.off()
+
+ggsave(plot1.pdf, p)
+
+data2 = dat[c(1, 5:8),]
+
+data2 = data2[,names(data2)[grepl("\\.x", names(data2))]]
+names(data2) = gsub(".x", "", names(data2))
+
+data2["A/T",] = dat["Targeting of A T (%)",names(dat)[grepl("\\.z", names(dat))]]
+
+data2["G/C transitions",] = round(data2["Transitions at G C (%)",] / data2["Number of Mutations (%)",] * 100, 1)
+
+data2["mutation.at.gc",] = dat["Transitions at G C (%)",names(dat)[grepl("\\.y", names(dat))]]
+data2["G/C transversions",] = round((data2["mutation.at.gc",] - data2["Transitions at G C (%)",]) / data2["Number of Mutations (%)",] * 100, 1)
+
+data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0
+data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0
+data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0
+data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0
+
+data2 = melt(t(data2[c("A/T","G/C transitions","G/C transversions"),]))
+
+names(data2) = c("Class", "Type", "value")
+
+chk = is.na(data2$value)
+if(any(chk)){
+ data2[chk, "value"] = 0
+}
+
+data2 = data2[order(data2$Type),]
+
+write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
+
+p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity", colour = "black") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") + ggtitle("Relative mutation patterns")
+p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
+#p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
+png(filename=plot2.png, width=480, height=300)
+print(p)
+dev.off()
+
+ggsave(plot2.pdf, p)
+
+data3 = dat[c(5, 6, 8, 18:21),]
+data3 = data3[,names(data3)[grepl("\\.x", names(data3))]]
+names(data3) = gsub(".x", "", names(data3))
+
+data3["G/C transitions",] = round(data3["Transitions at G C (%)",] / (data3["C",] + data3["G",]) * 100, 1)
+
+data3["G/C transversions",] = round((data3["Targeting of G C (%)",] - data3["Transitions at G C (%)",]) / (data3["C",] + data3["G",]) * 100, 1)
+
+data3["A/T",] = round(data3["Targeting of A T (%)",] / (data3["A",] + data3["T",]) * 100, 1)
+
+data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0
+data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0
+
+data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0
+data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0
+
+data3["A/T",is.nan(unlist(data3["A/T",]))] = 0
+data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0
+
+data3 = melt(t(data3[8:10,]))
+names(data3) = c("Class", "Type", "value")
+
+chk = is.na(data3$value)
+if(any(chk)){
+ data3[chk, "value"] = 0
+}
+
+data3 = data3[order(data3$Type),]
+
+write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
+
+p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) + ggtitle("Absolute mutation patterns")
+p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
+#p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
+png(filename=plot3.png, width=480, height=300)
+print(p)
+dev.off()
+
+ggsave(plot3.pdf, p)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 plot_pdf.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/plot_pdf.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,17 @@
+library(ggplot2)
+
+args <- commandArgs(trailingOnly = TRUE)
+print(args)
+
+input = args[1]
+outputdir = args[2]
+setwd(outputdir)
+
+load(input)
+
+print(names(pdfplots))
+
+for(n in names(pdfplots)){
+ print(paste("n:", n))
+ ggsave(pdfplots[[n]], file=n)
+}
diff -r a4617f1d1d89 -r b6f9a640e098 sequence_overview.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/sequence_overview.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,363 @@
+library(reshape2)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+before.unique.file = args[1]
+merged.file = args[2]
+outputdir = args[3]
+gene.classes = unlist(strsplit(args[4], ","))
+hotspot.analysis.sum.file = args[5]
+NToverview.file = paste(outputdir, "ntoverview.txt", sep="/")
+NTsum.file = paste(outputdir, "ntsum.txt", sep="/")
+main.html = "index.html"
+empty.region.filter = args[6]
+
+
+setwd(outputdir)
+
+before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="")
+
+#before.unique = before.unique[!grepl("unmatched", before.unique$best_match),]
+
+if(empty.region.filter == "leader"){
+ before.unique$seq_conc = paste(before.unique$FR1.IMGT.seq, before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
+} else if(empty.region.filter == "FR1"){
+ before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
+} else if(empty.region.filter == "CDR1"){
+ before.unique$seq_conc = paste(before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
+} else if(empty.region.filter == "FR2"){
+ before.unique$seq_conc = paste(before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
+}
+
+IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")]
+IDs$best_match = as.character(IDs$best_match)
+
+dat = data.frame(table(before.unique$seq_conc))
+
+names(dat) = c("seq_conc", "Freq")
+
+dat$seq_conc = factor(dat$seq_conc)
+
+dat = dat[order(as.character(dat$seq_conc)),]
+
+#writing html from R...
+get.bg.color = function(val){
+ if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color
+ return(ifelse(val,"#eafaf1","#f9ebea"))
+ } else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0
+ return(ifelse(val > 0,"#eaecee","white"))
+ } else {
+ return("white")
+ }
+}
+td = function(val) {
+ return(paste("", val, " ", sep=""))
+}
+tr = function(val) {
+ return(paste(c("", sapply(val, td), " "), collapse=""))
+}
+
+make.link = function(id, clss, val) {
+ paste("", val, " ", sep="")
+}
+tbl = function(df) {
+ res = ""
+ for(i in 1:nrow(df)){
+ res = paste(res, tr(df[i,]), sep="")
+ }
+ res = paste(res, "
")
+}
+
+cat(" Please note that this tab is based on all sequences before filter unique sequences and the remove duplicates based on filters are applied. In this table only sequences occuring more than once are included. ", file=main.html, append=F)
+cat("", file=main.html, append=T)
+
+if(empty.region.filter == "leader"){
+ cat("FR1+CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
+} else if(empty.region.filter == "FR1"){
+ cat("CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
+} else if(empty.region.filter == "CDR1"){
+ cat("FR2+CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
+} else if(empty.region.filter == "FR2"){
+ cat("CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
+}
+
+cat("", file=main.html, append=T)
+cat("Sequence Functionality IGA1 IGA2 IGG1 IGG2 IGG3 IGG4 IGM IGE UN ", file=main.html, append=T)
+cat("total IGA total IGG total IGM total IGE number of subclasses present in both IGA and IGG present in IGA, IGG and IGM present in IGA, IGG and IGE present in IGA, IGG, IGM and IGE IGA1+IGA2 ", file=main.html, append=T)
+cat("IGG1+IGG2 IGG1+IGG3 IGG1+IGG4 IGG2+IGG3 IGG2+IGG4 IGG3+IGG4 ", file=main.html, append=T)
+cat("IGG1+IGG2+IGG3 IGG2+IGG3+IGG4 IGG1+IGG2+IGG4 IGG1+IGG3+IGG4 IGG1+IGG2+IGG3+IGG4 ", file=main.html, append=T)
+cat(" ", file=main.html, append=T)
+
+
+
+single.sequences=0 #sequence only found once, skipped
+in.multiple=0 #same sequence across multiple subclasses
+multiple.in.one=0 #same sequence multiple times in one subclass
+unmatched=0 #all of the sequences are unmatched
+some.unmatched=0 #one or more sequences in a clone are unmatched
+matched=0 #should be the same als matched sequences
+
+sequence.id.page="by_id.html"
+
+for(i in 1:nrow(dat)){
+
+ ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),]
+ ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),]
+
+ cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),]
+ cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),]
+ cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),]
+ cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),]
+
+ cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),]
+
+ ce = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGE", IDs$best_match),]
+
+ un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),]
+
+ allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, ce, un)
+
+ ca1.n = nrow(ca1)
+ ca2.n = nrow(ca2)
+
+ cg1.n = nrow(cg1)
+ cg2.n = nrow(cg2)
+ cg3.n = nrow(cg3)
+ cg4.n = nrow(cg4)
+
+ cm.n = nrow(cm)
+
+ ce.n = nrow(ce)
+
+ un.n = nrow(un)
+
+ classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, ce.n, un.n)
+
+ classes.sum = sum(classes)
+
+ if(classes.sum == 1){
+ single.sequences = single.sequences + 1
+ next
+ }
+
+ if(un.n == classes.sum){
+ unmatched = unmatched + 1
+ next
+ }
+
+ classes.no.un = classes[-length(classes)]
+
+ in.classes = sum(classes.no.un > 0)
+
+ matched = matched + in.classes #count in how many subclasses the sequence occurs.
+
+ if(any(classes == classes.sum)){
+ multiple.in.one = multiple.in.one + 1
+ } else if (un.n > 0) {
+ some.unmatched = some.unmatched + 1
+ } else {
+ in.multiple = in.multiple + 1
+ }
+
+ id = as.numeric(dat[i,"seq_conc"])
+
+ functionality = paste(unique(allc[,"Functionality"]), collapse=",")
+
+ by.id.row = c()
+
+ if(ca1.n > 0){
+ cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep=""))
+ }
+
+ if(ca2.n > 0){
+ cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep=""))
+ }
+
+ if(cg1.n > 0){
+ cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep=""))
+ }
+
+ if(cg2.n > 0){
+ cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep=""))
+ }
+
+ if(cg3.n > 0){
+ cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep=""))
+ }
+
+ if(cg4.n > 0){
+ cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep=""))
+ }
+
+ if(cm.n > 0){
+ cat(tbl(cm), file=paste("IGM_", id, ".html", sep=""))
+ }
+
+ if(ce.n > 0){
+ cat(tbl(ce), file=paste("IGE_", id, ".html", sep=""))
+ }
+
+ if(un.n > 0){
+ cat(tbl(un), file=paste("un_", id, ".html", sep=""))
+ }
+
+ ca1.html = make.link(id, "IGA1", ca1.n)
+ ca2.html = make.link(id, "IGA2", ca2.n)
+
+ cg1.html = make.link(id, "IGG1", cg1.n)
+ cg2.html = make.link(id, "IGG2", cg2.n)
+ cg3.html = make.link(id, "IGG3", cg3.n)
+ cg4.html = make.link(id, "IGG4", cg4.n)
+
+ cm.html = make.link(id, "IGM", cm.n)
+
+ ce.html = make.link(id, "IGE", ce.n)
+
+ un.html = make.link(id, "un", un.n)
+
+ #extra columns
+ ca.n = ca1.n + ca2.n
+
+ cg.n = cg1.n + cg2.n + cg3.n + cg4.n
+
+ #in.classes
+
+ in.ca.cg = (ca.n > 0 & cg.n > 0)
+
+ in.ca.cg.cm = (ca.n > 0 & cg.n > 0 & cm.n > 0)
+
+ in.ca.cg.ce = (ca.n > 0 & cg.n > 0 & ce.n > 0)
+
+ in.ca.cg.cm.ce = (ca.n > 0 & cg.n > 0 & cm.n > 0 & ce.n > 0)
+
+ in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0)
+
+ in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0)
+ in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0)
+ in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0)
+ in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0)
+ in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0)
+ in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0)
+
+ in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0)
+ in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
+ in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0)
+ in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0)
+
+ in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
+
+ #rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
+ rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, ce.html, un.html)
+ rw = c(rw, ca.n, cg.n, cm.n, ce.n, in.classes, in.ca.cg, in.ca.cg.cm, in.ca.cg.ce, in.ca.cg.cm.ce, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all)
+
+
+
+ cat(tr(rw), file=main.html, append=T)
+
+
+ for(i in 1:nrow(allc)){ #generate html by id
+ html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"])
+ cat(paste(html, " "), file=sequence.id.page, append=T)
+ }
+}
+
+cat("
", file=main.html, append=T)
+
+print(paste("Single sequences:", single.sequences))
+print(paste("Sequences in multiple subclasses:", in.multiple))
+print(paste("Multiple sequences in one subclass:", multiple.in.one))
+print(paste("Matched with unmatched:", some.unmatched))
+print(paste("Count that should match 'matched' sequences:", matched))
+
+#ACGT overview
+
+#NToverview = merged[!grepl("^unmatched", merged$best_match),]
+NToverview = merged
+
+if(empty.region.filter == "leader"){
+ NToverview$seq = paste(NToverview$FR1.IMGT.seq, NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
+} else if(empty.region.filter == "FR1"){
+ NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
+} else if(empty.region.filter == "CDR1"){
+ NToverview$seq = paste(NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
+} else if(empty.region.filter == "FR2"){
+ NToverview$seq = paste(NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
+}
+
+NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq))
+NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq))
+NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq))
+NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq))
+
+#Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T))
+
+#NToverview = rbind(NToverview, NTsum)
+
+NTresult = data.frame(nt=c("A", "C", "T", "G"))
+
+for(clazz in gene.classes){
+ print(paste("class:", clazz))
+ NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),]
+ print(paste("nrow:", nrow(NToverview.sub)))
+ new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G))
+ new.col.y = sum(new.col.x)
+ new.col.z = round(new.col.x / new.col.y * 100, 2)
+
+ tmp = names(NTresult)
+ NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
+ names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep=""))
+}
+
+NToverview.tmp = NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")]
+
+names(NToverview.tmp) = c("Sequence.ID", "best_match", "Sequence of the analysed region", "A", "C", "G", "T")
+
+write.table(NToverview.tmp, NToverview.file, quote=F, sep="\t", row.names=F, col.names=T)
+
+NToverview = NToverview[!grepl("unmatched", NToverview$best_match),]
+
+new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G))
+new.col.y = sum(new.col.x)
+new.col.z = round(new.col.x / new.col.y * 100, 2)
+
+tmp = names(NTresult)
+NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
+names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep=""))
+
+names(hotspot.analysis.sum) = names(NTresult)
+
+hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult)
+
+write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_clonality.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_clonality.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,144 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
References
+
+
Gupta,
+Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria,
+Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). Change-O: a toolkit for analyzing large-scale B cell
+immunoglobulin repertoire sequencing data: Table 1. In Bioinformatics, 31 (20), pp.
+3356–3358. [ doi:10.1093/bioinformatics/btv359 ][ Link ]
+
+
+
+
All, IGA, IGG, IGM and IGE tabs
+
+
In
+these tabs information on the clonal relation of transcripts can be found. To
+calculate clonal relation Change-O is used (Gupta et al, PMID: 26069265).
+Transcripts are considered clonally related if they have maximal three nucleotides
+difference in their CDR3 sequence and the same first V segment (as assigned by
+IMGT). Results are represented in a table format showing the clone size and the
+number of clones or sequences with this clone size. Change-O settings used are
+the nucleotide hamming distance substitution model with
+a complete distance of maximal three. For clonal assignment the first gene
+segments were used, and the distances were not normalized. In case of
+asymmetric distances, the minimal distance was used.
+
+
+
+
Overlap
+tab
+
+
This
+tab gives information on with which (sub)classe(s) each unique analyzed region
+(based on the exact nucleotide sequence of the analyzes region and the CDR3
+nucleotide sequence) is found with. This gives information if the combination
+of the exact same nucleotide sequence of the analyzed region and the CDR3
+sequence can be found in multiple (sub)classes.
+
+
Please note that this tab is based on all
+sequences before filter unique sequences and the remove duplicates based on
+filters are applied. In this table only sequences occuring more than once are
+included.
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_csr.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,95 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The
+graphs in this tab give insight into the subclass distribution of IGG and IGA
+transcripts. Human Cµ, Cα, Cγ and Cε
+constant genes are assigned using a custom script
+specifically designed for human (sub)class assignment in repertoire data as
+described in van Schouwenburg and IJspeert et al, submitted for publication. In
+this script the reference sequences for the subclasses are divided in 8
+nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are
+then individually aligned in the right order to each input sequence. The
+percentage of the chunks identified in each rearrangement is calculated in the
+‘chunk hit percentage’. Cα and Cγ
+subclasses are very homologous and only differ in a few nucleotides. To assign
+subclasses the ‘nt hit percentage’ is calculated.
+This percentage indicates how well the chunks covering the subclass specific
+nucleotide match with the different subclasses. Information
+on normal distribution of subclasses in healthy individuals of different ages
+can be found in IJspeert and van Schouwenburg et al, PMID: 27799928.
+
+
IGA
+subclass distribution
+
+
Pie
+chart showing the relative distribution of IGA1 and IGA2 transcripts in the
+sample.
+
+
IGG
+subclass distribution
+
+
Pie
+chart showing the relative distribution of IGG1, IGG2, IGG3 and IGG4
+transcripts in the sample.
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_csr.py Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,508 @@
+import argparse
+import logging
+import sys
+import os
+import re
+
+from collections import defaultdict
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--input", help="The '7_V-REGION-mutation-and-AA-change-table' and '10_V-REGION-mutation-hotspots' merged together, with an added 'best_match' annotation")
+ parser.add_argument("--genes", help="The genes available in the 'best_match' column")
+ parser.add_argument("--empty_region_filter", help="Where does the sequence start?", choices=['leader', 'FR1', 'CDR1', 'FR2'])
+ parser.add_argument("--output", help="Output file")
+
+ args = parser.parse_args()
+
+ infile = args.input
+ genes = str(args.genes).split(",")
+ empty_region_filter = args.empty_region_filter
+ outfile = args.output
+
+ genedic = dict()
+
+ mutationdic = dict()
+ mutationMatcher = re.compile("^(.)(\d+).(.),?[ ]?(.)?(\d+)?.?(.)?(.?.?.?.?.?)?")
+ mutationMatcher = re.compile("^([actg])(\d+).([actg]),?[ ]?([A-Z])?(\d+)?.?([A-Z])?(.*)?")
+ mutationMatcher = re.compile("^([actg])(\d+).([actg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
+ mutationMatcher = re.compile("^([nactg])(\d+).([nactg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
+ NAMatchResult = (None, None, None, None, None, None, '')
+ geneMatchers = {gene: re.compile("^" + gene + ".*") for gene in genes}
+ linecount = 0
+
+ IDIndex = 0
+ best_matchIndex = 0
+ fr1Index = 0
+ cdr1Index = 0
+ fr2Index = 0
+ cdr2Index = 0
+ fr3Index = 0
+ first = True
+ IDlist = []
+ mutationList = []
+ mutationListByID = {}
+ cdr1LengthDic = {}
+ cdr2LengthDic = {}
+
+ fr1LengthDict = {}
+ fr2LengthDict = {}
+ fr3LengthDict = {}
+
+ cdr1LengthIndex = 0
+ cdr2LengthIndex = 0
+
+ fr1SeqIndex = 0
+ fr2SeqIndex = 0
+ fr3SeqIndex = 0
+
+ tandem_sum_by_class = defaultdict(int)
+ expected_tandem_sum_by_class = defaultdict(float)
+
+ with open(infile, 'ru') as i:
+ for line in i:
+ if first:
+ linesplt = line.split("\t")
+ IDIndex = linesplt.index("Sequence.ID")
+ best_matchIndex = linesplt.index("best_match")
+ fr1Index = linesplt.index("FR1.IMGT")
+ cdr1Index = linesplt.index("CDR1.IMGT")
+ fr2Index = linesplt.index("FR2.IMGT")
+ cdr2Index = linesplt.index("CDR2.IMGT")
+ fr3Index = linesplt.index("FR3.IMGT")
+ cdr1LengthIndex = linesplt.index("CDR1.IMGT.length")
+ cdr2LengthIndex = linesplt.index("CDR2.IMGT.length")
+ fr1SeqIndex = linesplt.index("FR1.IMGT.seq")
+ fr2SeqIndex = linesplt.index("FR2.IMGT.seq")
+ fr3SeqIndex = linesplt.index("FR3.IMGT.seq")
+ first = False
+ continue
+ linecount += 1
+ linesplt = line.split("\t")
+ ID = linesplt[IDIndex]
+ genedic[ID] = linesplt[best_matchIndex]
+
+ mutationdic[ID + "_FR1"] = []
+ if len(linesplt[fr1Index]) > 5 and empty_region_filter == "leader":
+ mutationdic[ID + "_FR1"] = [mutationMatcher.match(x).groups() for x in linesplt[fr1Index].split("|") if x]
+
+ mutationdic[ID + "_CDR1"] = []
+ if len(linesplt[cdr1Index]) > 5 and empty_region_filter in ["leader", "FR1"]:
+ mutationdic[ID + "_CDR1"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr1Index].split("|") if x]
+
+ mutationdic[ID + "_FR2"] = []
+ if len(linesplt[fr2Index]) > 5 and empty_region_filter in ["leader", "FR1", "CDR1"]:
+ mutationdic[ID + "_FR2"] = [mutationMatcher.match(x).groups() for x in linesplt[fr2Index].split("|") if x]
+
+ mutationdic[ID + "_CDR2"] = []
+ if len(linesplt[cdr2Index]) > 5:
+ mutationdic[ID + "_CDR2"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr2Index].split("|") if x]
+
+ mutationdic[ID + "_FR2-CDR2"] = mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"]
+
+ mutationdic[ID + "_FR3"] = []
+ if len(linesplt[fr3Index]) > 5:
+ mutationdic[ID + "_FR3"] = [mutationMatcher.match(x).groups() for x in linesplt[fr3Index].split("|") if x]
+
+ mutationList += mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
+ mutationListByID[ID] = mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
+
+ try:
+ cdr1Length = int(linesplt[cdr1LengthIndex])
+ except:
+ cdr1Length = 0
+
+ try:
+ cdr2Length = int(linesplt[cdr2LengthIndex])
+ except:
+ cdr2Length = 0
+
+ #print linesplt[fr2SeqIndex]
+ fr1Length = len(linesplt[fr1SeqIndex]) if empty_region_filter == "leader" else 0
+ fr2Length = len(linesplt[fr2SeqIndex]) if empty_region_filter in ["leader", "FR1", "CDR1"] else 0
+ fr3Length = len(linesplt[fr3SeqIndex])
+
+ cdr1LengthDic[ID] = cdr1Length
+ cdr2LengthDic[ID] = cdr2Length
+
+ fr1LengthDict[ID] = fr1Length
+ fr2LengthDict[ID] = fr2Length
+ fr3LengthDict[ID] = fr3Length
+
+ IDlist += [ID]
+ print "len(mutationdic) =", len(mutationdic)
+
+ with open(os.path.join(os.path.dirname(os.path.abspath(infile)), "mutationdict.txt"), 'w') as out_handle:
+ for ID, lst in mutationdic.iteritems():
+ for mut in lst:
+ out_handle.write("{0}\t{1}\n".format(ID, "\t".join([str(x) for x in mut])))
+
+ #tandem mutation stuff
+ tandem_frequency = defaultdict(int)
+ mutation_frequency = defaultdict(int)
+
+ mutations_by_id_dic = {}
+ first = True
+ mutation_by_id_file = os.path.join(os.path.dirname(outfile), "mutation_by_id.txt")
+ with open(mutation_by_id_file, 'r') as mutation_by_id:
+ for l in mutation_by_id:
+ if first:
+ first = False
+ continue
+ splt = l.split("\t")
+ mutations_by_id_dic[splt[0]] = int(splt[1])
+
+ tandem_file = os.path.join(os.path.dirname(outfile), "tandems_by_id.txt")
+ with open(tandem_file, 'w') as o:
+ highest_tandem_length = 0
+
+ o.write("Sequence.ID\tnumber_of_mutations\tnumber_of_tandems\tregion_length\texpected_tandems\tlongest_tandem\ttandems\n")
+ for ID in IDlist:
+ mutations = mutationListByID[ID]
+ if len(mutations) == 0:
+ continue
+ last_mut = max(mutations, key=lambda x: int(x[1]))
+
+ last_mut_pos = int(last_mut[1])
+
+ mut_positions = [False] * (last_mut_pos + 1)
+
+ for mutation in mutations:
+ frm, where, to, frmAA, whereAA, toAA, thing = mutation
+ where = int(where)
+ mut_positions[where] = True
+
+ tandem_muts = []
+ tandem_start = -1
+ tandem_length = 0
+ for i in range(len(mut_positions)):
+ if mut_positions[i]:
+ if tandem_start == -1:
+ tandem_start = i
+ tandem_length += 1
+ #print "".join(["1" if x else "0" for x in mut_positions[:i+1]])
+ else:
+ if tandem_length > 1:
+ tandem_muts.append((tandem_start, tandem_length))
+ #print "{0}{1} {2}:{3}".format(" " * (i - tandem_length), "^" * tandem_length, tandem_start, tandem_length)
+ tandem_start = -1
+ tandem_length = 0
+ if tandem_length > 1: # if the sequence ends with a tandem mutation
+ tandem_muts.append((tandem_start, tandem_length))
+
+ if len(tandem_muts) > 0:
+ if highest_tandem_length < len(tandem_muts):
+ highest_tandem_length = len(tandem_muts)
+
+ region_length = fr1LengthDict[ID] + cdr1LengthDic[ID] + fr2LengthDict[ID] + cdr2LengthDic[ID] + fr3LengthDict[ID]
+ longest_tandem = max(tandem_muts, key=lambda x: x[1]) if len(tandem_muts) else (0, 0)
+ num_mutations = mutations_by_id_dic[ID] # len(mutations)
+ f_num_mutations = float(num_mutations)
+ num_tandem_muts = len(tandem_muts)
+ expected_tandem_muts = f_num_mutations * (f_num_mutations - 1.0) / float(region_length)
+ o.write("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\n".format(ID,
+ str(num_mutations),
+ str(num_tandem_muts),
+ str(region_length),
+ str(round(expected_tandem_muts, 2)),
+ str(longest_tandem[1]),
+ str(tandem_muts)))
+ gene = genedic[ID]
+ if gene.find("unmatched") == -1:
+ tandem_sum_by_class[gene] += num_tandem_muts
+ expected_tandem_sum_by_class[gene] += expected_tandem_muts
+
+ tandem_sum_by_class["all"] += num_tandem_muts
+ expected_tandem_sum_by_class["all"] += expected_tandem_muts
+
+ gene = gene[:3]
+ if gene in ["IGA", "IGG"]:
+ tandem_sum_by_class[gene] += num_tandem_muts
+ expected_tandem_sum_by_class[gene] += expected_tandem_muts
+ else:
+ tandem_sum_by_class["unmatched"] += num_tandem_muts
+ expected_tandem_sum_by_class["unmatched"] += expected_tandem_muts
+
+
+ for tandem_mut in tandem_muts:
+ tandem_frequency[str(tandem_mut[1])] += 1
+ #print "\t".join([ID, str(len(tandem_muts)), str(longest_tandem[1]) , str(tandem_muts)])
+
+ tandem_freq_file = os.path.join(os.path.dirname(outfile), "tandem_frequency.txt")
+ with open(tandem_freq_file, 'w') as o:
+ for frq in sorted([int(x) for x in tandem_frequency.keys()]):
+ o.write("{0}\t{1}\n".format(frq, tandem_frequency[str(frq)]))
+
+ tandem_row = []
+ genes_extra = list(genes)
+ genes_extra.append("all")
+ for x, y, in zip([tandem_sum_by_class[x] for x in genes_extra], [expected_tandem_sum_by_class[x] for x in genes_extra]):
+ if y != 0:
+ tandem_row += [x, round(y, 2), round(x / y, 2)]
+ else:
+ tandem_row += [x, round(y, 2), 0]
+
+ tandem_freq_file = os.path.join(os.path.dirname(outfile), "shm_overview_tandem_row.txt")
+ with open(tandem_freq_file, 'w') as o:
+ o.write("Tandems/Expected (ratio),{0}\n".format(",".join([str(x) for x in tandem_row])))
+
+ #print mutationList, linecount
+
+ AALength = (int(max(mutationList, key=lambda i: int(i[4]) if i[4] and i[5] != ";" else 0)[4]) + 1) # [4] is the position of the AA mutation, None if silent
+ if AALength < 60:
+ AALength = 64
+
+ AA_mutation = [0] * AALength
+ AA_mutation_dic = {"IGA": AA_mutation[:], "IGG": AA_mutation[:], "IGM": AA_mutation[:], "IGE": AA_mutation[:], "unm": AA_mutation[:], "all": AA_mutation[:]}
+ AA_mutation_empty = AA_mutation[:]
+
+ print "AALength:", AALength
+ aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/aa_id_mutations.txt"
+ with open(aa_mutations_by_id_file, 'w') as o:
+ o.write("ID\tbest_match\t" + "\t".join([str(x) for x in range(1,AALength)]) + "\n")
+ for ID in mutationListByID.keys():
+ AA_mutation_for_ID = AA_mutation_empty[:]
+ for mutation in mutationListByID[ID]:
+ if mutation[4] and mutation[5] != ";":
+ AA_mutation_position = int(mutation[4])
+ try:
+ AA_mutation[AA_mutation_position] += 1
+ AA_mutation_for_ID[AA_mutation_position] += 1
+ except Exception as e:
+ print e
+ print mutation
+ sys.exit()
+ clss = genedic[ID][:3]
+ AA_mutation_dic[clss][AA_mutation_position] += 1
+ o.write(ID + "\t" + genedic[ID] + "\t" + "\t".join([str(x) for x in AA_mutation_for_ID[1:]]) + "\n")
+
+
+
+ #absent AA stuff
+ absentAACDR1Dic = defaultdict(list)
+ absentAACDR1Dic[5] = range(29,36)
+ absentAACDR1Dic[6] = range(29,35)
+ absentAACDR1Dic[7] = range(30,35)
+ absentAACDR1Dic[8] = range(30,34)
+ absentAACDR1Dic[9] = range(31,34)
+ absentAACDR1Dic[10] = range(31,33)
+ absentAACDR1Dic[11] = [32]
+
+ absentAACDR2Dic = defaultdict(list)
+ absentAACDR2Dic[0] = range(55,65)
+ absentAACDR2Dic[1] = range(56,65)
+ absentAACDR2Dic[2] = range(56,64)
+ absentAACDR2Dic[3] = range(57,64)
+ absentAACDR2Dic[4] = range(57,63)
+ absentAACDR2Dic[5] = range(58,63)
+ absentAACDR2Dic[6] = range(58,62)
+ absentAACDR2Dic[7] = range(59,62)
+ absentAACDR2Dic[8] = range(59,61)
+ absentAACDR2Dic[9] = [60]
+
+ absentAA = [len(IDlist)] * (AALength-1)
+ for k, cdr1Length in cdr1LengthDic.iteritems():
+ for c in absentAACDR1Dic[cdr1Length]:
+ absentAA[c] -= 1
+
+ for k, cdr2Length in cdr2LengthDic.iteritems():
+ for c in absentAACDR2Dic[cdr2Length]:
+ absentAA[c] -= 1
+
+
+ aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/absent_aa_id.txt"
+ with open(aa_mutations_by_id_file, 'w') as o:
+ o.write("ID\tcdr1length\tcdr2length\tbest_match\t" + "\t".join([str(x) for x in range(1,AALength)]) + "\n")
+ for ID in IDlist:
+ absentAAbyID = [1] * (AALength-1)
+ cdr1Length = cdr1LengthDic[ID]
+ for c in absentAACDR1Dic[cdr1Length]:
+ absentAAbyID[c] -= 1
+
+ cdr2Length = cdr2LengthDic[ID]
+ for c in absentAACDR2Dic[cdr2Length]:
+ absentAAbyID[c] -= 1
+ o.write(ID + "\t" + str(cdr1Length) + "\t" + str(cdr2Length) + "\t" + genedic[ID] + "\t" + "\t".join([str(x) for x in absentAAbyID]) + "\n")
+
+ if linecount == 0:
+ print "No data, exiting"
+ with open(outfile, 'w') as o:
+ o.write("RGYW (%)," + ("0,0,0\n" * len(genes)))
+ o.write("WRCY (%)," + ("0,0,0\n" * len(genes)))
+ o.write("WA (%)," + ("0,0,0\n" * len(genes)))
+ o.write("TW (%)," + ("0,0,0\n" * len(genes)))
+ import sys
+
+ sys.exit()
+
+ hotspotMatcher = re.compile("[actg]+,(\d+)-(\d+)\((.*)\)")
+ RGYWCount = {}
+ WRCYCount = {}
+ WACount = {}
+ TWCount = {}
+
+ #IDIndex = 0
+ ataIndex = 0
+ tatIndex = 0
+ aggctatIndex = 0
+ atagcctIndex = 0
+ first = True
+ with open(infile, 'ru') as i:
+ for line in i:
+ if first:
+ linesplt = line.split("\t")
+ ataIndex = linesplt.index("X.a.t.a")
+ tatIndex = linesplt.index("t.a.t.")
+ aggctatIndex = linesplt.index("X.a.g.g.c.t..a.t.")
+ atagcctIndex = linesplt.index("X.a.t..a.g.c.c.t.")
+ first = False
+ continue
+ linesplt = line.split("\t")
+ gene = linesplt[best_matchIndex]
+ ID = linesplt[IDIndex]
+ RGYW = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[aggctatIndex].split("|") if x]]
+ WRCY = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[atagcctIndex].split("|") if x]]
+ WA = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[ataIndex].split("|") if x]]
+ TW = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[tatIndex].split("|") if x]]
+ RGYWCount[ID], WRCYCount[ID], WACount[ID], TWCount[ID] = 0, 0, 0, 0
+
+ with open(os.path.join(os.path.dirname(os.path.abspath(infile)), "RGYW.txt"), 'a') as out_handle:
+ for hotspot in RGYW:
+ out_handle.write("{0}\t{1}\n".format(ID, "\t".join([str(x) for x in hotspot])))
+
+ mutationList = mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
+ for mutation in mutationList:
+ frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
+ mutation_in_RGYW = any(((start <= int(where) <= end) for (start, end, region) in RGYW))
+ mutation_in_WRCY = any(((start <= int(where) <= end) for (start, end, region) in WRCY))
+ mutation_in_WA = any(((start <= int(where) <= end) for (start, end, region) in WA))
+ mutation_in_TW = any(((start <= int(where) <= end) for (start, end, region) in TW))
+
+ in_how_many_motifs = sum([mutation_in_RGYW, mutation_in_WRCY, mutation_in_WA, mutation_in_TW])
+
+ if in_how_many_motifs > 0:
+ RGYWCount[ID] += (1.0 * int(mutation_in_RGYW)) / in_how_many_motifs
+ WRCYCount[ID] += (1.0 * int(mutation_in_WRCY)) / in_how_many_motifs
+ WACount[ID] += (1.0 * int(mutation_in_WA)) / in_how_many_motifs
+ TWCount[ID] += (1.0 * int(mutation_in_TW)) / in_how_many_motifs
+
+ mutations_in_motifs_file = os.path.join(os.path.dirname(os.path.abspath(infile)), "mutation_in_motifs.txt")
+ if not os.path.exists(mutation_by_id_file):
+ with open(mutations_in_motifs_file, 'w') as out_handle:
+ out_handle.write("{0}\n".format("\t".join([
+ "Sequence.ID",
+ "mutation_position",
+ "region",
+ "from_nt",
+ "to_nt",
+ "mutation_position_AA",
+ "from_AA",
+ "to_AA",
+ "motif",
+ "motif_start_nt",
+ "motif_end_nt",
+ "rest"
+ ])))
+
+ with open(mutations_in_motifs_file, 'a') as out_handle:
+ motif_dic = {"RGYW": RGYW, "WRCY": WRCY, "WA": WA, "TW": TW}
+ for mutation in mutationList:
+ frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
+ for motif in motif_dic.keys():
+
+ for start, end, region in motif_dic[motif]:
+ if start <= int(where) <= end:
+ out_handle.write("{0}\n".format(
+ "\t".join([
+ ID,
+ where,
+ region,
+ frm,
+ to,
+ str(AAwhere),
+ str(AAfrm),
+ str(AAto),
+ motif,
+ str(start),
+ str(end),
+ str(junk)
+ ])
+ ))
+
+
+
+ def mean(lst):
+ return (float(sum(lst)) / len(lst)) if len(lst) > 0 else 0.0
+
+
+ def median(lst):
+ lst = sorted(lst)
+ l = len(lst)
+ if l == 0:
+ return 0
+ if l == 1:
+ return lst[0]
+
+ l = int(l / 2)
+
+ if len(lst) % 2 == 0:
+ return float(lst[l] + lst[(l - 1)]) / 2.0
+ else:
+ return lst[l]
+
+ funcs = {"mean": mean, "median": median, "sum": sum}
+
+ directory = outfile[:outfile.rfind("/") + 1]
+ value = 0
+ valuedic = dict()
+
+ for fname in funcs.keys():
+ for gene in genes:
+ with open(directory + gene + "_" + fname + "_value.txt", 'r') as v:
+ valuedic[gene + "_" + fname] = float(v.readlines()[0].rstrip())
+ with open(directory + "all_" + fname + "_value.txt", 'r') as v:
+ valuedic["total_" + fname] = float(v.readlines()[0].rstrip())
+
+
+ def get_xyz(lst, gene, f, fname):
+ x = round(round(f(lst), 1))
+ y = valuedic[gene + "_" + fname]
+ z = str(round(x / float(y) * 100, 1)) if y != 0 else "0"
+ return (str(x), str(y), z)
+
+ dic = {"RGYW": RGYWCount, "WRCY": WRCYCount, "WA": WACount, "TW": TWCount}
+ arr = ["RGYW", "WRCY", "WA", "TW"]
+
+ for fname in funcs.keys():
+ func = funcs[fname]
+ foutfile = outfile[:outfile.rindex("/")] + "/hotspot_analysis_" + fname + ".txt"
+ with open(foutfile, 'w') as o:
+ for typ in arr:
+ o.write(typ + " (%)")
+ curr = dic[typ]
+ for gene in genes:
+ geneMatcher = geneMatchers[gene]
+ if valuedic[gene + "_" + fname] is 0:
+ o.write(",0,0,0")
+ else:
+ x, y, z = get_xyz([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]], gene, func, fname)
+ o.write("," + x + "," + y + "," + z)
+ x, y, z = get_xyz([y for x, y in curr.iteritems() if not genedic[x].startswith("unmatched")], "total", func, fname)
+ #x, y, z = get_xyz([y for x, y in curr.iteritems()], "total", func, fname)
+ o.write("," + x + "," + y + "," + z + "\n")
+
+
+ # for testing
+ seq_motif_file = outfile[:outfile.rindex("/")] + "/motif_per_seq.txt"
+ with open(seq_motif_file, 'w') as o:
+ o.write("ID\tRGYW\tWRCY\tWA\tTW\n")
+ for ID in IDlist:
+ #o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str(round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
+ o.write(ID + "\t" + str(RGYWCount[ID]) + "\t" + str(WRCYCount[ID]) + "\t" + str(WACount[ID]) + "\t" + str(TWCount[ID]) + "\n")
+
+if __name__ == "__main__":
+ main()
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr.r
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_csr.r Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,561 @@
+library(data.table)
+library(ggplot2)
+library(reshape2)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+input = args[1]
+genes = unlist(strsplit(args[2], ","))
+outputdir = args[3]
+empty.region.filter = args[4]
+setwd(outputdir)
+
+#dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F)
+
+dat = data.frame(fread(input, sep="\t", header=T, stringsAsFactors=F)) #fread because read.table suddenly skips certain rows...
+
+if(length(dat$Sequence.ID) == 0){
+ setwd(outputdir)
+ result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5))
+ row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)")
+ write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
+ transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4))
+ row.names(transitionTable) = c("A", "C", "G", "T")
+ transitionTable["A","A"] = NA
+ transitionTable["C","C"] = NA
+ transitionTable["G","G"] = NA
+ transitionTable["T","T"] = NA
+
+ write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
+ cat("0", file="n.txt")
+ stop("No data")
+}
+
+cleanup_columns = c("FR1.IMGT.c.a",
+ "FR2.IMGT.g.t",
+ "CDR1.IMGT.Nb.of.nucleotides",
+ "CDR2.IMGT.t.a",
+ "FR1.IMGT.c.g",
+ "CDR1.IMGT.c.t",
+ "FR2.IMGT.a.c",
+ "FR2.IMGT.Nb.of.mutations",
+ "FR2.IMGT.g.c",
+ "FR2.IMGT.a.g",
+ "FR3.IMGT.t.a",
+ "FR3.IMGT.t.c",
+ "FR2.IMGT.g.a",
+ "FR3.IMGT.c.g",
+ "FR1.IMGT.Nb.of.mutations",
+ "CDR1.IMGT.g.a",
+ "CDR1.IMGT.t.g",
+ "CDR1.IMGT.g.c",
+ "CDR2.IMGT.Nb.of.nucleotides",
+ "FR2.IMGT.a.t",
+ "CDR1.IMGT.Nb.of.mutations",
+ "CDR3.IMGT.Nb.of.nucleotides",
+ "CDR1.IMGT.a.g",
+ "FR3.IMGT.a.c",
+ "FR1.IMGT.g.a",
+ "FR3.IMGT.a.g",
+ "FR1.IMGT.a.t",
+ "CDR2.IMGT.a.g",
+ "CDR2.IMGT.Nb.of.mutations",
+ "CDR2.IMGT.g.t",
+ "CDR2.IMGT.a.c",
+ "CDR1.IMGT.t.c",
+ "FR3.IMGT.g.c",
+ "FR1.IMGT.g.t",
+ "FR3.IMGT.g.t",
+ "CDR1.IMGT.a.t",
+ "FR1.IMGT.a.g",
+ "FR3.IMGT.a.t",
+ "FR3.IMGT.Nb.of.nucleotides",
+ "FR2.IMGT.t.c",
+ "CDR2.IMGT.g.a",
+ "FR2.IMGT.t.a",
+ "CDR1.IMGT.t.a",
+ "FR2.IMGT.t.g",
+ "FR3.IMGT.t.g",
+ "FR2.IMGT.Nb.of.nucleotides",
+ "FR1.IMGT.t.a",
+ "FR1.IMGT.t.g",
+ "FR3.IMGT.c.t",
+ "FR1.IMGT.t.c",
+ "CDR2.IMGT.a.t",
+ "FR2.IMGT.c.t",
+ "CDR1.IMGT.g.t",
+ "CDR2.IMGT.t.g",
+ "FR1.IMGT.Nb.of.nucleotides",
+ "CDR1.IMGT.c.g",
+ "CDR2.IMGT.t.c",
+ "FR3.IMGT.g.a",
+ "CDR1.IMGT.a.c",
+ "FR2.IMGT.c.a",
+ "FR3.IMGT.Nb.of.mutations",
+ "FR2.IMGT.c.g",
+ "CDR2.IMGT.g.c",
+ "FR1.IMGT.g.c",
+ "CDR2.IMGT.c.t",
+ "FR3.IMGT.c.a",
+ "CDR1.IMGT.c.a",
+ "CDR2.IMGT.c.g",
+ "CDR2.IMGT.c.a",
+ "FR1.IMGT.c.t",
+ "FR1.IMGT.Nb.of.silent.mutations",
+ "FR2.IMGT.Nb.of.silent.mutations",
+ "FR3.IMGT.Nb.of.silent.mutations",
+ "FR1.IMGT.Nb.of.nonsilent.mutations",
+ "FR2.IMGT.Nb.of.nonsilent.mutations",
+ "FR3.IMGT.Nb.of.nonsilent.mutations")
+
+print("Cleaning up columns")
+
+for(col in cleanup_columns){
+ dat[,col] = gsub("\\(.*\\)", "", dat[,col])
+ #dat[dat[,col] == "",] = "0"
+ dat[,col] = as.numeric(dat[,col])
+ dat[is.na(dat[,col]),col] = 0
+}
+
+regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3")
+if(empty.region.filter == "FR1") {
+ regions = c("CDR1", "FR2", "CDR2", "FR3")
+} else if (empty.region.filter == "CDR1") {
+ regions = c("FR2", "CDR2", "FR3")
+} else if (empty.region.filter == "FR2") {
+ regions = c("CDR2", "FR3")
+}
+
+pdfplots = list() #save() this later to create the pdf plots in another script (maybe avoids the "address (nil), cause memory not mapped")
+
+sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) }
+
+print("aggregating data into new columns")
+
+VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="")
+dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns)
+
+VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="")
+dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq)
+dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns)
+
+transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="")
+dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns)
+
+transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="")
+dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns)
+
+transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
+dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
+
+totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="")
+#totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="")
+dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
+
+transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="")
+dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns)
+
+totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="")
+#totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="")
+dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns)
+
+FRRegions = regions[grepl("FR", regions)]
+CDRRegions = regions[grepl("CDR", regions)]
+
+FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns)
+
+CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns)
+
+FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns)
+
+CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
+
+mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
+write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+setwd(outputdir)
+
+write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T)
+
+base.order.x = data.frame(base=c("A", "C", "G", "T"), order.x=1:4)
+base.order.y = data.frame(base=c("T", "G", "C", "A"), order.y=1:4)
+
+calculate_result = function(i, gene, dat, matrx, f, fname, name){
+ tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),]
+
+ j = i - 1
+ x = (j * 3) + 1
+ y = (j * 3) + 2
+ z = (j * 3) + 3
+
+ if(nrow(tmp) > 0){
+ if(fname == "sum"){
+ matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1)
+ } else {
+ matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1)
+ }
+
+ matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
+ matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+
+ matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
+ matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+
+ matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
+ matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+
+ matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
+
+ matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
+ matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+
+ matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+
+ matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
+ matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
+ matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+
+ matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
+ matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
+ matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
+
+ if(fname == "sum"){
+
+ regions.fr = regions[grepl("FR", regions)]
+ regions.fr = paste(regions.fr, ".IMGT.Nb.of.nucleotides", sep="")
+ regions.cdr = regions[grepl("CDR", regions)]
+ regions.cdr = paste(regions.cdr, ".IMGT.Nb.of.nucleotides", sep="")
+
+ if(length(regions.fr) > 1){ #in case there is only on FR region (rowSums needs >1 column)
+ matrx[10,x] = round(f(rowSums(tmp[,regions.fr], na.rm=T)), digits=1)
+ } else {
+ matrx[10,x] = round(f(tmp[,regions.fr], na.rm=T), digits=1)
+ }
+ matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1)
+
+ if(length(regions.cdr) > 1){ #in case there is only on CDR region
+ matrx[11,x] = round(f(rowSums(tmp[,regions.cdr], na.rm=T)), digits=1)
+ } else {
+ matrx[11,x] = round(f(tmp[,regions.cdr], na.rm=T), digits=1)
+ }
+ matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1)
+ }
+ }
+
+ transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
+ row.names(transitionTable) = c("A", "C", "G", "T")
+ transitionTable["A","A"] = NA
+ transitionTable["C","C"] = NA
+ transitionTable["G","G"] = NA
+ transitionTable["T","T"] = NA
+
+ if(nrow(tmp) > 0){
+ for(nt1 in nts){
+ for(nt2 in nts){
+ if(nt1 == nt2){
+ next
+ }
+ NT1 = LETTERS[letters == nt1]
+ NT2 = LETTERS[letters == nt2]
+ FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
+ CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
+ FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
+ CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
+ FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
+ if (empty.region.filter == "leader"){
+ transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
+ } else if (empty.region.filter == "FR1") {
+ transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
+ } else if (empty.region.filter == "CDR1") {
+ transitionTable[NT1,NT2] = sum(tmp[,c(FR2, CDR2, FR3)])
+ } else if (empty.region.filter == "FR2") {
+ transitionTable[NT1,NT2] = sum(tmp[,c(CDR2, FR3)])
+ }
+ }
+ }
+ transition = transitionTable
+ transition$id = names(transition)
+
+ transition2 = melt(transition, id.vars="id")
+
+ transition2 = merge(transition2, base.order.x, by.x="id", by.y="base")
+
+ transition2 = merge(transition2, base.order.y, by.x="variable", by.y="base")
+
+ transition2[is.na(transition2$value),]$value = 0
+
+ if(any(transition2$value != 0)){ #having a transition table filled with 0 is bad
+ print("Plotting heatmap and transition")
+ png(filename=paste("transitions_stacked_", name, ".png", sep=""))
+ p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar
+ p = p + xlab("From base") + ylab("") + ggtitle("Bargraph transition information") + guides(fill=guide_legend(title=NULL))
+ p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4"))
+ #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black"))
+ print(p)
+ dev.off()
+
+ pdfplots[[paste("transitions_stacked_", name, ".pdf", sep="")]] <<- p
+
+ png(filename=paste("transitions_heatmap_", name, ".png", sep=""))
+ p = ggplot(transition2, aes(factor(reorder(variable, -order.y)), factor(reorder(id, -order.x)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap
+ p = p + xlab("To base") + ylab("From Base") + ggtitle("Heatmap transition information") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"))
+ print(p)
+ dev.off()
+
+ pdfplots[[paste("transitions_heatmap_", name, ".pdf", sep="")]] <<- p
+ } else {
+ #print("No data to plot")
+ }
+ }
+
+ #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
+ write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+ write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+ cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
+ cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep=""))
+ #print(paste(fname, name, nrow(tmp)))
+ matrx
+}
+nts = c("a", "c", "g", "t")
+zeros=rep(0, 4)
+funcs = c(median, sum, mean)
+fnames = c("median", "sum", "mean")
+
+print("Creating result tables")
+
+for(i in 1:length(funcs)){
+ func = funcs[[i]]
+ fname = fnames[[i]]
+
+ print(paste("Creating table for", fname))
+
+ rows = 9
+ if(fname == "sum"){
+ rows = 11
+ }
+ matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows)
+ for(i in 1:length(genes)){
+ matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i])
+ }
+ matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all")
+
+ result = data.frame(matrx)
+ if(fname == "sum"){
+ row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR")
+ } else {
+ row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
+ }
+ write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F)
+}
+
+print("Adding median number of mutations to sum table")
+sum.table = read.table("mutations_sum.txt", sep=",", header=F)
+median.table = read.table("mutations_median.txt", sep=",", header=F)
+
+new.table = sum.table[1,]
+new.table[2,] = median.table[1,]
+new.table[3:12,] = sum.table[2:11,]
+new.table[,1] = as.character(new.table[,1])
+new.table[2,1] = "Median of Number of Mutations (%)"
+
+#sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),]
+
+write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F)
+
+print("Plotting IGA piechart")
+
+dat = dat[!grepl("^unmatched", dat$best_match),]
+
+#blegh
+
+genesForPlot = dat[grepl("IGA", dat$best_match),]$best_match
+
+if(length(genesForPlot) > 0){
+ genesForPlot = data.frame(table(genesForPlot))
+ colnames(genesForPlot) = c("Gene","Freq")
+ genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+
+ pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
+ pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4"))
+ pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL)
+ pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank())
+ pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclass distribution", "( n =", sum(genesForPlot$Freq), ")"))
+ write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+ png(filename="IGA.png")
+ print(pc)
+ dev.off()
+
+ pdfplots[["IGA.pdf"]] <- pc
+}
+
+print("Plotting IGG piechart")
+
+genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match
+
+if(length(genesForPlot) > 0){
+ genesForPlot = data.frame(table(genesForPlot))
+ colnames(genesForPlot) = c("Gene","Freq")
+ genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+
+ pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
+ pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred"))
+ pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL)
+ pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank())
+ pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclass distribution", "( n =", sum(genesForPlot$Freq), ")"))
+ write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+ png(filename="IGG.png")
+ print(pc)
+ dev.off()
+
+ pdfplots[["IGG.pdf"]] <- pc
+}
+
+print("Plotting scatterplot")
+
+dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2)
+dat.clss = dat
+
+dat.clss$best_match = substr(dat.clss$best_match, 0, 3)
+
+dat.clss = rbind(dat, dat.clss)
+
+p = ggplot(dat.clss, aes(best_match, percentage_mutations))
+p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA)
+p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"))
+p = p + scale_fill_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4"))
+p = p + scale_colour_manual(guide = guide_legend(title = "Subclass"), values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4"))
+
+png(filename="scatter.png")
+print(p)
+dev.off()
+
+pdfplots[["scatter.pdf"]] <- p
+
+write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+print("Plotting frequency ranges plot")
+
+dat$best_match_class = substr(dat$best_match, 0, 3)
+freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20")
+dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels)
+
+frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match_class")])
+
+frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")])
+
+frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class")
+
+frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
+
+p = ggplot(frequency_bins_data, aes(frequency_bins, frequency))
+p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"))
+p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(guide = guide_legend(title = "Class"), values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4"))
+
+png(filename="frequency_ranges.png")
+print(p)
+dev.off()
+
+pdfplots[["frequency_ranges.pdf"]] <- p
+
+save(pdfplots, file="pdfplots.RData")
+
+frequency_bins_data_by_class = frequency_bins_data
+
+frequency_bins_data_by_class = frequency_bins_data_by_class[order(frequency_bins_data_by_class$best_match_class, frequency_bins_data_by_class$frequency_bins),]
+
+frequency_bins_data_by_class$frequency_bins = gsub("-", " to ", frequency_bins_data_by_class$frequency_bins)
+frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "20", c("frequency_bins")] = "20 or higher"
+frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "0", c("frequency_bins")] = "0 or lower"
+
+write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "best_match_class", "frequency_bins")])
+
+frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match")])
+
+frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match")
+
+frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
+
+frequency_bins_data = frequency_bins_data[order(frequency_bins_data$best_match, frequency_bins_data$frequency_bins),]
+frequency_bins_data$frequency_bins = gsub("-", " to ", frequency_bins_data$frequency_bins)
+frequency_bins_data[frequency_bins_data$frequency_bins == "20", c("frequency_bins")] = "20 or higher"
+frequency_bins_data[frequency_bins_data$frequency_bins == "0", c("frequency_bins")] = "0 or lower"
+
+write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_csr.xml Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,240 @@
+
+
+
+ python
+ numpy
+ xlrd
+ r-ggplot2
+ r-reshape2
+ r-scales
+ r-seqinr
+ r-data.table
+
+
+ #if str ( $filter_unique.filter_unique_select ) == "remove":
+ wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select $filter_unique.filter_unique_clone_count $class_filter_cond.class_filter $empty_region_filter $fast
+ #else:
+ wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select 2 $class_filter_cond.class_filter $empty_region_filter $fast
+ #end if
+
+
+
+
+ Leader: include FR1, CDR1, FR2, CDR2, FR3 in filters
+ FR1: include CDR1,FR2,CDR2,FR3 in filters
+ CDR1: include FR2,CDR2,FR3 in filters
+ FR2: include CDR2,FR3 in filters
+
+
+ Productive (Productive and Productive see comment)
+ Unproductive (Unproductive and Unproductive see comment)
+ Productive and Unproductive (Productive, Productive see comment, Unproductive, Unproductive and Unproductive see comment)
+
+
+
+ Remove uniques (Based on nucleotide sequence + C)
+ Remove uniques (Based on V+J+CDR3 (AA))
+ Keep uniques (Based on nucleotide sequence + C)
+ No
+
+
+
+
+
+
+
+
+ Top.V.Gene, CDR3 (AA), C region
+ Top.V.Gene, CDR3 (AA)
+ CDR3 (AA), C region
+ CDR3 (AA)
+
+ Top.V.Gene, CDR3 (nt), C region
+ Top.V.Gene, CDR3 (nt)
+ CDR3 (nt), C region
+ CDR3 (nt)
+ Don't remove duplicates
+
+
+
+ >70% class and >70% subclass
+ >60% class and >55% subclass
+ >70% class
+ >60% class
+ >19% class
+ Do not assign (sub)class
+
+
+
+
+
+
+
+
+
+
+ Yes
+ No
+
+
+
+
+
+ Yes
+ No
+
+
+
+
+
+ naive_output_cond['naive_output'] == "yes"
+ class_filter_cond['class_filter'] != "101_101"
+
+
+ naive_output_cond['naive_output'] == "yes"
+ class_filter_cond['class_filter'] != "101_101"
+
+
+ naive_output_cond['naive_output'] == "yes"
+ class_filter_cond['class_filter'] != "101_101"
+
+
+ naive_output_cond['naive_output'] == "yes"
+ class_filter_cond['class_filter'] != "101_101"
+
+
+ naive_output_cond['naive_output'] == "yes"
+ class_filter_cond['class_filter'] == "101_101"
+
+
+
+
+
+
+
+
+
+25% class†can be chosen when you only are interested in the class (Cα/Cγ/Cµ/Cɛ) of your sequences and the length of your sequence is not long enough to assign the subclasses.
+
+-----
+
+**Output new IMGT archives per class into your history?**
+
+If yes is selected, additional output files (one for each class) will be added to the history which contain information of the sequences that passed the selected filtering criteria. These files are in the same format as the IMGT/HighV-QUEST output files and therefore are also compatible with many other analysis programs, such as the Immune repertoire pipeline.
+
+-----
+
+**Execute**
+
+Upon pressing execute a new analysis is added to your history (right side of the page). Initially this analysis will be grey, after initiating the analysis colour of the analysis in the history will change to yellow. When the analysis is finished it will turn green in the history. Now the analysis can be opened by clicking on the eye icon on the analysis of interest. When an analysis turns red an error has occurred when running the analysis. If you click on the analysis title additional information can be found on the analysis. In addition a bug icon appears. Here more information on the error can be found.
+
+]]>
+
+
+ 10.1093/nar/gks457
+ 10.1093/bioinformatics/btv359
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/.gitattributes
--- a/shm_csr/.gitattributes Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-# Auto detect text files and perform LF normalization
-* text=auto
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/.gitignore
--- a/shm_csr/.gitignore Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,4 +0,0 @@
-
-shm_csr\.tar\.gz
-
-\.vscode/settings\.json
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/LICENSE
--- a/shm_csr/LICENSE Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,21 +0,0 @@
-MIT License
-
-Copyright (c) 2019 david
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
\ No newline at end of file
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/README.md
--- a/shm_csr/README.md Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,13 +0,0 @@
-# SHM CSR
-
-Somatic hypermutation and class switch recombination pipeline.
-The docker version can be found [here](https://github.com/ErasmusMC-Bioinformatics/ARGalaxy-docker).
-
-# Dependencies
---------------------
-[Python 2.7](https://www.python.org/)
-[Change-O](https://changeo.readthedocs.io/en/version-0.4.4/)
-[Baseline](http://selection.med.yale.edu/baseline/)
-[R data.table](https://cran.r-project.org/web/packages/data.table/data.table.pdf)
-[R ggplot2](https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf)
-[R reshape2](https://cran.r-project.org/web/packages/reshape/reshape.pdf)
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/aa_histogram.r
--- a/shm_csr/aa_histogram.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,69 +0,0 @@
-library(ggplot2)
-
-args <- commandArgs(trailingOnly = TRUE)
-
-mutations.by.id.file = args[1]
-absent.aa.by.id.file = args[2]
-genes = strsplit(args[3], ",")[[1]]
-genes = c(genes, "")
-outdir = args[4]
-
-
-print("---------------- read input ----------------")
-
-mutations.by.id = read.table(mutations.by.id.file, sep="\t", fill=T, header=T, quote="")
-absent.aa.by.id = read.table(absent.aa.by.id.file, sep="\t", fill=T, header=T, quote="")
-
-for(gene in genes){
- graph.title = paste(gene, "AA mutation frequency")
- if(gene == ""){
- mutations.by.id.gene = mutations.by.id[!grepl("unmatched", mutations.by.id$best_match),]
- absent.aa.by.id.gene = absent.aa.by.id[!grepl("unmatched", absent.aa.by.id$best_match),]
-
- graph.title = "AA mutation frequency all"
- } else {
- mutations.by.id.gene = mutations.by.id[grepl(paste("^", gene, sep=""), mutations.by.id$best_match),]
- absent.aa.by.id.gene = absent.aa.by.id[grepl(paste("^", gene, sep=""), absent.aa.by.id$best_match),]
- }
- print(paste("nrow", gene, nrow(absent.aa.by.id.gene)))
- if(nrow(mutations.by.id.gene) == 0){
- next
- }
-
- mutations.at.position = colSums(mutations.by.id.gene[,-c(1,2)])
- aa.at.position = colSums(absent.aa.by.id.gene[,-c(1,2,3,4)])
-
- dat_freq = mutations.at.position / aa.at.position
- dat_freq[is.na(dat_freq)] = 0
- dat_dt = data.frame(i=1:length(dat_freq), freq=dat_freq)
-
-
- print("---------------- plot ----------------")
-
- m = ggplot(dat_dt, aes(x=i, y=freq)) + theme(axis.text.x = element_text(angle = 90, hjust = 1), text = element_text(size=13, colour="black"))
- m = m + geom_bar(stat="identity", colour = "black", fill = "darkgrey", alpha=0.8) + scale_x_continuous(breaks=dat_dt$i, labels=dat_dt$i)
- m = m + annotate("segment", x = 0.5, y = -0.05, xend=26.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.1, label="FR1")
- m = m + annotate("segment", x = 26.5, y = -0.07, xend=38.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.15, label="CDR1")
- m = m + annotate("segment", x = 38.5, y = -0.05, xend=55.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.1, label="FR2")
- m = m + annotate("segment", x = 55.5, y = -0.07, xend=65.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.15, label="CDR2")
- m = m + annotate("segment", x = 65.5, y = -0.05, xend=104.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.1, label="FR3")
- m = m + expand_limits(y=c(-0.1,1)) + xlab("AA position") + ylab("Frequency") + ggtitle(graph.title)
- m = m + theme(panel.background = element_rect(fill = "white", colour="black"), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
- #m = m + scale_colour_manual(values=c("black"))
-
- print("---------------- write/print ----------------")
-
-
- dat.sums = data.frame(index=1:length(mutations.at.position), mutations.at.position=mutations.at.position, aa.at.position=aa.at.position)
-
- write.table(dat.sums, paste(outdir, "/aa_histogram_sum_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
- write.table(mutations.by.id.gene, paste(outdir, "/aa_histogram_count_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
- write.table(absent.aa.by.id.gene, paste(outdir, "/aa_histogram_absent_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
- write.table(dat_dt, paste(outdir, "/aa_histogram_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-
- png(filename=paste(outdir, "/aa_histogram_", gene, ".png", sep=""), width=1280, height=720)
- print(m)
- dev.off()
-
- ggsave(paste(outdir, "/aa_histogram_", gene, ".pdf", sep=""), m, width=14, height=7)
-}
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/Baseline_Functions.r
--- a/shm_csr/baseline/Baseline_Functions.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,2287 +0,0 @@
-#########################################################################################
-# License Agreement
-#
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE
-# OR COPYRIGHT LAW IS PROHIBITED.
-#
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-# Global variables
-
- FILTER_BY_MUTATIONS = 1000
-
- # Nucleotides
- NUCLEOTIDES = c("A","C","G","T")
-
- # Amino Acids
- AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
- names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
- names(AMINO_ACIDS) <- names(AMINO_ACIDS)
-
- #Amino Acid Traits
- #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
- #B = "Hydrophobic/Burried" N = "Intermediate/Neutral" S="Hydrophilic/Surface")
- TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
- names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
- TRAITS_AMINO_ACIDS <- array(NA,21)
-
- # Codon Table
- CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
-
- # Substitution Model: Smith DS et al. 1996
- substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
- substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
- substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
- load("FiveS_Substitution.RData")
-
- # Mutability Models: Shapiro GS et al. 2002
- triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
- triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
- triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
- load("FiveS_Mutability.RData")
-
-# Functions
-
- # Translate codon to amino acid
- translateCodonToAminoAcid<-function(Codon){
- return(AMINO_ACIDS[Codon])
- }
-
- # Translate amino acid to trait change
- translateAminoAcidToTraitChange<-function(AminoAcid){
- return(TRAITS_AMINO_ACIDS[AminoAcid])
- }
-
- # Initialize Amino Acid Trait Changes
- initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
- if(!is.null(traitChangeFileName)){
- tryCatch(
- traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
- , error = function(ex){
- cat("Error|Error reading trait changes. Please check file name/path and format.\n")
- q()
- }
- )
- }else{
- traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
- }
- TRAITS_AMINO_ACIDS <<- traitChange
- }
-
- # Read in formatted nucleotide substitution matrix
- initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
- if(!is.null(subsMatFileName)){
- tryCatch(
- subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
- , error = function(ex){
- cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
- q()
- }
- )
- if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
- }else{
- if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
- if(substitutionModel==2)subsMat <- substitution_Flu_Human
- if(substitutionModel==3)subsMat <- substitution_Flu25_Human
-
- }
-
- if(substitutionModel==0){
- subsMat <- matrix(1,4,4)
- subsMat[,] = 1/3
- subsMat[1,1] = 0
- subsMat[2,2] = 0
- subsMat[3,3] = 0
- subsMat[4,4] = 0
- }
-
-
- NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
- if(substitutionModel==5){
- subsMat <- FiveS_Substitution
- return(subsMat)
- }else{
- subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
- return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
- }
- }
-
-
- # Read in formatted Mutability file
- initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
- if(!is.null(mutabilityMatFileName)){
- tryCatch(
- mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
- , error = function(ex){
- cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
- q()
- }
- )
- }else{
- mutabilityMat <- triMutability_Literature_Human
- if(species==2) mutabilityMat <- triMutability_Literature_Mouse
- }
-
- if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
-
- if(mutabilityModel==5){
- mutabilityMat <- FiveS_Mutability
- return(mutabilityMat)
- }else{
- return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
- }
- }
-
- # Read FASTA file formats
- # Modified from read.fasta from the seqinR package
- baseline.read.fasta <-
- function (file = system.file("sequences/sample.fasta", package = "seqinr"),
- seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE,
- set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE,
- strip.desc = FALSE, sizeof.longlong = .Machine$sizeof.longlong,
- endian = .Platform$endian, apply.mask = TRUE)
- {
- seqtype <- match.arg(seqtype)
-
- lines <- readLines(file)
-
- if (legacy.mode) {
- comments <- grep("^;", lines)
- if (length(comments) > 0)
- lines <- lines[-comments]
- }
-
-
- ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
- lines_mod<-lines
-
- if(!length(ind_groups)){
- lines_mod<-c(">>>All sequences combined",lines)
- }
-
- ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
-
- lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
- id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
- lines[id] <- "THIS IS A FAKE SEQUENCE"
- lines[-id] <- lines_mod
- rm(lines_mod)
-
- ind <- which(substr(lines, 1L, 1L) == ">")
- nseq <- length(ind)
- if (nseq == 0) {
- stop("no line starting with a > character found")
- }
- start <- ind + 1
- end <- ind - 1
-
- while( any(which(ind%in%end)) ){
- ind=ind[-which(ind%in%end)]
- nseq <- length(ind)
- if (nseq == 0) {
- stop("no line starting with a > character found")
- }
- start <- ind + 1
- end <- ind - 1
- }
-
- end <- c(end[-1], length(lines))
- sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
- if (seqonly)
- return(sequences)
- nomseq <- lapply(seq_len(nseq), function(i) {
-
- #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
- substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
-
- })
- if (seqtype == "DNA") {
- if (forceDNAtolower) {
- sequences <- as.list(tolower(chartr(".","-",sequences)))
- }else{
- sequences <- as.list(toupper(chartr(".","-",sequences)))
- }
- }
- if (as.string == FALSE)
- sequences <- lapply(sequences, s2c)
- if (set.attributes) {
- for (i in seq_len(nseq)) {
- Annot <- lines[ind[i]]
- if (strip.desc)
- Annot <- substr(Annot, 2L, nchar(Annot))
- attributes(sequences[[i]]) <- list(name = nomseq[[i]],
- Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA",
- DNA = "SeqFastadna"))
- }
- }
- names(sequences) <- nomseq
- return(sequences)
- }
-
-
- # Replaces non FASTA characters in input files with N
- replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
- gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
- }
-
- # Find the germlines in the FASTA list
- germlinesInFile <- function(seqIDs){
- firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
- secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
- return(firstChar==">" & secondChar!=">")
- }
-
- # Find the groups in the FASTA list
- groupsInFile <- function(seqIDs){
- sapply(seqIDs,function(x){substr(x,1,2)})==">>"
- }
-
- # In the process of finding germlines/groups, expand from the start to end of the group
- expandTillNext <- function(vecPosToID){
- IDs = names(vecPosToID)
- posOfInterests = which(vecPosToID)
-
- expandedID = rep(NA,length(IDs))
- expandedIDNames = gsub(">","",IDs[posOfInterests])
- startIndexes = c(1,posOfInterests[-1])
- stopIndexes = c(posOfInterests[-1]-1,length(IDs))
- expandedID = unlist(sapply(1:length(startIndexes),function(i){
- rep(i,stopIndexes[i]-startIndexes[i]+1)
- }))
- names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
- rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
- }))
- return(expandedID)
- }
-
- # Process FASTA (list) to return a matrix[input, germline)
- processInputAdvanced <- function(inputFASTA){
-
- seqIDs = names(inputFASTA)
- numbSeqs = length(seqIDs)
- posGermlines1 = germlinesInFile(seqIDs)
- numbGermlines = sum(posGermlines1)
- posGroups1 = groupsInFile(seqIDs)
- numbGroups = sum(posGroups1)
- consDef = NA
-
- if(numbGermlines==0){
- posGermlines = 2
- numbGermlines = 1
- }
-
- glPositionsSum = cumsum(posGermlines1)
- glPositions = table(glPositionsSum)
- #Find the position of the conservation row
- consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1
- if( length(consDefPos)> 0 ){
- consDefID = match(consDefPos, glPositionsSum)
- #The coservation rows need to be pulled out and stores seperately
- consDef = inputFASTA[consDefID]
- inputFASTA = inputFASTA[-consDefID]
-
- seqIDs = names(inputFASTA)
- numbSeqs = length(seqIDs)
- posGermlines1 = germlinesInFile(seqIDs)
- numbGermlines = sum(posGermlines1)
- posGroups1 = groupsInFile(seqIDs)
- numbGroups = sum(posGroups1)
- if(numbGermlines==0){
- posGermlines = 2
- numbGermlines = 1
- }
- }
-
- posGroups <- expandTillNext(posGroups1)
- posGermlines <- expandTillNext(posGermlines1)
- posGermlines[posGroups1] = 0
- names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
- posInput = rep(TRUE,numbSeqs)
- posInput[posGroups1 | posGermlines1] = FALSE
-
- matInput = matrix(NA, nrow=sum(posInput), ncol=2)
- rownames(matInput) = seqIDs[posInput]
- colnames(matInput) = c("Input","Germline")
-
- vecInputFASTA = unlist(inputFASTA)
- matInput[,1] = vecInputFASTA[posInput]
- matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
-
- germlines = posGermlines[posInput]
- groups = posGroups[posInput]
-
- return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))
- }
-
-
- # Replace leading and trailing dashes in the sequence
- replaceLeadingTrailingDashes <- function(x,readEnd){
- iiGap = unlist(gregexpr("-",x[1]))
- ggGap = unlist(gregexpr("-",x[2]))
- #posToChange = intersect(iiGap,ggGap)
-
-
- seqIn = replaceLeadingTrailingDashesHelper(x[1])
- seqGL = replaceLeadingTrailingDashesHelper(x[2])
- seqTemplate = rep('N',readEnd)
- seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
- seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
-# if(posToChange!=-1){
-# seqIn[posToChange] = "-"
-# seqGL[posToChange] = "-"
-# }
-
- seqIn = c2s(seqIn[1:readEnd])
- seqGL = c2s(seqGL[1:readEnd])
-
- lenGL = nchar(seqGL)
- if(lenGL seqLen )
- trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
-
- return(trimmedSeq)
- }
-
- # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
- # e.g. nuc 86 is part of nucs 85,86,87
- getCodonPos <- function(nucPos){
- codonNum = (ceiling(nucPos/3))*3
- return( (codonNum-2):codonNum)
- }
-
- # Given a nuclotide position, returns the codon number
- # e.g. nuc 86 = codon 29
- getCodonNumb <- function(nucPos){
- return( ceiling(nucPos/3) )
- }
-
- # Given a codon, returns all the nuc positions that make the codon
- getCodonNucs <- function(codonNumb){
- getCodonPos(codonNumb*3)
- }
-
- computeCodonTable <- function(testID=1){
-
- if(testID<=4){
- # Pre-compute every codons
- intCounter = 1
- for(pOne in NUCLEOTIDES){
- for(pTwo in NUCLEOTIDES){
- for(pThree in NUCLEOTIDES){
- codon = paste(pOne,pTwo,pThree,sep="")
- colnames(CODON_TABLE)[intCounter] = codon
- intCounter = intCounter + 1
- CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
- }
- }
- }
- chars = c("N","A","C","G","T", "-")
- for(a in chars){
- for(b in chars){
- for(c in chars){
- if(a=="N" | b=="N" | c=="N"){
- #cat(paste(a,b,c),sep="","\n")
- CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
- }
- }
- }
- }
-
- chars = c("-","A","C","G","T")
- for(a in chars){
- for(b in chars){
- for(c in chars){
- if(a=="-" | b=="-" | c=="-"){
- #cat(paste(a,b,c),sep="","\n")
- CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
- }
- }
- }
- }
- CODON_TABLE <<- as.matrix(CODON_TABLE)
- }
- }
-
- collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
- #print(length(vecInputSeqs))
- vecInputSeqs = unique(vecInputSeqs)
- if(length(vecInputSeqs)==1){
- return( list( c(vecInputSeqs,glSeq), F) )
- }else{
- charInputSeqs <- sapply(vecInputSeqs, function(x){
- s2c(x)[1:readEnd]
- })
- charGLSeq <- s2c(glSeq)
- matClone <- sapply(1:readEnd, function(i){
- posNucs = unique(charInputSeqs[i,])
- posGL = charGLSeq[i]
- error = FALSE
- if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
- return(c("-",error))
- }
- if(length(posNucs)==1)
- return(c(posNucs[1],error))
- else{
- if("N"%in%posNucs){
- error=TRUE
- }
- if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
- return( c(posGL,error) )
- }else{
- #return( c(sample(posNucs[posNucs!="N"],1),error) )
- if(nonTerminalOnly==0){
- return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )
- }else{
- posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
- posNucsTable = table(posNucs)
- if(sum(posNucsTable>1)==0){
- return( c(posGL,error) )
- }else{
- return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
- }
- }
-
- }
- }
- })
-
-
- #print(length(vecInputSeqs))
- return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
- }
- }
-
- # Compute the expected for each sequence-germline pair
- getExpectedIndividual <- function(matInput){
- if( any(grep("multicore",search())) ){
- facGL <- factor(matInput[,2])
- facLevels = levels(facGL)
- LisGLs_MutabilityU = mclapply(1:length(facLevels), function(x){
- computeMutabilities(facLevels[x])
- })
- facIndex = match(facGL,facLevels)
-
- LisGLs_Mutability = mclapply(1:nrow(matInput), function(x){
- cInput = rep(NA,nchar(matInput[x,1]))
- cInput[s2c(matInput[x,1])!="N"] = 1
- LisGLs_MutabilityU[[facIndex[x]]] * cInput
- })
-
- LisGLs_Targeting = mclapply(1:dim(matInput)[1], function(x){
- computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
- })
-
- LisGLs_MutationTypes = mclapply(1:length(matInput[,2]),function(x){
- #print(x)
- computeMutationTypes(matInput[x,2])
- })
-
- LisGLs_Exp = mclapply(1:dim(matInput)[1], function(x){
- computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
- })
-
- ul_LisGLs_Exp = unlist(LisGLs_Exp)
- return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
- }else{
- facGL <- factor(matInput[,2])
- facLevels = levels(facGL)
- LisGLs_MutabilityU = lapply(1:length(facLevels), function(x){
- computeMutabilities(facLevels[x])
- })
- facIndex = match(facGL,facLevels)
-
- LisGLs_Mutability = lapply(1:nrow(matInput), function(x){
- cInput = rep(NA,nchar(matInput[x,1]))
- cInput[s2c(matInput[x,1])!="N"] = 1
- LisGLs_MutabilityU[[facIndex[x]]] * cInput
- })
-
- LisGLs_Targeting = lapply(1:dim(matInput)[1], function(x){
- computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
- })
-
- LisGLs_MutationTypes = lapply(1:length(matInput[,2]),function(x){
- #print(x)
- computeMutationTypes(matInput[x,2])
- })
-
- LisGLs_Exp = lapply(1:dim(matInput)[1], function(x){
- computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
- })
-
- ul_LisGLs_Exp = unlist(LisGLs_Exp)
- return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
-
- }
- }
-
- # Compute mutabilities of sequence based on the tri-nucleotide model
- computeMutabilities <- function(paramSeq){
- seqLen = nchar(paramSeq)
- seqMutabilites = rep(NA,seqLen)
-
- gaplessSeq = gsub("-", "", paramSeq)
- gaplessSeqLen = nchar(gaplessSeq)
- gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
-
- if(mutabilityModel!=5){
- pos<- 3:(gaplessSeqLen)
- subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))
- gaplessSeqMutabilites[pos] =
- tapply( c(
- getMutability( substr(subSeq,1,3), 3) ,
- getMutability( substr(subSeq,2,4), 2),
- getMutability( substr(subSeq,3,5), 1)
- ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
- )
- #Pos 1
- subSeq = substr(gaplessSeq,1,3)
- gaplessSeqMutabilites[1] = getMutability(subSeq , 1)
- #Pos 2
- subSeq = substr(gaplessSeq,1,4)
- gaplessSeqMutabilites[2] = mean( c(
- getMutability( substr(subSeq,1,3), 2) ,
- getMutability( substr(subSeq,2,4), 1)
- ),na.rm=T
- )
- seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
- return(seqMutabilites)
- }else{
-
- pos<- 3:(gaplessSeqLen)
- subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))
- gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
- seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
- return(seqMutabilites)
- }
-
- }
-
- # Returns the mutability of a triplet at a given position
- getMutability <- function(codon, pos=1:3){
- triplets <- rownames(mutability)
- mutability[ match(codon,triplets) ,pos]
- }
-
- getMutability5 <- function(fivemer){
- return(mutability[fivemer])
- }
-
- # Returns the substitution probabilty
- getTransistionProb <- function(nuc){
- substitution[nuc,]
- }
-
- getTransistionProb5 <- function(fivemer){
- if(any(which(fivemer==colnames(substitution)))){
- return(substitution[,fivemer])
- }else{
- return(array(NA,4))
- }
- }
-
- # Given a nuc, returns the other 3 nucs it can mutate to
- canMutateTo <- function(nuc){
- NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
- }
-
- # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to
- canMutateToProb <- function(nuc){
- substitution[nuc,canMutateTo(nuc)]
- }
-
- # Compute targeting, based on precomputed mutatbility & substitution
- computeTargeting <- function(param_strSeq,param_vecMutabilities){
-
- if(substitutionModel!=5){
- vecSeq = s2c(param_strSeq)
- matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )
- #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
- dimnames( matTargeting ) = list(NUCLEOTIDES,1:(length(vecSeq)))
- return (matTargeting)
- }else{
-
- seqLen = nchar(param_strSeq)
- seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
- paramSeq <- param_strSeq
- gaplessSeq = gsub("-", "", paramSeq)
- gaplessSeqLen = nchar(gaplessSeq)
- gaplessSeqSubstitution = matrix(NA,ncol=gaplessSeqLen,nrow=4)
-
- pos<- 3:(gaplessSeqLen)
- subSeq = substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))
- gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
- seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
- #matTargeting <- param_vecMutabilities %*% seqsubstitution
- matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
- dimnames( matTargeting ) = list(NUCLEOTIDES,1:(seqLen))
- return (matTargeting)
- }
- }
-
- # Compute the mutations types
- computeMutationTypes <- function(param_strSeq){
- #cat(param_strSeq,"\n")
- #vecSeq = trimToLastCodon(param_strSeq)
- lenSeq = nchar(param_strSeq)
- vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
- matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
- dimnames( matMutationTypes ) = list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
- return(matMutationTypes)
- }
- computeMutationTypesFast <- function(param_strSeq){
- matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
- #dimnames( matMutationTypes ) = list(NUCLEOTIDES,1:(length(vecSeq)))
- return(matMutationTypes)
- }
- mutationTypeOptimized <- function( matOfCodons ){
- apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } )
- }
-
- # Returns a vector of codons 1 mutation away from the given codon
- permutateAllCodon <- function(codon){
- cCodon = s2c(codon)
- matCodons = t(array(cCodon,dim=c(3,12)))
- matCodons[1:4,1] = NUCLEOTIDES
- matCodons[5:8,2] = NUCLEOTIDES
- matCodons[9:12,3] = NUCLEOTIDES
- apply(matCodons,1,c2s)
- }
-
- # Given two codons, tells you if the mutation is R or S (based on your definition)
- mutationType <- function(codonFrom,codonTo){
- if(testID==4){
- if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
- return(NA)
- }else{
- mutationType = "S"
- if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
- mutationType = "R"
- }
- if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
- mutationType = "Stop"
- }
- return(mutationType)
- }
- }else if(testID==5){
- if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
- return(NA)
- }else{
- if(codonFrom==codonTo){
- mutationType = "S"
- }else{
- codonFrom = s2c(codonFrom)
- codonTo = s2c(codonTo)
- mutationType = "Stop"
- nucOfI = codonFrom[which(codonTo!=codonFrom)]
- if(nucOfI=="C"){
- mutationType = "R"
- }else if(nucOfI=="G"){
- mutationType = "S"
- }
- }
- return(mutationType)
- }
- }else{
- if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
- return(NA)
- }else{
- mutationType = "S"
- if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
- mutationType = "R"
- }
- if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
- mutationType = "Stop"
- }
- return(mutationType)
- }
- }
- }
-
-
- #given a mat of targeting & it's corresponding mutationtypes returns
- #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
- computeExpected <- function(paramTargeting,paramMutationTypes){
- # Replacements
- RPos = which(paramMutationTypes=="R")
- #FWR
- Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
- #CDR
- Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
- # Silents
- SPos = which(paramMutationTypes=="S")
- #FWR
- Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
- #CDR
- Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
-
- return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
- }
-
- # Count the mutations in a sequence
- # each mutation is treated independently
- analyzeMutations2NucUri_website <- function( rev_in_matrix ){
- paramGL = rev_in_matrix[2,]
- paramSeq = rev_in_matrix[1,]
-
- #Fill seq with GL seq if gapped
- #if( any(paramSeq=="-") ){
- # gapPos_Seq = which(paramSeq=="-")
- # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
- # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
- #}
-
-
- #if( any(paramSeq=="N") ){
- # gapPos_Seq = which(paramSeq=="N")
- # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
- # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
- #}
-
- analyzeMutations2NucUri( matrix(c( paramGL, paramSeq ),2,length(paramGL),byrow=T) )
-
- }
-
- #1 = GL
- #2 = Seq
- analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
- paramGL = in_matrix[2,]
- paramSeq = in_matrix[1,]
- paramSeqUri = paramGL
- #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
- mutations_val = paramGL != paramSeq
- if(any(mutations_val)){
- mutationPos = {1:length(mutations_val)}[mutations_val]
- mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
- length_mutations =length(mutationPos)
- mutationInfo = rep(NA,length_mutations)
- if(any(mutationPos)){
-
- pos<- mutationPos
- pos_array<-array(sapply(pos,getCodonPos))
- codonGL = paramGL[pos_array]
-
- codonSeq = sapply(pos,function(x){
- seqP = paramGL[getCodonPos(x)]
- muCodonPos = {x-1}%%3+1
- seqP[muCodonPos] = paramSeq[x]
- return(seqP)
- })
- GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
- Seqcodons = apply(codonSeq,2,c2s)
- mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
- names(mutationInfo) = mutationPos
- }
- if(any(!is.na(mutationInfo))){
- return(mutationInfo[!is.na(mutationInfo)])
- }else{
- return(NA)
- }
-
-
- }else{
- return (NA)
- }
- }
-
- processNucMutations2 <- function(mu){
- if(!is.na(mu)){
- #R
- if(any(mu=="R")){
- Rs = mu[mu=="R"]
- nucNumbs = as.numeric(names(Rs))
- R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
- R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)
- }else{
- R_CDR = 0
- R_FWR = 0
- }
-
- #S
- if(any(mu=="S")){
- Ss = mu[mu=="S"]
- nucNumbs = as.numeric(names(Ss))
- S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
- S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)
- }else{
- S_CDR = 0
- S_FWR = 0
- }
-
-
- retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
- retVec[is.na(retVec)]=0
- return(retVec)
- }else{
- return(rep(0,4))
- }
- }
-
-
- ## Z-score Test
- computeZScore <- function(mat, test="Focused"){
- matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
- if(test=="Focused"){
- #Z_Focused_CDR
- #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
- P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
- R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
- R_sd=sqrt(R_mean*(1-P))
- matRes[,1] = (mat[,1]-R_mean)/R_sd
-
- #Z_Focused_FWR
- #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
- P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
- R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
- R_sd=sqrt(R_mean*(1-P))
- matRes[,2] = (mat[,3]-R_mean)/R_sd
- }
-
- if(test=="Local"){
- #Z_Focused_CDR
- #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
- P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
- R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
- R_sd=sqrt(R_mean*(1-P))
- matRes[,1] = (mat[,1]-R_mean)/R_sd
-
- #Z_Focused_FWR
- #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
- P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
- R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
- R_sd=sqrt(R_mean*(1-P))
- matRes[,2] = (mat[,3]-R_mean)/R_sd
- }
-
- if(test=="Imbalanced"){
- #Z_Focused_CDR
- #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
- P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
- R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
- R_sd=sqrt(R_mean*(1-P))
- matRes[,1] = (mat[,1]-R_mean)/R_sd
-
- #Z_Focused_FWR
- #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
- P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
- R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
- R_sd=sqrt(R_mean*(1-P))
- matRes[,2] = (mat[,3]-R_mean)/R_sd
- }
-
- matRes[is.nan(matRes)] = NA
- return(matRes)
- }
-
- # Return a p-value for a z-score
- z2p <- function(z){
- p=NA
- if( !is.nan(z) && !is.na(z)){
- if(z>0){
- p = (1 - pnorm(z,0,1))
- } else if(z<0){
- p = (-1 * pnorm(z,0,1))
- } else{
- p = 0.5
- }
- }else{
- p = NA
- }
- return(p)
- }
-
-
- ## Bayesian Test
-
- # Fitted parameter for the bayesian framework
-BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
- CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
-
- # Given x, M & p, returns a pdf
- calculate_bayes <- function ( x=3, N=10, p=0.33,
- i=CONST_i,
- max_sigma=20,length_sigma=4001
- ){
- if(!0%in%N){
- G <- max(length(x),length(N),length(p))
- x=array(x,dim=G)
- N=array(N,dim=G)
- p=array(p,dim=G)
- sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
- sigma_1<-log({i/{1-i}}/{p/{1-p}})
- index<-min(N,60)
- y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
- if(!sum(is.na(y))){
- tmp<-approx(sigma_1,y,sigma_s)$y
- tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
- }else{
- return(NA)
- }
- }else{
- return(NA)
- }
- }
- # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
- computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
- flagOneSeq = F
- if(nrow(mat)==1){
- mat=rbind(mat,mat)
- flagOneSeq = T
- }
- if(test=="Focused"){
- #CDR
- P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
- N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
- X = c(mat[,1],0)
- bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesCDR = bayesCDR[-length(bayesCDR)]
-
- #FWR
- P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
- N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
- X = c(mat[,3],0)
- bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesFWR = bayesFWR[-length(bayesFWR)]
- }
-
- if(test=="Local"){
- #CDR
- P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
- N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
- X = c(mat[,1],0)
- bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesCDR = bayesCDR[-length(bayesCDR)]
-
- #FWR
- P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
- N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
- X = c(mat[,3],0)
- bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesFWR = bayesFWR[-length(bayesFWR)]
- }
-
- if(test=="Imbalanced"){
- #CDR
- P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
- N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
- X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
- bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesCDR = bayesCDR[-length(bayesCDR)]
-
- #FWR
- P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
- N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
- X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
- bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesFWR = bayesFWR[-length(bayesFWR)]
- }
-
- if(test=="ImbalancedSilent"){
- #CDR
- P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
- N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
- X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
- bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesCDR = bayesCDR[-length(bayesCDR)]
-
- #FWR
- P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
- N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
- X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
- bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})
- bayesFWR = bayesFWR[-length(bayesFWR)]
- }
-
- if(flagOneSeq==T){
- bayesCDR = bayesCDR[1]
- bayesFWR = bayesFWR[1]
- }
- return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
- }
-
- ##Covolution
- break2chunks<-function(G=1000){
- base<-2^round(log(sqrt(G),2),0)
- return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
- }
-
- PowersOfTwo <- function(G=100){
- exponents <- array()
- i = 0
- while(G > 0){
- i=i+1
- exponents[i] <- floor( log2(G) )
- G <- G-2^exponents[i]
- }
- return(exponents)
- }
-
- convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
- G = ncol(cons)
- if(G>1){
- for(gen in log(G,2):1){
- ll<-seq(from=2,to=2^gen,by=2)
- sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
- }
- }
- return( cons[,1] )
- }
-
- convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
- if(length(ncol(cons))) G<-ncol(cons)
- groups <- PowersOfTwo(G)
- matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
- startIndex = 1
- for( i in 1:length(groups) ){
- stopIndex <- 2^groups[i] + startIndex - 1
- if(stopIndex!=startIndex){
- matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
- startIndex = stopIndex + 1
- }
- else {
- if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
- else matG[,i] <- cons
- #startIndex = stopIndex + 1
- }
- }
- return( list( matG, groups ) )
- }
-
- weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
- lx<-length(x)
- ly<-length(y)
- if({lx1){
- while( i1 & Length_Postrior<=Threshold){
- cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
- listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
- y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
- return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
- }else if(Length_Postrior==1) return(listPosteriors[[1]])
- else if(Length_Postrior==0) return(NA)
- else {
- cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
- y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
- return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
- }
- }
-
- fastConv<-function(cons, max_sigma=20, length_sigma=4001){
- chunks<-break2chunks(G=ncol(cons))
- if(ncol(cons)==3) chunks<-2:1
- index_chunks_end <- cumsum(chunks)
- index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
- index_chunks <- cbind(index_chunks_start,index_chunks_end)
-
- case <- sum(chunks!=chunks[1])
- if(case==1) End <- max(1,((length(index_chunks)/2)-1))
- else End <- max(1,((length(index_chunks)/2)))
-
- firsts <- sapply(1:End,function(i){
- indexes<-index_chunks[i,1]:index_chunks[i,2]
- convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
- })
- if(case==0){
- result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
- }else if(case==1){
- last<-list(calculate_bayesGHelper(
- convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
- ),0)
- result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
- result<-calculate_bayesGHelper(
- list(
- cbind(
- result_first,last[[1]]),
- c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
- )
- )
- }
- return(as.vector(result))
- }
-
- # Computes the 95% CI for a pdf
- calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
- if(length(Pdf)!=length_sigma) return(NA)
- sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
- cdf = cumsum(Pdf)
- cdf = cdf/cdf[length(cdf)]
- return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) )
- }
-
- # Computes a mean for a pdf
- calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
- if(length(Pdf)!=length_sigma) return(NA)
- sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
- norm = {length_sigma-1}/2/max_sigma
- return( (Pdf%*%sigma_s/norm) )
- }
-
- # Returns the mean, and the 95% CI for a pdf
- calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
- if(is.na(Pdf))
- return(rep(NA,3))
- bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
- bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
- return(c(bMean, bCI))
- }
-
- # Computes the p-value of a pdf
- computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
- if(length(Pdf)>1){
- norm = {length_sigma-1}/2/max_sigma
- pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
- if(pVal>0.5){
- pVal = pVal-1
- }
- return(pVal)
- }else{
- return(NA)
- }
- }
-
- # Compute p-value of two distributions
- compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
- #print(c(length(dens1),length(dens2)))
- if(length(dens1)>1 & length(dens2)>1 ){
- dens1<-dens1/sum(dens1)
- dens2<-dens2/sum(dens2)
- cum2 <- cumsum(dens2)-dens2/2
- tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
- #print(tmp)
- if(tmp>0.5)tmp<-tmp-1
- return( tmp )
- }
- else {
- return(NA)
- }
- #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
- }
-
- # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
- numberOfSeqsWithMutations <- function(matMutations,test=1){
- if(test==4)test=2
- cdrSeqs <- 0
- fwrSeqs <- 0
- if(test==1){#focused
- cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
- fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
- if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
- if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0)
- }
- if(test==2){#local
- cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
- fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
- if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
- if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0)
- }
- return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
-}
-
-
-
-shadeColor <- function(sigmaVal=NA,pVal=NA){
- if(is.na(sigmaVal) & is.na(pVal)) return(NA)
- if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
- if(is.na(pVal) || pVal==1 || pVal==0){
- returnColor = "#FFFFFF";
- }else{
- colVal=abs(pVal);
-
- if(sigmaVal<0){
- if(colVal>0.1)
- returnColor = "#CCFFCC";
- if(colVal<=0.1)
- returnColor = "#99FF99";
- if(colVal<=0.050)
- returnColor = "#66FF66";
- if(colVal<=0.010)
- returnColor = "#33FF33";
- if(colVal<=0.005)
- returnColor = "#00FF00";
-
- }else{
- if(colVal>0.1)
- returnColor = "#FFCCCC";
- if(colVal<=0.1)
- returnColor = "#FF9999";
- if(colVal<=0.05)
- returnColor = "#FF6666";
- if(colVal<=0.01)
- returnColor = "#FF3333";
- if(colVal<0.005)
- returnColor = "#FF0000";
- }
- }
-
- return(returnColor)
-}
-
-
-
-plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
- if(!log){
- x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
- y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
- }else {
- if(log==2){
- x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
- y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
- }
- if(log==1){
- x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
- y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
- }
- if(log==3){
- x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
- y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
- }
- }
- return(c("x"=x,"y"=y))
-}
-
-# SHMulation
-
- # Based on targeting, introduce a single mutation & then update the targeting
- oneMutation <- function(){
- # Pick a postion + mutation
- posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
- posNucNumb = ceiling(posMutation/4) # Nucleotide number
- posNucKind = 4 - ( (posNucNumb*4) - posMutation ) # Nuc the position mutates to
-
- #mutate the simulation sequence
- seqSimVec <- s2c(seqSim)
- seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
- seqSim <<- c2s(seqSimVec)
-
- #update Mutability, Targeting & MutationsTypes
- updateMutabilityNTargeting(posNucNumb)
-
- #return(c(posNucNumb,NUCLEOTIDES[posNucKind]))
- return(posNucNumb)
- }
-
- updateMutabilityNTargeting <- function(position){
- min_i<-max((position-2),1)
- max_i<-min((position+2),nchar(seqSim))
- min_ii<-min(min_i,3)
-
- #mutability - update locally
- seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
-
-
- #targeting - compute locally
- seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])
- seqTargeting[is.na(seqTargeting)] <<- 0
- #mutCodonPos = getCodonPos(position)
- mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
- #cat(mutCodonPos,"\n")
- mutTypeCodon = getCodonPos(position)
- seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) )
- # Stop = 0
- if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
- seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
- }
-
-
- #Selection
- selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))
- # CDR
- selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
- seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR] * exp(selCDR)
- seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
-
- # FWR
- selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
- seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR] * exp(selFWR)
- seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K
-
- }
-
-
-
- # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.
- validateMutation <- function(){
- if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
- uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
- mutatedPositions[uniqueMutationsIntroduced] <<- mutatedPos
- }else{
- if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
- mutatedPositions <<- mutatedPositions[-which(mutatedPositions==mutatedPos)]
- uniqueMutationsIntroduced <<- uniqueMutationsIntroduced - 1
- }
- }
- }
-
-
-
- # Places text (labels) at normalized coordinates
- myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
- par(xpd=TRUE)
- if(!log)
- text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
- else {
- if(log==2)
- text(
- par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
- 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
- w,cex=cex,adj=adj,col=thecol)
- if(log==1)
- text(
- 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
- par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
- w,cex=cex,adj=adj,col=thecol)
- if(log==3)
- text(
- 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
- 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
- w,cex=cex,adj=adj,col=thecol)
- }
- par(xpd=FALSE)
- }
-
-
-
- # Count the mutations in a sequence
- analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
-
- paramGL = s2c(matInput[inputMatrixIndex,2])
- paramSeq = s2c(matInput[inputMatrixIndex,1])
-
- #if( any(paramSeq=="N") ){
- # gapPos_Seq = which(paramSeq=="N")
- # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
- # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
- #}
- mutations_val = paramGL != paramSeq
-
- if(any(mutations_val)){
- mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]
- length_mutations =length(mutationPos)
- mutationInfo = rep(NA,length_mutations)
-
- pos<- mutationPos
- pos_array<-array(sapply(pos,getCodonPos))
- codonGL = paramGL[pos_array]
- codonSeqWhole = paramSeq[pos_array]
- codonSeq = sapply(pos,function(x){
- seqP = paramGL[getCodonPos(x)]
- muCodonPos = {x-1}%%3+1
- seqP[muCodonPos] = paramSeq[x]
- return(seqP)
- })
- GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
- SeqcodonsWhole = apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)
- Seqcodons = apply(codonSeq,2,c2s)
-
- mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
- names(mutationInfo) = mutationPos
-
- mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
- names(mutationInfoWhole) = mutationPos
-
- mutationInfo <- mutationInfo[!is.na(mutationInfo)]
- mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-
- if(any(!is.na(mutationInfo))){
-
- #Filter based on Stop (at the codon level)
- if(seqWithStops==1){
- nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
- mutationInfo = mutationInfo[nucleotidesAtStopCodons]
- mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
- }else{
- countStops = sum(mutationInfoWhole=="Stop")
- if(seqWithStops==2 & countStops==0) mutationInfo = NA
- if(seqWithStops==3 & countStops>0) mutationInfo = NA
- }
-
- if(any(!is.na(mutationInfo))){
- #Filter mutations based on multipleMutation
- if(multipleMutation==1 & !is.na(mutationInfo)){
- mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
- tableMutationCodons <- table(mutationCodons)
- codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
- if(any(codonsWithMultipleMutations)){
- #remove the nucleotide mutations in the codons with multiple mutations
- mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
- #replace those codons with Ns in the input sequence
- paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
- matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
- }
- }
-
- #Filter mutations based on the model
- if(any(mutationInfo)==T | is.na(any(mutationInfo))){
-
- if(model==1 & !is.na(mutationInfo)){
- mutationInfo <- mutationInfo[mutationInfo=="S"]
- }
- if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
- else return(NA)
- }else{
- return(NA)
- }
- }else{
- return(NA)
- }
-
-
- }else{
- return(NA)
- }
-
-
- }else{
- return (NA)
- }
- }
-
- analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
-
- paramGL = s2c(inputArray[2])
- paramSeq = s2c(inputArray[1])
- inputSeq <- inputArray[1]
- #if( any(paramSeq=="N") ){
- # gapPos_Seq = which(paramSeq=="N")
- # gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
- # paramSeq[gapPos_Seq_ToReplace] = paramGL[gapPos_Seq_ToReplace]
- #}
- mutations_val = paramGL != paramSeq
-
- if(any(mutations_val)){
- mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]
- length_mutations =length(mutationPos)
- mutationInfo = rep(NA,length_mutations)
-
- pos<- mutationPos
- pos_array<-array(sapply(pos,getCodonPos))
- codonGL = paramGL[pos_array]
- codonSeqWhole = paramSeq[pos_array]
- codonSeq = sapply(pos,function(x){
- seqP = paramGL[getCodonPos(x)]
- muCodonPos = {x-1}%%3+1
- seqP[muCodonPos] = paramSeq[x]
- return(seqP)
- })
- GLcodons = apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
- SeqcodonsWhole = apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)
- Seqcodons = apply(codonSeq,2,c2s)
-
- mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
- names(mutationInfo) = mutationPos
-
- mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
- names(mutationInfoWhole) = mutationPos
-
- mutationInfo <- mutationInfo[!is.na(mutationInfo)]
- mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-
- if(any(!is.na(mutationInfo))){
-
- #Filter based on Stop (at the codon level)
- if(seqWithStops==1){
- nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
- mutationInfo = mutationInfo[nucleotidesAtStopCodons]
- mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
- }else{
- countStops = sum(mutationInfoWhole=="Stop")
- if(seqWithStops==2 & countStops==0) mutationInfo = NA
- if(seqWithStops==3 & countStops>0) mutationInfo = NA
- }
-
- if(any(!is.na(mutationInfo))){
- #Filter mutations based on multipleMutation
- if(multipleMutation==1 & !is.na(mutationInfo)){
- mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
- tableMutationCodons <- table(mutationCodons)
- codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
- if(any(codonsWithMultipleMutations)){
- #remove the nucleotide mutations in the codons with multiple mutations
- mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
- #replace those codons with Ns in the input sequence
- paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
- #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
- inputSeq <- c2s(paramSeq)
- }
- }
-
- #Filter mutations based on the model
- if(any(mutationInfo)==T | is.na(any(mutationInfo))){
-
- if(model==1 & !is.na(mutationInfo)){
- mutationInfo <- mutationInfo[mutationInfo=="S"]
- }
- if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
- else return(list(NA,inputSeq))
- }else{
- return(list(NA,inputSeq))
- }
- }else{
- return(list(NA,inputSeq))
- }
-
-
- }else{
- return(list(NA,inputSeq))
- }
-
-
- }else{
- return (list(NA,inputSeq))
- }
- }
-
- # triMutability Background Count
- buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
-
- #rowOrigMatInput = matInput[inputMatrixIndex,]
- seqGL = gsub("-", "", matInput[inputMatrixIndex,2])
- seqInput = gsub("-", "", matInput[inputMatrixIndex,1])
- #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
- tempInput <- cbind(seqInput,seqGL)
- seqLength = nchar(seqGL)
- list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
- mutationCount <- list_analyzeMutationsFixed[[1]]
- seqInput <- list_analyzeMutationsFixed[[2]]
- BackgroundMatrix = mutabilityMatrix
- MutationMatrix = mutabilityMatrix
- MutationCountMatrix = mutabilityMatrix
- if(!is.na(mutationCount)){
- if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")0)) ){
-
- fivermerStartPos = 1:(seqLength-4)
- fivemerLength <- length(fivermerStartPos)
- fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
- fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
-
- #Background
- for(fivemerIndex in 1:fivemerLength){
- fivemer = fivemerGL[fivemerIndex]
- if(!any(grep("N",fivemer))){
- fivemerCodonPos = fivemerCodon(fivemerIndex)
- fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3])
- fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])
-
- # All mutations model
- #if(!any(grep("N",fivemerReadingFrameCodon))){
- if(model==0){
- if(stopMutations==0){
- if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
- BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)
- }else{
- if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
- positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
- BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
- }
- }
- }else{ # Only silent mutations
- if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
- positionWithinCodon = which(fivemerCodonPos==3)
- BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
- }
- }
- #}
- }
- }
-
- #Mutations
- if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
- if(model==1) mutationCount = mutationCount[mutationCount=="S"]
- mutationPositions = as.numeric(names(mutationCount))
- mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
- mutationPositions = mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
- countMutations = 0
- for(mutationPosition in mutationPositions){
- fivemerIndex = mutationPosition-2
- fivemer = fivemerSeq[fivemerIndex]
- GLfivemer = fivemerGL[fivemerIndex]
- fivemerCodonPos = fivemerCodon(fivemerIndex)
- fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3])
- fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
- if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
- if(model==0){
- countMutations = countMutations + 1
- MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
- MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)
- }else{
- if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
- countMutations = countMutations + 1
- positionWithinCodon = which(fivemerCodonPos==3)
- glNuc = substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
- inputNuc = substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
- MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
- MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)
- }
- }
- }
- }
-
- seqMutability = MutationMatrix/BackgroundMatrix
- seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
- #cat(inputMatrixIndex,"\t",countMutations,"\n")
- return(list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))
-
- }
- }
-
- }
-
- #Returns the codon position containing the middle nucleotide
- fivemerCodon <- function(fivemerIndex){
- codonPos = list(2:4,1:3,3:5)
- fivemerType = fivemerIndex%%3
- return(codonPos[[fivemerType+1]])
- }
-
- #returns probability values for one mutation in codons resulting in R, S or Stop
- probMutations <- function(typeOfMutation){
- matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))
- for(codon in rownames(matMutationProb)){
- if( !any(grep("N",codon)) ){
- for(muPos in 1:3){
- matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
- glNuc = matCodon[1,muPos]
- matCodon[,muPos] = canMutateTo(glNuc)
- substitutionRate = substitution[glNuc,matCodon[,muPos]]
- typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})
- matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
- }
- }
- }
-
- return(matMutationProb)
- }
-
-
-
-
-#Mapping Trinucleotides to fivemers
-mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
- rownames(triMutability) <- triMutability_Names
- Fivemer<-rep(NA,1024)
- names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
- Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
- Fivemer<-Fivemer/sum(Fivemer)
- return(Fivemer)
-}
-
-collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
- Indices<-substring(names(Fivemer),3,3)==NUC
- Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
- tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
-}
-
-
-
-CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
- Indices<-substring(names(Fivemer),3,3)==NUC
- Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
- tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
-}
-
-#Uses the real counts of the mutated fivemers
-CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
- Indices<-substring(names(Fivemer),3,3)==NUC
- Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
- tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
-}
-
-bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
-N<-sum(x)
-if(N){
-p<-x/N
-k<-length(x)-1
-tmp<-rmultinom(M, size = N, prob=p)
-tmp_p<-apply(tmp,2,function(y)y/N)
-(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
-}
-else return(matrix(0,2,length(x)))
-}
-
-
-
-
-bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
-
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
-(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
-}
-
-
-
-p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
-n=sum(x_obs)
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
-tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
-sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
-sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
-}
-
-#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
-# Remove SNPs from IMGT germline segment alleles
-generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
- repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
- alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
- SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
- Indices<-NULL
- for(i in 1:length(x)){
- firstSeq = s2c(x[[1]])
- iSeq = s2c(x[[i]])
- Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="." ))
- }
- return(sort(unique(Indices)))
- })
- repertoireOut <- repertoireIn
- repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
- alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
- geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
- alleleSeq <- s2c(repertoireOut[[repertoireName]])
- alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
- alleleSeq <- c2s(alleleSeq)
- repertoireOut[[repertoireName]] <- alleleSeq
- })
- names(repertoireOut) <- names(repertoireIn)
- write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)
-
-}
-
-
-
-
-
-
-############
-groupBayes2 = function(indexes, param_resultMat){
-
- BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
- BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
- #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
- #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
- #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
- #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
- return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
- "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
- #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
- #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
-# "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
-# "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
-
-
-}
-
-
-calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
- G <- max(length(x),length(N),length(p))
- x=array(x,dim=G)
- N=array(N,dim=G)
- p=array(p,dim=G)
-
- indexOfZero = N>0 & p>0
- N = N[indexOfZero]
- x = x[indexOfZero]
- p = p[indexOfZero]
- G <- length(x)
-
- if(G){
-
- cons<-array( dim=c(length_sigma,G) )
- if(G==1) {
- return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
- }
- else {
- for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
- listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
- y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
- return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
- }
- }else{
- return(NA)
- }
-}
-
-
-calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
- matG <- listMatG[[1]]
- groups <- listMatG[[2]]
- i = 1
- resConv <- matG[,i]
- denom <- 2^groups[i]
- if(length(groups)>1){
- while( i0)) ){
-
-# ONEmerStartPos = 1:(seqLength)
-# ONEmerLength <- length(ONEmerStartPos)
- ONEmerGL <- s2c(seqGL)
- ONEmerSeq <- s2c(seqInput)
-
- #Background
- for(ONEmerIndex in 1:seqLength){
- ONEmer = ONEmerGL[ONEmerIndex]
- if(ONEmer!="N"){
- ONEmerCodonPos = getCodonPos(ONEmerIndex)
- ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos])
- ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )
-
- # All mutations model
- #if(!any(grep("N",ONEmerReadingFrameCodon))){
- if(model==0){
- if(stopMutations==0){
- if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
- BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)
- }else{
- if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
- positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
- BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
- }
- }
- }else{ # Only silent mutations
- if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
- positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
- BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
- }
- }
- }
- }
- }
-
- #Mutations
- if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
- if(model==1) mutationCount = mutationCount[mutationCount=="S"]
- mutationPositions = as.numeric(names(mutationCount))
- mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
- mutationPositions = mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
- countMutations = 0
- for(mutationPosition in mutationPositions){
- ONEmerIndex = mutationPosition
- ONEmer = ONEmerSeq[ONEmerIndex]
- GLONEmer = ONEmerGL[ONEmerIndex]
- ONEmerCodonPos = getCodonPos(ONEmerIndex)
- ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])
- ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])
- if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
- if(model==0){
- countMutations = countMutations + 1
- MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
- MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)
- }else{
- if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
- countMutations = countMutations + 1
- positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
- glNuc = substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
- inputNuc = substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
- MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
- MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)
- }
- }
- }
- }
-
- seqMutability = MutationMatrix/BackgroundMatrix
- seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
- #cat(inputMatrixIndex,"\t",countMutations,"\n")
- return(list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))
-# tmp<-list("seqMutability" = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
- }
- }
-
-################
-# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
-
-trim <- function(s, recode.factor=TRUE, ...)
- UseMethod("trim", s)
-
-trim.default <- function(s, recode.factor=TRUE, ...)
- s
-
-trim.character <- function(s, recode.factor=TRUE, ...)
-{
- s <- sub(pattern="^ +", replacement="", x=s)
- s <- sub(pattern=" +$", replacement="", x=s)
- s
-}
-
-trim.factor <- function(s, recode.factor=TRUE, ...)
-{
- levels(s) <- trim(levels(s))
- if(recode.factor) {
- dots <- list(x=s, ...)
- if(is.null(dots$sort)) dots$sort <- sort
- s <- do.call(what=reorder.factor, args=dots)
- }
- s
-}
-
-trim.list <- function(s, recode.factor=TRUE, ...)
- lapply(s, trim, recode.factor=recode.factor, ...)
-
-trim.data.frame <- function(s, recode.factor=TRUE, ...)
-{
- s[] <- trim.list(s, recode.factor=recode.factor, ...)
- s
-}
-#######################################
-# Compute the expected for each sequence-germline pair by codon
-getExpectedIndividualByCodon <- function(matInput){
-if( any(grep("multicore",search())) ){
- facGL <- factor(matInput[,2])
- facLevels = levels(facGL)
- LisGLs_MutabilityU = mclapply(1:length(facLevels), function(x){
- computeMutabilities(facLevels[x])
- })
- facIndex = match(facGL,facLevels)
-
- LisGLs_Mutability = mclapply(1:nrow(matInput), function(x){
- cInput = rep(NA,nchar(matInput[x,1]))
- cInput[s2c(matInput[x,1])!="N"] = 1
- LisGLs_MutabilityU[[facIndex[x]]] * cInput
- })
-
- LisGLs_Targeting = mclapply(1:dim(matInput)[1], function(x){
- computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
- })
-
- LisGLs_MutationTypes = mclapply(1:length(matInput[,2]),function(x){
- #print(x)
- computeMutationTypes(matInput[x,2])
- })
-
- LisGLs_R_Exp = mclapply(1:nrow(matInput), function(x){
- Exp_R <- rollapply(as.zoo(1:readEnd),width=3,by=3,
- function(codonNucs){
- RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R")
- sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T )
- }
- )
- })
-
- LisGLs_S_Exp = mclapply(1:nrow(matInput), function(x){
- Exp_S <- rollapply(as.zoo(1:readEnd),width=3,by=3,
- function(codonNucs){
- SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")
- sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
- }
- )
- })
-
- Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
- Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
- return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
- }else{
- facGL <- factor(matInput[,2])
- facLevels = levels(facGL)
- LisGLs_MutabilityU = lapply(1:length(facLevels), function(x){
- computeMutabilities(facLevels[x])
- })
- facIndex = match(facGL,facLevels)
-
- LisGLs_Mutability = lapply(1:nrow(matInput), function(x){
- cInput = rep(NA,nchar(matInput[x,1]))
- cInput[s2c(matInput[x,1])!="N"] = 1
- LisGLs_MutabilityU[[facIndex[x]]] * cInput
- })
-
- LisGLs_Targeting = lapply(1:dim(matInput)[1], function(x){
- computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
- })
-
- LisGLs_MutationTypes = lapply(1:length(matInput[,2]),function(x){
- #print(x)
- computeMutationTypes(matInput[x,2])
- })
-
- LisGLs_R_Exp = lapply(1:nrow(matInput), function(x){
- Exp_R <- rollapply(as.zoo(1:readEnd),width=3,by=3,
- function(codonNucs){
- RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R")
- sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T )
- }
- )
- })
-
- LisGLs_S_Exp = lapply(1:nrow(matInput), function(x){
- Exp_S <- rollapply(as.zoo(1:readEnd),width=3,by=3,
- function(codonNucs){
- SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")
- sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
- }
- )
- })
-
- Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
- Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)
- return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
- }
-}
-
-# getObservedMutationsByCodon <- function(listMutations){
-# numbSeqs <- length(listMutations)
-# obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
-# obsMu_S <- obsMu_R
-# temp <- mclapply(1:length(listMutations), function(i){
-# arrMutations = listMutations[[i]]
-# RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
-# RPos <- sapply(RPos,getCodonNumb)
-# if(any(RPos)){
-# tabR <- table(RPos)
-# obsMu_R[i,as.numeric(names(tabR))] <<- tabR
-# }
-#
-# SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
-# SPos <- sapply(SPos,getCodonNumb)
-# if(any(SPos)){
-# tabS <- table(SPos)
-# obsMu_S[i,names(tabS)] <<- tabS
-# }
-# }
-# )
-# return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) )
-# }
-
-getObservedMutationsByCodon <- function(listMutations){
- numbSeqs <- length(listMutations)
- obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
- obsMu_S <- obsMu_R
- temp <- lapply(1:length(listMutations), function(i){
- arrMutations = listMutations[[i]]
- RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
- RPos <- sapply(RPos,getCodonNumb)
- if(any(RPos)){
- tabR <- table(RPos)
- obsMu_R[i,as.numeric(names(tabR))] <<- tabR
- }
-
- SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
- SPos <- sapply(SPos,getCodonNumb)
- if(any(SPos)){
- tabS <- table(SPos)
- obsMu_S[i,names(tabS)] <<- tabS
- }
- }
- )
- return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) )
-}
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/Baseline_Main.r
--- a/shm_csr/baseline/Baseline_Main.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,388 +0,0 @@
-#########################################################################################
-# License Agreement
-#
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE
-# OR COPYRIGHT LAW IS PROHIBITED.
-#
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-op <- options();
-options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
-library('seqinr')
-if( F & Sys.info()[1]=="Linux"){
- library("multicore")
-}
-
-# Load functions and initialize global variables
-source("Baseline_Functions.r")
-
-# Initialize parameters with user provided arguments
- arg <- commandArgs(TRUE)
- #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
- #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
- #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
- testID <- as.numeric(arg[1]) # 1 = Focused, 2 = Local
- species <- as.numeric(arg[2]) # 1 = Human. 2 = Mouse
- substitutionModel <- as.numeric(arg[3]) # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
- mutabilityModel <- as.numeric(arg[4]) # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002) , 5 = FiveS
- clonal <- as.numeric(arg[5]) # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
- fixIndels <- as.numeric(arg[6]) # 0 = Do nothing, 1 = Try and fix Indels
- region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
- inputFilePath <- arg[8] # Full path to input file
- outputPath <- arg[9] # Full path to location of output files
- outputID <- arg[10] # ID for session output
-
-
- if(testID==5){
- traitChangeModel <- 1
- if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11]) # 1 <- Chothia 1998
- initializeTraitChange(traitChangeModel)
- }
-
-# Initialize other parameters/variables
-
- # Initialzie the codon table ( definitions of R/S )
- computeCodonTable(testID)
-
- # Initialize
- # Test Name
- testName<-"Focused"
- if(testID==2) testName<-"Local"
- if(testID==3) testName<-"Imbalanced"
- if(testID==4) testName<-"ImbalancedSilent"
-
- # Indel placeholders initialization
- indelPos <- NULL
- delPos <- NULL
- insPos <- NULL
-
- # Initialize in Tranistion & Mutability matrixes
- substitution <- initializeSubstitutionMatrix(substitutionModel,species)
- mutability <- initializeMutabilityMatrix(mutabilityModel,species)
-
- # FWR/CDR boundaries
- flagTrim <- F
- if( is.na(region[7])){
- flagTrim <- T
- region[7]<-region[6]
- }
- readStart = min(region,na.rm=T)
- readEnd = max(region,na.rm=T)
- if(readStart>1){
- region = region - (readStart - 1)
- }
- region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
- region_Cod = region
-
- readStart = (readStart*3)-2
- readEnd = (readEnd*3)
-
- FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
- rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
- rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
- rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
- rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
- rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
- )
- CDR_Nuc <- (1-FWR_Nuc)
- CDR_Nuc <- as.logical(CDR_Nuc)
- FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
- CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
-
- FWR_Codon <- c( rep(TRUE,(region[2])),
- rep(FALSE,(region[3]-region[2])),
- rep(TRUE,(region[4]-region[3])),
- rep(FALSE,(region[5]-region[4])),
- rep(TRUE,(region[6]-region[5])),
- rep(FALSE,(region[7]-region[6]))
- )
- CDR_Codon <- (1-FWR_Codon)
- CDR_Codon <- as.logical(CDR_Codon)
-
-
-# Read input FASTA file
- tryCatch(
- inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
- , error = function(ex){
- cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
- q()
- }
- )
-
- if (length(inputFASTA)==1) {
- cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
- q()
- }
-
- # Process sequence IDs/names
- names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
-
- # Convert non nucleotide characters to N
- inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
- inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
-
- # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
- processedInput <- processInputAdvanced(inputFASTA)
- matInput <- processedInput[[1]]
- germlines <- processedInput[[2]]
- lenGermlines = length(unique(germlines))
- groups <- processedInput[[3]]
- lenGroups = length(unique(groups))
- rm(processedInput)
- rm(inputFASTA)
-
-# # remove clones with less than 2 seqeunces
-# tableGL <- table(germlines)
-# singletons <- which(tableGL<8)
-# rowsToRemove <- match(singletons,germlines)
-# if(any(rowsToRemove)){
-# matInput <- matInput[-rowsToRemove,]
-# germlines <- germlines[-rowsToRemove]
-# groups <- groups[-rowsToRemove]
-# }
-#
-# # remove unproductive seqs
-# nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
-# if(any(nonFuctionalSeqs)){
-# if(sum(nonFuctionalSeqs)==length(germlines)){
-# write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-# q()
-# }
-# matInput <- matInput[-which(nonFuctionalSeqs),]
-# germlines <- germlines[-which(nonFuctionalSeqs)]
-# germlines[1:length(germlines)] <- 1:length(germlines)
-# groups <- groups[-which(nonFuctionalSeqs)]
-# }
-#
-# if(class(matInput)=="character"){
-# write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-# q()
-# }
-#
-# if(nrow(matInput)<10 | is.null(nrow(matInput))){
-# write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-# q()
-# }
-
-# replace leading & trailing "-" with "N:
- matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
-
- # Trim (nucleotide) input sequences to the last codon
- #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon)
-
-# # Check for Indels
-# if(fixIndels){
-# delPos <- fixDeletions(matInput)
-# insPos <- fixInsertions(matInput)
-# }else{
-# # Check for indels
-# indelPos <- checkForInDels(matInput)
-# indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
-# }
-
- # If indels are present, remove mutations in the seqeunce & throw warning at end
- #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
-
- colnames(matInput)=c("Input","Germline")
-
- # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
- germlinesOriginal = NULL
- if(clonal){
- germlinesOriginal <- germlines
- collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
- collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
- })
- matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
- names_groups = tapply(groups,germlines,function(x){names(x[1])})
- groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})
- names(groups) = names_groups
-
- names_germlines = tapply(germlines,germlines,function(x){names(x[1])})
- germlines = tapply( germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))} )
- names(germlines) = names_germlines
- matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})
- }
-
-
-# Selection Analysis
-
-
-# if (length(germlines)>sequenceLimit) {
-# # Code to parallelize processing goes here
-# stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
-# }
-
-# if (length(germlines)1){
- groups <- c(groups,lenGroups+1)
- names(groups)[length(groups)] = "All sequences combined"
- bayesPDF_groups_cdr[[lenGroups+1]] = groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
- bayesPDF_groups_fwr[[lenGroups+1]] = groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
- }
-
- #Bayesian Outputs
- bayes_cdr = t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
- bayes_fwr = t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
- bayes_germlines_cdr = t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
- bayes_germlines_fwr = t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
- bayes_groups_cdr = t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
- bayes_groups_fwr = t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
-
- #P-values
- simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
- simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
-
- simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
- simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
-
- simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
- simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
-
-
- #Format output
-
- # Round expected mutation frequencies to 3 decimal places
- matMutationInfo[germlinesOriginal[indelPos],] = NA
- if(nrow(matMutationInfo)==1){
- matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
- }else{
- matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
- }
-
- listPDFs = list()
- nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
-
- matOutput = matrix(NA,ncol=18,nrow=nRows)
- rowNumb = 1
- for(G in unique(groups)){
- #print(G)
- matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
- listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
- names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
- #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
- gs = unique(germlines[groups==G])
- rowNumb = rowNumb+1
- if( !is.na(gs) ){
- for( g in gs ){
- matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
- listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
- names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
- rowNumb = rowNumb+1
- indexesOfInterest = which(germlines==g)
- numbSeqsOfInterest = length(indexesOfInterest)
- rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
- matOutput[rowNumb,] = matrix( c( rep("Sequence",numbSeqsOfInterest),
- rownames(matInput)[indexesOfInterest],
- c(matMutationInfo[indexesOfInterest,1:4]),
- c(matMutationInfo[indexesOfInterest,5:8]),
- c(bayes_cdr[indexesOfInterest,]),
- c(bayes_fwr[indexesOfInterest,]),
- c(simgaP_cdr[indexesOfInterest]),
- c(simgaP_fwr[indexesOfInterest])
- ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
- increment=0
- for( ioi in indexesOfInterest){
- listPDFs[[min(rowNumb)+increment]] = list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
- names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
- increment = increment + 1
- }
- rowNumb=max(rowNumb)+1
-
- }
- }
- }
- colsToFormat = 11:18
- matOutput[,colsToFormat] = formatC( matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) , digits=3)
- matOutput[matOutput== " NaN"] = NA
-
-
-
- colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
- "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
- paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
- paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
- )
- fileName = paste(outputPath,outputID,".txt",sep="")
- write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
- fileName = paste(outputPath,outputID,".RData",sep="")
- save(listPDFs,file=fileName)
-
-indelWarning = FALSE
-if(sum(indelPos)>0){
- indelWarning = "Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
- indelWarning = paste( indelWarning , "
", sep="" )
- for(indels in names(indelPos)[indelPos]){
- indelWarning = paste( indelWarning , "", indels, " ", sep="" )
- }
- indelWarning = paste( indelWarning , " ", sep="" )
-}
-
-cloneWarning = FALSE
-if(clonal==1){
- if(sum(matInputErrors)>0){
- cloneWarning = "Warning: The following clones have sequences of unequal length.";
- cloneWarning = paste( cloneWarning , "
", sep="" )
- for(clone in names(matInputErrors)[matInputErrors]){
- cloneWarning = paste( cloneWarning , "", names(germlines)[as.numeric(clone)], " ", sep="" )
- }
- cloneWarning = paste( cloneWarning , " ", sep="" )
- }
-}
-cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/FiveS_Mutability.RData
Binary file shm_csr/baseline/FiveS_Mutability.RData has changed
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/FiveS_Substitution.RData
Binary file shm_csr/baseline/FiveS_Substitution.RData has changed
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa
--- a/shm_csr/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,703 +0,0 @@
->IGHV1-18*01
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-18*02
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
->IGHV1-18*03
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1-18*04
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
->IGHV1-2*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*04
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*05
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
->IGHV1-24*01
-caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
->IGHV1-3*01
-caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
->IGHV1-3*02
-caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
->IGHV1-38-4*01
-caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
->IGHV1-45*01
-cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
->IGHV1-45*02
-cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
->IGHV1-45*03
-.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
->IGHV1-46*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-46*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-46*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
->IGHV1-58*01
-caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
->IGHV1-58*02
-caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
->IGHV1-68*01
-caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
->IGHV1-69*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*02
-caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1-69*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
->IGHV1-69*04
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*05
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1-69*06
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*07
-.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
->IGHV1-69*08
-caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*09
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*10
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*11
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*12
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*13
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*14
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69-2*01
-gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
->IGHV1-69-2*02
-.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
->IGHV1-69D*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-8*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
->IGHV1-8*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
->IGHV1-NL1*01
-caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
->IGHV1/OR15-1*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
->IGHV1/OR15-1*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
->IGHV1/OR15-1*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
->IGHV1/OR15-1*04
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
->IGHV1/OR15-2*01
-caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1/OR15-2*02
-caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1/OR15-2*03
-caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1/OR15-3*01
-caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1/OR15-3*02
-caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1/OR15-3*03
-caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1/OR15-4*01
-caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1/OR15-5*01
-.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
->IGHV1/OR15-5*02
-caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
->IGHV1/OR15-9*01
-caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
->IGHV1/OR21-1*01
-caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
->IGHV2-10*01
-caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
->IGHV2-26*01
-caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
->IGHV2-5*01
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*02
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*03
-................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
->IGHV2-5*04|
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
->IGHV2-5*05
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*06
-cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
->IGHV2-5*08
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*09
-caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-70*01
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70*02
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*03
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*04
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
->IGHV2-70*05
-..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
->IGHV2-70*06
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*07
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*08
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*09
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
->IGHV2-70*10
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70*11
-cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70*12
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-70*13
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
->IGHV2-70D*04
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70D*14
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2/OR16-5*01
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
->IGHV3-11*01
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-11*03
-caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
->IGHV3-11*04
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-11*05
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-11*06
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-13*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-13*02
-gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-13*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
->IGHV3-13*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-13*05
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-15*01
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*02
-gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*03
-gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*04
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*05
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*06
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*07
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*08
-gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
->IGHV3-16*01
-gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
->IGHV3-16*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
->IGHV3-19*01
-acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
->IGHV3-20*01
-gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
->IGHV3-20*02
-gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
->IGHV3-21*01
-gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-21*02
-gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-21*03
-gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
->IGHV3-21*04
-gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-22*01
-gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
->IGHV3-22*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
->IGHV3-23*01
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*02
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*03
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*05
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
->IGHV3-23D*01
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23D*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-25*01
-gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
->IGHV3-25*02
-gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
->IGHV3-25*03
-gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
->IGHV3-25*04
-gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
->IGHV3-25*05
-gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
->IGHV3-29*01
-gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
->IGHV3-30*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*02
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30*03
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*04
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*05
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
->IGHV3-30*06
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*07
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*08
-caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
->IGHV3-30*09
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*10
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*11
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*12
-caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*13
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*14
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*15
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*16
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*17
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*18
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30*19
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30-2*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
->IGHV3-30-22*01
-gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
->IGHV3-30-3*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30-3*02
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30-3*03
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30-33*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
->IGHV3-30-42*01
-gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
->IGHV3-30-5*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30-5*02
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30-52*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
->IGHV3-32*01
-gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
->AIGHV3-33*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*02
-caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*03
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-33*04
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*05
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*06
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-33-2*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
->IGHV3-35*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
->IGHV3-38*01|
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
->IGHV3-38*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
->IGHV3-38*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
->IGHV3-38-3*01
-gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
->IGHV3-43*01
-gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
->IGHV3-43*02
-gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
->IGHV3-43D*01
-gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
->IGHV3-47*01
-gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
->IGHV3-47*02
-gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
->IGHV3-48*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-48*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
->IGHV3-48*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
->IGHV3-48*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-49*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*05
-gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-52*01
-gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
->IGHV3-52*02
-gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
->IGHV3-52*03
-gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
->IGHV3-53*01
-gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-53*02
-gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-53*03
-gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
->IGHV3-53*04
-gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
->IGHV3-54*01
-gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
->IGHV3-54*02
-gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
->IGHV3-54*04
-gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
->IGHV3-62*01
-gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
->IGHV3-63*01
-gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
->IGHV3-63*02
-gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
->IGHV3-64*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
->IGHV3-64*02
-gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
->IGHV3-64*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
->IGHV3-64*04
-caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-64*05
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
->IGHV3-64D*06
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
->IGHV3-66*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-66*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
->IGHV3-66*03
-gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-66*04
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
->IGHV3-69-1*01
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-69-1*02
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
->IGHV3-7*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-7*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
->IGHV3-7*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-71*01
-gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-71*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
->IGHV3-71*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-72*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
->IGHV3-72*02
-....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
->IGHV3-73*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
->IGHV3-73*02
-gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
->IGHV3-74*01
-gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
->IGHV3-74*02
-gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
->IGHV3-74*03
-gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
->IGHV3-9*01
-gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
->IGHV3-9*02
-gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
->IGHV3-9*03
-gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
->IGHV3-NL1*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3/OR15-7*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
->IGHV3/OR15-7*02
-gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
->IGHV3/OR15-7*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
->IGHV3/OR15-7*05
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
->IGHV3/OR16-10*01
-gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
->IGHV3/OR16-10*02
-gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
->IGHV3/OR16-10*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
->IGHV3/OR16-12*01
-gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
->IGHV3/OR16-13*01
-gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
->IGHV3/OR16-14*01
-gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
->IGHV3/OR16-15*01
-gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
->IGHV3/OR16-15*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
->IGHV3/OR16-16*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
->IGHV3/OR16-6*02
-gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
->IGHV3/OR16-8*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
->IGHV3/OR16-8*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
->IGHV3/OR16-9*01
-gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
->IGHV4-28*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
->IGHV4-28*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
->IGHV4-28*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*06
-caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*07
-caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-30-2*01
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-30-2*02
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
->IGHV4-30-2*03
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
->IGHV4-30-2*04
-...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-30-2*05
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-2*06
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-30-4*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->XIGHV4-30-4*04
-caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
->IGHV4-30-4*05
-..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*06
-...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-31*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-31*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-31*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-31*04
-caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
->IGHV4-31*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
->IGHV4-31*06
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->IGHV4-31*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->IGHV4-31*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->IGHV4-31*09
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-31*10
-caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
->IGHV4-34*01
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*02
-caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*03
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-34*04
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*05
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*06
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-34*07
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-34*08
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
->IGHV4-34*09
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-34*10
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-34*11
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
->IGHV4-34*12
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
->IGHV4-34*13
-...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-38-2*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
->IGHV4-38-2*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-39*01
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
->IGHV4-39*02
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
->IGHV4-39*03
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
->IGHV4-39*04
-..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
->IGHV4-39*05
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
->IGHV4-39*06
-cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-39*07
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
->IGHV4-4*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-4*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-4*05
-caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-4*06
-............................................................
-...............tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-55*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-55*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-55*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-55*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-55*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-55*06
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
->IGHV4-55*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
->IGHV4-55*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-55*09
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-59*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-59*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-59*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
->IGHV4-59*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
->IGHV4-59*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
->IGHV4-59*06
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
->IGHV4-59*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
->IGHV4-59*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
->IGHV4-59*09
-...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
->IGHV4-59*10
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-61*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-61*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-61*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-61*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
->IGHV4-61*05
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
->IGHV4-61*06
-...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-61*07
-...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
->IGHV4-61*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4/OR15-8*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4/OR15-8*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4/OR15-8*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV5-10-1*01
-gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-10-1*02
-gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
->IGHV5-10-1*03
-gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-10-1*04
-gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-51*01
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
->IGHV5-51*02
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
->IGHV5-51*03
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-51*04
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-51*05
-.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
->IGHV5-78*01
-gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
->IGHV6-1*01
-caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
->IGHV6-1*02
-caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
->IGHV7-34-1*01
-...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
->IGHV7-34-1*02
-...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
->IGHV7-4-1*01
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
->IGHV7-4-1*02
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
->IGHV7-4-1*03
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
->IGHV7-4-1*04
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
->IGHV7-4-1*05
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
->AIGHV7-40*03|
-ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
->IGHV7-81*01
-caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/IMGTVHreferencedataset20161215.fa
--- a/shm_csr/baseline/IMGTVHreferencedataset20161215.fa Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
->IGHV1-18*01
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-18*02
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
>IGHV1-18*03
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1-18*04
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-2*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*05
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-24*01
caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-3*01
caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
>IGHV1-3*02
caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
>IGHV1-38-4*01
caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
>IGHV1-45*01
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
>IGHV1-45*02
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
>IGHV1-45*03
.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
>IGHV1-46*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
>IGHV1-58*01
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-58*02
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-68*01
caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
>IGHV1-69*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*02
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
>IGHV1-69*04
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*05
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*06
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*07
.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69*08
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*09
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*10
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*11
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*12
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*13
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*14
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69-2*01
gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-69-2*02
.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69D*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-8*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-8*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-NL1*01
caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
>IGHV1/OR15-1*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
>IGHV1/OR15-1*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-1*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
>IGHV1/OR15-1*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-2*01
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*02
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*03
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*01
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-3*02
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*03
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-4*01
caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-5*01
.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-5*02
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-9*01
caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV1/OR21-1*01
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV2-10*01
caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
>IGHV2-26*01
caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
>IGHV2-5*01
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*02
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*03
................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
>IGHV2-5*04
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
>IGHV2-5*05
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*06
cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
>IGHV2-5*08
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*09
caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*01
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*02
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*03
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
>IGHV2-70*05
..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
>IGHV2-70*06
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*07
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*08
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*09
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
>IGHV2-70*10
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*11
cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*12
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*13
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
>IGHV2-70D*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70D*14
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2/OR16-5*01
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
>IGHV3-11*01
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*03
caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
>IGHV3-11*04
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-11*05
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*06
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-13*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*02
gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
>IGHV3-13*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*05
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-15*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*02
gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*03
gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*04
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*06
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*07
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*08
gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3-16*01
gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-16*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-19*01
acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-20*01
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-20*02
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-21*01
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*02
gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*03
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
>IGHV3-21*04
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-22*01
gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-22*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-23*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*02
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*03
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*05
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
>IGHV3-23D*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-25*01
gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*02
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*03
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
>IGHV3-25*04
gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
>IGHV3-25*05
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-29*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
>IGHV3-30*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*07
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*08
caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-30*09
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*10
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*11
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*12
caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*13
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*14
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*15
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*16
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*17
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*18
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*19
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
>IGHV3-30-22*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
>IGHV3-30-3*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-3*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-3*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-33*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
>IGHV3-30-42*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30-5*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-5*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-52*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
>IGHV3-32*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
>IGHV3-33*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*02
caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
>IGHV3-35*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
>IGHV3-38*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
>IGHV3-38*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38-3*01
gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
>IGHV3-43*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43*02
gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43D*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-47*01
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
>IGHV3-47*02
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
>IGHV3-48*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-48*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-49*01
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*02
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*03
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*04
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-52*01
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
>IGHV3-52*02
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-52*03
gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-53*01
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*02
gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
>IGHV3-53*04
gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
>IGHV3-54*01
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-54*02
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
>IGHV3-54*04
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-62*01
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
>IGHV3-63*01
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
>IGHV3-63*02
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
>IGHV3-64*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*02
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64*04
caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-64*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64D*06
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-66*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-66*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*04
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
>IGHV3-69-1*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-69-1*02
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-7*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
>IGHV3-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*01
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
>IGHV3-71*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-72*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
>IGHV3-72*02
....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
>IGHV3-73*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-73*02
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-74*01
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-74*02
gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
>IGHV3-74*03
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-9*01
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*02
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*03
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
>IGHV3-NL1*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3/OR15-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*02
gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
>IGHV3/OR16-10*01
gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*02
gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
>IGHV3/OR16-12*01
gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
>IGHV3/OR16-13*01
gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-14*01
gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-15*01
gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
>IGHV3/OR16-15*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
>IGHV3/OR16-16*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
>IGHV3/OR16-6*02
gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3/OR16-8*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
>IGHV3/OR16-8*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
>IGHV3/OR16-9*01
gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
>IGHV4-28*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
>IGHV4-28*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
>IGHV4-28*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*06
caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*07
caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-30-2*01
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-2*02
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-30-2*03
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
>IGHV4-30-2*04
...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-30-2*05
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-2*06
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-30-4*04
caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
>IGHV4-30-4*05
..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*06
...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-31*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*04
caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-31*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
>IGHV4-31*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-31*10
caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
>IGHV4-34*01
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*02
caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*03
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*04
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*05
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*06
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*07
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*08
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
>IGHV4-34*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-34*10
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-34*11
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-34*12
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
>IGHV4-34*13
...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-38-2*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
>IGHV4-38-2*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-39*01
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
>IGHV4-39*02
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
>IGHV4-39*03
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-39*04
..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
>IGHV4-39*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-39*06
cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-39*07
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*05
caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*06
...........................................................................tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-55*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
>IGHV4-55*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-55*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-55*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-59*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-59*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-59*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
>IGHV4-59*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
>IGHV4-59*09
...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
>IGHV4-59*10
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-61*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-61*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
>IGHV4-61*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
>IGHV4-61*06
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-61*07
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
>IGHV4-61*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV5-10-1*01
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*02
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
>IGHV5-10-1*03
gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*04
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*01
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*02
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*03
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*04
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*05
.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
>IGHV5-78*01
gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
>IGHV6-1*01
caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV6-1*02
caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV7-34-1*01
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-34-1*02
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-4-1*01
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
>IGHV7-4-1*02
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*03
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
>IGHV7-4-1*04
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*05
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
>IGHV7-40*03
ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
>IGHV7-81*01
caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/IMGTVHreferencedataset20161215.fasta
--- a/shm_csr/baseline/IMGTVHreferencedataset20161215.fasta Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
->IGHV1-18*01
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-18*02
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
>IGHV1-18*03
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1-18*04
caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-2*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
>IGHV1-2*05
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
>IGHV1-24*01
caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-3*01
caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
>IGHV1-3*02
caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
>IGHV1-38-4*01
caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
>IGHV1-45*01
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
>IGHV1-45*02
cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
>IGHV1-45*03
.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
>IGHV1-46*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-46*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
>IGHV1-58*01
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-58*02
caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
>IGHV1-68*01
caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
>IGHV1-69*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*02
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
>IGHV1-69*04
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*05
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1-69*06
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*07
.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69*08
caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*09
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*10
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*11
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*12
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*13
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69*14
caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-69-2*01
gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
>IGHV1-69-2*02
.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
>IGHV1-69D*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1-8*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-8*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
>IGHV1-NL1*01
caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
>IGHV1/OR15-1*01
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
>IGHV1/OR15-1*02
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-1*03
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
>IGHV1/OR15-1*04
caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
>IGHV1/OR15-2*01
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*02
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-2*03
caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*01
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-3*02
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
>IGHV1/OR15-3*03
caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-4*01
caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
>IGHV1/OR15-5*01
.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-5*02
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
>IGHV1/OR15-9*01
caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV1/OR21-1*01
caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
>IGHV2-10*01
caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
>IGHV2-26*01
caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
>IGHV2-5*01
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*02
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*03
................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
>IGHV2-5*04
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
>IGHV2-5*05
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*06
cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
>IGHV2-5*08
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-5*09
caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*01
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*02
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*03
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
>IGHV2-70*05
..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
>IGHV2-70*06
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*07
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*08
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
>IGHV2-70*09
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
>IGHV2-70*10
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*11
cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70*12
cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
>IGHV2-70*13
caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
>IGHV2-70D*04
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2-70D*14
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
>IGHV2/OR16-5*01
caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
>IGHV3-11*01
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*03
caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
>IGHV3-11*04
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-11*05
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-11*06
caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-13*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*02
gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
>IGHV3-13*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-13*05
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
>IGHV3-15*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*02
gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*03
gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*04
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*06
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*07
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
>IGHV3-15*08
gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3-16*01
gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-16*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-19*01
acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
>IGHV3-20*01
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-20*02
gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
>IGHV3-21*01
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*02
gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-21*03
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
>IGHV3-21*04
gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-22*01
gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-22*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
>IGHV3-23*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*02
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*03
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-23*05
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
>IGHV3-23D*01
gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
>IGHV3-25*01
gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*02
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-25*03
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
>IGHV3-25*04
gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
>IGHV3-25*05
gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
>IGHV3-29*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
>IGHV3-30*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*07
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*08
caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-30*09
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*10
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*11
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*12
caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*13
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*14
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*15
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*16
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*17
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30*18
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30*19
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
>IGHV3-30-22*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
>IGHV3-30-3*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-3*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-3*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-30-33*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
>IGHV3-30-42*01
gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
>IGHV3-30-5*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-5*02
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-30-52*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
>IGHV3-32*01
gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
>IGHV3-33*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*02
caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*03
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33*04
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*05
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-33*06
caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
>IGHV3-33-2*01
gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
>IGHV3-35*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
>IGHV3-38*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
>IGHV3-38*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
>IGHV3-38-3*01
gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
>IGHV3-43*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43*02
gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-43D*01
gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
>IGHV3-47*01
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
>IGHV3-47*02
gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
>IGHV3-48*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
>IGHV3-48*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-48*04
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-49*01
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*02
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*03
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*04
gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-49*05
gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
>IGHV3-52*01
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
>IGHV3-52*02
gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-52*03
gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
>IGHV3-53*01
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*02
gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-53*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
>IGHV3-53*04
gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
>IGHV3-54*01
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-54*02
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
>IGHV3-54*04
gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
>IGHV3-62*01
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
>IGHV3-63*01
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
>IGHV3-63*02
gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
>IGHV3-64*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*02
gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
>IGHV3-64*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64*04
caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-64*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-64D*06
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
>IGHV3-66*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
>IGHV3-66*03
gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
>IGHV3-66*04
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
>IGHV3-69-1*01
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-69-1*02
gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
>IGHV3-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-7*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
>IGHV3-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*01
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
>IGHV3-71*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
>IGHV3-71*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
>IGHV3-72*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
>IGHV3-72*02
....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
>IGHV3-73*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-73*02
gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
>IGHV3-74*01
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-74*02
gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
>IGHV3-74*03
gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
>IGHV3-9*01
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*02
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
>IGHV3-9*03
gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
>IGHV3-NL1*01
caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
>IGHV3/OR15-7*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*02
gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*03
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
>IGHV3/OR15-7*05
gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
>IGHV3/OR16-10*01
gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*02
gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
>IGHV3/OR16-10*03
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
>IGHV3/OR16-12*01
gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
>IGHV3/OR16-13*01
gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-14*01
gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
>IGHV3/OR16-15*01
gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
>IGHV3/OR16-15*02
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
>IGHV3/OR16-16*01
gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
>IGHV3/OR16-6*02
gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
>IGHV3/OR16-8*01
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
>IGHV3/OR16-8*02
gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
>IGHV3/OR16-9*01
gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
>IGHV4-28*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
>IGHV4-28*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
>IGHV4-28*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*06
caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
>IGHV4-28*07
caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-30-2*01
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-2*02
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-30-2*03
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
>IGHV4-30-2*04
...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-30-2*05
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-2*06
cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-30-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-30-4*04
caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
>IGHV4-30-4*05
..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*06
...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
>IGHV4-30-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-31*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-31*04
caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-31*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
>IGHV4-31*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
>IGHV4-31*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-31*10
caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
>IGHV4-34*01
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*02
caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*03
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*04
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*05
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-34*06
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*07
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-34*08
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
>IGHV4-34*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-34*10
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-34*11
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-34*12
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
>IGHV4-34*13
...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
>IGHV4-38-2*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
>IGHV4-38-2*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-39*01
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
>IGHV4-39*02
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
>IGHV4-39*03
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-39*04
..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
>IGHV4-39*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-39*06
cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-39*07
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
>IGHV4-4*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*05
caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-4*06
...........................................................................tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-4*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-55*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-55*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
>IGHV4-55*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
>IGHV4-55*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
>IGHV4-55*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4-55*09
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
>IGHV4-59*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-59*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
>IGHV4-59*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*05
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
>IGHV4-59*06
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
>IGHV4-59*07
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
>IGHV4-59*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
>IGHV4-59*09
...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
>IGHV4-59*10
caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
>IGHV4-61*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
>IGHV4-61*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4-61*04
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
>IGHV4-61*05
cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
>IGHV4-61*06
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
>IGHV4-61*07
...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
>IGHV4-61*08
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*01
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*02
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV4/OR15-8*03
caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
>IGHV5-10-1*01
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*02
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
>IGHV5-10-1*03
gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-10-1*04
gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*01
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*02
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
>IGHV5-51*03
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*04
gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
>IGHV5-51*05
.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
>IGHV5-78*01
gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
>IGHV6-1*01
caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV6-1*02
caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
>IGHV7-34-1*01
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-34-1*02
...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
>IGHV7-4-1*01
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
>IGHV7-4-1*02
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*03
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
>IGHV7-4-1*04
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
>IGHV7-4-1*05
caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
>IGHV7-40*03
ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
>IGHV7-81*01
caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/baseline_url.txt
--- a/shm_csr/baseline/baseline_url.txt Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-http://selection.med.yale.edu/baseline/
\ No newline at end of file
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/comparePDFs.r
--- a/shm_csr/baseline/comparePDFs.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,225 +0,0 @@
-options("warn"=-1)
-
-#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
-# Compute p-value of two distributions
-compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
-#print(c(length(dens1),length(dens2)))
-if(length(dens1)>1 & length(dens2)>1 ){
- dens1<-dens1/sum(dens1)
- dens2<-dens2/sum(dens2)
- cum2 <- cumsum(dens2)-dens2/2
- tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
- #print(tmp)
- if(tmp>0.5)tmp<-tmp-1
- return( tmp )
- }
- else {
- return(NA)
- }
- #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
-}
-
-
-require("grid")
-arg <- commandArgs(TRUE)
-#arg <- c("300143","4","5")
-arg[!arg=="clonal"]
-input <- arg[1]
-output <- arg[2]
-rowIDs <- as.numeric( sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } ) )
-
-numbSeqs = length(rowIDs)
-
-if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
- stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
-}
-
-#load( paste("output/",sessionID,".RData",sep="") )
-load( input )
-#input
-
-xMarks = seq(-20,20,length.out=4001)
-
-plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
- yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
-
- if(length(xlim==2)){
- xMin=xlim[1]
- xMax=xlim[2]
- } else {
- xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
- xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
- xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
- xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
-
- xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
- xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
- xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
- xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
-
- xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
- xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
- }
-
- sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
- grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
- x <- sigma
- pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
- #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
- pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
- grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
- grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
- grid.rect()
- grid.xaxis(gp = gpar(cex=cex/1.1))
- yticks = pretty(c(-yMax,yMax),8)
- yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
- grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
- if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
- ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
- grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
- }
- if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
- yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
- grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
- }
-
- if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
- ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
- grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
- }
- if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
- yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
- grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
- }
-
- grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
- grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
-
- grid.text("All", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
- grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
-
- if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
- pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])
- pval = formatC(as.numeric(pCDRFWR),digits=3)
- grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
- }
- grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
- grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
- popViewport(2)
-}
-#plot_grid_s(1)
-
-
-p2col<-function(p=0.01){
- breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
- i<-findInterval(p,breaks)
- cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
- rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
- return(cols[i])
-}
-
-
-plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
- if(upper){
- pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])
- pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
- pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])
- pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
- grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
- grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
- grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
- grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
-
- grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
- grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
-
- grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
- grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
- grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
- grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-
-
- # grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
- # grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
- }
- else{
- }
-}
-
-
-##################################################################################
-################## The whole OCD's matrix ########################################
-##################################################################################
-
-#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
-pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
-
-pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
-
-for( seqOne in 1:numbSeqs+1){
- pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
- if(seqOne>2){
- grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
- grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
- grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
-
- grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
- grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
- }
- grid.rect(gp = gpar(col=grey(0.9)))
- grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
- popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
- pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
- if(seqOne<=numbSeqs){
- grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
- grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
- grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
- grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
- grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
- }
- grid.rect(gp = gpar(col=grey(0.9)))
- grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
- popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
- for(seqTwo in 1:numbSeqs+1){
- pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
- if(seqTwo>seqOne){
- plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
- grid.rect()
- }
- popViewport(1)
- }
-}
-
-
-xMin=0
-xMax=0.01
-for(pdf1 in rowIDs){
- xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
- xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
- xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
- xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
- xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
- xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
-}
-
-
-
-for(i in 1:numbSeqs+1){
- for(j in (i-1):numbSeqs){
- pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
- grid.rect()
- plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
- popViewport(1)
- }
-}
-
-dev.off()
-
-cat("Success", paste(rowIDs,collapse="_"),sep=":")
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/filter.r
--- a/shm_csr/baseline/filter.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-arg = commandArgs(TRUE)
-summaryfile = arg[1]
-gappedfile = arg[2]
-selection = arg[3]
-output = arg[4]
-print(paste("selection = ", selection))
-
-
-summarydat = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote = "")
-gappeddat = read.table(gappedfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote = "")
-
-fix_column_names = function(df){
- if("V.DOMAIN.Functionality" %in% names(df)){
- names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
- print("found V.DOMAIN.Functionality, changed")
- }
- if("V.DOMAIN.Functionality.comment" %in% names(df)){
- names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
- print("found V.DOMAIN.Functionality.comment, changed")
- }
- return(df)
-}
-
-gappeddat = fix_column_names(gappeddat)
-
-#dat = data.frame(merge(gappeddat, summarydat, by="Sequence.ID", all.x=T))
-
-dat = cbind(gappeddat, summarydat$AA.JUNCTION)
-
-colnames(dat)[length(dat)] = "AA.JUNCTION"
-
-dat$VGene = gsub("^Homsap ", "", dat$V.GENE.and.allele)
-dat$VGene = gsub("[*].*", "", dat$VGene)
-
-dat$DGene = gsub("^Homsap ", "", dat$D.GENE.and.allele)
-dat$DGene = gsub("[*].*", "", dat$DGene)
-
-dat$JGene = gsub("^Homsap ", "", dat$J.GENE.and.allele)
-dat$JGene = gsub("[*].*", "", dat$JGene)
-
-print(str(dat))
-
-dat$past = do.call(paste, c(dat[unlist(strsplit(selection, ","))], sep = ":"))
-
-dat = dat[!duplicated(dat$past), ]
-
-print(paste("Sequences remaining after duplicate filter:", nrow(dat)))
-
-dat = dat[dat$Functionality != "No results" & dat$Functionality != "unproductive",]
-
-print(paste("Sequences remaining after functionality filter:", nrow(dat)))
-
-print(paste("Sequences remaining:", nrow(dat)))
-
-write.table(x=dat, file=output, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/script_imgt.py
--- a/shm_csr/baseline/script_imgt.py Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,86 +0,0 @@
-#import xlrd #avoid dep
-import argparse
-import re
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
-
-args = parser.parse_args()
-
-print "script_imgt.py"
-print "input:", args.input
-print "ref:", args.ref
-print "output:", args.output
-print "id:", args.id
-
-refdic = dict()
-with open(args.ref, 'rU') as ref:
- currentSeq = ""
- currentId = ""
- for line in ref:
- if line.startswith(">"):
- if currentSeq is not "" and currentId is not "":
- refdic[currentId[1:]] = currentSeq
- currentId = line.rstrip()
- currentSeq = ""
- else:
- currentSeq += line.rstrip()
- refdic[currentId[1:]] = currentSeq
-
-print "Have", str(len(refdic)), "reference sequences"
-
-vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
-# r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
-# r"(IGKV[0-3]D?-[0-9]{1,2})",
-# r"(IGLV[0-9]-[0-9]{1,2})",
-# r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
-# r"(TRGV[234589])",
-# r"(TRDV[1-3])"]
-
-#vPattern = re.compile(r"|".join(vPattern))
-vPattern = re.compile("|".join(vPattern))
-
-def filterGene(s, pattern):
- if type(s) is not str:
- return None
- res = pattern.search(s)
- if res:
- return res.group(0)
- return None
-
-
-
-currentSeq = ""
-currentId = ""
-first=True
-with open(args.input, 'r') as i:
- with open(args.output, 'a') as o:
- o.write(">>>" + args.id + "\n")
- outputdic = dict()
- for line in i:
- if first:
- first = False
- continue
- linesplt = line.split("\t")
- ref = filterGene(linesplt[1], vPattern)
- if not ref or not linesplt[2].rstrip():
- continue
- if ref in outputdic:
- outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
- else:
- outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
- #print outputdic
-
- for k in outputdic.keys():
- if k in refdic:
- o.write(">>" + k + "\n")
- o.write(refdic[k] + "\n")
- for seq in outputdic[k]:
- #print seq
- o.write(">" + seq[0] + "\n")
- o.write(seq[1] + "\n")
- else:
- print k + " not in reference, skipping " + k
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/script_xlsx.py
--- a/shm_csr/baseline/script_xlsx.py Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-import xlrd
-import argparse
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-
-args = parser.parse_args()
-
-gene_column = 6
-id_column = 7
-seq_column = 8
-LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
-
-
-refdic = dict()
-with open(args.ref, 'r') as ref:
- currentSeq = ""
- currentId = ""
- for line in ref.readlines():
- if line[0] is ">":
- if currentSeq is not "" and currentId is not "":
- refdic[currentId[1:]] = currentSeq
- currentId = line.rstrip()
- currentSeq = ""
- else:
- currentSeq += line.rstrip()
- refdic[currentId[1:]] = currentSeq
-
-currentSeq = ""
-currentId = ""
-with xlrd.open_workbook(args.input, 'r') as wb:
- with open(args.output, 'a') as o:
- for sheet in wb.sheets():
- if sheet.cell(1,gene_column).value.find("IGHV") < 0:
- print "Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name
- continue
- o.write(">>>" + sheet.name + "\n")
- outputdic = dict()
- for rowindex in range(1, sheet.nrows):
- ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
- if ref in outputdic:
- outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
- else:
- outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
- #print outputdic
-
- for k in outputdic.keys():
- if k in refdic:
- o.write(">>" + k + "\n")
- o.write(refdic[k] + "\n")
- for seq in outputdic[k]:
- #print seq
- o.write(">" + seq[0] + "\n")
- o.write(seq[1] + "\n")
- else:
- print k + " not in reference, skipping " + k
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/baseline/wrapper.sh
--- a/shm_csr/baseline/wrapper.sh Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,92 +0,0 @@
-#!/bin/bash
-dir="$(cd "$(dirname "$0")" && pwd)"
-
-testID=$1
-species=$2
-substitutionModel=$3
-mutabilityModel=$4
-clonal=$5
-fixIndels=$6
-region=$7
-inputs=$8
-inputs=($inputs)
-IDs=$9
-IDs=($IDs)
-ref=${10}
-output=${11}
-selection=${12}
-output_table=${13}
-outID="result"
-
-echo "$PWD"
-
-echo "testID = $testID"
-echo "species = $species"
-echo "substitutionModel = $substitutionModel"
-echo "mutabilityModel = $mutabilityModel"
-echo "clonal = $clonal"
-echo "fixIndels = $fixIndels"
-echo "region = $region"
-echo "inputs = ${inputs[@]}"
-echo "IDs = ${IDs[@]}"
-echo "ref = $ref"
-echo "output = $output"
-echo "outID = $outID"
-
-fasta="$PWD/baseline.fasta"
-
-
-count=0
-for current in ${inputs[@]}
-do
- f=$(file $current)
- zipType="Zip archive"
- if [[ "$f" == *"Zip archive"* ]] || [[ "$f" == *"XZ compressed data"* ]]
- then
- id=${IDs[$count]}
- echo "id=$id"
- if [[ "$f" == *"Zip archive"* ]] ; then
- echo "Zip archive"
- echo "unzip $input -d $PWD/files/"
- unzip $current -d "$PWD/$id/"
- elif [[ "$f" == *"XZ compressed data"* ]] ; then
- echo "ZX archive"
- echo "tar -xJf $input -C $PWD/files/"
- mkdir -p "$PWD/$id/files"
- tar -xJf $current -C "$PWD/$id/files/"
- fi
- filtered="$PWD/filtered_${id}.txt"
- imgt_1_file="`find $PWD/$id -name '1_*.txt'`"
- imgt_2_file="`find $PWD/$id -name '2_*.txt'`"
- echo "1_Summary file: ${imgt_1_file}"
- echo "2_IMGT-gapped file: ${imgt_2_file}"
- echo "filter.r for $id"
- Rscript $dir/filter.r ${imgt_1_file} ${imgt_2_file} "$selection" $filtered 2>&1
-
- final="$PWD/final_${id}.txt"
- cat $filtered | cut -f2,4,7 > $final
- python $dir/script_imgt.py --input $final --ref $ref --output $fasta --id $id
- else
- python $dir/script_xlsx.py --input $current --ref $ref --output $fasta
- fi
- count=$((count+1))
-done
-workdir="$PWD"
-cd $dir
-echo "file: ${inputs[0]}"
-#Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region ${inputs[0]} $workdir/ $outID 2>&1
-Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region $fasta $workdir/ $outID 2>&1
-
-echo "$workdir/${outID}.txt"
-
-rows=`tail -n +2 $workdir/${outID}.txt | grep -v "All sequences combined" | grep -n 'Group' | grep -Eoh '^[0-9]+' | tr '\n' ' '`
-rows=($rows)
-#unset rows[${#rows[@]}-1]
-
-cd $dir
-Rscript --verbose $dir/comparePDFs.r $workdir/${outID}.RData $output ${rows[@]} 2>&1
-cp $workdir/result.txt ${output_table}
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/change_o/change_o_url.txt
--- a/shm_csr/change_o/change_o_url.txt Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-https://changeo.readthedocs.io/en/version-0.4.4/
\ No newline at end of file
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/change_o/define_clones.r
--- a/shm_csr/change_o/define_clones.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,15 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-input=args[1]
-output=args[2]
-
-change.o = read.table(input, header=T, sep="\t", quote="", stringsAsFactors=F)
-
-freq = data.frame(table(change.o$CLONE))
-freq2 = data.frame(table(freq$Freq))
-
-freq2$final = as.numeric(freq2$Freq) * as.numeric(as.character(freq2$Var1))
-
-names(freq2) = c("Clone size", "Nr of clones", "Nr of sequences")
-
-write.table(x=freq2, file=output, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/change_o/define_clones.sh
--- a/shm_csr/change_o/define_clones.sh Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,39 +0,0 @@
-#!/bin/bash
-dir="$(cd "$(dirname "$0")" && pwd)"
-
-#define_clones.sh $input $noparse $scores $regions $out_file
-
-type=$1
-input=$2
-
-mkdir -p $PWD/outdir
-
-cp $input $PWD/input.tab #file has to have a ".tab" extension
-
-if [ "bygroup" == "$type" ] ; then
- mode=$3
- act=$4
- model=$5
- norm=$6
- sym=$7
- link=$8
- dist=$9
- output=${10}
- output2=${11}
-
- DefineClones.py -d $PWD/input.tab --nproc 4 --outdir $PWD/outdir --outname output --mode $mode --act $act --model $model --dist $dist --norm $norm --sym $sym --link $link
-
- Rscript $dir/define_clones.r $PWD/outdir/output_clone-pass.tab $output2 2>&1
-else
- method=$3
- output=$4
- output2=$5
-
- DefineClones.py hclust -d $PWD/input.tab --nproc 4 --outdir $PWD/outdir --outname output --method $method
-
- Rscript $dir/define_clones.r $PWD/outdir/output_clone-pass.tab $output2 2>&1
-fi
-
-cp $PWD/outdir/output_clone-pass.tab $output
-
-rm -rf $PWD/outdir/
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/change_o/makedb.sh
--- a/shm_csr/change_o/makedb.sh Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,36 +0,0 @@
-#!/bin/bash
-dir="$(cd "$(dirname "$0")" && pwd)"
-
-input=$1
-noparse=$2
-scores=$3
-regions=$4
-output=$5
-
-if [ "true" == "$noparse" ] ; then
- noparse="--noparse"
-else
- noparse=""
-fi
-
-if [ "true" == "$scores" ] ; then
- scores="--scores"
-else
- scores=""
-fi
-
-if [ "true" == "$regions" ] ; then
- regions="--regions"
-else
- regions=""
-fi
-
-mkdir $PWD/outdir
-
-echo "makedb: $PWD/outdir"
-
-MakeDb.py imgt -i $input --outdir $PWD/outdir --outname output $noparse $scores $regions
-
-mv $PWD/outdir/output_db-pass.tab $output
-
-rm -rf $PWD/outdir/
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/change_o/select_first_in_clone.r
--- a/shm_csr/change_o/select_first_in_clone.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,16 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-input.file = args[1]
-output.file = args[2]
-
-print("select_in_first_clone.r")
-print(input.file)
-print(output.file)
-
-input = read.table(input.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-
-input = input[!duplicated(input$CLONE),]
-
-names(input)[1] = "Sequence.ID"
-
-write.table(input, output.file, quote=F, sep="\t", row.names=F, col.names=T, na="")
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/check_unique_id.r
--- a/shm_csr/check_unique_id.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,25 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE) #first argument must be the summary file so it can grab the
-
-current_file = args[1]
-
-current = read.table(current_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="", check.names=F)
-
-if(!("Sequence number" %in% names(current))){
- stop("First argument doesn't contain the 'Sequence number' column")
-}
-
-tbl = table(current[,"Sequence ID"])
-l_tbl = length(tbl)
-check = any(tbl > 1)
-
-#if(l_tbl != nrow(current)){ # non unique IDs?
-if(check){
- print("Sequence.ID is not unique for every sequence, adding sequence number to IDs")
- for(i in 1:length(args)){
- current_file = args[i]
- print(paste("Appending 'Sequence number' column to 'Sequence ID' column in", current_file))
- current = read.table(current_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="", check.names=F)
- current[,"Sequence ID"] = paste(current[,"Sequence ID"], current[,"Sequence number"], sep="_")
- write.table(x = current, file = current_file, quote = F, sep = "\t", na = "", row.names = F, col.names = T)
- }
-}
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/datatypes_conf.xml
--- a/shm_csr/datatypes_conf.xml Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,6 +0,0 @@
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/gene_identification.py
--- a/shm_csr/gene_identification.py Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,226 +0,0 @@
-import re
-import argparse
-import time
-starttime= int(time.time() * 1000)
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file")
-parser.add_argument("--output", help="The annotated output file to be merged back with the summary file")
-
-args = parser.parse_args()
-
-infile = args.input
-#infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt"
-output = args.output
-#outfile = "identified.txt"
-
-dic = dict()
-total = 0
-
-
-first = True
-IDIndex = 0
-seqIndex = 0
-
-with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
- for line in f:
- total += 1
- linesplt = line.split("\t")
- if first:
- print "linesplt", linesplt
- IDIndex = linesplt.index("Sequence ID")
- seqIndex = linesplt.index("Sequence")
- first = False
- continue
-
- ID = linesplt[IDIndex]
- if len(linesplt) < 28: #weird rows without a sequence
- dic[ID] = ""
- else:
- dic[ID] = linesplt[seqIndex]
-
-print "Number of input sequences:", len(dic)
-
-#old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc
-#old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag
-
-#lambda/kappa reference sequence
-searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg",
- "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggcc",
- "ce": "gcctccacacagagcccatccgtcttccccttgacccgctgctgcaaaaacattccctcc",
- "cm": "gggagtgcatccgccccaacc"} #new (shorter) cm sequence
-
-compiledregex = {"ca": [],
- "cg": [],
- "ce": [],
- "cm": []}
-
-#lambda/kappa reference sequence variable nucleotides
-ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'}
-ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'}
-cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
-cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'}
-cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
-cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'}
-
-#remove last snp for shorter cg sequence --- note, also change varsInCG
-del cg1[132]
-del cg2[132]
-del cg3[132]
-del cg4[132]
-
-#reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap
-chunklength = 8
-
-#create the chunks of the reference sequence with regular expressions for the variable nucleotides
-for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2):
- pos = i
- chunk = searchstrings["ca"][i:i+chunklength]
- result = ""
- varsInResult = 0
- for c in chunk:
- if pos in ca1.keys():
- varsInResult += 1
- result += "[" + ca1[pos] + ca2[pos] + "]"
- else:
- result += c
- pos += 1
- compiledregex["ca"].append((re.compile(result), varsInResult))
-
-for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2):
- pos = i
- chunk = searchstrings["cg"][i:i+chunklength]
- result = ""
- varsInResult = 0
- for c in chunk:
- if pos in cg1.keys():
- varsInResult += 1
- result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]"
- else:
- result += c
- pos += 1
- compiledregex["cg"].append((re.compile(result), varsInResult))
-
-for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2):
- compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False))
-
-for i in range(0, len(searchstrings["ce"]) - chunklength + 1, chunklength / 2):
- compiledregex["ce"].append((re.compile(searchstrings["ce"][i:i+chunklength]), False))
-
-def removeAndReturnMaxIndex(x): #simplifies a list comprehension
- m = max(x)
- index = x.index(m)
- x[index] = 0
- return index
-
-
-start_location = dict()
-hits = dict()
-alltotal = 0
-for key in compiledregex.keys(): #for ca/cg/cm/ce
- regularexpressions = compiledregex[key] #get the compiled regular expressions
- for ID in dic.keys()[0:]: #for every ID
- if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists
- hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ce_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0}
- currentIDHits = hits[ID]
- seq = dic[ID]
- lastindex = 0
- start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0)
- start = [0] * (len(seq) + start_zero)
- for i, regexp in enumerate(regularexpressions): #for every regular expression
- relativeStartLocation = lastindex - (chunklength / 2) * i
- if relativeStartLocation >= len(seq):
- break
- regex, hasVar = regexp
- matches = regex.finditer(seq[lastindex:])
- for match in matches: #for every match with the current regex, only uses the first hit because of the break at the end of this loop
- lastindex += match.start()
- start[relativeStartLocation + start_zero] += 1
- if hasVar: #if the regex has a variable nt in it
- chunkstart = chunklength / 2 * i #where in the reference does this chunk start
- chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end
- if key == "ca": #just calculate the variable nt score for 'ca', cheaper
- currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]])
- currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]])
- elif key == "cg": #just calculate the variable nt score for 'cg', cheaper
- currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]])
- currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]])
- currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]])
- currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]])
- else: #key == "cm" #no variable regions in 'cm' or 'ce'
- pass
- break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped
- else: #only runs if there were no hits
- continue
- #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i]
- currentIDHits[key + "_hits"] += 1
- start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1])
- #start_location[ID + "_" + key] = str(start.index(max(start)))
-
-
-varsInCA = float(len(ca1.keys()) * 2)
-varsInCG = float(len(cg1.keys()) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice
-varsInCM = 0
-varsInCE = 0
-
-def round_int(val):
- return int(round(val))
-
-first = True
-seq_write_count=0
-with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
- with open(output, 'w') as o:
- for line in f:
- total += 1
- if first:
- o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
- first = False
- continue
- linesplt = line.split("\t")
- if linesplt[2] == "No results":
- pass
- ID = linesplt[1]
- currentIDHits = hits[ID]
- possibleca = float(len(compiledregex["ca"]))
- possiblecg = float(len(compiledregex["cg"]))
- possiblecm = float(len(compiledregex["cm"]))
- possiblece = float(len(compiledregex["ce"]))
- cahits = currentIDHits["ca_hits"]
- cghits = currentIDHits["cg_hits"]
- cmhits = currentIDHits["cm_hits"]
- cehits = currentIDHits["ce_hits"]
- if cahits >= cghits and cahits >= cmhits and cahits >= cehits: #its a ca gene
- ca1hits = currentIDHits["ca1"]
- ca2hits = currentIDHits["ca2"]
- if ca1hits >= ca2hits:
- o.write(ID + "\tIGA1\t" + str(round_int(ca1hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
- else:
- o.write(ID + "\tIGA2\t" + str(round_int(ca2hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
- elif cghits >= cahits and cghits >= cmhits and cghits >= cehits: #its a cg gene
- cg1hits = currentIDHits["cg1"]
- cg2hits = currentIDHits["cg2"]
- cg3hits = currentIDHits["cg3"]
- cg4hits = currentIDHits["cg4"]
- if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene
- o.write(ID + "\tIGG1\t" + str(round_int(cg1hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
- elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene
- o.write(ID + "\tIGG2\t" + str(round_int(cg2hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
- elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene
- o.write(ID + "\tIGG3\t" + str(round_int(cg3hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
- else: #cg4 gene
- o.write(ID + "\tIGG4\t" + str(round_int(cg4hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
- else: #its a cm or ce gene
- if cmhits >= cehits:
- o.write(ID + "\tIGM\t100\t" + str(round_int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n")
- else:
- o.write(ID + "\tIGE\t100\t" + str(round_int(cehits / possiblece * 100)) + "\t" + start_location[ID + "_ce"] + "\n")
- seq_write_count += 1
-
-print "Time: %i" % (int(time.time() * 1000) - starttime)
-
-print "Number of sequences written to file:", seq_write_count
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/imgt_loader.r
--- a/shm_csr/imgt_loader.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,98 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-summ.file = args[1]
-aa.file = args[2]
-junction.file = args[3]
-out.file = args[4]
-
-summ = read.table(summ.file, sep="\t", header=T, quote="", fill=T)
-aa = read.table(aa.file, sep="\t", header=T, quote="", fill=T)
-junction = read.table(junction.file, sep="\t", header=T, quote="", fill=T)
-
-fix_column_names = function(df){
- if("V.DOMAIN.Functionality" %in% names(df)){
- names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
- print("found V.DOMAIN.Functionality, changed")
- }
- if("V.DOMAIN.Functionality.comment" %in% names(df)){
- names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
- print("found V.DOMAIN.Functionality.comment, changed")
- }
- return(df)
-}
-
-summ = fix_column_names(summ)
-aa = fix_column_names(aa)
-junction = fix_column_names(junction)
-
-old_summary_columns=c('Sequence.ID','JUNCTION.frame','V.GENE.and.allele','D.GENE.and.allele','J.GENE.and.allele','CDR1.IMGT.length','CDR2.IMGT.length','CDR3.IMGT.length','Orientation')
-old_sequence_columns=c('CDR1.IMGT','CDR2.IMGT','CDR3.IMGT')
-old_junction_columns=c('JUNCTION')
-
-added_summary_columns=c('Functionality','V.REGION.identity..','V.REGION.identity.nt','D.REGION.reading.frame','AA.JUNCTION','Functionality.comment','Sequence')
-added_sequence_columns=c('FR1.IMGT','FR2.IMGT','FR3.IMGT','CDR3.IMGT','JUNCTION','J.REGION','FR4.IMGT')
-
-added_junction_columns=c('P3.V.nt.nb','N.REGION.nt.nb','N1.REGION.nt.nb','P5.D.nt.nb','P3.D.nt.nb','N2.REGION.nt.nb','P5.J.nt.nb','X3.V.REGION.trimmed.nt.nb','X5.D.REGION.trimmed.nt.nb','X3.D.REGION.trimmed.nt.nb','X5.J.REGION.trimmed.nt.nb','N.REGION','N1.REGION','N2.REGION')
-added_junction_columns=c(added_junction_columns, 'P5.D1.nt.nb', 'P3.D1.nt.nb', 'N2.REGION.nt.nb', 'P5.D2.nt.nb', 'P3.D2.nt.nb', 'N3.REGION.nt.nb', 'P5.D3.nt.nb', 'P3.D2.nt.nb', 'N4.REGION.nt.nb', 'X5.D1.REGION.trimmed.nt.nb', 'X3.D1.REGION.trimmed.nt.nb', 'X5.D2.REGION.trimmed.nt.nb', 'X3.D2.REGION.trimmed.nt.nb', 'X5.D3.REGION.trimmed.nt.nb', 'X3.D3.REGION.trimmed.nt.nb', 'D.REGION.nt.nb', 'D1.REGION.nt.nb', 'D2.REGION.nt.nb', 'D3.REGION.nt.nb')
-
-out=summ[,c("Sequence.ID","JUNCTION.frame","V.GENE.and.allele","D.GENE.and.allele","J.GENE.and.allele")]
-
-out[,"CDR1.Seq"] = aa[,"CDR1.IMGT"]
-out[,"CDR1.Length"] = summ[,"CDR1.IMGT.length"]
-
-out[,"CDR2.Seq"] = aa[,"CDR2.IMGT"]
-out[,"CDR2.Length"] = summ[,"CDR2.IMGT.length"]
-
-out[,"CDR3.Seq"] = aa[,"CDR3.IMGT"]
-out[,"CDR3.Length"] = summ[,"CDR3.IMGT.length"]
-
-out[,"CDR3.Seq.DNA"] = junction[,"JUNCTION"]
-out[,"CDR3.Length.DNA"] = nchar(as.character(junction[,"JUNCTION"]))
-out[,"Strand"] = summ[,"Orientation"]
-out[,"CDR3.Found.How"] = "a"
-
-out[,added_summary_columns] = summ[,added_summary_columns]
-
-out[,added_sequence_columns] = aa[,added_sequence_columns]
-
-out[,added_junction_columns] = junction[,added_junction_columns]
-
-out[,"Top V Gene"] = gsub(".* ", "", gsub("\\*.*", "", summ[,"V.GENE.and.allele"]))
-out[,"Top D Gene"] = gsub(".* ", "", gsub("\\*.*", "", summ[,"D.GENE.and.allele"]))
-out[,"Top J Gene"] = gsub(".* ", "", gsub("\\*.*", "", summ[,"J.GENE.and.allele"]))
-
-out = out[,c('Sequence.ID','JUNCTION.frame','Top V Gene','Top D Gene','Top J Gene','CDR1.Seq','CDR1.Length','CDR2.Seq','CDR2.Length','CDR3.Seq','CDR3.Length','CDR3.Seq.DNA','CDR3.Length.DNA','Strand','CDR3.Found.How','Functionality','V.REGION.identity..','V.REGION.identity.nt','D.REGION.reading.frame','AA.JUNCTION','Functionality.comment','Sequence','FR1.IMGT','FR2.IMGT','FR3.IMGT','CDR3.IMGT','JUNCTION','J.REGION','FR4.IMGT','P3.V.nt.nb','N.REGION.nt.nb','N1.REGION.nt.nb','P5.D.nt.nb','P3.D.nt.nb','N2.REGION.nt.nb','P5.J.nt.nb','X3.V.REGION.trimmed.nt.nb','X5.D.REGION.trimmed.nt.nb','X3.D.REGION.trimmed.nt.nb','X5.J.REGION.trimmed.nt.nb','N.REGION','N1.REGION','N2.REGION', 'P5.D1.nt.nb', 'P3.D1.nt.nb', 'N2.REGION.nt.nb', 'P5.D2.nt.nb', 'P3.D2.nt.nb', 'N3.REGION.nt.nb', 'P5.D3.nt.nb', 'P3.D2.nt.nb', 'N4.REGION.nt.nb', 'X5.D1.REGION.trimmed.nt.nb', 'X3.D1.REGION.trimmed.nt.nb', 'X5.D2.REGION.trimmed.nt.nb', 'X3.D2.REGION.trimmed.nt.nb', 'X5.D3.REGION.trimmed.nt.nb', 'X3.D3.REGION.trimmed.nt.nb', 'D.REGION.nt.nb', 'D1.REGION.nt.nb', 'D2.REGION.nt.nb', 'D3.REGION.nt.nb')]
-
-names(out) = c('ID','VDJ Frame','Top V Gene','Top D Gene','Top J Gene','CDR1 Seq','CDR1 Length','CDR2 Seq','CDR2 Length','CDR3 Seq','CDR3 Length','CDR3 Seq DNA','CDR3 Length DNA','Strand','CDR3 Found How','Functionality','V-REGION identity %','V-REGION identity nt','D-REGION reading frame','AA JUNCTION','Functionality comment','Sequence','FR1-IMGT','FR2-IMGT','FR3-IMGT','CDR3-IMGT','JUNCTION','J-REGION','FR4-IMGT','P3V-nt nb','N-REGION-nt nb','N1-REGION-nt nb','P5D-nt nb','P3D-nt nb','N2-REGION-nt nb','P5J-nt nb','3V-REGION trimmed-nt nb','5D-REGION trimmed-nt nb','3D-REGION trimmed-nt nb','5J-REGION trimmed-nt nb','N-REGION','N1-REGION','N2-REGION', 'P5.D1.nt.nb', 'P3.D1.nt.nb', 'N2.REGION.nt.nb', 'P5.D2.nt.nb', 'P3.D2.nt.nb', 'N3.REGION.nt.nb', 'P5.D3.nt.nb', 'P3.D2.nt.nb', 'N4.REGION.nt.nb', 'X5.D1.REGION.trimmed.nt.nb', 'X3.D1.REGION.trimmed.nt.nb', 'X5.D2.REGION.trimmed.nt.nb', 'X3.D2.REGION.trimmed.nt.nb', 'X5.D3.REGION.trimmed.nt.nb', 'X3.D3.REGION.trimmed.nt.nb', 'D.REGION.nt.nb', 'D1.REGION.nt.nb', 'D2.REGION.nt.nb', 'D3.REGION.nt.nb')
-
-out[,"VDJ Frame"] = as.character(out[,"VDJ Frame"])
-
-fltr = out[,"VDJ Frame"] == "in-frame"
-if(any(fltr, na.rm = T)){
- out[fltr, "VDJ Frame"] = "In-frame"
-}
-
-fltr = out[,"VDJ Frame"] == "null"
-if(any(fltr, na.rm = T)){
- out[fltr, "VDJ Frame"] = "Out-of-frame"
-}
-
-fltr = out[,"VDJ Frame"] == "out-of-frame"
-if(any(fltr, na.rm = T)){
- out[fltr, "VDJ Frame"] = "Out-of-frame"
-}
-
-fltr = out[,"VDJ Frame"] == ""
-if(any(fltr, na.rm = T)){
- out[fltr, "VDJ Frame"] = "Out-of-frame"
-}
-
-for(col in c('Top V Gene','Top D Gene','Top J Gene')){
- out[,col] = as.character(out[,col])
- fltr = out[,col] == ""
- if(any(fltr, na.rm = T)){
- out[fltr,col] = "NA"
- }
-}
-
-write.table(out, out.file, sep="\t", quote=F, row.names=F, col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/merge.r
--- a/shm_csr/merge.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-input.1 = args[1]
-input.2 = args[2]
-
-fields.1 = args[3]
-fields.2 = args[4]
-
-field.1 = args[5]
-field.2 = args[6]
-
-output = args[7]
-
-dat1 = read.table(input.1, header=T, sep="\t", quote="", stringsAsFactors=F, fill=T, row.names=NULL)
-if(fields.1 != "all"){
- fields.1 = unlist(strsplit(fields.1, ","))
- dat1 = dat1[,fields.1]
-}
-dat2 = read.table(input.2, header=T, sep="\t", quote="", stringsAsFactors=F, fill=T, row.names=NULL)
-if(fields.2 != "all"){
- fields.2 = unlist(strsplit(fields.2, ","))
- dat2 = dat2[,fields.2]
-}
-
-dat3 = merge(dat1, dat2, by.x=field.1, by.y=field.2)
-
-write.table(dat3, output, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/merge_and_filter.r
--- a/shm_csr/merge_and_filter.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,304 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-
-summaryfile = args[1]
-sequencesfile = args[2]
-mutationanalysisfile = args[3]
-mutationstatsfile = args[4]
-hotspotsfile = args[5]
-aafile = args[6]
-gene_identification_file= args[7]
-output = args[8]
-before.unique.file = args[9]
-unmatchedfile = args[10]
-method=args[11]
-functionality=args[12]
-unique.type=args[13]
-filter.unique=args[14]
-filter.unique.count=as.numeric(args[15])
-class.filter=args[16]
-empty.region.filter=args[17]
-
-print(paste("filter.unique.count:", filter.unique.count))
-
-summ = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-sequences = read.table(sequencesfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-mutationanalysis = read.table(mutationanalysisfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-mutationstats = read.table(mutationstatsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-hotspots = read.table(hotspotsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-AAs = read.table(aafile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-gene_identification = read.table(gene_identification_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-
-fix_column_names = function(df){
- if("V.DOMAIN.Functionality" %in% names(df)){
- names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
- print("found V.DOMAIN.Functionality, changed")
- }
- if("V.DOMAIN.Functionality.comment" %in% names(df)){
- names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
- print("found V.DOMAIN.Functionality.comment, changed")
- }
- return(df)
-}
-
-fix_non_unique_ids = function(df){
- df$Sequence.ID = paste(df$Sequence.ID, 1:nrow(df))
- return(df)
-}
-
-summ = fix_column_names(summ)
-sequences = fix_column_names(sequences)
-mutationanalysis = fix_column_names(mutationanalysis)
-mutationstats = fix_column_names(mutationstats)
-hotspots = fix_column_names(hotspots)
-AAs = fix_column_names(AAs)
-
-if(method == "blastn"){
- #"qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore"
- gene_identification = gene_identification[!duplicated(gene_identification$qseqid),]
- ref_length = data.frame(sseqid=c("ca1", "ca2", "cg1", "cg2", "cg3", "cg4", "cm"), ref.length=c(81,81,141,141,141,141,52))
- gene_identification = merge(gene_identification, ref_length, by="sseqid", all.x=T)
- gene_identification$chunk_hit_percentage = (gene_identification$length / gene_identification$ref.length) * 100
- gene_identification = gene_identification[,c("qseqid", "chunk_hit_percentage", "pident", "qstart", "sseqid")]
- colnames(gene_identification) = c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")
-}
-
-#print("Summary analysis files columns")
-#print(names(summ))
-
-
-
-input.sequence.count = nrow(summ)
-print(paste("Number of sequences in summary file:", input.sequence.count))
-
-filtering.steps = data.frame(character(0), numeric(0))
-
-filtering.steps = rbind(filtering.steps, c("Input", input.sequence.count))
-
-filtering.steps[,1] = as.character(filtering.steps[,1])
-filtering.steps[,2] = as.character(filtering.steps[,2])
-#filtering.steps[,3] = as.numeric(filtering.steps[,3])
-
-#print("summary files columns")
-#print(names(summ))
-
-summ = merge(summ, gene_identification, by="Sequence.ID")
-
-print(paste("Number of sequences after merging with gene identification:", nrow(summ)))
-
-summ = summ[summ$Functionality != "No results",]
-
-print(paste("Number of sequences after 'No results' filter:", nrow(summ)))
-
-filtering.steps = rbind(filtering.steps, c("After 'No results' filter", nrow(summ)))
-
-if(functionality == "productive"){
- summ = summ[summ$Functionality == "productive (see comment)" | summ$Functionality == "productive",]
-} else if (functionality == "unproductive"){
- summ = summ[summ$Functionality == "unproductive (see comment)" | summ$Functionality == "unproductive",]
-} else if (functionality == "remove_unknown"){
- summ = summ[summ$Functionality != "No results" & summ$Functionality != "unknown (see comment)" & summ$Functionality != "unknown",]
-}
-
-print(paste("Number of sequences after functionality filter:", nrow(summ)))
-
-filtering.steps = rbind(filtering.steps, c("After functionality filter", nrow(summ)))
-
-if(F){ #to speed up debugging
- set.seed(1)
- summ = summ[sample(nrow(summ), floor(nrow(summ) * 0.03)),]
- print(paste("Number of sequences after sampling 3%:", nrow(summ)))
-
- filtering.steps = rbind(filtering.steps, c("Number of sequences after sampling 3%", nrow(summ)))
-}
-
-print("mutation analysis files columns")
-print(names(mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])]))
-
-result = merge(summ, mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with mutation analysis file:", nrow(result)))
-
-#print("mutation stats files columns")
-#print(names(mutationstats[,!(names(mutationstats) %in% names(result)[-1])]))
-
-result = merge(result, mutationstats[,!(names(mutationstats) %in% names(result)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with mutation stats file:", nrow(result)))
-
-print("hotspots files columns")
-print(names(hotspots[,!(names(hotspots) %in% names(result)[-1])]))
-
-result = merge(result, hotspots[,!(names(hotspots) %in% names(result)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with hotspots file:", nrow(result)))
-
-print("sequences files columns")
-print(c("FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT"))
-
-sequences = sequences[,c("Sequence.ID", "FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT")]
-names(sequences) = c("Sequence.ID", "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq")
-result = merge(result, sequences, by="Sequence.ID", all.x=T)
-
-AAs = AAs[,c("Sequence.ID", "CDR3.IMGT")]
-names(AAs) = c("Sequence.ID", "CDR3.IMGT.AA")
-result = merge(result, AAs, by="Sequence.ID", all.x=T)
-
-print(paste("Number of sequences in result after merging with sequences:", nrow(result)))
-
-result$VGene = gsub("^Homsap ", "", result$V.GENE.and.allele)
-result$VGene = gsub("[*].*", "", result$VGene)
-result$DGene = gsub("^Homsap ", "", result$D.GENE.and.allele)
-result$DGene = gsub("[*].*", "", result$DGene)
-result$JGene = gsub("^Homsap ", "", result$J.GENE.and.allele)
-result$JGene = gsub("[*].*", "", result$JGene)
-
-splt = strsplit(class.filter, "_")[[1]]
-chunk_hit_threshold = as.numeric(splt[1])
-nt_hit_threshold = as.numeric(splt[2])
-
-higher_than=(result$chunk_hit_percentage >= chunk_hit_threshold & result$nt_hit_percentage >= nt_hit_threshold)
-
-if(!all(higher_than, na.rm=T)){ #check for no unmatched
- result[!higher_than,"best_match"] = paste("unmatched,", result[!higher_than,"best_match"])
-}
-
-if(class.filter == "101_101"){
- result$best_match = "all"
-}
-
-write.table(x=result, file=gsub("merged.txt$", "before_filters.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
-
-print(paste("Number of empty CDR1 sequences:", sum(result$CDR1.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty FR2 sequences:", sum(result$FR2.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "", na.rm=T)))
-
-if(empty.region.filter == "leader"){
- result = result[result$FR1.IMGT.seq != "" & result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "FR1"){
- result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "CDR1"){
- result = result[result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "FR2"){
- result = result[result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-}
-
-print(paste("After removal sequences that are missing a gene region:", nrow(result)))
-filtering.steps = rbind(filtering.steps, c("After removal sequences that are missing a gene region", nrow(result)))
-
-if(empty.region.filter == "leader"){
- result = result[!(grepl("n|N", result$FR1.IMGT.seq) | grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "FR1"){
- result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "CDR1"){
- result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "FR2"){
- result = result[!(grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-}
-
-print(paste("Number of sequences in result after n filtering:", nrow(result)))
-filtering.steps = rbind(filtering.steps, c("After N filter", nrow(result)))
-
-cleanup_columns = c("FR1.IMGT.Nb.of.mutations",
- "CDR1.IMGT.Nb.of.mutations",
- "FR2.IMGT.Nb.of.mutations",
- "CDR2.IMGT.Nb.of.mutations",
- "FR3.IMGT.Nb.of.mutations")
-
-for(col in cleanup_columns){
- result[,col] = gsub("\\(.*\\)", "", result[,col])
- result[,col] = as.numeric(result[,col])
- result[is.na(result[,col]),] = 0
-}
-
-write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T)
-
-
-if(filter.unique != "no"){
- clmns = names(result)
- if(filter.unique == "remove_vjaa"){
- result$unique.def = paste(result$VGene, result$JGene, result$CDR3.IMGT.AA)
- } else if(empty.region.filter == "leader"){
- result$unique.def = paste(result$FR1.IMGT.seq, result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
- } else if(empty.region.filter == "FR1"){
- result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
- } else if(empty.region.filter == "CDR1"){
- result$unique.def = paste(result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
- } else if(empty.region.filter == "FR2"){
- result$unique.def = paste(result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
- }
-
- if(grepl("remove", filter.unique)){
- result = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),]
- unique.defs = data.frame(table(result$unique.def))
- unique.defs = unique.defs[unique.defs$Freq >= filter.unique.count,]
- result = result[result$unique.def %in% unique.defs$Var1,]
- }
-
- if(filter.unique != "remove_vjaa"){
- result$unique.def = paste(result$unique.def, gsub(",.*", "", result$best_match)) #keep the unique sequences that are in multiple classes, gsub so the unmatched don't have a class after it
- }
-
- result = result[!duplicated(result$unique.def),]
-}
-
-write.table(result, gsub("before_unique_filter.txt", "after_unique_filter.txt", before.unique.file), sep="\t", quote=F,row.names=F,col.names=T)
-
-filtering.steps = rbind(filtering.steps, c("After filter unique sequences", nrow(result)))
-
-print(paste("Number of sequences in result after unique filtering:", nrow(result)))
-
-if(nrow(summ) == 0){
- stop("No data remaining after filter")
-}
-
-result$best_match_class = gsub(",.*", "", result$best_match) #gsub so the unmatched don't have a class after it
-
-#result$past = ""
-#cls = unlist(strsplit(unique.type, ","))
-#for (i in 1:nrow(result)){
-# result[i,"past"] = paste(result[i,cls], collapse=":")
-#}
-
-
-
-result$past = do.call(paste, c(result[unlist(strsplit(unique.type, ","))], sep = ":"))
-
-result.matched = result[!grepl("unmatched", result$best_match),]
-result.unmatched = result[grepl("unmatched", result$best_match),]
-
-result = rbind(result.matched, result.unmatched)
-
-result = result[!(duplicated(result$past)), ]
-
-result = result[,!(names(result) %in% c("past", "best_match_class"))]
-
-print(paste("Number of sequences in result after", unique.type, "filtering:", nrow(result)))
-
-filtering.steps = rbind(filtering.steps, c("After remove duplicates based on filter", nrow(result)))
-
-unmatched = result[grepl("^unmatched", result$best_match),c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")]
-
-print(paste("Number of rows in result:", nrow(result)))
-print(paste("Number of rows in unmatched:", nrow(unmatched)))
-
-matched.sequences = result[!grepl("^unmatched", result$best_match),]
-
-write.table(x=matched.sequences, file=gsub("merged.txt$", "filtered.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
-
-matched.sequences.count = nrow(matched.sequences)
-unmatched.sequences.count = sum(grepl("^unmatched", result$best_match))
-if(matched.sequences.count <= unmatched.sequences.count){
- print("WARNING NO MATCHED (SUB)CLASS SEQUENCES!!")
-}
-
-filtering.steps = rbind(filtering.steps, c("Number of matched sequences", matched.sequences.count))
-filtering.steps = rbind(filtering.steps, c("Number of unmatched sequences", unmatched.sequences.count))
-filtering.steps[,2] = as.numeric(filtering.steps[,2])
-filtering.steps$perc = round(filtering.steps[,2] / input.sequence.count * 100, 2)
-
-write.table(x=filtering.steps, file=gsub("unmatched", "filtering_steps", unmatchedfile), sep="\t",quote=F,row.names=F,col.names=F)
-
-write.table(x=result, file=output, sep="\t",quote=F,row.names=F,col.names=T)
-write.table(x=unmatched, file=unmatchedfile, sep="\t",quote=F,row.names=F,col.names=T)
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/mutation_column_checker.py
--- a/shm_csr/mutation_column_checker.py Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-import re
-
-mutationMatcher = re.compile("^([nactg])(\d+).([nactg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
-
-with open("7_V-REGION-mutation-and-AA-change-table.txt", 'r') as file_handle:
- first = True
- fr3_index = -1
- for i, line in enumerate(file_handle):
- line_split = line.split("\t")
- if first:
- fr3_index = line_split.index("FR3-IMGT")
- first = False
- continue
-
- if len(line_split) < fr3_index:
- continue
-
- fr3_data = line_split[fr3_index]
- if len(fr3_data) > 5:
- try:
- test = [mutationMatcher.match(x).groups() for x in fr3_data.split("|") if x]
- except:
- print(line_split[1])
- print("Something went wrong at line {line} with:".format(line=line_split[0]))
- #print([x for x in fr3_data.split("|") if not mutationMatcher.match(x)])
- if i % 100000 == 0:
- print(i)
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/naive_output.r
--- a/shm_csr/naive_output.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,45 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-naive.file = args[1]
-shm.file = args[2]
-output.file.ca = args[3]
-output.file.cg = args[4]
-output.file.cm = args[5]
-
-naive = read.table(naive.file, sep="\t", header=T, quote="", fill=T)
-shm.merge = read.table(shm.file, sep="\t", header=T, quote="", fill=T)
-
-
-final = merge(naive, shm.merge[,c("Sequence.ID", "best_match")], by.x="ID", by.y="Sequence.ID")
-print(paste("nrow final:", nrow(final)))
-names(final)[names(final) == "best_match"] = "Sample"
-final.numeric = final[,sapply(final, is.numeric)]
-final.numeric[is.na(final.numeric)] = 0
-final[,sapply(final, is.numeric)] = final.numeric
-
-final.ca = final[grepl("^ca", final$Sample),]
-final.cg = final[grepl("^cg", final$Sample),]
-final.cm = final[grepl("^cm", final$Sample),]
-
-if(nrow(final.ca) > 0){
- final.ca$Replicate = 1
-}
-
-if(nrow(final.cg) > 0){
- final.cg$Replicate = 1
-}
-
-if(nrow(final.cm) > 0){
- final.cm$Replicate = 1
-}
-
-#print(paste("nrow final:", nrow(final)))
-#final2 = final
-#final2$Sample = gsub("[0-9]", "", final2$Sample)
-#final = rbind(final, final2)
-#final$Replicate = 1
-
-write.table(final.ca, output.file.ca, quote=F, sep="\t", row.names=F, col.names=T)
-write.table(final.cg, output.file.cg, quote=F, sep="\t", row.names=F, col.names=T)
-write.table(final.cm, output.file.cm, quote=F, sep="\t", row.names=F, col.names=T)
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/new_imgt.r
--- a/shm_csr/new_imgt.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,40 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-imgt.dir = args[1]
-merged.file = args[2]
-gene = args[3]
-
-merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, comment.char="", quote="")
-
-if(!("Sequence.ID" %in% names(merged))){ #change-o db
- print("Change-O DB changing 'SEQUENCE_ID' to 'Sequence.ID'")
- names(merged)[which(names[merged] == "SEQUENCE_ID")] = "Sequence.ID"
-}
-
-if(gene != "-"){
- merged = merged[grepl(paste("^", gene, sep=""), merged$best_match),]
-}
-
-if("best_match" %in% names(merged)){
- merged = merged[!grepl("unmatched", merged$best_match),]
-}
-
-nrow_dat = 0
-
-for(f in list.files(imgt.dir, pattern="*.txt$")){
- #print(paste("filtering", f))
- path = file.path(imgt.dir, f)
- dat = read.table(path, header=T, sep="\t", fill=T, quote="", stringsAsFactors=F, check.names=FALSE, comment.char="")
-
- dat = dat[dat[,"Sequence ID"] %in% merged$Sequence.ID,]
-
- nrow_dat = nrow(dat)
-
- if(nrow(dat) > 0 & grepl("^8_", f)){ #change the FR1 columns to 0 in the "8_..." file
- dat[,grepl("^FR1", names(dat))] = 0
- }
-
- write.table(dat, path, quote=F, sep="\t", row.names=F, col.names=T, na="")
-}
-
-print(paste("Creating new zip for ", gene, "with", nrow_dat, "sequences"))
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/pattern_plots.r
--- a/shm_csr/pattern_plots.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,178 +0,0 @@
-library(ggplot2)
-library(reshape2)
-library(scales)
-
-args <- commandArgs(trailingOnly = TRUE)
-
-input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt"
-
-plot1.path = args[2]
-plot1.png = paste(plot1.path, ".png", sep="")
-plot1.txt = paste(plot1.path, ".txt", sep="")
-plot1.pdf = paste(plot1.path, ".pdf", sep="")
-
-plot2.path = args[3]
-plot2.png = paste(plot2.path, ".png", sep="")
-plot2.txt = paste(plot2.path, ".txt", sep="")
-plot2.pdf = paste(plot2.path, ".pdf", sep="")
-
-plot3.path = args[4]
-plot3.png = paste(plot3.path, ".png", sep="")
-plot3.txt = paste(plot3.path, ".txt", sep="")
-plot3.pdf = paste(plot3.path, ".pdf", sep="")
-
-clean.output = args[5]
-
-dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1)
-
-classes = c("IGA", "IGA1", "IGA2", "IGG", "IGG1", "IGG2", "IGG3", "IGG4", "IGM", "IGE")
-xyz = c("x", "y", "z")
-new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep="."))
-
-names(dat) = new.names
-
-clean.dat = dat
-clean.dat = clean.dat[,c(paste(rep(classes, each=3), xyz, sep="."), paste("all", xyz, sep="."), paste("un", xyz, sep="."))]
-
-write.table(clean.dat, clean.output, quote=F, sep="\t", na="", row.names=T, col.names=NA)
-
-dat["RGYW.WRCY",] = colSums(dat[c(14,15),], na.rm=T)
-dat["TW.WA",] = colSums(dat[c(16,17),], na.rm=T)
-
-data1 = dat[c("RGYW.WRCY", "TW.WA"),]
-
-data1 = data1[,names(data1)[grepl(".z", names(data1))]]
-names(data1) = gsub("\\..*", "", names(data1))
-
-data1 = melt(t(data1))
-
-names(data1) = c("Class", "Type", "value")
-
-chk = is.na(data1$value)
-if(any(chk)){
- data1[chk, "value"] = 0
-}
-
-data1 = data1[order(data1$Type),]
-
-write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
-
-p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL)) + ggtitle("Percentage of mutations in AID and pol eta motives")
-p = p + theme(panel.background = element_rect(fill = "white", colour="black"),text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("RGYW.WRCY" = "white", "TW.WA" = "blue4"))
-#p = p + scale_colour_manual(values=c("RGYW.WRCY" = "black", "TW.WA" = "blue4"))
-png(filename=plot1.png, width=510, height=300)
-print(p)
-dev.off()
-
-ggsave(plot1.pdf, p)
-
-data2 = dat[c(1, 5:8),]
-
-data2 = data2[,names(data2)[grepl("\\.x", names(data2))]]
-names(data2) = gsub(".x", "", names(data2))
-
-data2["A/T",] = dat["Targeting of A T (%)",names(dat)[grepl("\\.z", names(dat))]]
-
-data2["G/C transitions",] = round(data2["Transitions at G C (%)",] / data2["Number of Mutations (%)",] * 100, 1)
-
-data2["mutation.at.gc",] = dat["Transitions at G C (%)",names(dat)[grepl("\\.y", names(dat))]]
-data2["G/C transversions",] = round((data2["mutation.at.gc",] - data2["Transitions at G C (%)",]) / data2["Number of Mutations (%)",] * 100, 1)
-
-data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0
-data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0
-data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0
-data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0
-
-data2 = melt(t(data2[c("A/T","G/C transitions","G/C transversions"),]))
-
-names(data2) = c("Class", "Type", "value")
-
-chk = is.na(data2$value)
-if(any(chk)){
- data2[chk, "value"] = 0
-}
-
-data2 = data2[order(data2$Type),]
-
-write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
-
-p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity", colour = "black") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations") + ggtitle("Relative mutation patterns")
-p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
-#p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
-png(filename=plot2.png, width=480, height=300)
-print(p)
-dev.off()
-
-ggsave(plot2.pdf, p)
-
-data3 = dat[c(5, 6, 8, 18:21),]
-data3 = data3[,names(data3)[grepl("\\.x", names(data3))]]
-names(data3) = gsub(".x", "", names(data3))
-
-data3["G/C transitions",] = round(data3["Transitions at G C (%)",] / (data3["C",] + data3["G",]) * 100, 1)
-
-data3["G/C transversions",] = round((data3["Targeting of G C (%)",] - data3["Transitions at G C (%)",]) / (data3["C",] + data3["G",]) * 100, 1)
-
-data3["A/T",] = round(data3["Targeting of A T (%)",] / (data3["A",] + data3["T",]) * 100, 1)
-
-data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0
-data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0
-
-data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0
-data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0
-
-data3["A/T",is.nan(unlist(data3["A/T",]))] = 0
-data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0
-
-data3 = melt(t(data3[8:10,]))
-names(data3) = c("Class", "Type", "value")
-
-chk = is.na(data3$value)
-if(any(chk)){
- data3[chk, "value"] = 0
-}
-
-data3 = data3[order(data3$Type),]
-
-write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
-
-p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge", colour = "black") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL)) + ggtitle("Absolute mutation patterns")
-p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=15, colour="black"), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "white"))
-#p = p + scale_colour_manual(values=c("A/T" = "blue4", "G/C transversions" = "gray74", "G/C transitions" = "black"))
-png(filename=plot3.png, width=480, height=300)
-print(p)
-dev.off()
-
-ggsave(plot3.pdf, p)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/plot_pdf.r
--- a/shm_csr/plot_pdf.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,17 +0,0 @@
-library(ggplot2)
-
-args <- commandArgs(trailingOnly = TRUE)
-print(args)
-
-input = args[1]
-outputdir = args[2]
-setwd(outputdir)
-
-load(input)
-
-print(names(pdfplots))
-
-for(n in names(pdfplots)){
- print(paste("n:", n))
- ggsave(pdfplots[[n]], file=n)
-}
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/sequence_overview.r
--- a/shm_csr/sequence_overview.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,363 +0,0 @@
-library(reshape2)
-
-args <- commandArgs(trailingOnly = TRUE)
-
-before.unique.file = args[1]
-merged.file = args[2]
-outputdir = args[3]
-gene.classes = unlist(strsplit(args[4], ","))
-hotspot.analysis.sum.file = args[5]
-NToverview.file = paste(outputdir, "ntoverview.txt", sep="/")
-NTsum.file = paste(outputdir, "ntsum.txt", sep="/")
-main.html = "index.html"
-empty.region.filter = args[6]
-
-
-setwd(outputdir)
-
-before.unique = read.table(before.unique.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-hotspot.analysis.sum = read.table(hotspot.analysis.sum.file, header=F, sep=",", fill=T, stringsAsFactors=F, quote="")
-
-#before.unique = before.unique[!grepl("unmatched", before.unique$best_match),]
-
-if(empty.region.filter == "leader"){
- before.unique$seq_conc = paste(before.unique$FR1.IMGT.seq, before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
-} else if(empty.region.filter == "FR1"){
- before.unique$seq_conc = paste(before.unique$CDR1.IMGT.seq, before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
-} else if(empty.region.filter == "CDR1"){
- before.unique$seq_conc = paste(before.unique$FR2.IMGT.seq, before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
-} else if(empty.region.filter == "FR2"){
- before.unique$seq_conc = paste(before.unique$CDR2.IMGT.seq, before.unique$FR3.IMGT.seq, before.unique$CDR3.IMGT.seq)
-}
-
-IDs = before.unique[,c("Sequence.ID", "seq_conc", "best_match", "Functionality")]
-IDs$best_match = as.character(IDs$best_match)
-
-dat = data.frame(table(before.unique$seq_conc))
-
-names(dat) = c("seq_conc", "Freq")
-
-dat$seq_conc = factor(dat$seq_conc)
-
-dat = dat[order(as.character(dat$seq_conc)),]
-
-#writing html from R...
-get.bg.color = function(val){
- if(val %in% c("TRUE", "FALSE", "T", "F")){ #if its a logical value, give the background a green/red color
- return(ifelse(val,"#eafaf1","#f9ebea"))
- } else if (!is.na(as.numeric(val))) { #if its a numerical value, give it a grey tint if its >0
- return(ifelse(val > 0,"#eaecee","white"))
- } else {
- return("white")
- }
-}
-td = function(val) {
- return(paste("", val, " ", sep=""))
-}
-tr = function(val) {
- return(paste(c("", sapply(val, td), " "), collapse=""))
-}
-
-make.link = function(id, clss, val) {
- paste("", val, " ", sep="")
-}
-tbl = function(df) {
- res = ""
- for(i in 1:nrow(df)){
- res = paste(res, tr(df[i,]), sep="")
- }
- res = paste(res, "
")
-}
-
-cat(" Please note that this tab is based on all sequences before filter unique sequences and the remove duplicates based on filters are applied. In this table only sequences occuring more than once are included. ", file=main.html, append=F)
-cat("", file=main.html, append=T)
-
-if(empty.region.filter == "leader"){
- cat("FR1+CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
-} else if(empty.region.filter == "FR1"){
- cat("CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
-} else if(empty.region.filter == "CDR1"){
- cat("FR2+CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
-} else if(empty.region.filter == "FR2"){
- cat("CDR2+FR3+CDR3 sequences that show up more than once ", file=main.html, append=T)
-}
-
-cat("", file=main.html, append=T)
-cat("Sequence Functionality IGA1 IGA2 IGG1 IGG2 IGG3 IGG4 IGM IGE UN ", file=main.html, append=T)
-cat("total IGA total IGG total IGM total IGE number of subclasses present in both IGA and IGG present in IGA, IGG and IGM present in IGA, IGG and IGE present in IGA, IGG, IGM and IGE IGA1+IGA2 ", file=main.html, append=T)
-cat("IGG1+IGG2 IGG1+IGG3 IGG1+IGG4 IGG2+IGG3 IGG2+IGG4 IGG3+IGG4 ", file=main.html, append=T)
-cat("IGG1+IGG2+IGG3 IGG2+IGG3+IGG4 IGG1+IGG2+IGG4 IGG1+IGG3+IGG4 IGG1+IGG2+IGG3+IGG4 ", file=main.html, append=T)
-cat(" ", file=main.html, append=T)
-
-
-
-single.sequences=0 #sequence only found once, skipped
-in.multiple=0 #same sequence across multiple subclasses
-multiple.in.one=0 #same sequence multiple times in one subclass
-unmatched=0 #all of the sequences are unmatched
-some.unmatched=0 #one or more sequences in a clone are unmatched
-matched=0 #should be the same als matched sequences
-
-sequence.id.page="by_id.html"
-
-for(i in 1:nrow(dat)){
-
- ca1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA1", IDs$best_match),]
- ca2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGA2", IDs$best_match),]
-
- cg1 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG1", IDs$best_match),]
- cg2 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG2", IDs$best_match),]
- cg3 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG3", IDs$best_match),]
- cg4 = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGG4", IDs$best_match),]
-
- cm = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGM", IDs$best_match),]
-
- ce = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^IGE", IDs$best_match),]
-
- un = IDs[IDs$seq_conc == dat[i,c("seq_conc")] & grepl("^unmatched", IDs$best_match),]
-
- allc = rbind(ca1, ca2, cg1, cg2, cg3, cg4, cm, ce, un)
-
- ca1.n = nrow(ca1)
- ca2.n = nrow(ca2)
-
- cg1.n = nrow(cg1)
- cg2.n = nrow(cg2)
- cg3.n = nrow(cg3)
- cg4.n = nrow(cg4)
-
- cm.n = nrow(cm)
-
- ce.n = nrow(ce)
-
- un.n = nrow(un)
-
- classes = c(ca1.n, ca2.n, cg1.n, cg2.n, cg3.n, cg4.n, cm.n, ce.n, un.n)
-
- classes.sum = sum(classes)
-
- if(classes.sum == 1){
- single.sequences = single.sequences + 1
- next
- }
-
- if(un.n == classes.sum){
- unmatched = unmatched + 1
- next
- }
-
- classes.no.un = classes[-length(classes)]
-
- in.classes = sum(classes.no.un > 0)
-
- matched = matched + in.classes #count in how many subclasses the sequence occurs.
-
- if(any(classes == classes.sum)){
- multiple.in.one = multiple.in.one + 1
- } else if (un.n > 0) {
- some.unmatched = some.unmatched + 1
- } else {
- in.multiple = in.multiple + 1
- }
-
- id = as.numeric(dat[i,"seq_conc"])
-
- functionality = paste(unique(allc[,"Functionality"]), collapse=",")
-
- by.id.row = c()
-
- if(ca1.n > 0){
- cat(tbl(ca1), file=paste("IGA1_", id, ".html", sep=""))
- }
-
- if(ca2.n > 0){
- cat(tbl(ca2), file=paste("IGA2_", id, ".html", sep=""))
- }
-
- if(cg1.n > 0){
- cat(tbl(cg1), file=paste("IGG1_", id, ".html", sep=""))
- }
-
- if(cg2.n > 0){
- cat(tbl(cg2), file=paste("IGG2_", id, ".html", sep=""))
- }
-
- if(cg3.n > 0){
- cat(tbl(cg3), file=paste("IGG3_", id, ".html", sep=""))
- }
-
- if(cg4.n > 0){
- cat(tbl(cg4), file=paste("IGG4_", id, ".html", sep=""))
- }
-
- if(cm.n > 0){
- cat(tbl(cm), file=paste("IGM_", id, ".html", sep=""))
- }
-
- if(ce.n > 0){
- cat(tbl(ce), file=paste("IGE_", id, ".html", sep=""))
- }
-
- if(un.n > 0){
- cat(tbl(un), file=paste("un_", id, ".html", sep=""))
- }
-
- ca1.html = make.link(id, "IGA1", ca1.n)
- ca2.html = make.link(id, "IGA2", ca2.n)
-
- cg1.html = make.link(id, "IGG1", cg1.n)
- cg2.html = make.link(id, "IGG2", cg2.n)
- cg3.html = make.link(id, "IGG3", cg3.n)
- cg4.html = make.link(id, "IGG4", cg4.n)
-
- cm.html = make.link(id, "IGM", cm.n)
-
- ce.html = make.link(id, "IGE", ce.n)
-
- un.html = make.link(id, "un", un.n)
-
- #extra columns
- ca.n = ca1.n + ca2.n
-
- cg.n = cg1.n + cg2.n + cg3.n + cg4.n
-
- #in.classes
-
- in.ca.cg = (ca.n > 0 & cg.n > 0)
-
- in.ca.cg.cm = (ca.n > 0 & cg.n > 0 & cm.n > 0)
-
- in.ca.cg.ce = (ca.n > 0 & cg.n > 0 & ce.n > 0)
-
- in.ca.cg.cm.ce = (ca.n > 0 & cg.n > 0 & cm.n > 0 & ce.n > 0)
-
- in.ca1.ca2 = (ca1.n > 0 & ca2.n > 0)
-
- in.cg1.cg2 = (cg1.n > 0 & cg2.n > 0)
- in.cg1.cg3 = (cg1.n > 0 & cg3.n > 0)
- in.cg1.cg4 = (cg1.n > 0 & cg4.n > 0)
- in.cg2.cg3 = (cg2.n > 0 & cg3.n > 0)
- in.cg2.cg4 = (cg2.n > 0 & cg4.n > 0)
- in.cg3.cg4 = (cg3.n > 0 & cg4.n > 0)
-
- in.cg1.cg2.cg3 = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0)
- in.cg2.cg3.cg4 = (cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
- in.cg1.cg2.cg4 = (cg1.n > 0 & cg2.n > 0 & cg4.n > 0)
- in.cg1.cg3.cg4 = (cg1.n > 0 & cg3.n > 0 & cg4.n > 0)
-
- in.cg.all = (cg1.n > 0 & cg2.n > 0 & cg3.n > 0 & cg4.n > 0)
-
- #rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, un.html)
- rw = c(as.character(dat[i,"seq_conc"]), functionality, ca1.html, ca2.html, cg1.html, cg2.html, cg3.html, cg4.html, cm.html, ce.html, un.html)
- rw = c(rw, ca.n, cg.n, cm.n, ce.n, in.classes, in.ca.cg, in.ca.cg.cm, in.ca.cg.ce, in.ca.cg.cm.ce, in.ca1.ca2, in.cg1.cg2, in.cg1.cg3, in.cg1.cg4, in.cg2.cg3, in.cg2.cg4, in.cg3.cg4, in.cg1.cg2.cg3, in.cg2.cg3.cg4, in.cg1.cg2.cg4, in.cg1.cg3.cg4, in.cg.all)
-
-
-
- cat(tr(rw), file=main.html, append=T)
-
-
- for(i in 1:nrow(allc)){ #generate html by id
- html = make.link(id, allc[i,"best_match"], allc[i,"Sequence.ID"])
- cat(paste(html, " "), file=sequence.id.page, append=T)
- }
-}
-
-cat("
", file=main.html, append=T)
-
-print(paste("Single sequences:", single.sequences))
-print(paste("Sequences in multiple subclasses:", in.multiple))
-print(paste("Multiple sequences in one subclass:", multiple.in.one))
-print(paste("Matched with unmatched:", some.unmatched))
-print(paste("Count that should match 'matched' sequences:", matched))
-
-#ACGT overview
-
-#NToverview = merged[!grepl("^unmatched", merged$best_match),]
-NToverview = merged
-
-if(empty.region.filter == "leader"){
- NToverview$seq = paste(NToverview$FR1.IMGT.seq, NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
-} else if(empty.region.filter == "FR1"){
- NToverview$seq = paste(NToverview$CDR1.IMGT.seq, NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
-} else if(empty.region.filter == "CDR1"){
- NToverview$seq = paste(NToverview$FR2.IMGT.seq, NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
-} else if(empty.region.filter == "FR2"){
- NToverview$seq = paste(NToverview$CDR2.IMGT.seq, NToverview$FR3.IMGT.seq)
-}
-
-NToverview$A = nchar(gsub("[^Aa]", "", NToverview$seq))
-NToverview$C = nchar(gsub("[^Cc]", "", NToverview$seq))
-NToverview$G = nchar(gsub("[^Gg]", "", NToverview$seq))
-NToverview$T = nchar(gsub("[^Tt]", "", NToverview$seq))
-
-#Nsum = data.frame(Sequence.ID="-", best_match="Sum", seq="-", A = sum(NToverview$A), C = sum(NToverview$C), G = sum(NToverview$G), T = sum(NToverview$T))
-
-#NToverview = rbind(NToverview, NTsum)
-
-NTresult = data.frame(nt=c("A", "C", "T", "G"))
-
-for(clazz in gene.classes){
- print(paste("class:", clazz))
- NToverview.sub = NToverview[grepl(paste("^", clazz, sep=""), NToverview$best_match),]
- print(paste("nrow:", nrow(NToverview.sub)))
- new.col.x = c(sum(NToverview.sub$A), sum(NToverview.sub$C), sum(NToverview.sub$T), sum(NToverview.sub$G))
- new.col.y = sum(new.col.x)
- new.col.z = round(new.col.x / new.col.y * 100, 2)
-
- tmp = names(NTresult)
- NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
- names(NTresult) = c(tmp, paste(clazz, c("x", "y", "z"), sep=""))
-}
-
-NToverview.tmp = NToverview[,c("Sequence.ID", "best_match", "seq", "A", "C", "G", "T")]
-
-names(NToverview.tmp) = c("Sequence.ID", "best_match", "Sequence of the analysed region", "A", "C", "G", "T")
-
-write.table(NToverview.tmp, NToverview.file, quote=F, sep="\t", row.names=F, col.names=T)
-
-NToverview = NToverview[!grepl("unmatched", NToverview$best_match),]
-
-new.col.x = c(sum(NToverview$A), sum(NToverview$C), sum(NToverview$T), sum(NToverview$G))
-new.col.y = sum(new.col.x)
-new.col.z = round(new.col.x / new.col.y * 100, 2)
-
-tmp = names(NTresult)
-NTresult = cbind(NTresult, data.frame(new.col.x, new.col.y, new.col.z))
-names(NTresult) = c(tmp, paste("all", c("x", "y", "z"), sep=""))
-
-names(hotspot.analysis.sum) = names(NTresult)
-
-hotspot.analysis.sum = rbind(hotspot.analysis.sum, NTresult)
-
-write.table(hotspot.analysis.sum, hotspot.analysis.sum.file, quote=F, sep=",", row.names=F, col.names=F, na="0")
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_clonality.htm
--- a/shm_csr/shm_clonality.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,144 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
References
-
-
Gupta,
-Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria,
-Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). Change-O: a toolkit for analyzing large-scale B cell
-immunoglobulin repertoire sequencing data: Table 1. In Bioinformatics, 31 (20), pp.
-3356–3358. [ doi:10.1093/bioinformatics/btv359 ][ Link ]
-
-
-
-
All, IGA, IGG, IGM and IGE tabs
-
-
In
-these tabs information on the clonal relation of transcripts can be found. To
-calculate clonal relation Change-O is used (Gupta et al, PMID: 26069265).
-Transcripts are considered clonally related if they have maximal three nucleotides
-difference in their CDR3 sequence and the same first V segment (as assigned by
-IMGT). Results are represented in a table format showing the clone size and the
-number of clones or sequences with this clone size. Change-O settings used are
-the nucleotide hamming distance substitution model with
-a complete distance of maximal three. For clonal assignment the first gene
-segments were used, and the distances were not normalized. In case of
-asymmetric distances, the minimal distance was used.
-
-
-
-
Overlap
-tab
-
-
This
-tab gives information on with which (sub)classe(s) each unique analyzed region
-(based on the exact nucleotide sequence of the analyzes region and the CDR3
-nucleotide sequence) is found with. This gives information if the combination
-of the exact same nucleotide sequence of the analyzed region and the CDR3
-sequence can be found in multiple (sub)classes.
-
-
Please note that this tab is based on all
-sequences before filter unique sequences and the remove duplicates based on
-filters are applied. In this table only sequences occuring more than once are
-included.
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_csr.htm
--- a/shm_csr/shm_csr.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,95 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
The
-graphs in this tab give insight into the subclass distribution of IGG and IGA
-transcripts. Human Cµ, Cα, Cγ and Cε
-constant genes are assigned using a custom script
-specifically designed for human (sub)class assignment in repertoire data as
-described in van Schouwenburg and IJspeert et al, submitted for publication. In
-this script the reference sequences for the subclasses are divided in 8
-nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are
-then individually aligned in the right order to each input sequence. The
-percentage of the chunks identified in each rearrangement is calculated in the
-‘chunk hit percentage’. Cα and Cγ
-subclasses are very homologous and only differ in a few nucleotides. To assign
-subclasses the ‘nt hit percentage’ is calculated.
-This percentage indicates how well the chunks covering the subclass specific
-nucleotide match with the different subclasses. Information
-on normal distribution of subclasses in healthy individuals of different ages
-can be found in IJspeert and van Schouwenburg et al, PMID: 27799928.
-
-
IGA
-subclass distribution
-
-
Pie
-chart showing the relative distribution of IGA1 and IGA2 transcripts in the
-sample.
-
-
IGG
-subclass distribution
-
-
Pie
-chart showing the relative distribution of IGG1, IGG2, IGG3 and IGG4
-transcripts in the sample.
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_csr.py
--- a/shm_csr/shm_csr.py Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,508 +0,0 @@
-import argparse
-import logging
-import sys
-import os
-import re
-
-from collections import defaultdict
-
-def main():
- parser = argparse.ArgumentParser()
- parser.add_argument("--input", help="The '7_V-REGION-mutation-and-AA-change-table' and '10_V-REGION-mutation-hotspots' merged together, with an added 'best_match' annotation")
- parser.add_argument("--genes", help="The genes available in the 'best_match' column")
- parser.add_argument("--empty_region_filter", help="Where does the sequence start?", choices=['leader', 'FR1', 'CDR1', 'FR2'])
- parser.add_argument("--output", help="Output file")
-
- args = parser.parse_args()
-
- infile = args.input
- genes = str(args.genes).split(",")
- empty_region_filter = args.empty_region_filter
- outfile = args.output
-
- genedic = dict()
-
- mutationdic = dict()
- mutationMatcher = re.compile("^(.)(\d+).(.),?[ ]?(.)?(\d+)?.?(.)?(.?.?.?.?.?)?")
- mutationMatcher = re.compile("^([actg])(\d+).([actg]),?[ ]?([A-Z])?(\d+)?.?([A-Z])?(.*)?")
- mutationMatcher = re.compile("^([actg])(\d+).([actg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
- mutationMatcher = re.compile("^([nactg])(\d+).([nactg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
- NAMatchResult = (None, None, None, None, None, None, '')
- geneMatchers = {gene: re.compile("^" + gene + ".*") for gene in genes}
- linecount = 0
-
- IDIndex = 0
- best_matchIndex = 0
- fr1Index = 0
- cdr1Index = 0
- fr2Index = 0
- cdr2Index = 0
- fr3Index = 0
- first = True
- IDlist = []
- mutationList = []
- mutationListByID = {}
- cdr1LengthDic = {}
- cdr2LengthDic = {}
-
- fr1LengthDict = {}
- fr2LengthDict = {}
- fr3LengthDict = {}
-
- cdr1LengthIndex = 0
- cdr2LengthIndex = 0
-
- fr1SeqIndex = 0
- fr2SeqIndex = 0
- fr3SeqIndex = 0
-
- tandem_sum_by_class = defaultdict(int)
- expected_tandem_sum_by_class = defaultdict(float)
-
- with open(infile, 'ru') as i:
- for line in i:
- if first:
- linesplt = line.split("\t")
- IDIndex = linesplt.index("Sequence.ID")
- best_matchIndex = linesplt.index("best_match")
- fr1Index = linesplt.index("FR1.IMGT")
- cdr1Index = linesplt.index("CDR1.IMGT")
- fr2Index = linesplt.index("FR2.IMGT")
- cdr2Index = linesplt.index("CDR2.IMGT")
- fr3Index = linesplt.index("FR3.IMGT")
- cdr1LengthIndex = linesplt.index("CDR1.IMGT.length")
- cdr2LengthIndex = linesplt.index("CDR2.IMGT.length")
- fr1SeqIndex = linesplt.index("FR1.IMGT.seq")
- fr2SeqIndex = linesplt.index("FR2.IMGT.seq")
- fr3SeqIndex = linesplt.index("FR3.IMGT.seq")
- first = False
- continue
- linecount += 1
- linesplt = line.split("\t")
- ID = linesplt[IDIndex]
- genedic[ID] = linesplt[best_matchIndex]
-
- mutationdic[ID + "_FR1"] = []
- if len(linesplt[fr1Index]) > 5 and empty_region_filter == "leader":
- mutationdic[ID + "_FR1"] = [mutationMatcher.match(x).groups() for x in linesplt[fr1Index].split("|") if x]
-
- mutationdic[ID + "_CDR1"] = []
- if len(linesplt[cdr1Index]) > 5 and empty_region_filter in ["leader", "FR1"]:
- mutationdic[ID + "_CDR1"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr1Index].split("|") if x]
-
- mutationdic[ID + "_FR2"] = []
- if len(linesplt[fr2Index]) > 5 and empty_region_filter in ["leader", "FR1", "CDR1"]:
- mutationdic[ID + "_FR2"] = [mutationMatcher.match(x).groups() for x in linesplt[fr2Index].split("|") if x]
-
- mutationdic[ID + "_CDR2"] = []
- if len(linesplt[cdr2Index]) > 5:
- mutationdic[ID + "_CDR2"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr2Index].split("|") if x]
-
- mutationdic[ID + "_FR2-CDR2"] = mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"]
-
- mutationdic[ID + "_FR3"] = []
- if len(linesplt[fr3Index]) > 5:
- mutationdic[ID + "_FR3"] = [mutationMatcher.match(x).groups() for x in linesplt[fr3Index].split("|") if x]
-
- mutationList += mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
- mutationListByID[ID] = mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
-
- try:
- cdr1Length = int(linesplt[cdr1LengthIndex])
- except:
- cdr1Length = 0
-
- try:
- cdr2Length = int(linesplt[cdr2LengthIndex])
- except:
- cdr2Length = 0
-
- #print linesplt[fr2SeqIndex]
- fr1Length = len(linesplt[fr1SeqIndex]) if empty_region_filter == "leader" else 0
- fr2Length = len(linesplt[fr2SeqIndex]) if empty_region_filter in ["leader", "FR1", "CDR1"] else 0
- fr3Length = len(linesplt[fr3SeqIndex])
-
- cdr1LengthDic[ID] = cdr1Length
- cdr2LengthDic[ID] = cdr2Length
-
- fr1LengthDict[ID] = fr1Length
- fr2LengthDict[ID] = fr2Length
- fr3LengthDict[ID] = fr3Length
-
- IDlist += [ID]
- print "len(mutationdic) =", len(mutationdic)
-
- with open(os.path.join(os.path.dirname(os.path.abspath(infile)), "mutationdict.txt"), 'w') as out_handle:
- for ID, lst in mutationdic.iteritems():
- for mut in lst:
- out_handle.write("{0}\t{1}\n".format(ID, "\t".join([str(x) for x in mut])))
-
- #tandem mutation stuff
- tandem_frequency = defaultdict(int)
- mutation_frequency = defaultdict(int)
-
- mutations_by_id_dic = {}
- first = True
- mutation_by_id_file = os.path.join(os.path.dirname(outfile), "mutation_by_id.txt")
- with open(mutation_by_id_file, 'r') as mutation_by_id:
- for l in mutation_by_id:
- if first:
- first = False
- continue
- splt = l.split("\t")
- mutations_by_id_dic[splt[0]] = int(splt[1])
-
- tandem_file = os.path.join(os.path.dirname(outfile), "tandems_by_id.txt")
- with open(tandem_file, 'w') as o:
- highest_tandem_length = 0
-
- o.write("Sequence.ID\tnumber_of_mutations\tnumber_of_tandems\tregion_length\texpected_tandems\tlongest_tandem\ttandems\n")
- for ID in IDlist:
- mutations = mutationListByID[ID]
- if len(mutations) == 0:
- continue
- last_mut = max(mutations, key=lambda x: int(x[1]))
-
- last_mut_pos = int(last_mut[1])
-
- mut_positions = [False] * (last_mut_pos + 1)
-
- for mutation in mutations:
- frm, where, to, frmAA, whereAA, toAA, thing = mutation
- where = int(where)
- mut_positions[where] = True
-
- tandem_muts = []
- tandem_start = -1
- tandem_length = 0
- for i in range(len(mut_positions)):
- if mut_positions[i]:
- if tandem_start == -1:
- tandem_start = i
- tandem_length += 1
- #print "".join(["1" if x else "0" for x in mut_positions[:i+1]])
- else:
- if tandem_length > 1:
- tandem_muts.append((tandem_start, tandem_length))
- #print "{0}{1} {2}:{3}".format(" " * (i - tandem_length), "^" * tandem_length, tandem_start, tandem_length)
- tandem_start = -1
- tandem_length = 0
- if tandem_length > 1: # if the sequence ends with a tandem mutation
- tandem_muts.append((tandem_start, tandem_length))
-
- if len(tandem_muts) > 0:
- if highest_tandem_length < len(tandem_muts):
- highest_tandem_length = len(tandem_muts)
-
- region_length = fr1LengthDict[ID] + cdr1LengthDic[ID] + fr2LengthDict[ID] + cdr2LengthDic[ID] + fr3LengthDict[ID]
- longest_tandem = max(tandem_muts, key=lambda x: x[1]) if len(tandem_muts) else (0, 0)
- num_mutations = mutations_by_id_dic[ID] # len(mutations)
- f_num_mutations = float(num_mutations)
- num_tandem_muts = len(tandem_muts)
- expected_tandem_muts = f_num_mutations * (f_num_mutations - 1.0) / float(region_length)
- o.write("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\n".format(ID,
- str(num_mutations),
- str(num_tandem_muts),
- str(region_length),
- str(round(expected_tandem_muts, 2)),
- str(longest_tandem[1]),
- str(tandem_muts)))
- gene = genedic[ID]
- if gene.find("unmatched") == -1:
- tandem_sum_by_class[gene] += num_tandem_muts
- expected_tandem_sum_by_class[gene] += expected_tandem_muts
-
- tandem_sum_by_class["all"] += num_tandem_muts
- expected_tandem_sum_by_class["all"] += expected_tandem_muts
-
- gene = gene[:3]
- if gene in ["IGA", "IGG"]:
- tandem_sum_by_class[gene] += num_tandem_muts
- expected_tandem_sum_by_class[gene] += expected_tandem_muts
- else:
- tandem_sum_by_class["unmatched"] += num_tandem_muts
- expected_tandem_sum_by_class["unmatched"] += expected_tandem_muts
-
-
- for tandem_mut in tandem_muts:
- tandem_frequency[str(tandem_mut[1])] += 1
- #print "\t".join([ID, str(len(tandem_muts)), str(longest_tandem[1]) , str(tandem_muts)])
-
- tandem_freq_file = os.path.join(os.path.dirname(outfile), "tandem_frequency.txt")
- with open(tandem_freq_file, 'w') as o:
- for frq in sorted([int(x) for x in tandem_frequency.keys()]):
- o.write("{0}\t{1}\n".format(frq, tandem_frequency[str(frq)]))
-
- tandem_row = []
- genes_extra = list(genes)
- genes_extra.append("all")
- for x, y, in zip([tandem_sum_by_class[x] for x in genes_extra], [expected_tandem_sum_by_class[x] for x in genes_extra]):
- if y != 0:
- tandem_row += [x, round(y, 2), round(x / y, 2)]
- else:
- tandem_row += [x, round(y, 2), 0]
-
- tandem_freq_file = os.path.join(os.path.dirname(outfile), "shm_overview_tandem_row.txt")
- with open(tandem_freq_file, 'w') as o:
- o.write("Tandems/Expected (ratio),{0}\n".format(",".join([str(x) for x in tandem_row])))
-
- #print mutationList, linecount
-
- AALength = (int(max(mutationList, key=lambda i: int(i[4]) if i[4] and i[5] != ";" else 0)[4]) + 1) # [4] is the position of the AA mutation, None if silent
- if AALength < 60:
- AALength = 64
-
- AA_mutation = [0] * AALength
- AA_mutation_dic = {"IGA": AA_mutation[:], "IGG": AA_mutation[:], "IGM": AA_mutation[:], "IGE": AA_mutation[:], "unm": AA_mutation[:], "all": AA_mutation[:]}
- AA_mutation_empty = AA_mutation[:]
-
- print "AALength:", AALength
- aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/aa_id_mutations.txt"
- with open(aa_mutations_by_id_file, 'w') as o:
- o.write("ID\tbest_match\t" + "\t".join([str(x) for x in range(1,AALength)]) + "\n")
- for ID in mutationListByID.keys():
- AA_mutation_for_ID = AA_mutation_empty[:]
- for mutation in mutationListByID[ID]:
- if mutation[4] and mutation[5] != ";":
- AA_mutation_position = int(mutation[4])
- try:
- AA_mutation[AA_mutation_position] += 1
- AA_mutation_for_ID[AA_mutation_position] += 1
- except Exception as e:
- print e
- print mutation
- sys.exit()
- clss = genedic[ID][:3]
- AA_mutation_dic[clss][AA_mutation_position] += 1
- o.write(ID + "\t" + genedic[ID] + "\t" + "\t".join([str(x) for x in AA_mutation_for_ID[1:]]) + "\n")
-
-
-
- #absent AA stuff
- absentAACDR1Dic = defaultdict(list)
- absentAACDR1Dic[5] = range(29,36)
- absentAACDR1Dic[6] = range(29,35)
- absentAACDR1Dic[7] = range(30,35)
- absentAACDR1Dic[8] = range(30,34)
- absentAACDR1Dic[9] = range(31,34)
- absentAACDR1Dic[10] = range(31,33)
- absentAACDR1Dic[11] = [32]
-
- absentAACDR2Dic = defaultdict(list)
- absentAACDR2Dic[0] = range(55,65)
- absentAACDR2Dic[1] = range(56,65)
- absentAACDR2Dic[2] = range(56,64)
- absentAACDR2Dic[3] = range(57,64)
- absentAACDR2Dic[4] = range(57,63)
- absentAACDR2Dic[5] = range(58,63)
- absentAACDR2Dic[6] = range(58,62)
- absentAACDR2Dic[7] = range(59,62)
- absentAACDR2Dic[8] = range(59,61)
- absentAACDR2Dic[9] = [60]
-
- absentAA = [len(IDlist)] * (AALength-1)
- for k, cdr1Length in cdr1LengthDic.iteritems():
- for c in absentAACDR1Dic[cdr1Length]:
- absentAA[c] -= 1
-
- for k, cdr2Length in cdr2LengthDic.iteritems():
- for c in absentAACDR2Dic[cdr2Length]:
- absentAA[c] -= 1
-
-
- aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/absent_aa_id.txt"
- with open(aa_mutations_by_id_file, 'w') as o:
- o.write("ID\tcdr1length\tcdr2length\tbest_match\t" + "\t".join([str(x) for x in range(1,AALength)]) + "\n")
- for ID in IDlist:
- absentAAbyID = [1] * (AALength-1)
- cdr1Length = cdr1LengthDic[ID]
- for c in absentAACDR1Dic[cdr1Length]:
- absentAAbyID[c] -= 1
-
- cdr2Length = cdr2LengthDic[ID]
- for c in absentAACDR2Dic[cdr2Length]:
- absentAAbyID[c] -= 1
- o.write(ID + "\t" + str(cdr1Length) + "\t" + str(cdr2Length) + "\t" + genedic[ID] + "\t" + "\t".join([str(x) for x in absentAAbyID]) + "\n")
-
- if linecount == 0:
- print "No data, exiting"
- with open(outfile, 'w') as o:
- o.write("RGYW (%)," + ("0,0,0\n" * len(genes)))
- o.write("WRCY (%)," + ("0,0,0\n" * len(genes)))
- o.write("WA (%)," + ("0,0,0\n" * len(genes)))
- o.write("TW (%)," + ("0,0,0\n" * len(genes)))
- import sys
-
- sys.exit()
-
- hotspotMatcher = re.compile("[actg]+,(\d+)-(\d+)\((.*)\)")
- RGYWCount = {}
- WRCYCount = {}
- WACount = {}
- TWCount = {}
-
- #IDIndex = 0
- ataIndex = 0
- tatIndex = 0
- aggctatIndex = 0
- atagcctIndex = 0
- first = True
- with open(infile, 'ru') as i:
- for line in i:
- if first:
- linesplt = line.split("\t")
- ataIndex = linesplt.index("X.a.t.a")
- tatIndex = linesplt.index("t.a.t.")
- aggctatIndex = linesplt.index("X.a.g.g.c.t..a.t.")
- atagcctIndex = linesplt.index("X.a.t..a.g.c.c.t.")
- first = False
- continue
- linesplt = line.split("\t")
- gene = linesplt[best_matchIndex]
- ID = linesplt[IDIndex]
- RGYW = [(int(x), int(y), z) for (x, y, z) in
- [hotspotMatcher.match(x).groups() for x in linesplt[aggctatIndex].split("|") if x]]
- WRCY = [(int(x), int(y), z) for (x, y, z) in
- [hotspotMatcher.match(x).groups() for x in linesplt[atagcctIndex].split("|") if x]]
- WA = [(int(x), int(y), z) for (x, y, z) in
- [hotspotMatcher.match(x).groups() for x in linesplt[ataIndex].split("|") if x]]
- TW = [(int(x), int(y), z) for (x, y, z) in
- [hotspotMatcher.match(x).groups() for x in linesplt[tatIndex].split("|") if x]]
- RGYWCount[ID], WRCYCount[ID], WACount[ID], TWCount[ID] = 0, 0, 0, 0
-
- with open(os.path.join(os.path.dirname(os.path.abspath(infile)), "RGYW.txt"), 'a') as out_handle:
- for hotspot in RGYW:
- out_handle.write("{0}\t{1}\n".format(ID, "\t".join([str(x) for x in hotspot])))
-
- mutationList = mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
- for mutation in mutationList:
- frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
- mutation_in_RGYW = any(((start <= int(where) <= end) for (start, end, region) in RGYW))
- mutation_in_WRCY = any(((start <= int(where) <= end) for (start, end, region) in WRCY))
- mutation_in_WA = any(((start <= int(where) <= end) for (start, end, region) in WA))
- mutation_in_TW = any(((start <= int(where) <= end) for (start, end, region) in TW))
-
- in_how_many_motifs = sum([mutation_in_RGYW, mutation_in_WRCY, mutation_in_WA, mutation_in_TW])
-
- if in_how_many_motifs > 0:
- RGYWCount[ID] += (1.0 * int(mutation_in_RGYW)) / in_how_many_motifs
- WRCYCount[ID] += (1.0 * int(mutation_in_WRCY)) / in_how_many_motifs
- WACount[ID] += (1.0 * int(mutation_in_WA)) / in_how_many_motifs
- TWCount[ID] += (1.0 * int(mutation_in_TW)) / in_how_many_motifs
-
- mutations_in_motifs_file = os.path.join(os.path.dirname(os.path.abspath(infile)), "mutation_in_motifs.txt")
- if not os.path.exists(mutation_by_id_file):
- with open(mutations_in_motifs_file, 'w') as out_handle:
- out_handle.write("{0}\n".format("\t".join([
- "Sequence.ID",
- "mutation_position",
- "region",
- "from_nt",
- "to_nt",
- "mutation_position_AA",
- "from_AA",
- "to_AA",
- "motif",
- "motif_start_nt",
- "motif_end_nt",
- "rest"
- ])))
-
- with open(mutations_in_motifs_file, 'a') as out_handle:
- motif_dic = {"RGYW": RGYW, "WRCY": WRCY, "WA": WA, "TW": TW}
- for mutation in mutationList:
- frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
- for motif in motif_dic.keys():
-
- for start, end, region in motif_dic[motif]:
- if start <= int(where) <= end:
- out_handle.write("{0}\n".format(
- "\t".join([
- ID,
- where,
- region,
- frm,
- to,
- str(AAwhere),
- str(AAfrm),
- str(AAto),
- motif,
- str(start),
- str(end),
- str(junk)
- ])
- ))
-
-
-
- def mean(lst):
- return (float(sum(lst)) / len(lst)) if len(lst) > 0 else 0.0
-
-
- def median(lst):
- lst = sorted(lst)
- l = len(lst)
- if l == 0:
- return 0
- if l == 1:
- return lst[0]
-
- l = int(l / 2)
-
- if len(lst) % 2 == 0:
- return float(lst[l] + lst[(l - 1)]) / 2.0
- else:
- return lst[l]
-
- funcs = {"mean": mean, "median": median, "sum": sum}
-
- directory = outfile[:outfile.rfind("/") + 1]
- value = 0
- valuedic = dict()
-
- for fname in funcs.keys():
- for gene in genes:
- with open(directory + gene + "_" + fname + "_value.txt", 'r') as v:
- valuedic[gene + "_" + fname] = float(v.readlines()[0].rstrip())
- with open(directory + "all_" + fname + "_value.txt", 'r') as v:
- valuedic["total_" + fname] = float(v.readlines()[0].rstrip())
-
-
- def get_xyz(lst, gene, f, fname):
- x = round(round(f(lst), 1))
- y = valuedic[gene + "_" + fname]
- z = str(round(x / float(y) * 100, 1)) if y != 0 else "0"
- return (str(x), str(y), z)
-
- dic = {"RGYW": RGYWCount, "WRCY": WRCYCount, "WA": WACount, "TW": TWCount}
- arr = ["RGYW", "WRCY", "WA", "TW"]
-
- for fname in funcs.keys():
- func = funcs[fname]
- foutfile = outfile[:outfile.rindex("/")] + "/hotspot_analysis_" + fname + ".txt"
- with open(foutfile, 'w') as o:
- for typ in arr:
- o.write(typ + " (%)")
- curr = dic[typ]
- for gene in genes:
- geneMatcher = geneMatchers[gene]
- if valuedic[gene + "_" + fname] is 0:
- o.write(",0,0,0")
- else:
- x, y, z = get_xyz([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]], gene, func, fname)
- o.write("," + x + "," + y + "," + z)
- x, y, z = get_xyz([y for x, y in curr.iteritems() if not genedic[x].startswith("unmatched")], "total", func, fname)
- #x, y, z = get_xyz([y for x, y in curr.iteritems()], "total", func, fname)
- o.write("," + x + "," + y + "," + z + "\n")
-
-
- # for testing
- seq_motif_file = outfile[:outfile.rindex("/")] + "/motif_per_seq.txt"
- with open(seq_motif_file, 'w') as o:
- o.write("ID\tRGYW\tWRCY\tWA\tTW\n")
- for ID in IDlist:
- #o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str(round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
- o.write(ID + "\t" + str(RGYWCount[ID]) + "\t" + str(WRCYCount[ID]) + "\t" + str(WACount[ID]) + "\t" + str(TWCount[ID]) + "\n")
-
-if __name__ == "__main__":
- main()
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_csr.r
--- a/shm_csr/shm_csr.r Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,561 +0,0 @@
-library(data.table)
-library(ggplot2)
-library(reshape2)
-
-args <- commandArgs(trailingOnly = TRUE)
-
-input = args[1]
-genes = unlist(strsplit(args[2], ","))
-outputdir = args[3]
-empty.region.filter = args[4]
-setwd(outputdir)
-
-#dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F)
-
-dat = data.frame(fread(input, sep="\t", header=T, stringsAsFactors=F)) #fread because read.table suddenly skips certain rows...
-
-if(length(dat$Sequence.ID) == 0){
- setwd(outputdir)
- result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5))
- row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)")
- write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
- transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4))
- row.names(transitionTable) = c("A", "C", "G", "T")
- transitionTable["A","A"] = NA
- transitionTable["C","C"] = NA
- transitionTable["G","G"] = NA
- transitionTable["T","T"] = NA
-
- write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
- cat("0", file="n.txt")
- stop("No data")
-}
-
-cleanup_columns = c("FR1.IMGT.c.a",
- "FR2.IMGT.g.t",
- "CDR1.IMGT.Nb.of.nucleotides",
- "CDR2.IMGT.t.a",
- "FR1.IMGT.c.g",
- "CDR1.IMGT.c.t",
- "FR2.IMGT.a.c",
- "FR2.IMGT.Nb.of.mutations",
- "FR2.IMGT.g.c",
- "FR2.IMGT.a.g",
- "FR3.IMGT.t.a",
- "FR3.IMGT.t.c",
- "FR2.IMGT.g.a",
- "FR3.IMGT.c.g",
- "FR1.IMGT.Nb.of.mutations",
- "CDR1.IMGT.g.a",
- "CDR1.IMGT.t.g",
- "CDR1.IMGT.g.c",
- "CDR2.IMGT.Nb.of.nucleotides",
- "FR2.IMGT.a.t",
- "CDR1.IMGT.Nb.of.mutations",
- "CDR3.IMGT.Nb.of.nucleotides",
- "CDR1.IMGT.a.g",
- "FR3.IMGT.a.c",
- "FR1.IMGT.g.a",
- "FR3.IMGT.a.g",
- "FR1.IMGT.a.t",
- "CDR2.IMGT.a.g",
- "CDR2.IMGT.Nb.of.mutations",
- "CDR2.IMGT.g.t",
- "CDR2.IMGT.a.c",
- "CDR1.IMGT.t.c",
- "FR3.IMGT.g.c",
- "FR1.IMGT.g.t",
- "FR3.IMGT.g.t",
- "CDR1.IMGT.a.t",
- "FR1.IMGT.a.g",
- "FR3.IMGT.a.t",
- "FR3.IMGT.Nb.of.nucleotides",
- "FR2.IMGT.t.c",
- "CDR2.IMGT.g.a",
- "FR2.IMGT.t.a",
- "CDR1.IMGT.t.a",
- "FR2.IMGT.t.g",
- "FR3.IMGT.t.g",
- "FR2.IMGT.Nb.of.nucleotides",
- "FR1.IMGT.t.a",
- "FR1.IMGT.t.g",
- "FR3.IMGT.c.t",
- "FR1.IMGT.t.c",
- "CDR2.IMGT.a.t",
- "FR2.IMGT.c.t",
- "CDR1.IMGT.g.t",
- "CDR2.IMGT.t.g",
- "FR1.IMGT.Nb.of.nucleotides",
- "CDR1.IMGT.c.g",
- "CDR2.IMGT.t.c",
- "FR3.IMGT.g.a",
- "CDR1.IMGT.a.c",
- "FR2.IMGT.c.a",
- "FR3.IMGT.Nb.of.mutations",
- "FR2.IMGT.c.g",
- "CDR2.IMGT.g.c",
- "FR1.IMGT.g.c",
- "CDR2.IMGT.c.t",
- "FR3.IMGT.c.a",
- "CDR1.IMGT.c.a",
- "CDR2.IMGT.c.g",
- "CDR2.IMGT.c.a",
- "FR1.IMGT.c.t",
- "FR1.IMGT.Nb.of.silent.mutations",
- "FR2.IMGT.Nb.of.silent.mutations",
- "FR3.IMGT.Nb.of.silent.mutations",
- "FR1.IMGT.Nb.of.nonsilent.mutations",
- "FR2.IMGT.Nb.of.nonsilent.mutations",
- "FR3.IMGT.Nb.of.nonsilent.mutations")
-
-print("Cleaning up columns")
-
-for(col in cleanup_columns){
- dat[,col] = gsub("\\(.*\\)", "", dat[,col])
- #dat[dat[,col] == "",] = "0"
- dat[,col] = as.numeric(dat[,col])
- dat[is.na(dat[,col]),col] = 0
-}
-
-regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3")
-if(empty.region.filter == "FR1") {
- regions = c("CDR1", "FR2", "CDR2", "FR3")
-} else if (empty.region.filter == "CDR1") {
- regions = c("FR2", "CDR2", "FR3")
-} else if (empty.region.filter == "FR2") {
- regions = c("CDR2", "FR3")
-}
-
-pdfplots = list() #save() this later to create the pdf plots in another script (maybe avoids the "address (nil), cause memory not mapped")
-
-sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) }
-
-print("aggregating data into new columns")
-
-VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="")
-dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns)
-
-VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="")
-dat$FR3.IMGT.Nb.of.nucleotides = nchar(dat$FR3.IMGT.seq)
-dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns)
-
-transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="")
-dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns)
-
-transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="")
-dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns)
-
-transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
-dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
-
-totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="")
-#totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="")
-dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
-
-transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="")
-dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns)
-
-totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="")
-#totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="")
-dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns)
-
-FRRegions = regions[grepl("FR", regions)]
-CDRRegions = regions[grepl("CDR", regions)]
-
-FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
-dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns)
-
-CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
-dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns)
-
-FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
-dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns)
-
-CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
-dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
-
-mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
-write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
-setwd(outputdir)
-
-write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T)
-
-base.order.x = data.frame(base=c("A", "C", "G", "T"), order.x=1:4)
-base.order.y = data.frame(base=c("T", "G", "C", "A"), order.y=1:4)
-
-calculate_result = function(i, gene, dat, matrx, f, fname, name){
- tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),]
-
- j = i - 1
- x = (j * 3) + 1
- y = (j * 3) + 2
- z = (j * 3) + 3
-
- if(nrow(tmp) > 0){
- if(fname == "sum"){
- matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
- matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
- matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1)
- } else {
- matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
- matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
- matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1)
- }
-
- matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
- matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
- matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
-
- matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
- matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
- matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
-
- matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
- matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
- matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
-
- matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
- matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
- matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
-
- matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
- matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
- matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
-
- matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
- matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
- matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
-
- matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
- matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
- matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
-
- matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
- matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
- matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
-
- if(fname == "sum"){
-
- regions.fr = regions[grepl("FR", regions)]
- regions.fr = paste(regions.fr, ".IMGT.Nb.of.nucleotides", sep="")
- regions.cdr = regions[grepl("CDR", regions)]
- regions.cdr = paste(regions.cdr, ".IMGT.Nb.of.nucleotides", sep="")
-
- if(length(regions.fr) > 1){ #in case there is only on FR region (rowSums needs >1 column)
- matrx[10,x] = round(f(rowSums(tmp[,regions.fr], na.rm=T)), digits=1)
- } else {
- matrx[10,x] = round(f(tmp[,regions.fr], na.rm=T), digits=1)
- }
- matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
- matrx[10,z] = round(matrx[10,x] / matrx[10,y] * 100, digits=1)
-
- if(length(regions.cdr) > 1){ #in case there is only on CDR region
- matrx[11,x] = round(f(rowSums(tmp[,regions.cdr], na.rm=T)), digits=1)
- } else {
- matrx[11,x] = round(f(tmp[,regions.cdr], na.rm=T), digits=1)
- }
- matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
- matrx[11,z] = round(matrx[11,x] / matrx[11,y] * 100, digits=1)
- }
- }
-
- transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
- row.names(transitionTable) = c("A", "C", "G", "T")
- transitionTable["A","A"] = NA
- transitionTable["C","C"] = NA
- transitionTable["G","G"] = NA
- transitionTable["T","T"] = NA
-
- if(nrow(tmp) > 0){
- for(nt1 in nts){
- for(nt2 in nts){
- if(nt1 == nt2){
- next
- }
- NT1 = LETTERS[letters == nt1]
- NT2 = LETTERS[letters == nt2]
- FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
- CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
- FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
- CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
- FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
- if (empty.region.filter == "leader"){
- transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
- } else if (empty.region.filter == "FR1") {
- transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
- } else if (empty.region.filter == "CDR1") {
- transitionTable[NT1,NT2] = sum(tmp[,c(FR2, CDR2, FR3)])
- } else if (empty.region.filter == "FR2") {
- transitionTable[NT1,NT2] = sum(tmp[,c(CDR2, FR3)])
- }
- }
- }
- transition = transitionTable
- transition$id = names(transition)
-
- transition2 = melt(transition, id.vars="id")
-
- transition2 = merge(transition2, base.order.x, by.x="id", by.y="base")
-
- transition2 = merge(transition2, base.order.y, by.x="variable", by.y="base")
-
- transition2[is.na(transition2$value),]$value = 0
-
- if(any(transition2$value != 0)){ #having a transition table filled with 0 is bad
- print("Plotting heatmap and transition")
- png(filename=paste("transitions_stacked_", name, ".png", sep=""))
- p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity", colour="black") #stacked bar
- p = p + xlab("From base") + ylab("") + ggtitle("Bargraph transition information") + guides(fill=guide_legend(title=NULL))
- p = p + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black")) + scale_fill_manual(values=c("A" = "blue4", "G" = "lightblue1", "C" = "olivedrab3", "T" = "olivedrab4"))
- #p = p + scale_colour_manual(values=c("A" = "black", "G" = "black", "C" = "black", "T" = "black"))
- print(p)
- dev.off()
-
- pdfplots[[paste("transitions_stacked_", name, ".pdf", sep="")]] <<- p
-
- png(filename=paste("transitions_heatmap_", name, ".png", sep=""))
- p = ggplot(transition2, aes(factor(reorder(variable, -order.y)), factor(reorder(id, -order.x)))) + geom_tile(aes(fill = value)) + scale_fill_gradient(low="white", high="steelblue") #heatmap
- p = p + xlab("To base") + ylab("From Base") + ggtitle("Heatmap transition information") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"))
- print(p)
- dev.off()
-
- pdfplots[[paste("transitions_heatmap_", name, ".pdf", sep="")]] <<- p
- } else {
- #print("No data to plot")
- }
- }
-
- #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
- write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
- write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
- cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
- cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep=""))
- #print(paste(fname, name, nrow(tmp)))
- matrx
-}
-nts = c("a", "c", "g", "t")
-zeros=rep(0, 4)
-funcs = c(median, sum, mean)
-fnames = c("median", "sum", "mean")
-
-print("Creating result tables")
-
-for(i in 1:length(funcs)){
- func = funcs[[i]]
- fname = fnames[[i]]
-
- print(paste("Creating table for", fname))
-
- rows = 9
- if(fname == "sum"){
- rows = 11
- }
- matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=rows)
- for(i in 1:length(genes)){
- matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i])
- }
- matrx = calculate_result(i + 1, ".*", dat[!grepl("unmatched", dat$best_match),], matrx, func, fname, name="all")
-
- result = data.frame(matrx)
- if(fname == "sum"){
- row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR")
- } else {
- row.names(result) = c("Number of Mutations (%)", "Transitions (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
- }
- write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F)
-}
-
-print("Adding median number of mutations to sum table")
-sum.table = read.table("mutations_sum.txt", sep=",", header=F)
-median.table = read.table("mutations_median.txt", sep=",", header=F)
-
-new.table = sum.table[1,]
-new.table[2,] = median.table[1,]
-new.table[3:12,] = sum.table[2:11,]
-new.table[,1] = as.character(new.table[,1])
-new.table[2,1] = "Median of Number of Mutations (%)"
-
-#sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of G C (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),]
-
-write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F)
-
-print("Plotting IGA piechart")
-
-dat = dat[!grepl("^unmatched", dat$best_match),]
-
-#blegh
-
-genesForPlot = dat[grepl("IGA", dat$best_match),]$best_match
-
-if(length(genesForPlot) > 0){
- genesForPlot = data.frame(table(genesForPlot))
- colnames(genesForPlot) = c("Gene","Freq")
- genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
-
- pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
- pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGA1" = "lightblue1", "IGA2" = "blue4"))
- pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL)
- pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank())
- pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGA subclass distribution", "( n =", sum(genesForPlot$Freq), ")"))
- write.table(genesForPlot, "IGA_pie.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
- png(filename="IGA.png")
- print(pc)
- dev.off()
-
- pdfplots[["IGA.pdf"]] <- pc
-}
-
-print("Plotting IGG piechart")
-
-genesForPlot = dat[grepl("IGG", dat$best_match),]$best_match
-
-if(length(genesForPlot) > 0){
- genesForPlot = data.frame(table(genesForPlot))
- colnames(genesForPlot) = c("Gene","Freq")
- genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
-
- pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=Gene))
- pc = pc + geom_bar(width = 1, stat = "identity") + scale_fill_manual(labels=genesForPlot$label, values=c("IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred"))
- pc = pc + coord_polar(theta="y") + scale_y_continuous(breaks=NULL)
- pc = pc + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank())
- pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IGG subclass distribution", "( n =", sum(genesForPlot$Freq), ")"))
- write.table(genesForPlot, "IGG_pie.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
- png(filename="IGG.png")
- print(pc)
- dev.off()
-
- pdfplots[["IGG.pdf"]] <- pc
-}
-
-print("Plotting scatterplot")
-
-dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2)
-dat.clss = dat
-
-dat.clss$best_match = substr(dat.clss$best_match, 0, 3)
-
-dat.clss = rbind(dat, dat.clss)
-
-p = ggplot(dat.clss, aes(best_match, percentage_mutations))
-p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA)
-p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"))
-p = p + scale_fill_manual(values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4"))
-p = p + scale_colour_manual(guide = guide_legend(title = "Subclass"), values=c("IGA" = "blue4", "IGA1" = "lightblue1", "IGA2" = "blue4", "IGG" = "olivedrab3", "IGG1" = "olivedrab3", "IGG2" = "red", "IGG3" = "gold", "IGG4" = "darkred", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4"))
-
-png(filename="scatter.png")
-print(p)
-dev.off()
-
-pdfplots[["scatter.pdf"]] <- p
-
-write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
-print("Plotting frequency ranges plot")
-
-dat$best_match_class = substr(dat$best_match, 0, 3)
-freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20")
-dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels)
-
-frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match_class")])
-
-frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")])
-
-frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match_class")
-
-frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
-
-p = ggplot(frequency_bins_data, aes(frequency_bins, frequency))
-p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") + theme(panel.background = element_rect(fill = "white", colour="black"), text = element_text(size=16, colour="black"))
-p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + scale_fill_manual(guide = guide_legend(title = "Class"), values=c("IGA" = "blue4", "IGG" = "olivedrab3", "IGM" = "darkviolet", "IGE" = "darkorange", "all" = "blue4"))
-
-png(filename="frequency_ranges.png")
-print(p)
-dev.off()
-
-pdfplots[["frequency_ranges.pdf"]] <- p
-
-save(pdfplots, file="pdfplots.RData")
-
-frequency_bins_data_by_class = frequency_bins_data
-
-frequency_bins_data_by_class = frequency_bins_data_by_class[order(frequency_bins_data_by_class$best_match_class, frequency_bins_data_by_class$frequency_bins),]
-
-frequency_bins_data_by_class$frequency_bins = gsub("-", " to ", frequency_bins_data_by_class$frequency_bins)
-frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "20", c("frequency_bins")] = "20 or higher"
-frequency_bins_data_by_class[frequency_bins_data_by_class$frequency_bins == "0", c("frequency_bins")] = "0 or lower"
-
-write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
-frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "best_match_class", "frequency_bins")])
-
-frequency_bins_sum = data.frame(data.table(dat)[, list(class_sum=sum(.N)), by=c("best_match")])
-
-frequency_bins_data = merge(frequency_bins_data, frequency_bins_sum, by="best_match")
-
-frequency_bins_data$frequency = round(frequency_bins_data$frequency_count / frequency_bins_data$class_sum * 100, 2)
-
-frequency_bins_data = frequency_bins_data[order(frequency_bins_data$best_match, frequency_bins_data$frequency_bins),]
-frequency_bins_data$frequency_bins = gsub("-", " to ", frequency_bins_data$frequency_bins)
-frequency_bins_data[frequency_bins_data$frequency_bins == "20", c("frequency_bins")] = "20 or higher"
-frequency_bins_data[frequency_bins_data$frequency_bins == "0", c("frequency_bins")] = "0 or lower"
-
-write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_csr.xml
--- a/shm_csr/shm_csr.xml Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,240 +0,0 @@
-
-
-
- python
- numpy
- xlrd
- r-ggplot2
- r-reshape2
- r-scales
- r-seqinr
- r-data.table
-
-
- #if str ( $filter_unique.filter_unique_select ) == "remove":
- wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select $filter_unique.filter_unique_clone_count $class_filter_cond.class_filter $empty_region_filter $fast
- #else:
- wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select 2 $class_filter_cond.class_filter $empty_region_filter $fast
- #end if
-
-
-
-
- Leader: include FR1, CDR1, FR2, CDR2, FR3 in filters
- FR1: include CDR1,FR2,CDR2,FR3 in filters
- CDR1: include FR2,CDR2,FR3 in filters
- FR2: include CDR2,FR3 in filters
-
-
- Productive (Productive and Productive see comment)
- Unproductive (Unproductive and Unproductive see comment)
- Productive and Unproductive (Productive, Productive see comment, Unproductive, Unproductive and Unproductive see comment)
-
-
-
- Remove uniques (Based on nucleotide sequence + C)
- Remove uniques (Based on V+J+CDR3 (AA))
- Keep uniques (Based on nucleotide sequence + C)
- No
-
-
-
-
-
-
-
-
- Top.V.Gene, CDR3 (AA), C region
- Top.V.Gene, CDR3 (AA)
- CDR3 (AA), C region
- CDR3 (AA)
-
- Top.V.Gene, CDR3 (nt), C region
- Top.V.Gene, CDR3 (nt)
- CDR3 (nt), C region
- CDR3 (nt)
- Don't remove duplicates
-
-
-
- >70% class and >70% subclass
- >60% class and >55% subclass
- >70% class
- >60% class
- >19% class
- Do not assign (sub)class
-
-
-
-
-
-
-
-
-
-
- Yes
- No
-
-
-
-
-
- Yes
- No
-
-
-
-
-
- naive_output_cond['naive_output'] == "yes"
- class_filter_cond['class_filter'] != "101_101"
-
-
- naive_output_cond['naive_output'] == "yes"
- class_filter_cond['class_filter'] != "101_101"
-
-
- naive_output_cond['naive_output'] == "yes"
- class_filter_cond['class_filter'] != "101_101"
-
-
- naive_output_cond['naive_output'] == "yes"
- class_filter_cond['class_filter'] != "101_101"
-
-
- naive_output_cond['naive_output'] == "yes"
- class_filter_cond['class_filter'] == "101_101"
-
-
-
-
-
-
-
-
-
-25% class†can be chosen when you only are interested in the class (Cα/Cγ/Cµ/Cɛ) of your sequences and the length of your sequence is not long enough to assign the subclasses.
-
------
-
-**Output new IMGT archives per class into your history?**
-
-If yes is selected, additional output files (one for each class) will be added to the history which contain information of the sequences that passed the selected filtering criteria. These files are in the same format as the IMGT/HighV-QUEST output files and therefore are also compatible with many other analysis programs, such as the Immune repertoire pipeline.
-
------
-
-**Execute**
-
-Upon pressing execute a new analysis is added to your history (right side of the page). Initially this analysis will be grey, after initiating the analysis colour of the analysis in the history will change to yellow. When the analysis is finished it will turn green in the history. Now the analysis can be opened by clicking on the eye icon on the analysis of interest. When an analysis turns red an error has occurred when running the analysis. If you click on the analysis title additional information can be found on the analysis. In addition a bug icon appears. Here more information on the error can be found.
-
-]]>
-
-
- 10.1093/nar/gks457
- 10.1093/bioinformatics/btv359
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_downloads.htm
--- a/shm_csr/shm_downloads.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,538 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Info
-
-
The complete
-dataset:
-Allows downloading of the complete parsed data set.
-
-
The filtered
-dataset:
-Allows downloading of all parsed IMGT information of all transcripts that
-passed the chosen filter settings.
-
-
The alignment
-info on the unmatched sequences: Provides information of the subclass
-alignment of all unmatched sequences. For each sequence the chunck hit
-percentage and the nt hit percentage is shown together with the best matched
-subclass.
-
-
SHM Overview
-
-
The SHM Overview
-table as a dataset: Allows downloading of the SHM Overview
-table as a data set.
-
-
Motif data per
-sequence ID: Provides a file that contains information for each
-transcript on the number of mutations present in WA/TW and RGYW/WRCY motives.
-
-
Mutation data
-per sequence ID: Provides a file containing information
-on the number of sequences bases, the number and location of mutations and the
-type of mutations found in each transcript.
-
-
Base count for
-every sequence: links to a page showing for each transcript the
-sequence of the analysed region (as dependent on the sequence starts at filter),
-the assigned subclass and the number of sequenced A,C,G and T’s.
-
-
The data used to
-generate the percentage of mutations in AID and pol eta motives plot:
-Provides a file containing the values used to generate the percentage of
-mutations in AID and pol eta motives plot in the SHM overview tab.
-
-
The
-data used to generate the relative mutation patterns plot:
-Provides a download with the data used to generate the relative mutation
-patterns plot in the SHM overview tab.
-
-
The
-data used to generate the absolute mutation patterns plot:
-Provides a download with the data used to generate the absolute mutation
-patterns plot in the SHM overview tab.
-
-
SHM Frequency
-
-
The data
-generate the frequency scatter plot: Allows
-downloading the data used to generate the frequency scatter plot in the SHM
-frequency tab.
-
-
The data used to
-generate the frequency by class plot: Allows
-downloading the data used to generate frequency by class plot included in the
-SHM frequency tab.
-
-
The data for
-frequency by subclass: Provides information of the number and
-percentage of sequences that have 0%, 0-2%, 2-5%, 5-10%, 10-15%, 15-20%,
->20% SHM. Information is provided for each subclass.
-
-
-
-
Transition
-Tables
-
-
The data for the
-'all' transition plot: Contains the information used to
-generate the transition table for all sequences.
-
-
The data for the
-'IGA' transition plot: Contains the information used to
-generate the transition table for all IGA sequences.
-
-
The data for the
-'IGA1' transition plot: Contains the information used to
-generate the transition table for all IGA1 sequences.
-
-
The data for the
-'IGA2' transition plot: Contains the information used to
-generate the transition table for all IGA2 sequences.
-
-
The data for the
-'IGG' transition plot : Contains the information used to
-generate the transition table for all IGG sequences.
-
-
The data for the
-'IGG1' transition plot: Contains the information used to
-generate the transition table for all IGG1 sequences.
-
-
The data for the
-'IGG2' transition plot: Contains the information used to
-generate the transition table for all IGG2 sequences.
-
-
The data for the
-'IGG3' transition plot: Contains the information used to
-generate the transition table for all IGG3 sequences.
-
-
The data for the
-'IGG4' transition plot: Contains the information used to
-generate the transition table for all IGG4 sequences.
-
-
The data for the
-'IGM' transition plot : Contains the information used to
-generate the transition table for all IGM sequences.
-
-
The data for the
-'IGE' transition plot: Contains the
-information used to generate the transition table for all IGE sequences.
-
-
Antigen
-selection
-
-
AA mutation data
-per sequence ID: Provides for each transcript information on whether
-there is replacement mutation at each amino acid location (as defined by IMGT).
-For all amino acids outside of the analysed region the value 0 is given.
-
-
Presence of AA
-per sequence ID: Provides for each transcript information on which
-amino acid location (as defined by IMGT) is present. 0 is absent, 1
-is present.
-
-
The data used to
-generate the aa mutation frequency plot: Provides the
-data used to generate the aa mutation frequency plot for all sequences in the
-antigen selection tab.
-
-
The data used to
-generate the aa mutation frequency plot for IGA: Provides the
-data used to generate the aa mutation frequency plot for all IGA sequences in
-the antigen selection tab.
-
-
The data used to
-generate the aa mutation frequency plot for IGG: Provides the
-data used to generate the aa mutation frequency plot for all IGG sequences in
-the antigen selection tab.
-
-
The data used to
-generate the aa mutation frequency plot for IGM: Provides the
-data used to generate the aa mutation frequency plot for all IGM sequences in
-the antigen selection tab.
-
-
The data used to
-generate the aa mutation frequency plot for IGE: Provides the
-data used to generate the aa mutation frequency plot for all IGE sequences in
-the antigen selection tab.
-
-
Baseline PDF ( http://selection.med.yale.edu/baseline/ ): PDF
-containing the Antigen selection (BASELINe) graph for all
-sequences.
-
-
Baseline data:
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual sequence and the sum of all
-sequences.
-
-
Baseline IGA
-PDF:
-PDF containing the Antigen selection (BASELINe) graph for all
-sequences.
-
-
Baseline IGA
-data:
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGA sequence and the sum of
-all IGA sequences.
-
-
Baseline IGG
-PDF:
-PDF containing the Antigen selection (BASELINe) graph for all IGG
-sequences.
-
-
Baseline IGG
-data:
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGG sequence and the sum of
-all IGG sequences.
-
-
Baseline IGM PDF: PDF
-containing the Antigen selection (BASELINe) graph for all IGM
-sequences.
-
-
Baseline IGM
-data:
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGM sequence and the sum of
-all IGM sequences.
-
-
Baseline IGE
-PDF:
-PDF containing the Antigen selection (BASELINe) graph for all IGE
-sequences.
-
-
-
Baseline IGE
-data:
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGE sequence and the sum of
-all IGE sequences.
-
-
CSR
-
-
The data for the
- IGA
-subclass distribution plot : Data used for
-the generation of the IGA subclass distribution plot provided
-in the CSR tab.
-
-
The data for the
- IGA
-subclass distribution plot : Data used for the generation of the IGG
-subclass distribution plot provided in the CSR tab.
-
-
Clonal relation
-
-
Sequence overlap
-between subclasses: Link to the overlap table as provided
-under the clonality overlap tab.
-
-
The Change-O DB
-file with defined clones and subclass annotation:
-Downloads a table with the calculation of clonal relation between all
-sequences. For each individual transcript the results of the clonal assignment
-as provided by Change-O are provided. Sequences with the same number in the CLONE
-column are considered clonally related.
-
-
The Change-O DB
-defined clones summary file: Gives a summary of the total number of
-clones in all sequences and their clone size.
-
-
The Change-O DB
-file with defined clones of IGA: Downloads a table with the
-calculation of clonal relation between all IGA sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related.
-
-
The Change-O DB
-defined clones summary file of IGA: Gives a summary
-of the total number of clones in all IGA sequences and their clone size.
-
-
The Change-O DB
-file with defined clones of IGG: Downloads a table with the
-calculation of clonal relation between all IGG sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related.
-
-
The Change-O DB
-defined clones summary file of IGG: Gives a summary
-of the total number of clones in all IGG sequences and their clone size.
-
-
The Change-O DB
-file with defined clones of IGM: Downloads a table
-with the calculation of clonal relation between all IGM sequences. For each
-individual transcript the results of the clonal assignment as provided by
-Change-O are provided. Sequences with the same number in the CLONE column are
-considered clonally related.
-
-
The Change-O DB
-defined clones summary file of IGM: Gives a summary
-of the total number of clones in all IGM sequences and their clone size.
-
-
The Change-O DB
-file with defined clones of IGE: Downloads a table with the
-calculation of clonal relation between all IGE sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related.
-
-
The Change-O DB
-defined clones summary file of IGE: Gives a summary
-of the total number of clones in all IGE sequences and their clone size.
-
-
Filtered IMGT
-output files
-
-
An IMGT archive
-with just the matched and filtered sequences: Downloads a
-.txz file with the same format as downloaded IMGT files that contains all
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGA sequences: Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGA
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGA1 sequences: Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGA1
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGA2 sequences: Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGA2
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGG sequences: Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGG
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGG1 sequences: Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG1
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGG2 sequences: Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG2
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGG3 sequences: Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGG3
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGG4 sequences: Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG4
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGM sequences: Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGM
-sequences that have passed the chosen filter settings.
-
-
An IMGT archive
-with just the matched and filtered IGE sequences: Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGE
-sequences that have passed the chosen filter settings.
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_first.htm
--- a/shm_csr/shm_first.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,127 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Table showing the order of each
-filtering step and the number and percentage of sequences after each filtering
-step.
-
-
Input: The
-number of sequences in the original IMGT file. This is always 100% of the
-sequences.
-
-
After "no results" filter: IMGT
-classifies sequences either as "productive", "unproductive", "unknown", or "no
-results". Here, the number and percentages of sequences that are not classified
-as "no results" are reported.
-
-
After functionality filter: The
-number and percentages of sequences that have passed the functionality filter. The
-filtering performed is dependent on the settings of the functionality filter.
-Details on the functionality filter can be found on the start page of
-the SHM&CSR pipeline .
-
-
After
-removal sequences that are missing a gene region:
-In this step all sequences that are missing a gene region (FR1, CDR1, FR2,
-CDR2, FR3) that should be present are removed from analysis. The sequence
-regions that should be present are dependent on the settings of the sequence
-starts at filter. The number and
-percentage of sequences that pass this filter step are reported.
-
-
After
-N filter: In this step all sequences that contain
-an ambiguous base (n) in the analysed region or the CDR3 are removed from the
-analysis. The analysed region is determined by the setting of the sequence
-starts at filter. The number and percentage of sequences that pass this filter
-step are reported.
-
-
After
-filter unique sequences : The number and
-percentage of sequences that pass the "filter unique sequences" filter. Details
-on this filter can be found on the start page of
-the SHM&CSR pipeline
-
-
After
-remove duplicate based on filter: The number and
-percentage of sequences that passed the remove duplicate filter. Details on the
-"remove duplicate filter based on filter" can be found on the start page of the
-SHM&CSR pipeline.
-
-
Number of matches sequences:
-The number and percentage of sequences that passed all the filters described
-above and have a (sub)class assigned.
-
-
Number
-of unmatched sequences : The number and percentage
-of sequences that passed all the filters described above and do not have
-subclass assigned.
-
-
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_frequency.htm
--- a/shm_csr/shm_frequency.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,87 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SHM
-frequency tab
-
-
Graphs
-
-
These
-graphs give insight into the level of SHM. The data represented in these graphs
-can be downloaded in the download tab. More
-information on the values found in healthy individuals of different ages can be
-found in IJspeert and van Schouwenburg et al, PMID: 27799928.
-
-
Frequency
-scatter plot
-
-
A
-dot plot showing the percentage of SHM in each transcript divided into the
-different (sub)classes. In the graph each dot
-represents an individual transcript.
-
-
Mutation
-frequency by class
-
-
A
-bar graph showing the percentage of transcripts that contain 0%, 0-2%, 2-5%,
-5-10% 10-15%, 15-20% or more than 20% SHM for each subclass.
-
-
Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_overview.htm
--- a/shm_csr/shm_overview.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,332 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Info
-table
-
-
This
-table contains information on different characteristics of SHM. For all
-characteristics information can be found for all sequences or only sequences of
-a certain (sub)class. All results are based on the sequences that passed the filter
-settings chosen on the start page of the SHM & CSR pipeline and only
-include details on the analysed region as determined by the setting of the
-sequence starts at filter. All data in this table can be downloaded via the
-“downloads” tab.
-
-
Mutation
-frequency:
-
-
These values
-give information on the level of SHM. More information
-on the values found in healthy individuals of different ages can be found in IJspeert
-and van Schouwenburg et al, PMID: 27799928
-
-
Number
-of mutations: Shows the number of total
-mutations / the number of sequenced bases (the % of mutated bases).
-
-
Median
-number of mutations: Shows the median % of
-SHM of all sequences.
-
-
Patterns
-of SHM:
-
-
These values
-give insights into the targeting and patterns of SHM. These values can give
-insight into the repair pathways used to repair the U:G mismatches introduced
-by AID. More information
-on the values found in healthy individuals of different ages can be found in
-IJspeert and van Schouwenburg et al, PMID: 27799928
-
-
Transitions:
-Shows the number of transition mutations / the number of total mutations (the
-percentage of mutations that are transitions). Transition mutations are C>T,
-T>C, A>G, G>A.
-
-
Transversions:
-Shows the number of transversion mutations / the number of total mutations (the
-percentage of mutations that are transitions). Transversion mutations are
-C>A, C>G, T>A, T>G, A>T, A>C, G>T, G>C.
-
-
Transitions
-at GC: Shows the number of transitions at GC locations (C>T,
-G>A) / the total number of mutations at GC locations (the percentage of
-mutations at GC locations that are transitions).
-
-
Targeting
-of GC: Shows the number of mutations at GC
-locations / the total number of mutations (the percentage of total mutations
-that are at GC locations).
-
-
Transitions
-at AT: Shows the number of transitions at AT
-locations (T>C, A>G) / the total number of mutations at AT locations (the
-percentage of mutations at AT locations that are transitions).
-
-
Targeting
-of AT: Shows the number of mutations at AT
-locations / the total number of mutations (the percentage of total mutations
-that are at AT locations).
-
-
RGYW:
-Shows
-the number of mutations that are in a RGYW motive / The number of total mutations
-(the percentage of mutations that are in a RGYW motive). RGYW motives are known to be
-preferentially targeted by AID (R=Purine,
-Y=pyrimidine, W = A or T).
-
-
WRCY:
-Shows the number of mutations
-that are in a WRCY motive / The number of
-total mutations (the percentage of mutations that are in a WRCY motive). WRCY
-motives are known to be preferentially targeted by AID (R=Purine,
-Y=pyrimidine, W = A or T).
-
-
WA:
-Shows
-the number of mutations that are in a WA motive / The number of total mutations
-(the percentage of mutations that are in a WA motive). It is described that
-polymerase eta preferentially makes errors at WA motives (W
-= A or T).
-
-
TW:
-Shows the number of mutations that are in a TW motive / The number of total mutations
-(the percentage of mutations that are in a TW motive). It is described that
-polymerase eta preferentially makes errors at TW motives (W
-= A or T).
-
-
Antigen
-selection:
-
-
These
-values give insight into antigen selection. It has been described that during
-antigen selection, there is selection against replacement mutations in the FR
-regions as these can cause instability of the B-cell receptor. In contrast
-replacement mutations in the CDR regions are important for changing the
-affinity of the B-cell receptor and therefore there is selection for this type
-of mutations. Silent mutations do not alter the amino acid sequence and
-therefore do not play a role in selection. More information on the values found
-in healthy individuals of different ages can be found in IJspeert and van
-Schouwenburg et al, PMID: 27799928
-
-
FR
-R/S: Shows the number of replacement
-mutations in the FR regions / The number of silent mutations in the FR regions
-(the number of replacement mutations in the FR regions divided by the number of
-silent mutations in the FR regions)
-
-
CDR
-R/S: Shows the number of replacement
-mutations in the CDR regions / The number of silent mutations in the CDR
-regions (the number of replacement mutations in the CDR regions divided by the
-number of silent mutations in the CDR regions)
-
-
Number
-of sequences nucleotides:
-
-
These
-values give information on the number of sequenced nucleotides.
-
-
Nt
-in FR: Shows the number of sequences bases
-that are located in the FR regions / The total number of sequenced bases (the
-percentage of sequenced bases that are present in the FR regions).
-
-
Nt
-in CDR: Shows the number of sequenced bases
-that are located in the CDR regions / The total number of sequenced bases (the percentage of
-sequenced bases that are present in the CDR regions).
-
-
A:
- Shows the total number of sequenced
-adenines / The total number of sequenced bases (the percentage of sequenced
-bases that were adenines).
-
-
C:
- Shows
-the total number of sequenced cytosines / The total number of sequenced bases
-(the percentage of sequenced bases that were cytosines).
-
-
T:
- Shows
-the total number of sequenced thymines
-/ The total number of sequenced bases (the percentage of sequenced bases that
-were thymines).
-
-
G:
- Shows the total number of sequenced guanine s / The total number of
-sequenced bases (the percentage of sequenced bases that were guanines).
-
-
Graphs
-
-
These graphs visualize
-information on the patterns and targeting of SHM and thereby give information
-into the repair pathways used to repair the U:G mismatches introduced by AID. The
-data represented in these graphs can be downloaded in the download tab. More
-information on the values found in healthy individuals of different ages can be
-found in IJspeert and van Schouwenburg et al, PMID: 27799928 .
-
-
-
Percentage
-of mutations in AID and pol eta motives
-
-
Visualizes
-for each
-(sub)class the percentage of mutations that are present in AID (RGYW or
-WRCY) or polymerase eta motives (WA or TW) in the different subclasses (R=Purine,
-Y=pyrimidine, W = A or T).
-
-
Relative
-mutation patterns
-
-
Visualizes
-for each (sub)class the distribution of mutations between mutations at AT
-locations and transitions or transversions at GC locations.
-
-
Absolute
-mutation patterns
-
-
Visualized
-for each (sub)class the percentage of sequenced AT and GC bases that are
-mutated. The mutations at GC bases are divided into transition and transversion
-mutations.
-
-
Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_selection.htm
--- a/shm_csr/shm_selection.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,128 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
References
-
-
Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying
-selection in high-throughput Immunoglobulin sequencing data sets. In Nucleic Acids Research, 40 (17),
-pp. e134–e134. [ doi:10.1093/nar/gks457 ][ Link ]
-
-
Graphs
-
-
AA
-mutation frequency
-
-
For
-each class, the frequency of replacement mutations at each amino acid position
-is shown, which is calculated by dividing the number of replacement mutations
-at a particular amino acid position/the number sequences that have an amino
-acid at that particular position. Since the length of the CDR1 and CDR2 region
-is not the same for every VH gene, some amino acids positions are absent.
-Therefore we calculate the frequency using the number of amino acids present at
-that that particular location.
-
-
Antigen
-selection (BASELINe)
-
-
Shows
-the results of the analysis of antigen selection as performed using BASELINe.
-Details on the analysis performed by BASELINe can be found in Yaari et al,
-PMID: 22641856. The settings used for the analysis are :
-focused, SHM targeting model: human Tri-nucleotide, custom bounderies. The
-custom boundries are dependent on the ‘sequence starts at filter’.
-
-
Leader:
-1:26:38:55:65:104:-
-
-
FR1: 27:27:38:55:65:104:-
-
-
CDR1: 27:27:38:55:65:104:-
-
-
FR2: 27:27:38:55:65:104:-
-
-
Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/shm_transition.htm
--- a/shm_csr/shm_transition.htm Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,120 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
These graphs and
-tables give insight into the targeting and patterns of SHM. This can give
-insight into the DNA repair pathways used to solve the U:G mismatches
-introduced by AID. More information on the values found in healthy individuals
-of different ages can be found in IJspeert and van Schouwenburg et al, PMID:
-27799928.
-
-
Graphs
-
-
-
Heatmap transition
-information
-
-
Heatmaps visualizing for each subclass the frequency
-of all possible substitutions. On the x-axes the original base is shown, while
-the y-axes shows the new base. The darker the shade of blue, the more frequent
-this type of substitution is occurring.
-
-
Bargraph
-transition information
-
-
Bar graph
-visualizing for each original base the distribution of substitutions into the other
-bases. A graph is included for each (sub)class.
-
-
Tables
-
-
Transition
-tables are shown for each (sub)class. All the original bases are listed
-horizontally, while the new bases are listed vertically.
-
-
Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/style.tar.gz
Binary file shm_csr/style.tar.gz has changed
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/subclass_definition.db.nhr
Binary file shm_csr/subclass_definition.db.nhr has changed
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/subclass_definition.db.nin
Binary file shm_csr/subclass_definition.db.nin has changed
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/subclass_definition.db.nsq
Binary file shm_csr/subclass_definition.db.nsq has changed
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/summary_to_fasta.py
--- a/shm_csr/summary_to_fasta.py Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,42 +0,0 @@
-import argparse
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="The 1_Summary file of an IMGT zip file")
-parser.add_argument("--fasta", help="The output fasta file")
-
-args = parser.parse_args()
-
-infile = args.input
-fasta = args.fasta
-
-with open(infile, 'r') as i, open(fasta, 'w') as o:
- first = True
- id_col = 0
- seq_col = 0
- no_results = 0
- no_seqs = 0
- passed = 0
- for line in i:
- splt = line.split("\t")
- if first:
- id_col = splt.index("Sequence ID")
- seq_col = splt.index("Sequence")
- first = False
- continue
- if len(splt) < 5:
- no_results += 1
- continue
-
- ID = splt[id_col]
- seq = splt[seq_col]
-
- if not len(seq) > 0:
- no_seqs += 1
- continue
-
- o.write(">" + ID + "\n" + seq + "\n")
- passed += 1
-
- print "No results:", no_results
- print "No sequences:", no_seqs
- print "Written to fasta file:", passed
diff -r a4617f1d1d89 -r b6f9a640e098 shm_csr/wrapper.sh
--- a/shm_csr/wrapper.sh Fri Feb 19 15:08:51 2021 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,913 +0,0 @@
-#!/bin/bash
-#set -e
-dir="$(cd "$(dirname "$0")" && pwd)"
-input=$1
-method=$2
-log=$3 #becomes the main html page at the end
-outdir=$4
-output="$outdir/index.html" #copied to $log location at the end
-title="$5"
-include_fr1=$6
-functionality=$7
-unique=$8
-naive_output=$9
-naive_output_ca=${10}
-naive_output_cg=${11}
-naive_output_cm=${12}
-naive_output_ce=${13}
-naive_output_all=${14}
-filter_unique=${15}
-filter_unique_count=${16}
-class_filter=${17}
-empty_region_filter=${18}
-fast=${19}
-
-mkdir $outdir
-
-tar -xzf $dir/style.tar.gz -C $outdir
-
-echo "---------------- read parameters ----------------"
-echo "---------------- read parameters ---------------- " > $log
-
-echo "unpacking IMGT file"
-
-type="`file $input`"
-if [[ "$type" == *"Zip archive"* ]] ; then
- echo "Zip archive"
- echo "unzip $input -d $PWD/files/"
- unzip $input -d $PWD/files/
-elif [[ "$type" == *"XZ compressed data"* ]] ; then
- echo "ZX archive"
- echo "tar -xJf $input -C $PWD/files/"
- mkdir -p "$PWD/files/$title"
- tar -xJf $input -C "$PWD/files/$title"
-else
- echo "Unrecognized format $type"
- echo "Unrecognized format $type" > $log
- exit 1
-fi
-
-cat "`find $PWD/files/ -name "1_*"`" > $PWD/summary.txt
-cat "`find $PWD/files/ -name "2_*"`" > $PWD/gapped_nt.txt
-cat "`find $PWD/files/ -name "3_*"`" > $PWD/sequences.txt
-cat "`find $PWD/files/ -name "4_*"`" > $PWD/gapped_aa.txt
-cat "`find $PWD/files/ -name "5_*"`" > $PWD/aa.txt
-cat "`find $PWD/files/ -name "6_*"`" > $PWD/junction.txt
-cat "`find $PWD/files/ -name "7_*"`" > $PWD/mutationanalysis.txt
-cat "`find $PWD/files/ -name "8_*"`" > $PWD/mutationstats.txt
-cat "`find $PWD/files/ -name "9_*"`" > $PWD/aa_change_stats.txt
-cat "`find $PWD/files/ -name "10_*"`" > $PWD/hotspots.txt
-
-echo "---------------- unique id check ----------------"
-
-Rscript $dir/check_unique_id.r $PWD/summary.txt $PWD/gapped_nt.txt $PWD/sequences.txt $PWD/gapped_aa.txt $PWD/aa.txt $PWD/junction.txt $PWD/mutationanalysis.txt $PWD/mutationstats.txt $PWD/aa_change_stats.txt $PWD/hotspots.txt
-
-if [[ ${#BLASTN_DIR} -ge 5 ]] ; then
- echo "On server, using BLASTN_DIR env: ${BLASTN_DIR}"
-else
- BLASTN_DIR="/home/galaxy/Downloads/ncbi-blast-2.4.0+/bin"
- echo "Dev Galaxy set BLASTN_DIR to: ${BLASTN_DIR}"
-fi
-
-echo "---------------- class identification ----------------"
-echo "---------------- class identification ---------------- " >> $log
-
-python $dir/gene_identification.py --input $PWD/summary.txt --output $outdir/identified_genes.txt
-
-echo "---------------- merge_and_filter.r ----------------"
-echo "---------------- merge_and_filter.r ---------------- " >> $log
-
-Rscript $dir/merge_and_filter.r $PWD/summary.txt $PWD/sequences.txt $PWD/mutationanalysis.txt $PWD/mutationstats.txt $PWD/hotspots.txt "$PWD/gapped_aa.txt" $outdir/identified_genes.txt $outdir/merged.txt $outdir/before_unique_filter.txt $outdir/unmatched.txt $method $functionality $unique ${filter_unique} ${filter_unique_count} ${class_filter} ${empty_region_filter} 2>&1
-
-if [[ "${naive_output}" == "yes" ]] || [[ "$fast" == "no" ]] ; then
-
- echo "---------------- creating new IMGT zips ----------------"
- echo "---------------- creating new IMGT zips ---------------- " >> $log
-
- mkdir $outdir/new_IMGT
-
- cp $PWD/summary.txt "$outdir/new_IMGT/1_Summary.txt"
- cp $PWD/gapped_nt.txt "$outdir/new_IMGT/2_IMGT-gapped-nt-sequences.txt"
- cp $PWD/sequences.txt "$outdir/new_IMGT/3_Nt-sequences.txt"
- cp $PWD/gapped_aa.txt "$outdir/new_IMGT/4_IMGT-gapped-AA-sequences.txt"
- cp $PWD/aa.txt "$outdir/new_IMGT/5_AA-sequences.txt"
- cp $PWD/junction.txt "$outdir/new_IMGT/6_Junction.txt"
- cp $PWD/mutationanalysis.txt "$outdir/new_IMGT/7_V-REGION-mutation-and-AA-change-table.txt"
- cp $PWD/mutationstats.txt "$outdir/new_IMGT/8_V-REGION-nt-mutation-statistics.txt"
- cp $PWD/aa_change_stats.txt "$outdir/new_IMGT/9_V-REGION-AA-change-statistics.txt"
- cp $PWD/hotspots.txt "$outdir/new_IMGT/10_V-REGION-mutation-hotspots.txt"
-
- mkdir $outdir/new_IMGT_IGA
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA
-
- mkdir $outdir/new_IMGT_IGA1
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA1
-
- mkdir $outdir/new_IMGT_IGA2
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA2
-
- mkdir $outdir/new_IMGT_IGG
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG
-
- mkdir $outdir/new_IMGT_IGG1
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG1
-
- mkdir $outdir/new_IMGT_IGG2
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG2
-
- mkdir $outdir/new_IMGT_IGG3
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG3
-
- mkdir $outdir/new_IMGT_IGG4
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG4
-
- mkdir $outdir/new_IMGT_IGM
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGM
-
- mkdir $outdir/new_IMGT_IGE
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGE
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT/ $outdir/merged.txt "-" 2>&1
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA/ $outdir/merged.txt "IGA" 2>&1
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA1/ $outdir/merged.txt "IGA1" 2>&1
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA2/ $outdir/merged.txt "IGA2" 2>&1
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG/ $outdir/merged.txt "IGG" 2>&1
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG1/ $outdir/merged.txt "IGG1" 2>&1
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG2/ $outdir/merged.txt "IGG2" 2>&1
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG3/ $outdir/merged.txt "IGG3" 2>&1
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG4/ $outdir/merged.txt "IGG4" 2>&1
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGM/ $outdir/merged.txt "IGM" 2>&1
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGE/ $outdir/merged.txt "IGE" 2>&1
-
-
- tmp="$PWD"
- cd $outdir/new_IMGT/ #tar weirdness...
- tar -cJf ../new_IMGT.txz *
-
- cd $outdir/new_IMGT_IGA/
- tar -cJf ../new_IMGT_IGA.txz *
-
- cd $outdir/new_IMGT_IGA1/
- tar -cJf ../new_IMGT_IGA1.txz *
-
- cd $outdir/new_IMGT_IGA2/
- tar -cJf ../new_IMGT_IGA2.txz *
-
- cd $outdir/new_IMGT_IGG/
- tar -cJf ../new_IMGT_IGG.txz *
-
- cd $outdir/new_IMGT_IGG1/
- tar -cJf ../new_IMGT_IGG1.txz *
-
- cd $outdir/new_IMGT_IGG2/
- tar -cJf ../new_IMGT_IGG2.txz *
-
- cd $outdir/new_IMGT_IGG3/
- tar -cJf ../new_IMGT_IGG3.txz *
-
- cd $outdir/new_IMGT_IGG4/
- tar -cJf ../new_IMGT_IGG4.txz *
-
- cd $outdir/new_IMGT_IGM/
- tar -cJf ../new_IMGT_IGM.txz *
-
- cd $outdir/new_IMGT_IGE/
- tar -cJf ../new_IMGT_IGE.txz *
-
- cd $tmp
-fi
-
-echo "---------------- shm_csr.r ----------------"
-echo "---------------- shm_csr.r ---------------- " >> $log
-
-classes="IGA,IGA1,IGA2,IGG,IGG1,IGG2,IGG3,IGG4,IGM,IGE,unmatched"
-echo "R mutation analysis"
-Rscript $dir/shm_csr.r $outdir/merged.txt $classes $outdir ${empty_region_filter} 2>&1
-
-echo "---------------- plot_pdfs.r ----------------"
-echo "---------------- plot_pdfs.r ---------------- " >> $log
-
-echo "Rscript $dir/shm_csr.r $outdir/pdfplots.RData $outdir 2>&1"
-
-Rscript $dir/plot_pdf.r "$outdir/pdfplots.RData" "$outdir" 2>&1
-
-echo "---------------- shm_csr.py ----------------"
-echo "---------------- shm_csr.py ---------------- " >> $log
-
-python $dir/shm_csr.py --input $outdir/merged.txt --genes $classes --empty_region_filter "${empty_region_filter}" --output $outdir/hotspot_analysis.txt
-
-echo "---------------- aa_histogram.r ----------------"
-echo "---------------- aa_histogram.r ---------------- " >> $log
-
-Rscript $dir/aa_histogram.r $outdir/aa_id_mutations.txt $outdir/absent_aa_id.txt "IGA,IGG,IGM,IGE" $outdir/ 2>&1
-if [ -e "$outdir/aa_histogram_.png" ]; then
- mv $outdir/aa_histogram_.png $outdir/aa_histogram.png
- mv $outdir/aa_histogram_.pdf $outdir/aa_histogram.pdf
- mv $outdir/aa_histogram_.txt $outdir/aa_histogram.txt
- mv $outdir/aa_histogram_absent_.txt $outdir/aa_histogram_absent.txt
- mv $outdir/aa_histogram_count_.txt $outdir/aa_histogram_count.txt
- mv $outdir/aa_histogram_sum_.txt $outdir/aa_histogram_sum.txt
-fi
-
-genes=(IGA IGA1 IGA2 IGG IGG1 IGG2 IGG3 IGG4 IGM IGE)
-
-funcs=(sum mean median)
-funcs=(sum)
-
-echo "---------------- sequence_overview.r ----------------"
-echo "---------------- sequence_overview.r ---------------- " >> $log
-
-mkdir $outdir/sequence_overview
-
-Rscript $dir/sequence_overview.r $outdir/before_unique_filter.txt $outdir/merged.txt $outdir/sequence_overview $classes $outdir/hotspot_analysis_sum.txt ${empty_region_filter} 2>&1
-
-echo "" > $outdir/base_overview.html
-
-while IFS=$'\t' read ID class seq A C G T
-do
- echo "$ID $seq $class $A $C $G $T " >> $outdir/base_overview.html
-done < $outdir/sequence_overview/ntoverview.txt
-
-echo "$title " > $output
-echo " " >> $output
-echo "" >> $output
-echo "" >> $output
-echo "" >> $output
-echo " " >> $output
-echo " " >> $output
-
-matched_count="`cat $outdir/merged.txt | grep -v 'unmatched' | tail -n +2 | wc -l`"
-unmatched_count="`cat $outdir/unmatched.txt | tail -n +2 | wc -l`"
-total_count=$((matched_count + unmatched_count))
-perc_count=$((unmatched_count / total_count * 100))
-perc_count=`bc -l <<< "scale=2; ${unmatched_count} / ${total_count} * 100"`
-perc_count=`bc -l <<< "scale=2; (${unmatched_count} / ${total_count} * 100 ) / 1"`
-
-echo "Total: ${total_count} " >> $output
-echo "Matched: ${matched_count} Unmatched: ${unmatched_count} " >> $output
-echo "Percentage unmatched: ${perc_count} " >> $output
-
-echo "---------------- main tables ----------------"
-echo "---------------- main tables ---------------- " >> $log
-
-echo "" >> $output
-echo "
" >> $output
-
-for func in ${funcs[@]}
-do
-
- echo "---------------- $func table ----------------"
- echo "---------------- $func table ----------------
" >> $log
-
- cat $outdir/mutations_${func}.txt $outdir/shm_overview_tandem_row.txt $outdir/hotspot_analysis_${func}.txt > $outdir/data_${func}.txt
-
- echo "---------------- pattern_plots.r ----------------"
- echo "---------------- pattern_plots.r ----------------
" >> $log
-
- Rscript $dir/pattern_plots.r $outdir/data_${func}.txt $outdir/aid_motives $outdir/relative_mutations $outdir/absolute_mutations $outdir/shm_overview.txt 2>&1
-
- echo "
" >> $output
- echo "info " >> $output
-
- if [ "${class_filter}" != "101_101" ] ; then
-
- for gene in ${genes[@]}
- do
- tmp=`cat $outdir/${gene}_${func}_n.txt`
- echo "${gene} (N = $tmp) " >> $output
- done
-
- tmp=`cat $outdir/all_${func}_n.txt`
- echo "all (N = $tmp) " >> $output
- tmp=`cat $outdir/unmatched_${func}_n.txt`
- echo "unmatched (N = ${unmatched_count}) " >> $output
-
- while IFS=, read name cax cay caz ca1x ca1y ca1z ca2x ca2y ca2z cgx cgy cgz cg1x cg1y cg1z cg2x cg2y cg2z cg3x cg3y cg3z cg4x cg4y cg4z cmx cmy cmz cex cey cez unx uny unz allx ally allz
- do
- if [ "$name" == "FR R/S (ratio)" ] || [ "$name" == "CDR R/S (ratio)" ] || [ "$name" == "Tandems/Expected (ratio)" ] ; then #meh
- echo "$name ${cax}/${cay} (${caz}) ${ca1x}/${ca1y} (${ca1z}) ${ca2x}/${ca2y} (${ca2z}) ${cgx}/${cgy} (${cgz}) ${cg1x}/${cg1y} (${cg1z}) ${cg2x}/${cg2y} (${cg2z}) ${cg3x}/${cg3y} (${cg3z}) ${cg4x}/${cg4y} (${cg4z}) ${cmx}/${cmy} (${cmz}) ${cex}/${cey} (${cez}) ${allx}/${ally} (${allz}) ${unx}/${uny} (${unz}) " >> $output
- elif [ "$name" == "Median of Number of Mutations (%)" ] ; then
- echo "$name ${caz}% ${ca1z}% ${ca2z}% ${cgz}% ${cg1z}% ${cg2z}% ${cg3z}% ${cg4z}% ${cmz}% ${cez}% ${allz}% ${unz}% " >> $output
- else
- echo "$name ${cax}/${cay} (${caz}%) ${ca1x}/${ca1y} (${ca1z}%) ${ca2x}/${ca2y} (${ca2z}%) ${cgx}/${cgy} (${cgz}%) ${cg1x}/${cg1y} (${cg1z}%) ${cg2x}/${cg2y} (${cg2z}%) ${cg3x}/${cg3y} (${cg3z}%) ${cg4x}/${cg4y} (${cg4z}%) ${cmx}/${cmy} (${cmz}%) ${cex}/${cey} (${cez}%) ${allx}/${ally} (${allz}%) ${unx}/${uny} (${unz}%) " >> $output
- fi
- done < $outdir/data_${func}.txt
-
- else
- tmp=`cat $outdir/all_${func}_n.txt`
- echo "all (N = $tmp) " >> $output
-
- while IFS=, read name cax cay caz ca1x ca1y ca1z ca2x ca2y ca2z cgx cgy cgz cg1x cg1y cg1z cg2x cg2y cg2z cg3x cg3y cg3z cg4x cg4y cg4z cmx cmy cmz cex cey cez unx uny unz allx ally allz
- do
- if [ "$name" == "FR R/S (ratio)" ] || [ "$name" == "CDR R/S (ratio)" ] ; then #meh
- echo "$name ${allx}/${ally} " >> $output
- elif [ "$name" == "Median of Number of Mutations (%)" ] ; then
- echo "$name ${allz}% " >> $output
- else
- echo "$name ${allx}/${ally} (${allz}%) " >> $output
- fi
- done < $outdir/data_${func}.txt
-
- fi
- echo "
" >> $output
- #echo "
Download data " >> $output
-done
-
-echo "
" >> $output
-echo "
" >> $output
-echo "
" >> $output
-echo "
" >> $output
-cat $dir/shm_overview.htm >> $output
-echo "
" >> $output #SHM overview tab end
-
-echo "---------------- images ----------------"
-echo "---------------- images ----------------
" >> $log
-
-echo "
" >> $output #SHM frequency tab end
-
-echo "
" >> $output
-
-echo "
" >> $output
-
-for gene in ${genes[@]}
-do
- echo "" >> $output
- echo "${gene} " >> $output
-
- if [ -e $outdir/transitions_heatmap_${gene}.png ]
- then
- echo " " >> $output
- else
- echo " " >> $output
- fi
-
- if [ -e $outdir/transitions_stacked_${gene}.png ]
- then
- echo " " >> $output
- else
- echo " " >> $output
- fi
-
- echo "" >> $output
- echo "To " >> $output
- first="true"
- while IFS=, read from a c g t
- do
- if [ "$first" == "true" ] ; then
- echo "From $from $a $c $g $t " >> $output
- first="false"
- else
- echo "$from $a $c $g $t " >> $output
- fi
- done < $outdir/transitions_${gene}_sum.txt
- echo "
" >> $output
-
- echo " " >> $output
-done
-
-echo "" >> $output
-echo "All " >> $output
-echo " " >> $output
-echo " " >> $output
-echo "" >> $output
-echo "To " >> $output
-first="true"
-while IFS=, read from a c g t
- do
- if [ "$first" == "true" ] ; then
- echo "From $from $a $c $g $t " >> $output
- first="false"
- else
- echo "$from $a $c $g $t " >> $output
- fi
-done < $outdir/transitions_all_sum.txt
-echo "
" >> $output
-
-echo " " >> $output
-
-echo "
" >> $output
-
-echo "
" >> $output
-cat $dir/shm_transition.htm >> $output
-
-echo "
" >> $output #transition tables tab end
-
-echo "
" >> $output #antigen selection tab end
-
-echo "
" >> $output #CSR tab
-
-if [ -e $outdir/IGA.png ]
-then
- echo "
" >> $output
-fi
-if [ -e $outdir/IGG.png ]
-then
- echo "
" >> $output
-fi
-
-echo "
" >> $output
-cat $dir/shm_csr.htm >> $output
-
-echo "
" >> $output #CSR tab end
-
-if [[ "$fast" == "no" ]] ; then
-
- echo "---------------- change-o MakeDB ----------------"
-
- mkdir $outdir/change_o
-
- tmp="$PWD"
-
- cd $outdir/change_o
-
- bash $dir/change_o/makedb.sh $outdir/new_IMGT.txz false false false $outdir/change_o/change-o-db.txt
- bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones.txt $outdir/change_o/change-o-defined_clones-summary.txt
- Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones.txt $outdir/change_o/change-o-db-defined_first_clones.txt 2>&1
-
- mkdir $outdir/new_IMGT_changeo
- cp $outdir/new_IMGT/* $outdir/new_IMGT_changeo
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_changeo $outdir/change_o/change-o-db-defined_first_clones.txt "-" 2>&1
-
- cd $outdir/new_IMGT_changeo
- tar -cJf ../new_IMGT_first_seq_of_clone.txz *
- cd $outdir/change_o
-
- rm -rf $outdir/new_IMGT_changeo
-
- Rscript $dir/merge.r $outdir/change_o/change-o-db-defined_clones.txt $outdir/merged.txt "all" "Sequence.ID,best_match" "SEQUENCE_ID" "Sequence.ID" $outdir/change_o/change-o-db-defined_clones.txt 2>&1
- echo "Rscript $dir/merge.r $outdir/change_o/change-o-db-defined_clones.txt $outdir/$outdir/merged.txt 'all' 'Sequence.ID,best_match' 'Sequence.ID' 'Sequence.ID' '\t' $outdir/change_o/change-o-db-defined_clones.txt 2>&1"
-
- if [[ $(wc -l < $outdir/new_IMGT_IGA/1_Summary.txt) -gt "1" ]]; then
- bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGA.txz false false false $outdir/change_o/change-o-db-IGA.txt
- bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGA.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGA.txt $outdir/change_o/change-o-defined_clones-summary-IGA.txt
- Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGA.txt $outdir/change_o/change-o-db-defined_first_clones-IGA.txt 2>&1
-
- mkdir $outdir/new_IMGT_IGA_changeo
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA_changeo
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA_changeo $outdir/change_o/change-o-db-defined_first_clones-IGA.txt "-" 2>&1
-
- cd $outdir/new_IMGT_IGA_changeo
- tar -cJf ../new_IMGT_IGA_first_seq_of_clone.txz *
-
- rm -rf $outdir/new_IMGT_IGA_changeo
-
- cd $outdir/change_o
- else
- echo "No IGA sequences" > "$outdir/change_o/change-o-db-defined_clones-IGA.txt"
- echo "No IGA sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGA.txt"
- fi
-
- if [[ $(wc -l < $outdir/new_IMGT_IGG/1_Summary.txt) -gt "1" ]]; then
- bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGG.txz false false false $outdir/change_o/change-o-db-IGG.txt
- bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGG.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGG.txt $outdir/change_o/change-o-defined_clones-summary-IGG.txt
- Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGG.txt $outdir/change_o/change-o-db-defined_first_clones-IGG.txt 2>&1
-
- mkdir $outdir/new_IMGT_IGG_changeo
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG_changeo
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG_changeo $outdir/change_o/change-o-db-defined_first_clones-IGG.txt "-" 2>&1
-
- cd $outdir/new_IMGT_IGG_changeo
- tar -cJf ../new_IMGT_IGG_first_seq_of_clone.txz *
- rm -rf $outdir/new_IMGT_IGG_changeo
-
- cd $outdir/change_o
- else
- echo "No IGG sequences" > "$outdir/change_o/change-o-db-defined_clones-IGG.txt"
- echo "No IGG sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGG.txt"
- fi
-
- if [[ $(wc -l < $outdir/new_IMGT_IGM/1_Summary.txt) -gt "1" ]]; then
- bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGM.txz false false false $outdir/change_o/change-o-db-IGM.txt
- bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGM.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGM.txt $outdir/change_o/change-o-defined_clones-summary-IGM.txt
- Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGM.txt $outdir/change_o/change-o-db-defined_first_clones-IGM.txt 2>&1
-
- mkdir $outdir/new_IMGT_IGM_changeo
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGM_changeo
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGM_changeo $outdir/change_o/change-o-db-defined_first_clones-IGM.txt "-" 2>&1
-
- cd $outdir/new_IMGT_IGM_changeo
- tar -cJf ../new_IMGT_IGM_first_seq_of_clone.txz *
-
- rm -rf $outdir/new_IMGT_IGM_changeo
-
- cd $outdir/change_o
- else
- echo "No IGM sequences" > "$outdir/change_o/change-o-db-defined_clones-IGM.txt"
- echo "No IGM sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGM.txt"
- fi
-
- if [[ $(wc -l < $outdir/new_IMGT_IGE/1_Summary.txt) -gt "1" ]]; then
- bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGE.txz false false false $outdir/change_o/change-o-db-IGE.txt
- bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGE.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGE.txt $outdir/change_o/change-o-defined_clones-summary-IGE.txt
- Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGE.txt $outdir/change_o/change-o-db-defined_first_clones-IGE.txt 2>&1
-
- mkdir $outdir/new_IMGT_IGE_changeo
- cp $outdir/new_IMGT/* $outdir/new_IMGT_IGE_changeo
-
- Rscript $dir/new_imgt.r $outdir/new_IMGT_IGE_changeo $outdir/change_o/change-o-db-defined_first_clones-IGE.txt "-" 2>&1
-
- cd $outdir/new_IMGT_IGE_changeo
- tar -cJf ../new_IMGT_IGE_first_seq_of_clone.txz *
-
- rm -rf $outdir/new_IMGT_IGE_changeo
-
- cd $outdir/change_o
- else
- echo "No IGE sequences" > "$outdir/change_o/change-o-db-defined_clones-IGE.txt"
- echo "No IGE sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGE.txt"
- fi
-
- cd "$tmp"
-
- rm -rf $outdir/new_IMGT
- rm -rf $outdir/new_IMGT_IGA/
- rm -rf $outdir/new_IMGT_IGA1/
- rm -rf $outdir/new_IMGT_IGA2/
- rm -rf $outdir/new_IMGT_IGG/
- rm -rf $outdir/new_IMGT_IGG1/
- rm -rf $outdir/new_IMGT_IGG2/
- rm -rf $outdir/new_IMGT_IGG3/
- rm -rf $outdir/new_IMGT_IGG4/
- rm -rf $outdir/new_IMGT_IGM/
- rm -rf $outdir/new_IMGT_IGE/
-
- echo "
" >> $output #clonality tab
-
- function clonality_table {
- local infile=$1
- local outfile=$2
-
- echo "
" >> $outfile
- echo "Clone size Nr of clones Nr of sequences " >> $outfile
-
- first='true'
-
- while read size clones seqs
- do
- if [[ "$first" == "true" ]]; then
- first="false"
- continue
- fi
- echo "$size $clones $seqs " >> $outfile
- done < $infile
-
- echo "
" >> $outfile
- }
- echo "
" >> $output
-
- echo "
" >> $output
- clonality_table $outdir/change_o/change-o-defined_clones-summary.txt $output
- echo "
" >> $output
-
- echo "
" >> $output
- clonality_table $outdir/change_o/change-o-defined_clones-summary-IGA.txt $output
- echo "
" >> $output
-
- echo "
" >> $output
- clonality_table $outdir/change_o/change-o-defined_clones-summary-IGG.txt $output
- echo "
" >> $output
-
- echo "
" >> $output
- clonality_table $outdir/change_o/change-o-defined_clones-summary-IGM.txt $output
- echo "
" >> $output
-
- echo "
" >> $output
- clonality_table $outdir/change_o/change-o-defined_clones-summary-IGM.txt $output
- echo "
" >> $output
-
- echo "
" >> $output
- cat "$outdir/sequence_overview/index.html" | sed -e 's::\n:g' | sed "s:href='\(.*\).html:href='sequence_overview/\1.html:g" >> $output # rewrite href to 'sequence_overview/..."
- echo "
" >> $output
-
- echo "
" >> $output #clonality tabber end
-
- echo "
" >> $output
- cat $dir/shm_clonality.htm >> $output
-
- echo "
" >> $output #clonality tab end
-
-fi
-
-echo "
" >> $output
-
-echo "
" >> $output
-echo "info link " >> $output
-echo "The complete dataset Download " >> $output
-echo "The filtered dataset Download " >> $output
-echo "The alignment info on the unmatched sequences Download " >> $output
-
-echo "SHM Overview " >> $output
-echo "The SHM Overview table as a dataset Download " >> $output
-echo "Motif data per sequence ID Download " >> $output
-echo "Mutation data per sequence ID Download " >> $output
-echo "Base count for every sequence View " >> $output
-echo "The data used to generate the percentage of mutations in AID and pol eta motives plot Download " >> $output
-echo "The data used to generate the relative mutation patterns plot Download " >> $output
-echo "The data used to generate the absolute mutation patterns plot Download " >> $output
-echo "Data about tandem mutations by ID Download " >> $output
-
-echo "SHM Frequency " >> $output
-echo "The data generate the frequency scatter plot Download " >> $output
-echo "The data used to generate the frequency by class plot Download " >> $output
-echo "The data for frequency by subclass Download " >> $output
-
-echo "Transition Tables " >> $output
-echo "The data for the 'all' transition plot Download " >> $output
-echo "The data for the 'IGA' transition plot Download " >> $output
-echo "The data for the 'IGA1' transition plot Download " >> $output
-echo "The data for the 'IGA2' transition plot Download " >> $output
-echo "The data for the 'IGG' transition plot Download " >> $output
-echo "The data for the 'IGG1' transition plot Download " >> $output
-echo "The data for the 'IGG2' transition plot Download " >> $output
-echo "The data for the 'IGG3' transition plot Download " >> $output
-echo "The data for the 'IGG4' transition plot Download " >> $output
-echo "The data for the 'IGM' transition plot Download " >> $output
-echo "The data for the 'IGE' transition plot Download " >> $output
-
-echo "Antigen Selection " >> $output
-echo "AA mutation data per sequence ID Download " >> $output
-echo "Presence of AA per sequence ID Download " >> $output
-
-echo "The data used to generate the aa mutation frequency plot Download " >> $output
-echo "The data used to generate the aa mutation frequency plot for IGA Download " >> $output
-echo "The data used to generate the aa mutation frequency plot for IGG Download " >> $output
-echo "The data used to generate the aa mutation frequency plot for IGM Download " >> $output
-echo "The data used to generate the aa mutation frequency plot for IGE Download " >> $output
-
-echo "Baseline PDF (http://selection.med.yale.edu/baseline/ ) Download " >> $output
-echo "Baseline data Download " >> $output
-echo "Baseline IGA PDF Download " >> $output
-echo "Baseline IGA data Download " >> $output
-echo "Baseline IGG PDF Download " >> $output
-echo "Baseline IGG data Download " >> $output
-echo "Baseline IGM PDF Download " >> $output
-echo "Baseline IGM data Download " >> $output
-echo "Baseline IGE PDF Download " >> $output
-echo "Baseline IGE data Download " >> $output
-
-echo "CSR " >> $output
-echo "The data for the IGA subclass distribution plot Download " >> $output
-echo "The data for the IGG subclass distribution plot Download " >> $output
-
-
-echo "Clonal Relation " >> $output
-echo "Sequence overlap between subclasses View " >> $output
-echo "The Change-O DB file with defined clones and subclass annotation Download " >> $output
-echo "The Change-O DB defined clones summary file Download " >> $output
-echo "An IMGT archive with just just the first sequence of a clone Download " >> $output
-
-echo "The Change-O DB file with defined clones of IGA Download " >> $output
-echo "The Change-O DB defined clones summary file of IGA Download " >> $output
-echo "An IMGT archive with just just the first sequence of a clone (IGA) Download " >> $output
-
-echo "The Change-O DB file with defined clones of IGG Download " >> $output
-echo "The Change-O DB defined clones summary file of IGG Download " >> $output
-echo "An IMGT archive with just just the first sequence of a clone (IGG) Download " >> $output
-
-echo "The Change-O DB file with defined clones of IGM Download " >> $output
-echo "The Change-O DB defined clones summary file of IGM Download " >> $output
-echo "An IMGT archive with just just the first sequence of a clone (IGM) Download " >> $output
-
-echo "The Change-O DB file with defined clones of IGE Download " >> $output
-echo "The Change-O DB defined clones summary file of IGE Download " >> $output
-echo "An IMGT archive with just just the first sequence of a clone (IGE) Download " >> $output
-
-echo "Filtered IMGT output files " >> $output
-echo "An IMGT archive with just the matched and filtered sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGA sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGA1 sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGA2 sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGG sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGG1 sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGG2 sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGG3 sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGG4 sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGM sequences Download " >> $output
-echo "An IMGT archive with just the matched and filtered IGE sequences Download " >> $output
-
-echo "
" >> $output
-
-echo "
" >> $output
-cat $dir/shm_downloads.htm >> $output
-
-echo "
" >> $output #downloads tab end
-
-echo "
" >> $output #tabs end
-
-echo "" >> $output
-
-
-echo "---------------- naive_output.r ----------------"
-echo "---------------- naive_output.r ---------------- " >> $log
-
-if [[ "$naive_output" == "yes" ]]
-then
- echo "output naive output"
- if [[ "${class_filter}" == "101_101" ]]
- then
- echo "copy new_IMGT.txz to ${naive_output_all}"
- cp $outdir/new_IMGT.txz ${naive_output_all}
- else
- echo "copy for classes"
- cp $outdir/new_IMGT_IGA.txz ${naive_output_ca}
- cp $outdir/new_IMGT_IGG.txz ${naive_output_cg}
- cp $outdir/new_IMGT_IGM.txz ${naive_output_cm}
- cp $outdir/new_IMGT_IGE.txz ${naive_output_ce}
- fi
-fi
-
-echo "
" >> $outdir/base_overview.html
-
-mv $log $outdir/log.html
-
-echo "Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above) " > $log
-echo "" >> $log
-echo "Info Sequences Percentage " >> $log
-tIFS="$TMP"
-IFS=$'\t'
-while read step seq perc
- do
- echo "" >> $log
- echo "$step " >> $log
- echo "$seq " >> $log
- echo "${perc}% " >> $log
- echo " " >> $log
-done < $outdir/filtering_steps.txt
-echo "
" >> $log
-echo " " >> $log
-cat $dir/shm_first.htm >> $log
-echo " " >> $log
-
-IFS="$tIFS"
-
-
-echo "---------------- Done! ----------------"
-echo "---------------- Done! ---------------- " >> $outdir/log.html
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff -r a4617f1d1d89 -r b6f9a640e098 shm_downloads.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_downloads.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,538 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Info
+
+
The complete
+dataset:
+Allows downloading of the complete parsed data set.
+
+
The filtered
+dataset:
+Allows downloading of all parsed IMGT information of all transcripts that
+passed the chosen filter settings.
+
+
The alignment
+info on the unmatched sequences: Provides information of the subclass
+alignment of all unmatched sequences. For each sequence the chunck hit
+percentage and the nt hit percentage is shown together with the best matched
+subclass.
+
+
SHM Overview
+
+
The SHM Overview
+table as a dataset: Allows downloading of the SHM Overview
+table as a data set.
+
+
Motif data per
+sequence ID: Provides a file that contains information for each
+transcript on the number of mutations present in WA/TW and RGYW/WRCY motives.
+
+
Mutation data
+per sequence ID: Provides a file containing information
+on the number of sequences bases, the number and location of mutations and the
+type of mutations found in each transcript.
+
+
Base count for
+every sequence: links to a page showing for each transcript the
+sequence of the analysed region (as dependent on the sequence starts at filter),
+the assigned subclass and the number of sequenced A,C,G and T’s.
+
+
The data used to
+generate the percentage of mutations in AID and pol eta motives plot:
+Provides a file containing the values used to generate the percentage of
+mutations in AID and pol eta motives plot in the SHM overview tab.
+
+
The
+data used to generate the relative mutation patterns plot:
+Provides a download with the data used to generate the relative mutation
+patterns plot in the SHM overview tab.
+
+
The
+data used to generate the absolute mutation patterns plot:
+Provides a download with the data used to generate the absolute mutation
+patterns plot in the SHM overview tab.
+
+
SHM Frequency
+
+
The data
+generate the frequency scatter plot: Allows
+downloading the data used to generate the frequency scatter plot in the SHM
+frequency tab.
+
+
The data used to
+generate the frequency by class plot: Allows
+downloading the data used to generate frequency by class plot included in the
+SHM frequency tab.
+
+
The data for
+frequency by subclass: Provides information of the number and
+percentage of sequences that have 0%, 0-2%, 2-5%, 5-10%, 10-15%, 15-20%,
+>20% SHM. Information is provided for each subclass.
+
+
+
+
Transition
+Tables
+
+
The data for the
+'all' transition plot: Contains the information used to
+generate the transition table for all sequences.
+
+
The data for the
+'IGA' transition plot: Contains the information used to
+generate the transition table for all IGA sequences.
+
+
The data for the
+'IGA1' transition plot: Contains the information used to
+generate the transition table for all IGA1 sequences.
+
+
The data for the
+'IGA2' transition plot: Contains the information used to
+generate the transition table for all IGA2 sequences.
+
+
The data for the
+'IGG' transition plot : Contains the information used to
+generate the transition table for all IGG sequences.
+
+
The data for the
+'IGG1' transition plot: Contains the information used to
+generate the transition table for all IGG1 sequences.
+
+
The data for the
+'IGG2' transition plot: Contains the information used to
+generate the transition table for all IGG2 sequences.
+
+
The data for the
+'IGG3' transition plot: Contains the information used to
+generate the transition table for all IGG3 sequences.
+
+
The data for the
+'IGG4' transition plot: Contains the information used to
+generate the transition table for all IGG4 sequences.
+
+
The data for the
+'IGM' transition plot : Contains the information used to
+generate the transition table for all IGM sequences.
+
+
The data for the
+'IGE' transition plot: Contains the
+information used to generate the transition table for all IGE sequences.
+
+
Antigen
+selection
+
+
AA mutation data
+per sequence ID: Provides for each transcript information on whether
+there is replacement mutation at each amino acid location (as defined by IMGT).
+For all amino acids outside of the analysed region the value 0 is given.
+
+
Presence of AA
+per sequence ID: Provides for each transcript information on which
+amino acid location (as defined by IMGT) is present. 0 is absent, 1
+is present.
+
+
The data used to
+generate the aa mutation frequency plot: Provides the
+data used to generate the aa mutation frequency plot for all sequences in the
+antigen selection tab.
+
+
The data used to
+generate the aa mutation frequency plot for IGA: Provides the
+data used to generate the aa mutation frequency plot for all IGA sequences in
+the antigen selection tab.
+
+
The data used to
+generate the aa mutation frequency plot for IGG: Provides the
+data used to generate the aa mutation frequency plot for all IGG sequences in
+the antigen selection tab.
+
+
The data used to
+generate the aa mutation frequency plot for IGM: Provides the
+data used to generate the aa mutation frequency plot for all IGM sequences in
+the antigen selection tab.
+
+
The data used to
+generate the aa mutation frequency plot for IGE: Provides the
+data used to generate the aa mutation frequency plot for all IGE sequences in
+the antigen selection tab.
+
+
Baseline PDF ( http://selection.med.yale.edu/baseline/ ): PDF
+containing the Antigen selection (BASELINe) graph for all
+sequences.
+
+
Baseline data:
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual sequence and the sum of all
+sequences.
+
+
Baseline IGA
+PDF:
+PDF containing the Antigen selection (BASELINe) graph for all
+sequences.
+
+
Baseline IGA
+data:
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGA sequence and the sum of
+all IGA sequences.
+
+
Baseline IGG
+PDF:
+PDF containing the Antigen selection (BASELINe) graph for all IGG
+sequences.
+
+
Baseline IGG
+data:
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGG sequence and the sum of
+all IGG sequences.
+
+
Baseline IGM PDF: PDF
+containing the Antigen selection (BASELINe) graph for all IGM
+sequences.
+
+
Baseline IGM
+data:
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGM sequence and the sum of
+all IGM sequences.
+
+
Baseline IGE
+PDF:
+PDF containing the Antigen selection (BASELINe) graph for all IGE
+sequences.
+
+
+
Baseline IGE
+data:
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGE sequence and the sum of
+all IGE sequences.
+
+
CSR
+
+
The data for the
+ IGA
+subclass distribution plot : Data used for
+the generation of the IGA subclass distribution plot provided
+in the CSR tab.
+
+
The data for the
+ IGA
+subclass distribution plot : Data used for the generation of the IGG
+subclass distribution plot provided in the CSR tab.
+
+
Clonal relation
+
+
Sequence overlap
+between subclasses: Link to the overlap table as provided
+under the clonality overlap tab.
+
+
The Change-O DB
+file with defined clones and subclass annotation:
+Downloads a table with the calculation of clonal relation between all
+sequences. For each individual transcript the results of the clonal assignment
+as provided by Change-O are provided. Sequences with the same number in the CLONE
+column are considered clonally related.
+
+
The Change-O DB
+defined clones summary file: Gives a summary of the total number of
+clones in all sequences and their clone size.
+
+
The Change-O DB
+file with defined clones of IGA: Downloads a table with the
+calculation of clonal relation between all IGA sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related.
+
+
The Change-O DB
+defined clones summary file of IGA: Gives a summary
+of the total number of clones in all IGA sequences and their clone size.
+
+
The Change-O DB
+file with defined clones of IGG: Downloads a table with the
+calculation of clonal relation between all IGG sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related.
+
+
The Change-O DB
+defined clones summary file of IGG: Gives a summary
+of the total number of clones in all IGG sequences and their clone size.
+
+
The Change-O DB
+file with defined clones of IGM: Downloads a table
+with the calculation of clonal relation between all IGM sequences. For each
+individual transcript the results of the clonal assignment as provided by
+Change-O are provided. Sequences with the same number in the CLONE column are
+considered clonally related.
+
+
The Change-O DB
+defined clones summary file of IGM: Gives a summary
+of the total number of clones in all IGM sequences and their clone size.
+
+
The Change-O DB
+file with defined clones of IGE: Downloads a table with the
+calculation of clonal relation between all IGE sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related.
+
+
The Change-O DB
+defined clones summary file of IGE: Gives a summary
+of the total number of clones in all IGE sequences and their clone size.
+
+
Filtered IMGT
+output files
+
+
An IMGT archive
+with just the matched and filtered sequences: Downloads a
+.txz file with the same format as downloaded IMGT files that contains all
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGA sequences: Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGA
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGA1 sequences: Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGA1
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGA2 sequences: Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGA2
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGG sequences: Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGG
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGG1 sequences: Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG1
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGG2 sequences: Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG2
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGG3 sequences: Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGG3
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGG4 sequences: Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG4
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGM sequences: Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGM
+sequences that have passed the chosen filter settings.
+
+
An IMGT archive
+with just the matched and filtered IGE sequences: Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGE
+sequences that have passed the chosen filter settings.
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_first.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_first.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,127 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Table showing the order of each
+filtering step and the number and percentage of sequences after each filtering
+step.
+
+
Input: The
+number of sequences in the original IMGT file. This is always 100% of the
+sequences.
+
+
After "no results" filter: IMGT
+classifies sequences either as "productive", "unproductive", "unknown", or "no
+results". Here, the number and percentages of sequences that are not classified
+as "no results" are reported.
+
+
After functionality filter: The
+number and percentages of sequences that have passed the functionality filter. The
+filtering performed is dependent on the settings of the functionality filter.
+Details on the functionality filter can be found on the start page of
+the SHM&CSR pipeline .
+
+
After
+removal sequences that are missing a gene region:
+In this step all sequences that are missing a gene region (FR1, CDR1, FR2,
+CDR2, FR3) that should be present are removed from analysis. The sequence
+regions that should be present are dependent on the settings of the sequence
+starts at filter. The number and
+percentage of sequences that pass this filter step are reported.
+
+
After
+N filter: In this step all sequences that contain
+an ambiguous base (n) in the analysed region or the CDR3 are removed from the
+analysis. The analysed region is determined by the setting of the sequence
+starts at filter. The number and percentage of sequences that pass this filter
+step are reported.
+
+
After
+filter unique sequences : The number and
+percentage of sequences that pass the "filter unique sequences" filter. Details
+on this filter can be found on the start page of
+the SHM&CSR pipeline
+
+
After
+remove duplicate based on filter: The number and
+percentage of sequences that passed the remove duplicate filter. Details on the
+"remove duplicate filter based on filter" can be found on the start page of the
+SHM&CSR pipeline.
+
+
Number of matches sequences:
+The number and percentage of sequences that passed all the filters described
+above and have a (sub)class assigned.
+
+
Number
+of unmatched sequences : The number and percentage
+of sequences that passed all the filters described above and do not have
+subclass assigned.
+
+
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_frequency.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_frequency.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,87 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
SHM
+frequency tab
+
+
Graphs
+
+
These
+graphs give insight into the level of SHM. The data represented in these graphs
+can be downloaded in the download tab. More
+information on the values found in healthy individuals of different ages can be
+found in IJspeert and van Schouwenburg et al, PMID: 27799928.
+
+
Frequency
+scatter plot
+
+
A
+dot plot showing the percentage of SHM in each transcript divided into the
+different (sub)classes. In the graph each dot
+represents an individual transcript.
+
+
Mutation
+frequency by class
+
+
A
+bar graph showing the percentage of transcripts that contain 0%, 0-2%, 2-5%,
+5-10% 10-15%, 15-20% or more than 20% SHM for each subclass.
+
+
Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_overview.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_overview.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,332 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Info
+table
+
+
This
+table contains information on different characteristics of SHM. For all
+characteristics information can be found for all sequences or only sequences of
+a certain (sub)class. All results are based on the sequences that passed the filter
+settings chosen on the start page of the SHM & CSR pipeline and only
+include details on the analysed region as determined by the setting of the
+sequence starts at filter. All data in this table can be downloaded via the
+“downloads” tab.
+
+
Mutation
+frequency:
+
+
These values
+give information on the level of SHM. More information
+on the values found in healthy individuals of different ages can be found in IJspeert
+and van Schouwenburg et al, PMID: 27799928
+
+
Number
+of mutations: Shows the number of total
+mutations / the number of sequenced bases (the % of mutated bases).
+
+
Median
+number of mutations: Shows the median % of
+SHM of all sequences.
+
+
Patterns
+of SHM:
+
+
These values
+give insights into the targeting and patterns of SHM. These values can give
+insight into the repair pathways used to repair the U:G mismatches introduced
+by AID. More information
+on the values found in healthy individuals of different ages can be found in
+IJspeert and van Schouwenburg et al, PMID: 27799928
+
+
Transitions:
+Shows the number of transition mutations / the number of total mutations (the
+percentage of mutations that are transitions). Transition mutations are C>T,
+T>C, A>G, G>A.
+
+
Transversions:
+Shows the number of transversion mutations / the number of total mutations (the
+percentage of mutations that are transitions). Transversion mutations are
+C>A, C>G, T>A, T>G, A>T, A>C, G>T, G>C.
+
+
Transitions
+at GC: Shows the number of transitions at GC locations (C>T,
+G>A) / the total number of mutations at GC locations (the percentage of
+mutations at GC locations that are transitions).
+
+
Targeting
+of GC: Shows the number of mutations at GC
+locations / the total number of mutations (the percentage of total mutations
+that are at GC locations).
+
+
Transitions
+at AT: Shows the number of transitions at AT
+locations (T>C, A>G) / the total number of mutations at AT locations (the
+percentage of mutations at AT locations that are transitions).
+
+
Targeting
+of AT: Shows the number of mutations at AT
+locations / the total number of mutations (the percentage of total mutations
+that are at AT locations).
+
+
RGYW:
+Shows
+the number of mutations that are in a RGYW motive / The number of total mutations
+(the percentage of mutations that are in a RGYW motive). RGYW motives are known to be
+preferentially targeted by AID (R=Purine,
+Y=pyrimidine, W = A or T).
+
+
WRCY:
+Shows the number of mutations
+that are in a WRCY motive / The number of
+total mutations (the percentage of mutations that are in a WRCY motive). WRCY
+motives are known to be preferentially targeted by AID (R=Purine,
+Y=pyrimidine, W = A or T).
+
+
WA:
+Shows
+the number of mutations that are in a WA motive / The number of total mutations
+(the percentage of mutations that are in a WA motive). It is described that
+polymerase eta preferentially makes errors at WA motives (W
+= A or T).
+
+
TW:
+Shows the number of mutations that are in a TW motive / The number of total mutations
+(the percentage of mutations that are in a TW motive). It is described that
+polymerase eta preferentially makes errors at TW motives (W
+= A or T).
+
+
Antigen
+selection:
+
+
These
+values give insight into antigen selection. It has been described that during
+antigen selection, there is selection against replacement mutations in the FR
+regions as these can cause instability of the B-cell receptor. In contrast
+replacement mutations in the CDR regions are important for changing the
+affinity of the B-cell receptor and therefore there is selection for this type
+of mutations. Silent mutations do not alter the amino acid sequence and
+therefore do not play a role in selection. More information on the values found
+in healthy individuals of different ages can be found in IJspeert and van
+Schouwenburg et al, PMID: 27799928
+
+
FR
+R/S: Shows the number of replacement
+mutations in the FR regions / The number of silent mutations in the FR regions
+(the number of replacement mutations in the FR regions divided by the number of
+silent mutations in the FR regions)
+
+
CDR
+R/S: Shows the number of replacement
+mutations in the CDR regions / The number of silent mutations in the CDR
+regions (the number of replacement mutations in the CDR regions divided by the
+number of silent mutations in the CDR regions)
+
+
Number
+of sequences nucleotides:
+
+
These
+values give information on the number of sequenced nucleotides.
+
+
Nt
+in FR: Shows the number of sequences bases
+that are located in the FR regions / The total number of sequenced bases (the
+percentage of sequenced bases that are present in the FR regions).
+
+
Nt
+in CDR: Shows the number of sequenced bases
+that are located in the CDR regions / The total number of sequenced bases (the percentage of
+sequenced bases that are present in the CDR regions).
+
+
A:
+ Shows the total number of sequenced
+adenines / The total number of sequenced bases (the percentage of sequenced
+bases that were adenines).
+
+
C:
+ Shows
+the total number of sequenced cytosines / The total number of sequenced bases
+(the percentage of sequenced bases that were cytosines).
+
+
T:
+ Shows
+the total number of sequenced thymines
+/ The total number of sequenced bases (the percentage of sequenced bases that
+were thymines).
+
+
G:
+ Shows the total number of sequenced guanine s / The total number of
+sequenced bases (the percentage of sequenced bases that were guanines).
+
+
Graphs
+
+
These graphs visualize
+information on the patterns and targeting of SHM and thereby give information
+into the repair pathways used to repair the U:G mismatches introduced by AID. The
+data represented in these graphs can be downloaded in the download tab. More
+information on the values found in healthy individuals of different ages can be
+found in IJspeert and van Schouwenburg et al, PMID: 27799928 .
+
+
+
Percentage
+of mutations in AID and pol eta motives
+
+
Visualizes
+for each
+(sub)class the percentage of mutations that are present in AID (RGYW or
+WRCY) or polymerase eta motives (WA or TW) in the different subclasses (R=Purine,
+Y=pyrimidine, W = A or T).
+
+
Relative
+mutation patterns
+
+
Visualizes
+for each (sub)class the distribution of mutations between mutations at AT
+locations and transitions or transversions at GC locations.
+
+
Absolute
+mutation patterns
+
+
Visualized
+for each (sub)class the percentage of sequenced AT and GC bases that are
+mutated. The mutations at GC bases are divided into transition and transversion
+mutations.
+
+
Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_selection.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_selection.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,128 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
References
+
+
Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying
+selection in high-throughput Immunoglobulin sequencing data sets. In Nucleic Acids Research, 40 (17),
+pp. e134–e134. [ doi:10.1093/nar/gks457 ][ Link ]
+
+
Graphs
+
+
AA
+mutation frequency
+
+
For
+each class, the frequency of replacement mutations at each amino acid position
+is shown, which is calculated by dividing the number of replacement mutations
+at a particular amino acid position/the number sequences that have an amino
+acid at that particular position. Since the length of the CDR1 and CDR2 region
+is not the same for every VH gene, some amino acids positions are absent.
+Therefore we calculate the frequency using the number of amino acids present at
+that that particular location.
+
+
Antigen
+selection (BASELINe)
+
+
Shows
+the results of the analysis of antigen selection as performed using BASELINe.
+Details on the analysis performed by BASELINe can be found in Yaari et al,
+PMID: 22641856. The settings used for the analysis are :
+focused, SHM targeting model: human Tri-nucleotide, custom bounderies. The
+custom boundries are dependent on the ‘sequence starts at filter’.
+
+
Leader:
+1:26:38:55:65:104:-
+
+
FR1: 27:27:38:55:65:104:-
+
+
CDR1: 27:27:38:55:65:104:-
+
+
FR2: 27:27:38:55:65:104:-
+
+
Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 shm_transition.htm
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/shm_transition.htm Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,120 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
These graphs and
+tables give insight into the targeting and patterns of SHM. This can give
+insight into the DNA repair pathways used to solve the U:G mismatches
+introduced by AID. More information on the values found in healthy individuals
+of different ages can be found in IJspeert and van Schouwenburg et al, PMID:
+27799928.
+
+
Graphs
+
+
+
Heatmap transition
+information
+
+
Heatmaps visualizing for each subclass the frequency
+of all possible substitutions. On the x-axes the original base is shown, while
+the y-axes shows the new base. The darker the shade of blue, the more frequent
+this type of substitution is occurring.
+
+
Bargraph
+transition information
+
+
Bar graph
+visualizing for each original base the distribution of substitutions into the other
+bases. A graph is included for each (sub)class.
+
+
Tables
+
+
Transition
+tables are shown for each (sub)class. All the original bases are listed
+horizontally, while the new bases are listed vertically.
+
+
Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In Frontiers in Immunolog, 7, pp. e410-410. [doi:10.3389/fimmu.2016.00410 ][Link ]
+
+
+
+
+
+
diff -r a4617f1d1d89 -r b6f9a640e098 style.tar.gz
Binary file style.tar.gz has changed
diff -r a4617f1d1d89 -r b6f9a640e098 subclass_definition.db.nhr
Binary file subclass_definition.db.nhr has changed
diff -r a4617f1d1d89 -r b6f9a640e098 subclass_definition.db.nin
Binary file subclass_definition.db.nin has changed
diff -r a4617f1d1d89 -r b6f9a640e098 subclass_definition.db.nsq
Binary file subclass_definition.db.nsq has changed
diff -r a4617f1d1d89 -r b6f9a640e098 summary_to_fasta.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/summary_to_fasta.py Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,42 @@
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="The 1_Summary file of an IMGT zip file")
+parser.add_argument("--fasta", help="The output fasta file")
+
+args = parser.parse_args()
+
+infile = args.input
+fasta = args.fasta
+
+with open(infile, 'r') as i, open(fasta, 'w') as o:
+ first = True
+ id_col = 0
+ seq_col = 0
+ no_results = 0
+ no_seqs = 0
+ passed = 0
+ for line in i:
+ splt = line.split("\t")
+ if first:
+ id_col = splt.index("Sequence ID")
+ seq_col = splt.index("Sequence")
+ first = False
+ continue
+ if len(splt) < 5:
+ no_results += 1
+ continue
+
+ ID = splt[id_col]
+ seq = splt[seq_col]
+
+ if not len(seq) > 0:
+ no_seqs += 1
+ continue
+
+ o.write(">" + ID + "\n" + seq + "\n")
+ passed += 1
+
+ print "No results:", no_results
+ print "No sequences:", no_seqs
+ print "Written to fasta file:", passed
diff -r a4617f1d1d89 -r b6f9a640e098 wrapper.sh
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/wrapper.sh Fri Feb 19 15:10:54 2021 +0000
@@ -0,0 +1,913 @@
+#!/bin/bash
+#set -e
+dir="$(cd "$(dirname "$0")" && pwd)"
+input=$1
+method=$2
+log=$3 #becomes the main html page at the end
+outdir=$4
+output="$outdir/index.html" #copied to $log location at the end
+title="$5"
+include_fr1=$6
+functionality=$7
+unique=$8
+naive_output=$9
+naive_output_ca=${10}
+naive_output_cg=${11}
+naive_output_cm=${12}
+naive_output_ce=${13}
+naive_output_all=${14}
+filter_unique=${15}
+filter_unique_count=${16}
+class_filter=${17}
+empty_region_filter=${18}
+fast=${19}
+
+mkdir $outdir
+
+tar -xzf $dir/style.tar.gz -C $outdir
+
+echo "---------------- read parameters ----------------"
+echo "---------------- read parameters ---------------- " > $log
+
+echo "unpacking IMGT file"
+
+type="`file $input`"
+if [[ "$type" == *"Zip archive"* ]] ; then
+ echo "Zip archive"
+ echo "unzip $input -d $PWD/files/"
+ unzip $input -d $PWD/files/
+elif [[ "$type" == *"XZ compressed data"* ]] ; then
+ echo "ZX archive"
+ echo "tar -xJf $input -C $PWD/files/"
+ mkdir -p "$PWD/files/$title"
+ tar -xJf $input -C "$PWD/files/$title"
+else
+ echo "Unrecognized format $type"
+ echo "Unrecognized format $type" > $log
+ exit 1
+fi
+
+cat "`find $PWD/files/ -name "1_*"`" > $PWD/summary.txt
+cat "`find $PWD/files/ -name "2_*"`" > $PWD/gapped_nt.txt
+cat "`find $PWD/files/ -name "3_*"`" > $PWD/sequences.txt
+cat "`find $PWD/files/ -name "4_*"`" > $PWD/gapped_aa.txt
+cat "`find $PWD/files/ -name "5_*"`" > $PWD/aa.txt
+cat "`find $PWD/files/ -name "6_*"`" > $PWD/junction.txt
+cat "`find $PWD/files/ -name "7_*"`" > $PWD/mutationanalysis.txt
+cat "`find $PWD/files/ -name "8_*"`" > $PWD/mutationstats.txt
+cat "`find $PWD/files/ -name "9_*"`" > $PWD/aa_change_stats.txt
+cat "`find $PWD/files/ -name "10_*"`" > $PWD/hotspots.txt
+
+echo "---------------- unique id check ----------------"
+
+Rscript $dir/check_unique_id.r $PWD/summary.txt $PWD/gapped_nt.txt $PWD/sequences.txt $PWD/gapped_aa.txt $PWD/aa.txt $PWD/junction.txt $PWD/mutationanalysis.txt $PWD/mutationstats.txt $PWD/aa_change_stats.txt $PWD/hotspots.txt
+
+if [[ ${#BLASTN_DIR} -ge 5 ]] ; then
+ echo "On server, using BLASTN_DIR env: ${BLASTN_DIR}"
+else
+ BLASTN_DIR="/home/galaxy/Downloads/ncbi-blast-2.4.0+/bin"
+ echo "Dev Galaxy set BLASTN_DIR to: ${BLASTN_DIR}"
+fi
+
+echo "---------------- class identification ----------------"
+echo "---------------- class identification ---------------- " >> $log
+
+python $dir/gene_identification.py --input $PWD/summary.txt --output $outdir/identified_genes.txt
+
+echo "---------------- merge_and_filter.r ----------------"
+echo "---------------- merge_and_filter.r ---------------- " >> $log
+
+Rscript $dir/merge_and_filter.r $PWD/summary.txt $PWD/sequences.txt $PWD/mutationanalysis.txt $PWD/mutationstats.txt $PWD/hotspots.txt "$PWD/gapped_aa.txt" $outdir/identified_genes.txt $outdir/merged.txt $outdir/before_unique_filter.txt $outdir/unmatched.txt $method $functionality $unique ${filter_unique} ${filter_unique_count} ${class_filter} ${empty_region_filter} 2>&1
+
+if [[ "${naive_output}" == "yes" ]] || [[ "$fast" == "no" ]] ; then
+
+ echo "---------------- creating new IMGT zips ----------------"
+ echo "---------------- creating new IMGT zips ---------------- " >> $log
+
+ mkdir $outdir/new_IMGT
+
+ cp $PWD/summary.txt "$outdir/new_IMGT/1_Summary.txt"
+ cp $PWD/gapped_nt.txt "$outdir/new_IMGT/2_IMGT-gapped-nt-sequences.txt"
+ cp $PWD/sequences.txt "$outdir/new_IMGT/3_Nt-sequences.txt"
+ cp $PWD/gapped_aa.txt "$outdir/new_IMGT/4_IMGT-gapped-AA-sequences.txt"
+ cp $PWD/aa.txt "$outdir/new_IMGT/5_AA-sequences.txt"
+ cp $PWD/junction.txt "$outdir/new_IMGT/6_Junction.txt"
+ cp $PWD/mutationanalysis.txt "$outdir/new_IMGT/7_V-REGION-mutation-and-AA-change-table.txt"
+ cp $PWD/mutationstats.txt "$outdir/new_IMGT/8_V-REGION-nt-mutation-statistics.txt"
+ cp $PWD/aa_change_stats.txt "$outdir/new_IMGT/9_V-REGION-AA-change-statistics.txt"
+ cp $PWD/hotspots.txt "$outdir/new_IMGT/10_V-REGION-mutation-hotspots.txt"
+
+ mkdir $outdir/new_IMGT_IGA
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA
+
+ mkdir $outdir/new_IMGT_IGA1
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA1
+
+ mkdir $outdir/new_IMGT_IGA2
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA2
+
+ mkdir $outdir/new_IMGT_IGG
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG
+
+ mkdir $outdir/new_IMGT_IGG1
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG1
+
+ mkdir $outdir/new_IMGT_IGG2
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG2
+
+ mkdir $outdir/new_IMGT_IGG3
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG3
+
+ mkdir $outdir/new_IMGT_IGG4
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG4
+
+ mkdir $outdir/new_IMGT_IGM
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGM
+
+ mkdir $outdir/new_IMGT_IGE
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGE
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT/ $outdir/merged.txt "-" 2>&1
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA/ $outdir/merged.txt "IGA" 2>&1
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA1/ $outdir/merged.txt "IGA1" 2>&1
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA2/ $outdir/merged.txt "IGA2" 2>&1
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG/ $outdir/merged.txt "IGG" 2>&1
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG1/ $outdir/merged.txt "IGG1" 2>&1
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG2/ $outdir/merged.txt "IGG2" 2>&1
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG3/ $outdir/merged.txt "IGG3" 2>&1
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG4/ $outdir/merged.txt "IGG4" 2>&1
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGM/ $outdir/merged.txt "IGM" 2>&1
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGE/ $outdir/merged.txt "IGE" 2>&1
+
+
+ tmp="$PWD"
+ cd $outdir/new_IMGT/ #tar weirdness...
+ tar -cJf ../new_IMGT.txz *
+
+ cd $outdir/new_IMGT_IGA/
+ tar -cJf ../new_IMGT_IGA.txz *
+
+ cd $outdir/new_IMGT_IGA1/
+ tar -cJf ../new_IMGT_IGA1.txz *
+
+ cd $outdir/new_IMGT_IGA2/
+ tar -cJf ../new_IMGT_IGA2.txz *
+
+ cd $outdir/new_IMGT_IGG/
+ tar -cJf ../new_IMGT_IGG.txz *
+
+ cd $outdir/new_IMGT_IGG1/
+ tar -cJf ../new_IMGT_IGG1.txz *
+
+ cd $outdir/new_IMGT_IGG2/
+ tar -cJf ../new_IMGT_IGG2.txz *
+
+ cd $outdir/new_IMGT_IGG3/
+ tar -cJf ../new_IMGT_IGG3.txz *
+
+ cd $outdir/new_IMGT_IGG4/
+ tar -cJf ../new_IMGT_IGG4.txz *
+
+ cd $outdir/new_IMGT_IGM/
+ tar -cJf ../new_IMGT_IGM.txz *
+
+ cd $outdir/new_IMGT_IGE/
+ tar -cJf ../new_IMGT_IGE.txz *
+
+ cd $tmp
+fi
+
+echo "---------------- shm_csr.r ----------------"
+echo "---------------- shm_csr.r ---------------- " >> $log
+
+classes="IGA,IGA1,IGA2,IGG,IGG1,IGG2,IGG3,IGG4,IGM,IGE,unmatched"
+echo "R mutation analysis"
+Rscript $dir/shm_csr.r $outdir/merged.txt $classes $outdir ${empty_region_filter} 2>&1
+
+echo "---------------- plot_pdfs.r ----------------"
+echo "---------------- plot_pdfs.r ---------------- " >> $log
+
+echo "Rscript $dir/shm_csr.r $outdir/pdfplots.RData $outdir 2>&1"
+
+Rscript $dir/plot_pdf.r "$outdir/pdfplots.RData" "$outdir" 2>&1
+
+echo "---------------- shm_csr.py ----------------"
+echo "---------------- shm_csr.py ---------------- " >> $log
+
+python $dir/shm_csr.py --input $outdir/merged.txt --genes $classes --empty_region_filter "${empty_region_filter}" --output $outdir/hotspot_analysis.txt
+
+echo "---------------- aa_histogram.r ----------------"
+echo "---------------- aa_histogram.r ---------------- " >> $log
+
+Rscript $dir/aa_histogram.r $outdir/aa_id_mutations.txt $outdir/absent_aa_id.txt "IGA,IGG,IGM,IGE" $outdir/ 2>&1
+if [ -e "$outdir/aa_histogram_.png" ]; then
+ mv $outdir/aa_histogram_.png $outdir/aa_histogram.png
+ mv $outdir/aa_histogram_.pdf $outdir/aa_histogram.pdf
+ mv $outdir/aa_histogram_.txt $outdir/aa_histogram.txt
+ mv $outdir/aa_histogram_absent_.txt $outdir/aa_histogram_absent.txt
+ mv $outdir/aa_histogram_count_.txt $outdir/aa_histogram_count.txt
+ mv $outdir/aa_histogram_sum_.txt $outdir/aa_histogram_sum.txt
+fi
+
+genes=(IGA IGA1 IGA2 IGG IGG1 IGG2 IGG3 IGG4 IGM IGE)
+
+funcs=(sum mean median)
+funcs=(sum)
+
+echo "---------------- sequence_overview.r ----------------"
+echo "---------------- sequence_overview.r ---------------- " >> $log
+
+mkdir $outdir/sequence_overview
+
+Rscript $dir/sequence_overview.r $outdir/before_unique_filter.txt $outdir/merged.txt $outdir/sequence_overview $classes $outdir/hotspot_analysis_sum.txt ${empty_region_filter} 2>&1
+
+echo "" > $outdir/base_overview.html
+
+while IFS=$'\t' read ID class seq A C G T
+do
+ echo "$ID $seq $class $A $C $G $T " >> $outdir/base_overview.html
+done < $outdir/sequence_overview/ntoverview.txt
+
+echo "$title " > $output
+echo " " >> $output
+echo "" >> $output
+echo "" >> $output
+echo "" >> $output
+echo " " >> $output
+echo " " >> $output
+
+matched_count="`cat $outdir/merged.txt | grep -v 'unmatched' | tail -n +2 | wc -l`"
+unmatched_count="`cat $outdir/unmatched.txt | tail -n +2 | wc -l`"
+total_count=$((matched_count + unmatched_count))
+perc_count=$((unmatched_count / total_count * 100))
+perc_count=`bc -l <<< "scale=2; ${unmatched_count} / ${total_count} * 100"`
+perc_count=`bc -l <<< "scale=2; (${unmatched_count} / ${total_count} * 100 ) / 1"`
+
+echo "Total: ${total_count} " >> $output
+echo "Matched: ${matched_count} Unmatched: ${unmatched_count} " >> $output
+echo "Percentage unmatched: ${perc_count} " >> $output
+
+echo "---------------- main tables ----------------"
+echo "---------------- main tables ---------------- " >> $log
+
+echo "" >> $output
+echo "
" >> $output
+
+for func in ${funcs[@]}
+do
+
+ echo "---------------- $func table ----------------"
+ echo "---------------- $func table ----------------
" >> $log
+
+ cat $outdir/mutations_${func}.txt $outdir/shm_overview_tandem_row.txt $outdir/hotspot_analysis_${func}.txt > $outdir/data_${func}.txt
+
+ echo "---------------- pattern_plots.r ----------------"
+ echo "---------------- pattern_plots.r ----------------
" >> $log
+
+ Rscript $dir/pattern_plots.r $outdir/data_${func}.txt $outdir/aid_motives $outdir/relative_mutations $outdir/absolute_mutations $outdir/shm_overview.txt 2>&1
+
+ echo "
" >> $output
+ echo "info " >> $output
+
+ if [ "${class_filter}" != "101_101" ] ; then
+
+ for gene in ${genes[@]}
+ do
+ tmp=`cat $outdir/${gene}_${func}_n.txt`
+ echo "${gene} (N = $tmp) " >> $output
+ done
+
+ tmp=`cat $outdir/all_${func}_n.txt`
+ echo "all (N = $tmp) " >> $output
+ tmp=`cat $outdir/unmatched_${func}_n.txt`
+ echo "unmatched (N = ${unmatched_count}) " >> $output
+
+ while IFS=, read name cax cay caz ca1x ca1y ca1z ca2x ca2y ca2z cgx cgy cgz cg1x cg1y cg1z cg2x cg2y cg2z cg3x cg3y cg3z cg4x cg4y cg4z cmx cmy cmz cex cey cez unx uny unz allx ally allz
+ do
+ if [ "$name" == "FR R/S (ratio)" ] || [ "$name" == "CDR R/S (ratio)" ] || [ "$name" == "Tandems/Expected (ratio)" ] ; then #meh
+ echo "$name ${cax}/${cay} (${caz}) ${ca1x}/${ca1y} (${ca1z}) ${ca2x}/${ca2y} (${ca2z}) ${cgx}/${cgy} (${cgz}) ${cg1x}/${cg1y} (${cg1z}) ${cg2x}/${cg2y} (${cg2z}) ${cg3x}/${cg3y} (${cg3z}) ${cg4x}/${cg4y} (${cg4z}) ${cmx}/${cmy} (${cmz}) ${cex}/${cey} (${cez}) ${allx}/${ally} (${allz}) ${unx}/${uny} (${unz}) " >> $output
+ elif [ "$name" == "Median of Number of Mutations (%)" ] ; then
+ echo "$name ${caz}% ${ca1z}% ${ca2z}% ${cgz}% ${cg1z}% ${cg2z}% ${cg3z}% ${cg4z}% ${cmz}% ${cez}% ${allz}% ${unz}% " >> $output
+ else
+ echo "$name ${cax}/${cay} (${caz}%) ${ca1x}/${ca1y} (${ca1z}%) ${ca2x}/${ca2y} (${ca2z}%) ${cgx}/${cgy} (${cgz}%) ${cg1x}/${cg1y} (${cg1z}%) ${cg2x}/${cg2y} (${cg2z}%) ${cg3x}/${cg3y} (${cg3z}%) ${cg4x}/${cg4y} (${cg4z}%) ${cmx}/${cmy} (${cmz}%) ${cex}/${cey} (${cez}%) ${allx}/${ally} (${allz}%) ${unx}/${uny} (${unz}%) " >> $output
+ fi
+ done < $outdir/data_${func}.txt
+
+ else
+ tmp=`cat $outdir/all_${func}_n.txt`
+ echo "all (N = $tmp) " >> $output
+
+ while IFS=, read name cax cay caz ca1x ca1y ca1z ca2x ca2y ca2z cgx cgy cgz cg1x cg1y cg1z cg2x cg2y cg2z cg3x cg3y cg3z cg4x cg4y cg4z cmx cmy cmz cex cey cez unx uny unz allx ally allz
+ do
+ if [ "$name" == "FR R/S (ratio)" ] || [ "$name" == "CDR R/S (ratio)" ] ; then #meh
+ echo "$name ${allx}/${ally} " >> $output
+ elif [ "$name" == "Median of Number of Mutations (%)" ] ; then
+ echo "$name ${allz}% " >> $output
+ else
+ echo "$name ${allx}/${ally} (${allz}%) " >> $output
+ fi
+ done < $outdir/data_${func}.txt
+
+ fi
+ echo "
" >> $output
+ #echo "
Download data " >> $output
+done
+
+echo "
" >> $output
+echo "
" >> $output
+echo "
" >> $output
+echo "
" >> $output
+cat $dir/shm_overview.htm >> $output
+echo "
" >> $output #SHM overview tab end
+
+echo "---------------- images ----------------"
+echo "---------------- images ----------------
" >> $log
+
+echo "
" >> $output #SHM frequency tab end
+
+echo "
" >> $output
+
+echo "
" >> $output
+
+for gene in ${genes[@]}
+do
+ echo "" >> $output
+ echo "${gene} " >> $output
+
+ if [ -e $outdir/transitions_heatmap_${gene}.png ]
+ then
+ echo " " >> $output
+ else
+ echo " " >> $output
+ fi
+
+ if [ -e $outdir/transitions_stacked_${gene}.png ]
+ then
+ echo " " >> $output
+ else
+ echo " " >> $output
+ fi
+
+ echo "" >> $output
+ echo "To " >> $output
+ first="true"
+ while IFS=, read from a c g t
+ do
+ if [ "$first" == "true" ] ; then
+ echo "From $from $a $c $g $t " >> $output
+ first="false"
+ else
+ echo "$from $a $c $g $t " >> $output
+ fi
+ done < $outdir/transitions_${gene}_sum.txt
+ echo "
" >> $output
+
+ echo " " >> $output
+done
+
+echo "" >> $output
+echo "All " >> $output
+echo " " >> $output
+echo " " >> $output
+echo "" >> $output
+echo "To " >> $output
+first="true"
+while IFS=, read from a c g t
+ do
+ if [ "$first" == "true" ] ; then
+ echo "From $from $a $c $g $t " >> $output
+ first="false"
+ else
+ echo "$from $a $c $g $t " >> $output
+ fi
+done < $outdir/transitions_all_sum.txt
+echo "
" >> $output
+
+echo " " >> $output
+
+echo "
" >> $output
+
+echo "
" >> $output
+cat $dir/shm_transition.htm >> $output
+
+echo "
" >> $output #transition tables tab end
+
+echo "
" >> $output #antigen selection tab end
+
+echo "
" >> $output #CSR tab
+
+if [ -e $outdir/IGA.png ]
+then
+ echo "
" >> $output
+fi
+if [ -e $outdir/IGG.png ]
+then
+ echo "
" >> $output
+fi
+
+echo "
" >> $output
+cat $dir/shm_csr.htm >> $output
+
+echo "
" >> $output #CSR tab end
+
+if [[ "$fast" == "no" ]] ; then
+
+ echo "---------------- change-o MakeDB ----------------"
+
+ mkdir $outdir/change_o
+
+ tmp="$PWD"
+
+ cd $outdir/change_o
+
+ bash $dir/change_o/makedb.sh $outdir/new_IMGT.txz false false false $outdir/change_o/change-o-db.txt
+ bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones.txt $outdir/change_o/change-o-defined_clones-summary.txt
+ Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones.txt $outdir/change_o/change-o-db-defined_first_clones.txt 2>&1
+
+ mkdir $outdir/new_IMGT_changeo
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_changeo
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_changeo $outdir/change_o/change-o-db-defined_first_clones.txt "-" 2>&1
+
+ cd $outdir/new_IMGT_changeo
+ tar -cJf ../new_IMGT_first_seq_of_clone.txz *
+ cd $outdir/change_o
+
+ rm -rf $outdir/new_IMGT_changeo
+
+ Rscript $dir/merge.r $outdir/change_o/change-o-db-defined_clones.txt $outdir/merged.txt "all" "Sequence.ID,best_match" "SEQUENCE_ID" "Sequence.ID" $outdir/change_o/change-o-db-defined_clones.txt 2>&1
+ echo "Rscript $dir/merge.r $outdir/change_o/change-o-db-defined_clones.txt $outdir/$outdir/merged.txt 'all' 'Sequence.ID,best_match' 'Sequence.ID' 'Sequence.ID' '\t' $outdir/change_o/change-o-db-defined_clones.txt 2>&1"
+
+ if [[ $(wc -l < $outdir/new_IMGT_IGA/1_Summary.txt) -gt "1" ]]; then
+ bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGA.txz false false false $outdir/change_o/change-o-db-IGA.txt
+ bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGA.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGA.txt $outdir/change_o/change-o-defined_clones-summary-IGA.txt
+ Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGA.txt $outdir/change_o/change-o-db-defined_first_clones-IGA.txt 2>&1
+
+ mkdir $outdir/new_IMGT_IGA_changeo
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGA_changeo
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGA_changeo $outdir/change_o/change-o-db-defined_first_clones-IGA.txt "-" 2>&1
+
+ cd $outdir/new_IMGT_IGA_changeo
+ tar -cJf ../new_IMGT_IGA_first_seq_of_clone.txz *
+
+ rm -rf $outdir/new_IMGT_IGA_changeo
+
+ cd $outdir/change_o
+ else
+ echo "No IGA sequences" > "$outdir/change_o/change-o-db-defined_clones-IGA.txt"
+ echo "No IGA sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGA.txt"
+ fi
+
+ if [[ $(wc -l < $outdir/new_IMGT_IGG/1_Summary.txt) -gt "1" ]]; then
+ bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGG.txz false false false $outdir/change_o/change-o-db-IGG.txt
+ bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGG.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGG.txt $outdir/change_o/change-o-defined_clones-summary-IGG.txt
+ Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGG.txt $outdir/change_o/change-o-db-defined_first_clones-IGG.txt 2>&1
+
+ mkdir $outdir/new_IMGT_IGG_changeo
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGG_changeo
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGG_changeo $outdir/change_o/change-o-db-defined_first_clones-IGG.txt "-" 2>&1
+
+ cd $outdir/new_IMGT_IGG_changeo
+ tar -cJf ../new_IMGT_IGG_first_seq_of_clone.txz *
+ rm -rf $outdir/new_IMGT_IGG_changeo
+
+ cd $outdir/change_o
+ else
+ echo "No IGG sequences" > "$outdir/change_o/change-o-db-defined_clones-IGG.txt"
+ echo "No IGG sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGG.txt"
+ fi
+
+ if [[ $(wc -l < $outdir/new_IMGT_IGM/1_Summary.txt) -gt "1" ]]; then
+ bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGM.txz false false false $outdir/change_o/change-o-db-IGM.txt
+ bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGM.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGM.txt $outdir/change_o/change-o-defined_clones-summary-IGM.txt
+ Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGM.txt $outdir/change_o/change-o-db-defined_first_clones-IGM.txt 2>&1
+
+ mkdir $outdir/new_IMGT_IGM_changeo
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGM_changeo
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGM_changeo $outdir/change_o/change-o-db-defined_first_clones-IGM.txt "-" 2>&1
+
+ cd $outdir/new_IMGT_IGM_changeo
+ tar -cJf ../new_IMGT_IGM_first_seq_of_clone.txz *
+
+ rm -rf $outdir/new_IMGT_IGM_changeo
+
+ cd $outdir/change_o
+ else
+ echo "No IGM sequences" > "$outdir/change_o/change-o-db-defined_clones-IGM.txt"
+ echo "No IGM sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGM.txt"
+ fi
+
+ if [[ $(wc -l < $outdir/new_IMGT_IGE/1_Summary.txt) -gt "1" ]]; then
+ bash $dir/change_o/makedb.sh $outdir/new_IMGT_IGE.txz false false false $outdir/change_o/change-o-db-IGE.txt
+ bash $dir/change_o/define_clones.sh bygroup $outdir/change_o/change-o-db-IGE.txt gene first ham none min complete 3.0 $outdir/change_o/change-o-db-defined_clones-IGE.txt $outdir/change_o/change-o-defined_clones-summary-IGE.txt
+ Rscript $dir/change_o/select_first_in_clone.r $outdir/change_o/change-o-db-defined_clones-IGE.txt $outdir/change_o/change-o-db-defined_first_clones-IGE.txt 2>&1
+
+ mkdir $outdir/new_IMGT_IGE_changeo
+ cp $outdir/new_IMGT/* $outdir/new_IMGT_IGE_changeo
+
+ Rscript $dir/new_imgt.r $outdir/new_IMGT_IGE_changeo $outdir/change_o/change-o-db-defined_first_clones-IGE.txt "-" 2>&1
+
+ cd $outdir/new_IMGT_IGE_changeo
+ tar -cJf ../new_IMGT_IGE_first_seq_of_clone.txz *
+
+ rm -rf $outdir/new_IMGT_IGE_changeo
+
+ cd $outdir/change_o
+ else
+ echo "No IGE sequences" > "$outdir/change_o/change-o-db-defined_clones-IGE.txt"
+ echo "No IGE sequences" > "$outdir/change_o/change-o-defined_clones-summary-IGE.txt"
+ fi
+
+ cd "$tmp"
+
+ rm -rf $outdir/new_IMGT
+ rm -rf $outdir/new_IMGT_IGA/
+ rm -rf $outdir/new_IMGT_IGA1/
+ rm -rf $outdir/new_IMGT_IGA2/
+ rm -rf $outdir/new_IMGT_IGG/
+ rm -rf $outdir/new_IMGT_IGG1/
+ rm -rf $outdir/new_IMGT_IGG2/
+ rm -rf $outdir/new_IMGT_IGG3/
+ rm -rf $outdir/new_IMGT_IGG4/
+ rm -rf $outdir/new_IMGT_IGM/
+ rm -rf $outdir/new_IMGT_IGE/
+
+ echo "
" >> $output #clonality tab
+
+ function clonality_table {
+ local infile=$1
+ local outfile=$2
+
+ echo "
" >> $outfile
+ echo "Clone size Nr of clones Nr of sequences " >> $outfile
+
+ first='true'
+
+ while read size clones seqs
+ do
+ if [[ "$first" == "true" ]]; then
+ first="false"
+ continue
+ fi
+ echo "$size $clones $seqs " >> $outfile
+ done < $infile
+
+ echo "
" >> $outfile
+ }
+ echo "
" >> $output
+
+ echo "
" >> $output
+ clonality_table $outdir/change_o/change-o-defined_clones-summary.txt $output
+ echo "
" >> $output
+
+ echo "
" >> $output
+ clonality_table $outdir/change_o/change-o-defined_clones-summary-IGA.txt $output
+ echo "
" >> $output
+
+ echo "
" >> $output
+ clonality_table $outdir/change_o/change-o-defined_clones-summary-IGG.txt $output
+ echo "
" >> $output
+
+ echo "
" >> $output
+ clonality_table $outdir/change_o/change-o-defined_clones-summary-IGM.txt $output
+ echo "
" >> $output
+
+ echo "
" >> $output
+ clonality_table $outdir/change_o/change-o-defined_clones-summary-IGM.txt $output
+ echo "
" >> $output
+
+ echo "
" >> $output
+ cat "$outdir/sequence_overview/index.html" | sed -e 's::\n:g' | sed "s:href='\(.*\).html:href='sequence_overview/\1.html:g" >> $output # rewrite href to 'sequence_overview/..."
+ echo "
" >> $output
+
+ echo "
" >> $output #clonality tabber end
+
+ echo "
" >> $output
+ cat $dir/shm_clonality.htm >> $output
+
+ echo "
" >> $output #clonality tab end
+
+fi
+
+echo "
" >> $output
+
+echo "
" >> $output
+echo "info link " >> $output
+echo "The complete dataset Download " >> $output
+echo "The filtered dataset Download " >> $output
+echo "The alignment info on the unmatched sequences Download " >> $output
+
+echo "SHM Overview " >> $output
+echo "The SHM Overview table as a dataset Download " >> $output
+echo "Motif data per sequence ID Download " >> $output
+echo "Mutation data per sequence ID Download " >> $output
+echo "Base count for every sequence View " >> $output
+echo "The data used to generate the percentage of mutations in AID and pol eta motives plot Download " >> $output
+echo "The data used to generate the relative mutation patterns plot Download " >> $output
+echo "The data used to generate the absolute mutation patterns plot Download " >> $output
+echo "Data about tandem mutations by ID Download " >> $output
+
+echo "SHM Frequency " >> $output
+echo "The data generate the frequency scatter plot Download " >> $output
+echo "The data used to generate the frequency by class plot Download " >> $output
+echo "The data for frequency by subclass Download " >> $output
+
+echo "Transition Tables " >> $output
+echo "The data for the 'all' transition plot Download " >> $output
+echo "The data for the 'IGA' transition plot Download " >> $output
+echo "The data for the 'IGA1' transition plot Download " >> $output
+echo "The data for the 'IGA2' transition plot Download " >> $output
+echo "The data for the 'IGG' transition plot Download " >> $output
+echo "The data for the 'IGG1' transition plot Download " >> $output
+echo "The data for the 'IGG2' transition plot Download " >> $output
+echo "The data for the 'IGG3' transition plot Download " >> $output
+echo "The data for the 'IGG4' transition plot Download " >> $output
+echo "The data for the 'IGM' transition plot Download " >> $output
+echo "The data for the 'IGE' transition plot Download " >> $output
+
+echo "Antigen Selection " >> $output
+echo "AA mutation data per sequence ID Download " >> $output
+echo "Presence of AA per sequence ID Download " >> $output
+
+echo "The data used to generate the aa mutation frequency plot Download " >> $output
+echo "The data used to generate the aa mutation frequency plot for IGA Download " >> $output
+echo "The data used to generate the aa mutation frequency plot for IGG Download " >> $output
+echo "The data used to generate the aa mutation frequency plot for IGM Download " >> $output
+echo "The data used to generate the aa mutation frequency plot for IGE Download " >> $output
+
+echo "Baseline PDF (http://selection.med.yale.edu/baseline/ ) Download " >> $output
+echo "Baseline data Download " >> $output
+echo "Baseline IGA PDF Download " >> $output
+echo "Baseline IGA data Download " >> $output
+echo "Baseline IGG PDF Download " >> $output
+echo "Baseline IGG data Download " >> $output
+echo "Baseline IGM PDF Download " >> $output
+echo "Baseline IGM data Download " >> $output
+echo "Baseline IGE PDF Download " >> $output
+echo "Baseline IGE data Download " >> $output
+
+echo "CSR " >> $output
+echo "The data for the IGA subclass distribution plot Download " >> $output
+echo "The data for the IGG subclass distribution plot Download " >> $output
+
+
+echo "Clonal Relation " >> $output
+echo "Sequence overlap between subclasses View " >> $output
+echo "The Change-O DB file with defined clones and subclass annotation Download " >> $output
+echo "The Change-O DB defined clones summary file Download " >> $output
+echo "An IMGT archive with just just the first sequence of a clone Download " >> $output
+
+echo "The Change-O DB file with defined clones of IGA Download " >> $output
+echo "The Change-O DB defined clones summary file of IGA Download " >> $output
+echo "An IMGT archive with just just the first sequence of a clone (IGA) Download " >> $output
+
+echo "The Change-O DB file with defined clones of IGG Download " >> $output
+echo "The Change-O DB defined clones summary file of IGG Download " >> $output
+echo "An IMGT archive with just just the first sequence of a clone (IGG) Download " >> $output
+
+echo "The Change-O DB file with defined clones of IGM Download " >> $output
+echo "The Change-O DB defined clones summary file of IGM Download " >> $output
+echo "An IMGT archive with just just the first sequence of a clone (IGM) Download " >> $output
+
+echo "The Change-O DB file with defined clones of IGE Download " >> $output
+echo "The Change-O DB defined clones summary file of IGE Download " >> $output
+echo "An IMGT archive with just just the first sequence of a clone (IGE) Download " >> $output
+
+echo "Filtered IMGT output files " >> $output
+echo "An IMGT archive with just the matched and filtered sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGA sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGA1 sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGA2 sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGG sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGG1 sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGG2 sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGG3 sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGG4 sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGM sequences Download " >> $output
+echo "An IMGT archive with just the matched and filtered IGE sequences Download " >> $output
+
+echo "
" >> $output
+
+echo "
" >> $output
+cat $dir/shm_downloads.htm >> $output
+
+echo "
" >> $output #downloads tab end
+
+echo "
" >> $output #tabs end
+
+echo "" >> $output
+
+
+echo "---------------- naive_output.r ----------------"
+echo "---------------- naive_output.r ---------------- " >> $log
+
+if [[ "$naive_output" == "yes" ]]
+then
+ echo "output naive output"
+ if [[ "${class_filter}" == "101_101" ]]
+ then
+ echo "copy new_IMGT.txz to ${naive_output_all}"
+ cp $outdir/new_IMGT.txz ${naive_output_all}
+ else
+ echo "copy for classes"
+ cp $outdir/new_IMGT_IGA.txz ${naive_output_ca}
+ cp $outdir/new_IMGT_IGG.txz ${naive_output_cg}
+ cp $outdir/new_IMGT_IGM.txz ${naive_output_cm}
+ cp $outdir/new_IMGT_IGE.txz ${naive_output_ce}
+ fi
+fi
+
+echo "
" >> $outdir/base_overview.html
+
+mv $log $outdir/log.html
+
+echo "Tip: Open it in a new tab (middle mouse button or right mouse button -> 'open in new tab' on the link above) " > $log
+echo "" >> $log
+echo "Info Sequences Percentage " >> $log
+tIFS="$TMP"
+IFS=$'\t'
+while read step seq perc
+ do
+ echo "" >> $log
+ echo "$step " >> $log
+ echo "$seq " >> $log
+ echo "${perc}% " >> $log
+ echo " " >> $log
+done < $outdir/filtering_steps.txt
+echo "
" >> $log
+echo " " >> $log
+cat $dir/shm_first.htm >> $log
+echo " " >> $log
+
+IFS="$tIFS"
+
+
+echo "---------------- Done! ----------------"
+echo "---------------- Done! ---------------- " >> $outdir/log.html
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+