Mercurial > repos > davidvanzessen > shm_csr
changeset 77:58d2377b507d draft
Uploaded
author | davidvanzessen |
---|---|
date | Wed, 19 Jun 2019 04:31:44 -0400 |
parents | a93136637bea |
children | aff3ba86ef7a |
files | README.md change_o/DefineClones.py change_o/MakeDb.py merge_and_filter.r shm_csr.xml |
diffstat | 5 files changed, 23 insertions(+), 1688 deletions(-) [+] |
line wrap: on
line diff
--- a/README.md Tue Jun 18 04:47:44 2019 -0400 +++ b/README.md Wed Jun 19 04:31:44 2019 -0400 @@ -1,6 +1,7 @@ # SHM CSR -Somatic hypermutation and class switch recombination pipeline +Somatic hypermutation and class switch recombination pipeline. +The docker version can be found [here](https://github.com/ErasmusMC-Bioinformatics/ARGalaxy-docker). # Dependencies -------------------- @@ -9,4 +10,4 @@ [Baseline](http://selection.med.yale.edu/baseline/) [R data.table](https://cran.r-project.org/web/packages/data.table/data.table.pdf) [R ggplot2](https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf) -[R reshape2](https://cran.r-project.org/web/packages/reshape/reshape.pdf) \ No newline at end of file +[R reshape2](https://cran.r-project.org/web/packages/reshape/reshape.pdf)
--- a/change_o/DefineClones.py Tue Jun 18 04:47:44 2019 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1123 +0,0 @@ -#!/usr/bin/env python3 -""" -Assign Ig sequences into clones -""" -# Info -__author__ = 'Namita Gupta, Jason Anthony Vander Heiden, Gur Yaari, Mohamed Uduman' -from changeo import __version__, __date__ - -# Imports -import os -import re -import sys -import csv -import numpy as np -from argparse import ArgumentParser -from collections import OrderedDict -from itertools import chain -from textwrap import dedent -from time import time -from Bio import pairwise2 -from Bio.Seq import translate - -# Presto and changeo imports -from presto.Defaults import default_out_args -from presto.IO import getFileType, getOutputHandle, printLog, printProgress -from presto.Multiprocessing import manageProcesses -from presto.Sequence import getDNAScoreDict -from changeo.Commandline import CommonHelpFormatter, getCommonArgParser, parseCommonArgs -from changeo.Distance import distance_models, calcDistances, formClusters -from changeo.IO import getDbWriter, readDbFile, countDbFile -from changeo.Multiprocessing import DbData, DbResult - -## Set maximum field size for csv.reader -csv.field_size_limit(sys.maxsize) - -# Defaults -default_translate = False -default_distance = 0.0 -default_index_mode = 'gene' -default_index_action = 'set' -default_bygroup_model = 'ham' -default_hclust_model = 'chen2010' -default_seq_field = 'JUNCTION' -default_norm = 'len' -default_sym = 'avg' -default_linkage = 'single' -choices_bygroup_model = ('ham', 'aa', 'hh_s1f', 'hh_s5f', 'mk_rs1nf', 'mk_rs5nf', 'hs1f_compat', 'm1n_compat') - - -def indexByIdentity(index, key, rec, fields=None): - """ - Updates a preclone index with a simple key - - Arguments: - index = preclone index from indexJunctions - key = index key - rec = IgRecord to add to the index - fields = additional annotation fields to use to group preclones; - if None use only V, J and junction length - - Returns: - None. Updates index with new key and records. - """ - index.setdefault(tuple(key), []).append(rec) - - -def indexByUnion(index, key, rec, fields=None): - """ - Updates a preclone index with the union of nested keys - - Arguments: - index = preclone index from indexJunctions - key = index key - rec = IgRecord to add to the index - fields = additional annotation fields to use to group preclones; - if None use only V, J and junction length - - Returns: - None. Updates index with new key and records. - """ - # List of values for this/new key - val = [rec] - f_range = list(range(2, 3 + (len(fields) if fields else 0))) - - # See if field/junction length combination exists in index - outer_dict = index - for field in f_range: - try: - outer_dict = outer_dict[key[field]] - except (KeyError): - outer_dict = None - break - # If field combination exists, look through Js - j_matches = [] - if outer_dict is not None: - for j in outer_dict.keys(): - if not set(key[1]).isdisjoint(set(j)): - key[1] = tuple(set(key[1]).union(set(j))) - j_matches += [j] - # If J overlap exists, look through Vs for each J - for j in j_matches: - v_matches = [] - # Collect V matches for this J - for v in outer_dict[j].keys(): - if not set(key[0]).isdisjoint(set(v)): - key[0] = tuple(set(key[0]).union(set(v))) - v_matches += [v] - # If there are V overlaps for this J, pop them out - if v_matches: - val += list(chain(*(outer_dict[j].pop(v) for v in v_matches))) - # If the J dict is now empty, remove it - if not outer_dict[j]: - outer_dict.pop(j, None) - - # Add value(s) into index nested dictionary - # OMG Python pointers are the best! - # Add field dictionaries into index - outer_dict = index - for field in f_range: - outer_dict.setdefault(key[field], {}) - outer_dict = outer_dict[key[field]] - # Add J, then V into index - if key[1] in outer_dict: - outer_dict[key[1]].update({key[0]: val}) - else: - outer_dict[key[1]] = {key[0]: val} - - -def indexJunctions(db_iter, fields=None, mode=default_index_mode, - action=default_index_action): - """ - Identifies preclonal groups by V, J and junction length - - Arguments: - db_iter = an iterator of IgRecords defined by readDbFile - fields = additional annotation fields to use to group preclones; - if None use only V, J and junction length - mode = specificity of alignment call to use for assigning preclones; - one of ('allele', 'gene') - action = how to handle multiple value fields when assigning preclones; - one of ('first', 'set') - - Returns: - a dictionary of {(V, J, junction length):[IgRecords]} - """ - # print(fields) - # Define functions for grouping keys - if mode == 'allele' and fields is None: - def _get_key(rec, act): - return [rec.getVAllele(act), rec.getJAllele(act), - None if rec.junction is None else len(rec.junction)] - elif mode == 'gene' and fields is None: - def _get_key(rec, act): - return [rec.getVGene(act), rec.getJGene(act), - None if rec.junction is None else len(rec.junction)] - elif mode == 'allele' and fields is not None: - def _get_key(rec, act): - vdj = [rec.getVAllele(act), rec.getJAllele(act), - None if rec.junction is None else len(rec.junction)] - ann = [rec.toDict().get(k, None) for k in fields] - return list(chain(vdj, ann)) - elif mode == 'gene' and fields is not None: - def _get_key(rec, act): - vdj = [rec.getVGene(act), rec.getJGene(act), - None if rec.junction is None else len(rec.junction)] - ann = [rec.toDict().get(k, None) for k in fields] - return list(chain(vdj, ann)) - - # Function to flatten nested dictionary - def _flatten_dict(d, parent_key=''): - items = [] - for k, v in d.items(): - new_key = parent_key + [k] if parent_key else [k] - if isinstance(v, dict): - items.extend(_flatten_dict(v, new_key).items()) - else: - items.append((new_key, v)) - flat_dict = {None if None in i[0] else tuple(i[0]): i[1] for i in items} - return flat_dict - - if action == 'first': - index_func = indexByIdentity - elif action == 'set': - index_func = indexByUnion - else: - sys.stderr.write('Unrecognized action: %s.\n' % action) - - start_time = time() - clone_index = {} - rec_count = 0 - for rec in db_iter: - key = _get_key(rec, action) - - # Print progress - if rec_count == 0: - print('PROGRESS> Grouping sequences') - - printProgress(rec_count, step=1000, start_time=start_time) - rec_count += 1 - - # Assigned passed preclone records to key and failed to index None - if all([k is not None and k != '' for k in key]): - # Update index dictionary - index_func(clone_index, key, rec, fields) - else: - clone_index.setdefault(None, []).append(rec) - - printProgress(rec_count, step=1000, start_time=start_time, end=True) - - if action == 'set': - clone_index = _flatten_dict(clone_index) - - return clone_index - - -def distanceClones(records, model=default_bygroup_model, distance=default_distance, - dist_mat=None, norm=default_norm, sym=default_sym, - linkage=default_linkage, seq_field=default_seq_field): - """ - Separates a set of IgRecords into clones - - Arguments: - records = an iterator of IgRecords - model = substitution model used to calculate distance - distance = the distance threshold to assign clonal groups - dist_mat = pandas DataFrame of pairwise nucleotide or amino acid distances - norm = normalization method - sym = symmetry method - linkage = type of linkage - seq_field = sequence field used to calculate distance between records - - Returns: - a dictionary of lists defining {clone number: [IgRecords clonal group]} - """ - # Get distance matrix if not provided - if dist_mat is None: - try: - dist_mat = distance_models[model] - except KeyError: - sys.exit('Unrecognized distance model: %s' % args_dict['model']) - - # TODO: can be cleaned up with abstract model class - # Determine length of n-mers - if model in ['hs1f_compat', 'm1n_compat', 'aa', 'ham', 'hh_s1f', 'mk_rs1nf']: - nmer_len = 1 - elif model in ['hh_s5f', 'mk_rs5nf']: - nmer_len = 5 - else: - sys.exit('Unrecognized distance model: %s.\n' % model) - - # Define unique junction mapping - seq_map = {} - for ig in records: - seq = ig.getSeqField(seq_field) - # Check if sequence length is 0 - if len(seq) == 0: - return None - - seq = re.sub('[\.-]', 'N', str(seq)) - if model == 'aa': seq = translate(seq) - - seq_map.setdefault(seq, []).append(ig) - - # Process records - if len(seq_map) == 1: - return {1:records} - - # Define sequences - seqs = list(seq_map.keys()) - - # Calculate pairwise distance matrix - dists = calcDistances(seqs, nmer_len, dist_mat, sym=sym, norm=norm) - - # Perform hierarchical clustering - clusters = formClusters(dists, linkage, distance) - - # Turn clusters into clone dictionary - clone_dict = {} - for i, c in enumerate(clusters): - clone_dict.setdefault(c, []).extend(seq_map[seqs[i]]) - - return clone_dict - - -def distChen2010(records): - """ - Calculate pairwise distances as defined in Chen 2010 - - Arguments: - records = list of IgRecords where first is query to be compared to others in list - - Returns: - list of distances - """ - # Pull out query sequence and V/J information - query = records.popitem(last=False) - query_cdr3 = query.junction[3:-3] - query_v_allele = query.getVAllele() - query_v_gene = query.getVGene() - query_v_family = query.getVFamily() - query_j_allele = query.getJAllele() - query_j_gene = query.getJGene() - # Create alignment scoring dictionary - score_dict = getDNAScoreDict() - - scores = [0]*len(records) - for i in range(len(records)): - ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3], - score_dict, -1, -1, one_alignment_only=True) - # Check V similarity - if records[i].getVAllele() == query_v_allele: ld += 0 - elif records[i].getVGene() == query_v_gene: ld += 1 - elif records[i].getVFamily() == query_v_family: ld += 3 - else: ld += 5 - # Check J similarity - if records[i].getJAllele() == query_j_allele: ld += 0 - elif records[i].getJGene() == query_j_gene: ld += 1 - else: ld += 3 - # Divide by length - scores[i] = ld/max(len(records[i].junction[3:-3]), query_cdr3) - - return scores - - -def distAdemokun2011(records): - """ - Calculate pairwise distances as defined in Ademokun 2011 - - Arguments: - records = list of IgRecords where first is query to be compared to others in list - - Returns: - list of distances - """ - # Pull out query sequence and V family information - query = records.popitem(last=False) - query_cdr3 = query.junction[3:-3] - query_v_family = query.getVFamily() - # Create alignment scoring dictionary - score_dict = getDNAScoreDict() - - scores = [0]*len(records) - for i in range(len(records)): - - if abs(len(query_cdr3) - len(records[i].junction[3:-3])) > 10: - scores[i] = 1 - elif query_v_family != records[i].getVFamily(): - scores[i] = 1 - else: - ld = pairwise2.align.globalds(query_cdr3, records[i].junction[3:-3], - score_dict, -1, -1, one_alignment_only=True) - scores[i] = ld/min(len(records[i].junction[3:-3]), query_cdr3) - - return scores - - -def hierClust(dist_mat, method='chen2010'): - """ - Calculate hierarchical clustering - - Arguments: - dist_mat = square-formed distance matrix of pairwise CDR3 comparisons - - Returns: - list of cluster ids - """ - if method == 'chen2010': - clusters = formClusters(dist_mat, 'average', 0.32) - elif method == 'ademokun2011': - clusters = formClusters(dist_mat, 'complete', 0.25) - else: clusters = np.ones(dist_mat.shape[0]) - - return clusters - -# TODO: Merge duplicate feed, process and collect functions. -def feedQueue(alive, data_queue, db_file, group_func, group_args={}): - """ - Feeds the data queue with Ig records - - Arguments: - alive = a multiprocessing.Value boolean controlling whether processing continues - if False exit process - data_queue = a multiprocessing.Queue to hold data for processing - db_file = the Ig record database file - group_func = the function to use for assigning preclones - group_args = a dictionary of arguments to pass to group_func - - Returns: - None - """ - # Open input file and perform grouping - try: - # Iterate over Ig records and assign groups - db_iter = readDbFile(db_file) - clone_dict = group_func(db_iter, **group_args) - except: - #sys.stderr.write('Exception in feeder grouping step\n') - alive.value = False - raise - - # Add groups to data queue - try: - #print 'START FEED', alive.value - # Iterate over groups and feed data queue - clone_iter = iter(clone_dict.items()) - while alive.value: - # Get data from queue - if data_queue.full(): continue - else: data = next(clone_iter, None) - # Exit upon reaching end of iterator - if data is None: break - #print "FEED", alive.value, k - - # Feed queue - data_queue.put(DbData(*data)) - else: - sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ - % os.getpid()) - return None - except: - #sys.stderr.write('Exception in feeder queue feeding step\n') - alive.value = False - raise - - return None - - -def feedQueueClust(alive, data_queue, db_file, group_func=None, group_args={}): - """ - Feeds the data queue with Ig records - - Arguments: - alive = a multiprocessing.Value boolean controlling whether processing continues - if False exit process - data_queue = a multiprocessing.Queue to hold data for processing - db_file = the Ig record database file - - Returns: - None - """ - # Open input file and perform grouping - try: - # Iterate over Ig records and order by junction length - records = {} - db_iter = readDbFile(db_file) - for rec in db_iter: - records[rec.id] = rec - records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length)) - dist_dict = {} - for __ in range(len(records)): - k,v = records.popitem(last=False) - dist_dict[k] = [v].append(list(records.values())) - except: - #sys.stderr.write('Exception in feeder grouping step\n') - alive.value = False - raise - - # Add groups to data queue - try: - # print 'START FEED', alive.value - # Iterate over groups and feed data queue - dist_iter = iter(dist_dict.items()) - while alive.value: - # Get data from queue - if data_queue.full(): continue - else: data = next(dist_iter, None) - # Exit upon reaching end of iterator - if data is None: break - #print "FEED", alive.value, k - - # Feed queue - data_queue.put(DbData(*data)) - else: - sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ - % os.getpid()) - return None - except: - #sys.stderr.write('Exception in feeder queue feeding step\n') - alive.value = False - raise - - return None - - -def processQueue(alive, data_queue, result_queue, clone_func, clone_args): - """ - Pulls from data queue, performs calculations, and feeds results queue - - Arguments: - alive = a multiprocessing.Value boolean controlling whether processing continues - if False exit process - data_queue = a multiprocessing.Queue holding data to process - result_queue = a multiprocessing.Queue to hold processed results - clone_func = the function to call for clonal assignment - clone_args = a dictionary of arguments to pass to clone_func - - Returns: - None - """ - try: - # Iterator over data queue until sentinel object reached - while alive.value: - # Get data from queue - if data_queue.empty(): continue - else: data = data_queue.get() - # Exit upon reaching sentinel - if data is None: break - - # Define result object for iteration and get data records - records = data.data - # print(data.id) - result = DbResult(data.id, records) - - # Check for invalid data (due to failed indexing) and add failed result - if not data: - result_queue.put(result) - continue - - # Add V(D)J to log - result.log['ID'] = ','.join([str(x) for x in data.id]) - result.log['VALLELE'] = ','.join(set([(r.getVAllele() or '') for r in records])) - result.log['DALLELE'] = ','.join(set([(r.getDAllele() or '') for r in records])) - result.log['JALLELE'] = ','.join(set([(r.getJAllele() or '') for r in records])) - result.log['JUNCLEN'] = ','.join(set([(str(len(r.junction)) or '0') for r in records])) - result.log['SEQUENCES'] = len(records) - - # Checking for preclone failure and assign clones - clones = clone_func(records, **clone_args) if data else None - - # import cProfile - # prof = cProfile.Profile() - # clones = prof.runcall(clone_func, records, **clone_args) - # prof.dump_stats('worker-%d.prof' % os.getpid()) - - if clones is not None: - result.results = clones - result.valid = True - result.log['CLONES'] = len(clones) - else: - result.log['CLONES'] = 0 - - # Feed results to result queue - result_queue.put(result) - else: - sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ - % os.getpid()) - return None - except: - #sys.stderr.write('Exception in worker\n') - alive.value = False - raise - - return None - - -def processQueueClust(alive, data_queue, result_queue, clone_func, clone_args): - """ - Pulls from data queue, performs calculations, and feeds results queue - - Arguments: - alive = a multiprocessing.Value boolean controlling whether processing continues - if False exit process - data_queue = a multiprocessing.Queue holding data to process - result_queue = a multiprocessing.Queue to hold processed results - clone_func = the function to call for calculating pairwise distances between sequences - clone_args = a dictionary of arguments to pass to clone_func - - Returns: - None - """ - - try: - # print 'START WORK', alive.value - # Iterator over data queue until sentinel object reached - while alive.value: - # Get data from queue - if data_queue.empty(): continue - else: data = data_queue.get() - # Exit upon reaching sentinel - if data is None: break - # print "WORK", alive.value, data['id'] - - # Define result object for iteration and get data records - records = data.data - result = DbResult(data.id, records) - - # Create row of distance matrix and check for error - dist_row = clone_func(records, **clone_args) if data else None - if dist_row is not None: - result.results = dist_row - result.valid = True - - # Feed results to result queue - result_queue.put(result) - else: - sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ - % os.getpid()) - return None - except: - #sys.stderr.write('Exception in worker\n') - alive.value = False - raise - - return None - - -def collectQueue(alive, result_queue, collect_queue, db_file, out_args, cluster_func=None, cluster_args={}): - """ - Assembles results from a queue of individual sequence results and manages log/file I/O - - Arguments: - alive = a multiprocessing.Value boolean controlling whether processing continues - if False exit process - result_queue = a multiprocessing.Queue holding processQueue results - collect_queue = a multiprocessing.Queue to store collector return values - db_file = the input database file name - out_args = common output argument dictionary from parseCommonArgs - cluster_func = the function to call for carrying out clustering on distance matrix - cluster_args = a dictionary of arguments to pass to cluster_func - - Returns: - None - (adds 'log' and 'out_files' to collect_dict) - """ - # Open output files - try: - # Count records and define output format - out_type = getFileType(db_file) if out_args['out_type'] is None \ - else out_args['out_type'] - result_count = countDbFile(db_file) - - # Defined successful output handle - pass_handle = getOutputHandle(db_file, - out_label='clone-pass', - out_dir=out_args['out_dir'], - out_name=out_args['out_name'], - out_type=out_type) - pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE') - - # Defined failed alignment output handle - if out_args['failed']: - fail_handle = getOutputHandle(db_file, - out_label='clone-fail', - out_dir=out_args['out_dir'], - out_name=out_args['out_name'], - out_type=out_type) - fail_writer = getDbWriter(fail_handle, db_file) - else: - fail_handle = None - fail_writer = None - - # Define log handle - if out_args['log_file'] is None: - log_handle = None - else: - log_handle = open(out_args['log_file'], 'w') - except: - #sys.stderr.write('Exception in collector file opening step\n') - alive.value = False - raise - - # Get results from queue and write to files - try: - #print 'START COLLECT', alive.value - # Iterator over results queue until sentinel object reached - start_time = time() - rec_count = clone_count = pass_count = fail_count = 0 - while alive.value: - # Get result from queue - if result_queue.empty(): continue - else: result = result_queue.get() - # Exit upon reaching sentinel - if result is None: break - #print "COLLECT", alive.value, result['id'] - - # Print progress for previous iteration and update record count - if rec_count == 0: - print('PROGRESS> Assigning clones') - printProgress(rec_count, result_count, 0.05, start_time) - rec_count += len(result.data) - - # Write passed and failed records - if result: - for clone in result.results.values(): - clone_count += 1 - for i, rec in enumerate(clone): - rec.annotations['CLONE'] = clone_count - pass_writer.writerow(rec.toDict()) - pass_count += 1 - result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction) - - else: - for i, rec in enumerate(result.data): - if fail_writer is not None: fail_writer.writerow(rec.toDict()) - fail_count += 1 - result.log['CLONE0-%i' % (i + 1)] = str(rec.junction) - - # Write log - printLog(result.log, handle=log_handle) - else: - sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ - % os.getpid()) - return None - - # Print total counts - printProgress(rec_count, result_count, 0.05, start_time) - - # Close file handles - pass_handle.close() - if fail_handle is not None: fail_handle.close() - if log_handle is not None: log_handle.close() - - # Update return list - log = OrderedDict() - log['OUTPUT'] = os.path.basename(pass_handle.name) - log['CLONES'] = clone_count - log['RECORDS'] = rec_count - log['PASS'] = pass_count - log['FAIL'] = fail_count - collect_dict = {'log':log, 'out_files': [pass_handle.name]} - collect_queue.put(collect_dict) - except: - #sys.stderr.write('Exception in collector result processing step\n') - alive.value = False - raise - - return None - - -def collectQueueClust(alive, result_queue, collect_queue, db_file, out_args, cluster_func, cluster_args): - """ - Assembles results from a queue of individual sequence results and manages log/file I/O - - Arguments: - alive = a multiprocessing.Value boolean controlling whether processing continues - if False exit process - result_queue = a multiprocessing.Queue holding processQueue results - collect_queue = a multiprocessing.Queue to store collector return values - db_file = the input database file name - out_args = common output argument dictionary from parseCommonArgs - cluster_func = the function to call for carrying out clustering on distance matrix - cluster_args = a dictionary of arguments to pass to cluster_func - - Returns: - None - (adds 'log' and 'out_files' to collect_dict) - """ - # Open output files - try: - - # Iterate over Ig records to count and order by junction length - result_count = 0 - records = {} - # print 'Reading file...' - db_iter = readDbFile(db_file) - for rec in db_iter: - records[rec.id] = rec - result_count += 1 - records = OrderedDict(sorted(list(records.items()), key=lambda i: i[1].junction_length)) - - # Define empty matrix to store assembled results - dist_mat = np.zeros((result_count,result_count)) - - # Count records and define output format - out_type = getFileType(db_file) if out_args['out_type'] is None \ - else out_args['out_type'] - - # Defined successful output handle - pass_handle = getOutputHandle(db_file, - out_label='clone-pass', - out_dir=out_args['out_dir'], - out_name=out_args['out_name'], - out_type=out_type) - pass_writer = getDbWriter(pass_handle, db_file, add_fields='CLONE') - - # Defined failed cloning output handle - if out_args['failed']: - fail_handle = getOutputHandle(db_file, - out_label='clone-fail', - out_dir=out_args['out_dir'], - out_name=out_args['out_name'], - out_type=out_type) - fail_writer = getDbWriter(fail_handle, db_file) - else: - fail_handle = None - fail_writer = None - - # Open log file - if out_args['log_file'] is None: - log_handle = None - else: - log_handle = open(out_args['log_file'], 'w') - except: - alive.value = False - raise - - try: - # Iterator over results queue until sentinel object reached - start_time = time() - row_count = rec_count = 0 - while alive.value: - # Get result from queue - if result_queue.empty(): continue - else: result = result_queue.get() - # Exit upon reaching sentinel - if result is None: break - - # Print progress for previous iteration - if row_count == 0: - print('PROGRESS> Assigning clones') - printProgress(row_count, result_count, 0.05, start_time) - - # Update counts for iteration - row_count += 1 - rec_count += len(result) - - # Add result row to distance matrix - if result: - dist_mat[list(range(result_count-len(result),result_count)),result_count-len(result)] = result.results - - else: - sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \ - % os.getpid()) - return None - - # Calculate linkage and carry out clustering - # print dist_mat - clusters = cluster_func(dist_mat, **cluster_args) if dist_mat is not None else None - clones = {} - # print clusters - for i, c in enumerate(clusters): - clones.setdefault(c, []).append(records[list(records.keys())[i]]) - - # Write passed and failed records - clone_count = pass_count = fail_count = 0 - if clones: - for clone in clones.values(): - clone_count += 1 - for i, rec in enumerate(clone): - rec.annotations['CLONE'] = clone_count - pass_writer.writerow(rec.toDict()) - pass_count += 1 - #result.log['CLONE%i-%i' % (clone_count, i + 1)] = str(rec.junction) - - else: - for i, rec in enumerate(result.data): - fail_writer.writerow(rec.toDict()) - fail_count += 1 - #result.log['CLONE0-%i' % (i + 1)] = str(rec.junction) - - # Print final progress - printProgress(row_count, result_count, 0.05, start_time) - - # Close file handles - pass_handle.close() - if fail_handle is not None: fail_handle.close() - if log_handle is not None: log_handle.close() - - # Update return list - log = OrderedDict() - log['OUTPUT'] = os.path.basename(pass_handle.name) - log['CLONES'] = clone_count - log['RECORDS'] = rec_count - log['PASS'] = pass_count - log['FAIL'] = fail_count - collect_dict = {'log':log, 'out_files': [pass_handle.name]} - collect_queue.put(collect_dict) - except: - alive.value = False - raise - - return None - - -def defineClones(db_file, feed_func, work_func, collect_func, clone_func, cluster_func=None, - group_func=None, group_args={}, clone_args={}, cluster_args={}, - out_args=default_out_args, nproc=None, queue_size=None): - """ - Define clonally related sequences - - Arguments: - db_file = filename of input database - feed_func = the function that feeds the queue - work_func = the worker function that will run on each CPU - collect_func = the function that collects results from the workers - group_func = the function to use for assigning preclones - clone_func = the function to use for determining clones within preclonal groups - group_args = a dictionary of arguments to pass to group_func - clone_args = a dictionary of arguments to pass to clone_func - out_args = common output argument dictionary from parseCommonArgs - nproc = the number of processQueue processes; - if None defaults to the number of CPUs - queue_size = maximum size of the argument queue; - if None defaults to 2*nproc - - Returns: - a list of successful output file names - """ - # Print parameter info - log = OrderedDict() - log['START'] = 'DefineClones' - log['DB_FILE'] = os.path.basename(db_file) - if group_func is not None: - log['GROUP_FUNC'] = group_func.__name__ - log['GROUP_ARGS'] = group_args - log['CLONE_FUNC'] = clone_func.__name__ - - # TODO: this is yucky, but can be fixed by using a model class - clone_log = clone_args.copy() - if 'dist_mat' in clone_log: del clone_log['dist_mat'] - log['CLONE_ARGS'] = clone_log - - if cluster_func is not None: - log['CLUSTER_FUNC'] = cluster_func.__name__ - log['CLUSTER_ARGS'] = cluster_args - log['NPROC'] = nproc - printLog(log) - - # Define feeder function and arguments - feed_args = {'db_file': db_file, - 'group_func': group_func, - 'group_args': group_args} - # Define worker function and arguments - work_args = {'clone_func': clone_func, - 'clone_args': clone_args} - # Define collector function and arguments - collect_args = {'db_file': db_file, - 'out_args': out_args, - 'cluster_func': cluster_func, - 'cluster_args': cluster_args} - - # Call process manager - result = manageProcesses(feed_func, work_func, collect_func, - feed_args, work_args, collect_args, - nproc, queue_size) - - # Print log - result['log']['END'] = 'DefineClones' - printLog(result['log']) - - return result['out_files'] - - -def getArgParser(): - """ - Defines the ArgumentParser - - Arguments: - None - - Returns: - an ArgumentParser object - """ - # Define input and output fields - fields = dedent( - ''' - output files: - clone-pass - database with assigned clonal group numbers. - clone-fail - database with records failing clonal grouping. - - required fields: - SEQUENCE_ID, V_CALL or V_CALL_GENOTYPED, D_CALL, J_CALL, JUNCTION - - <field> - sequence field specified by the --sf parameter - - output fields: - CLONE - ''') - - # Define ArgumentParser - parser = ArgumentParser(description=__doc__, epilog=fields, - formatter_class=CommonHelpFormatter) - parser.add_argument('--version', action='version', - version='%(prog)s:' + ' %s-%s' %(__version__, __date__)) - subparsers = parser.add_subparsers(title='subcommands', dest='command', metavar='', - help='Cloning method') - # TODO: This is a temporary fix for Python issue 9253 - subparsers.required = True - - # Parent parser - parser_parent = getCommonArgParser(seq_in=False, seq_out=False, db_in=True, - multiproc=True) - - # Distance cloning method - parser_bygroup = subparsers.add_parser('bygroup', parents=[parser_parent], - formatter_class=CommonHelpFormatter, - help='''Defines clones as having same V assignment, - J assignment, and junction length with - specified substitution distance model.''', - description='''Defines clones as having same V assignment, - J assignment, and junction length with - specified substitution distance model.''') - parser_bygroup.add_argument('-f', nargs='+', action='store', dest='fields', default=None, - help='Additional fields to use for grouping clones (non VDJ)') - parser_bygroup.add_argument('--mode', action='store', dest='mode', - choices=('allele', 'gene'), default=default_index_mode, - help='''Specifies whether to use the V(D)J allele or gene for - initial grouping.''') - parser_bygroup.add_argument('--act', action='store', dest='action', - choices=('first', 'set'), default=default_index_action, - help='''Specifies how to handle multiple V(D)J assignments - for initial grouping.''') - parser_bygroup.add_argument('--model', action='store', dest='model', - choices=choices_bygroup_model, - default=default_bygroup_model, - help='''Specifies which substitution model to use for calculating distance - between sequences. The "ham" model is nucleotide Hamming distance and - "aa" is amino acid Hamming distance. The "hh_s1f" and "hh_s5f" models are - human specific single nucleotide and 5-mer content models, respectively, - from Yaari et al, 2013. The "mk_rs1nf" and "mk_rs5nf" models are - mouse specific single nucleotide and 5-mer content models, respectively, - from Cui et al, 2016. The "m1n_compat" and "hs1f_compat" models are - deprecated models provided backwards compatibility with the "m1n" and - "hs1f" models in Change-O v0.3.3 and SHazaM v0.1.4. Both - 5-mer models should be considered experimental.''') - parser_bygroup.add_argument('--dist', action='store', dest='distance', type=float, - default=default_distance, - help='The distance threshold for clonal grouping') - parser_bygroup.add_argument('--norm', action='store', dest='norm', - choices=('len', 'mut', 'none'), default=default_norm, - help='''Specifies how to normalize distances. One of none - (do not normalize), len (normalize by length), - or mut (normalize by number of mutations between sequences).''') - parser_bygroup.add_argument('--sym', action='store', dest='sym', - choices=('avg', 'min'), default=default_sym, - help='''Specifies how to combine asymmetric distances. One of avg - (average of A->B and B->A) or min (minimum of A->B and B->A).''') - parser_bygroup.add_argument('--link', action='store', dest='linkage', - choices=('single', 'average', 'complete'), default=default_linkage, - help='''Type of linkage to use for hierarchical clustering.''') - parser_bygroup.add_argument('--sf', action='store', dest='seq_field', - default=default_seq_field, - help='''The name of the field to be used to calculate - distance between records''') - parser_bygroup.set_defaults(feed_func=feedQueue) - parser_bygroup.set_defaults(work_func=processQueue) - parser_bygroup.set_defaults(collect_func=collectQueue) - parser_bygroup.set_defaults(group_func=indexJunctions) - parser_bygroup.set_defaults(clone_func=distanceClones) - - # Chen2010 - parser_chen = subparsers.add_parser('chen2010', parents=[parser_parent], - formatter_class=CommonHelpFormatter, - help='''Defines clones by method specified in Chen, 2010.''', - description='''Defines clones by method specified in Chen, 2010.''') - parser_chen.set_defaults(feed_func=feedQueueClust) - parser_chen.set_defaults(work_func=processQueueClust) - parser_chen.set_defaults(collect_func=collectQueueClust) - parser_chen.set_defaults(cluster_func=hierClust) - - # Ademokun2011 - parser_ade = subparsers.add_parser('ademokun2011', parents=[parser_parent], - formatter_class=CommonHelpFormatter, - help='''Defines clones by method specified in Ademokun, 2011.''', - description='''Defines clones by method specified in Ademokun, 2011.''') - parser_ade.set_defaults(feed_func=feedQueueClust) - parser_ade.set_defaults(work_func=processQueueClust) - parser_ade.set_defaults(collect_func=collectQueueClust) - parser_ade.set_defaults(cluster_func=hierClust) - - return parser - - -if __name__ == '__main__': - """ - Parses command line arguments and calls main function - """ - # Parse arguments - parser = getArgParser() - args = parser.parse_args() - args_dict = parseCommonArgs(args) - # Convert case of fields - if 'seq_field' in args_dict: - args_dict['seq_field'] = args_dict['seq_field'].upper() - if 'fields' in args_dict and args_dict['fields'] is not None: - args_dict['fields'] = [f.upper() for f in args_dict['fields']] - - # Define clone_args - if args.command == 'bygroup': - args_dict['group_args'] = {'fields': args_dict['fields'], - 'action': args_dict['action'], - 'mode':args_dict['mode']} - args_dict['clone_args'] = {'model': args_dict['model'], - 'distance': args_dict['distance'], - 'norm': args_dict['norm'], - 'sym': args_dict['sym'], - 'linkage': args_dict['linkage'], - 'seq_field': args_dict['seq_field']} - - # Get distance matrix - try: - args_dict['clone_args']['dist_mat'] = distance_models[args_dict['model']] - except KeyError: - sys.exit('Unrecognized distance model: %s' % args_dict['model']) - - del args_dict['fields'] - del args_dict['action'] - del args_dict['mode'] - del args_dict['model'] - del args_dict['distance'] - del args_dict['norm'] - del args_dict['sym'] - del args_dict['linkage'] - del args_dict['seq_field'] - - # Define clone_args - if args.command == 'chen2010': - args_dict['clone_func'] = distChen2010 - args_dict['cluster_args'] = {'method': args.command } - - if args.command == 'ademokun2011': - args_dict['clone_func'] = distAdemokun2011 - args_dict['cluster_args'] = {'method': args.command } - - # Call defineClones - del args_dict['command'] - del args_dict['db_files'] - for f in args.__dict__['db_files']: - args_dict['db_file'] = f - defineClones(**args_dict)
--- a/change_o/MakeDb.py Tue Jun 18 04:47:44 2019 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,555 +0,0 @@ -#!/usr/bin/env python3 -""" -Create tab-delimited database file to store sequence alignment information -""" -# Info -__author__ = 'Namita Gupta, Jason Anthony Vander Heiden' -from changeo import __version__, __date__ - -# Imports -import os -import sys -from argparse import ArgumentParser -from collections import OrderedDict -from textwrap import dedent -from time import time -from Bio import SeqIO - -# Presto and changeo imports -from presto.Defaults import default_out_args -from presto.Annotation import parseAnnotation -from presto.IO import countSeqFile, printLog, printMessage, printProgress, readSeqFile -from changeo.Commandline import CommonHelpFormatter, getCommonArgParser, parseCommonArgs -from changeo.IO import countDbFile, extractIMGT, getDbWriter, readRepo -from changeo.Parsers import IgBLASTReader, IMGTReader, IHMMuneReader, getIDforIMGT - - -def getFilePrefix(aligner_output, out_args): - """ - Get file name prefix and create output directory - - Arguments: - aligner_output : aligner output file or directory. - out_args : dictionary of output arguments. - - Returns: - str : file name prefix. - """ - # Determine output directory - if not out_args['out_dir']: - out_dir = os.path.dirname(os.path.abspath(aligner_output)) - else: - out_dir = os.path.abspath(out_args['out_dir']) - if not os.path.exists(out_dir): - os.mkdir(out_dir) - - # Determine file prefix - if out_args['out_name']: - file_prefix = out_args['out_name'] - else: - file_prefix = os.path.splitext(os.path.split(os.path.abspath(aligner_output))[1])[0] - - return os.path.join(out_dir, file_prefix) - - -def getSeqDict(seq_file): - """ - Create a dictionary from a sequence file. - - Arguments: - seq_file : sequence file. - - Returns: - dict : sequence description as keys with Bio.SeqRecords as values. - """ - seq_dict = SeqIO.to_dict(readSeqFile(seq_file), - key_function=lambda x: x.description) - - return seq_dict - - -def writeDb(db, fields, file_prefix, total_count, id_dict=None, no_parse=True, partial=False, - out_args=default_out_args): - """ - Writes tab-delimited database file in output directory. - - Arguments: - db : a iterator of IgRecord objects containing alignment data. - fields : a list of ordered field names to write. - file_prefix : directory and prefix for CLIP tab-delim file. - total_count : number of records (for progress bar). - id_dict : a dictionary of the truncated sequence ID mapped to the full sequence ID. - no_parse : if ID is to be parsed for pRESTO output with default delimiters. - partial : if True put incomplete alignments in the pass file. - out_args : common output argument dictionary from parseCommonArgs. - - Returns: - None - """ - # Function to check for valid records strictly - def _pass_strict(rec): - valid = [rec.v_call and rec.v_call != 'None', - rec.j_call and rec.j_call != 'None', - rec.functional is not None, - rec.seq_vdj, - rec.junction] - return all(valid) - - # Function to check for valid records loosely - def _pass_gentle(rec): - valid = [rec.v_call and rec.v_call != 'None', - rec.d_call and rec.d_call != 'None', - rec.j_call and rec.j_call != 'None'] - return any(valid) - - # Set pass criteria - _pass = _pass_gentle if partial else _pass_strict - - # Define output file names - pass_file = '%s_db-pass.tab' % file_prefix - fail_file = '%s_db-fail.tab' % file_prefix - - # Initiate handles, writers and counters - pass_handle = None - fail_handle = None - pass_writer = None - fail_writer = None - start_time = time() - rec_count = pass_count = fail_count = 0 - - # Validate and write output - printProgress(0, total_count, 0.05, start_time) - for i, record in enumerate(db, start=1): - - # Replace sequence description with full string, if required - if id_dict is not None and record.id in id_dict: - record.id = id_dict[record.id] - - # Parse sequence description into new columns - if not no_parse: - try: - record.annotations = parseAnnotation(record.id, delimiter=out_args['delimiter']) - record.id = record.annotations['ID'] - del record.annotations['ID'] - - # TODO: This is not the best approach. should pass in output fields. - # If first record, use parsed description to define extra columns - if i == 1: fields.extend(list(record.annotations.keys())) - except IndexError: - # Could not parse pRESTO-style annotations so fall back to no parse - no_parse = True - sys.stderr.write('\nWARNING: Sequence annotation format not recognized. Sequence headers will not be parsed.\n') - - # Count pass or fail and write to appropriate file - if _pass(record): - # Open pass file - if pass_writer is None: - pass_handle = open(pass_file, 'wt') - pass_writer = getDbWriter(pass_handle, add_fields=fields) - - # Write row to pass file - pass_count += 1 - pass_writer.writerow(record.toDict()) - else: - # Open failed file - if out_args['failed'] and fail_writer is None: - fail_handle = open(fail_file, 'wt') - fail_writer = getDbWriter(fail_handle, add_fields=fields) - - # Write row to fail file if specified - fail_count += 1 - if fail_writer is not None: - fail_writer.writerow(record.toDict()) - - # Print progress - printProgress(i, total_count, 0.05, start_time) - - # Print consol log - log = OrderedDict() - log['OUTPUT'] = pass_file - log['PASS'] = pass_count - log['FAIL'] = fail_count - log['END'] = 'MakeDb' - printLog(log) - - if pass_handle is not None: pass_handle.close() - if fail_handle is not None: fail_handle.close() - - -# TODO: may be able to merge with other mains -def parseIMGT(aligner_output, seq_file=None, no_parse=True, partial=False, - parse_scores=False, parse_regions=False, parse_junction=False, - out_args=default_out_args): - """ - Main for IMGT aligned sample sequences. - - Arguments: - aligner_output : zipped file or unzipped folder output by IMGT. - seq_file : FASTA file input to IMGT (from which to get seqID). - no_parse : if ID is to be parsed for pRESTO output with default delimiters. - partial : If True put incomplete alignments in the pass file. - parse_scores : if True add alignment score fields to output file. - parse_regions : if True add FWR and CDR region fields to output file. - out_args : common output argument dictionary from parseCommonArgs. - - Returns: - None - """ - # Print parameter info - log = OrderedDict() - log['START'] = 'MakeDb' - log['ALIGNER'] = 'IMGT' - log['ALIGNER_OUTPUT'] = aligner_output - log['SEQ_FILE'] = os.path.basename(seq_file) if seq_file else '' - log['NO_PARSE'] = no_parse - log['PARTIAL'] = partial - log['SCORES'] = parse_scores - log['REGIONS'] = parse_regions - log['JUNCTION'] = parse_junction - printLog(log) - - start_time = time() - printMessage('Loading sequence files', start_time=start_time, width=25) - # Extract IMGT files - temp_dir, imgt_files = extractIMGT(aligner_output) - # Count records in IMGT files - total_count = countDbFile(imgt_files['summary']) - # Get (parsed) IDs from fasta file submitted to IMGT - id_dict = getIDforIMGT(seq_file) if seq_file else {} - printMessage('Done', start_time=start_time, end=True, width=25) - - # Parse IMGT output and write db - with open(imgt_files['summary'], 'r') as summary_handle, \ - open(imgt_files['gapped'], 'r') as gapped_handle, \ - open(imgt_files['ntseq'], 'r') as ntseq_handle, \ - open(imgt_files['junction'], 'r') as junction_handle: - parse_iter = IMGTReader(summary_handle, gapped_handle, ntseq_handle, junction_handle, - parse_scores=parse_scores, parse_regions=parse_regions, - parse_junction=parse_junction) - file_prefix = getFilePrefix(aligner_output, out_args) - writeDb(parse_iter, parse_iter.fields, file_prefix, total_count, id_dict=id_dict, - no_parse=no_parse, partial=partial, out_args=out_args) - - # Cleanup temp directory - temp_dir.cleanup() - - return None - - -# TODO: may be able to merge with other mains -def parseIgBLAST(aligner_output, seq_file, repo, no_parse=True, partial=False, - parse_regions=False, parse_scores=False, parse_igblast_cdr3=False, - out_args=default_out_args): - """ - Main for IgBLAST aligned sample sequences. - - Arguments: - aligner_output : IgBLAST output file to process. - seq_file : fasta file input to IgBlast (from which to get sequence). - repo : folder with germline repertoire files. - no_parse : if ID is to be parsed for pRESTO output with default delimiters. - partial : If True put incomplete alignments in the pass file. - parse_regions : if True add FWR and CDR fields to output file. - parse_scores : if True add alignment score fields to output file. - parse_igblast_cdr3 : if True parse CDR3 sequences generated by IgBLAST - out_args : common output argument dictionary from parseCommonArgs. - - Returns: - None - """ - # Print parameter info - log = OrderedDict() - log['START'] = 'MakeDB' - log['ALIGNER'] = 'IgBlast' - log['ALIGNER_OUTPUT'] = os.path.basename(aligner_output) - log['SEQ_FILE'] = os.path.basename(seq_file) - log['NO_PARSE'] = no_parse - log['PARTIAL'] = partial - log['SCORES'] = parse_scores - log['REGIONS'] = parse_regions - printLog(log) - - start_time = time() - printMessage('Loading sequence files', start_time=start_time, width=25) - # Count records in sequence file - total_count = countSeqFile(seq_file) - # Get input sequence dictionary - seq_dict = getSeqDict(seq_file) - # Create germline repo dictionary - repo_dict = readRepo(repo) - printMessage('Done', start_time=start_time, end=True, width=25) - - # Parse and write output - with open(aligner_output, 'r') as f: - parse_iter = IgBLASTReader(f, seq_dict, repo_dict, - parse_scores=parse_scores, parse_regions=parse_regions, - parse_igblast_cdr3=parse_igblast_cdr3) - file_prefix = getFilePrefix(aligner_output, out_args) - writeDb(parse_iter, parse_iter.fields, file_prefix, total_count, - no_parse=no_parse, partial=partial, out_args=out_args) - - return None - - -# TODO: may be able to merge with other mains -def parseIHMM(aligner_output, seq_file, repo, no_parse=True, partial=False, - parse_scores=False, parse_regions=False, out_args=default_out_args): - """ - Main for iHMMuneAlign aligned sample sequences. - - Arguments: - aligner_output : iHMMune-Align output file to process. - seq_file : fasta file input to iHMMuneAlign (from which to get sequence). - repo : folder with germline repertoire files. - no_parse : if ID is to be parsed for pRESTO output with default delimiters. - partial : If True put incomplete alignments in the pass file. - parse_scores : if True parse alignment scores. - parse_regions : if True add FWR and CDR region fields. - out_args : common output argument dictionary from parseCommonArgs. - - Returns: - None - """ - # Print parameter info - log = OrderedDict() - log['START'] = 'MakeDB' - log['ALIGNER'] = 'iHMMune-Align' - log['ALIGNER_OUTPUT'] = os.path.basename(aligner_output) - log['SEQ_FILE'] = os.path.basename(seq_file) - log['NO_PARSE'] = no_parse - log['PARTIAL'] = partial - log['SCORES'] = parse_scores - log['REGIONS'] = parse_regions - printLog(log) - - start_time = time() - printMessage('Loading sequence files', start_time=start_time, width=25) - # Count records in sequence file - total_count = countSeqFile(seq_file) - # Get input sequence dictionary - seq_dict = getSeqDict(seq_file) - # Create germline repo dictionary - repo_dict = readRepo(repo) - printMessage('Done', start_time=start_time, end=True, width=25) - - # Parse and write output - with open(aligner_output, 'r') as f: - parse_iter = IHMMuneReader(f, seq_dict, repo_dict, - parse_scores=parse_scores, parse_regions=parse_regions) - file_prefix = getFilePrefix(aligner_output, out_args) - writeDb(parse_iter, parse_iter.fields, file_prefix, total_count, - no_parse=no_parse, partial=partial, out_args=out_args) - - return None - - -def getArgParser(): - """ - Defines the ArgumentParser. - - Returns: - argparse.ArgumentParser - """ - fields = dedent( - ''' - output files: - db-pass - database of alignment records with functionality information, - V and J calls, and a junction region. - db-fail - database with records that fail due to no functionality information - (did not pass IMGT), no V call, no J call, or no junction region. - - universal output fields: - SEQUENCE_ID, SEQUENCE_INPUT, SEQUENCE_VDJ, SEQUENCE_IMGT, - FUNCTIONAL, IN_FRAME, STOP, MUTATED_INVARIANT, INDELS, - V_CALL, D_CALL, J_CALL, - V_SEQ_START, V_SEQ_LENGTH, - D_SEQ_START, D_SEQ_LENGTH, D_GERM_START, D_GERM_LENGTH, - J_SEQ_START, J_SEQ_LENGTH, J_GERM_START, J_GERM_LENGTH, - JUNCTION_LENGTH, JUNCTION, NP1_LENGTH, NP2_LENGTH, - FWR1_IMGT, FWR2_IMGT, FWR3_IMGT, FWR4_IMGT, - CDR1_IMGT, CDR2_IMGT, CDR3_IMGT - - imgt specific output fields: - V_GERM_START_IMGT, V_GERM_LENGTH_IMGT, - N1_LENGTH, N2_LENGTH, P3V_LENGTH, P5D_LENGTH, P3D_LENGTH, P5J_LENGTH, - D_FRAME, V_SCORE, V_IDENTITY, J_SCORE, J_IDENTITY, - - igblast specific output fields: - V_GERM_START_VDJ, V_GERM_LENGTH_VDJ, - V_EVALUE, V_SCORE, V_IDENTITY, V_BTOP, - J_EVALUE, J_SCORE, J_IDENTITY, J_BTOP. - CDR3_IGBLAST_NT, CDR3_IGBLAST_AA - - ihmm specific output fields: - V_GERM_START_VDJ, V_GERM_LENGTH_VDJ, - HMM_SCORE - ''') - - # Define ArgumentParser - parser = ArgumentParser(description=__doc__, epilog=fields, - formatter_class=CommonHelpFormatter) - parser.add_argument('--version', action='version', - version='%(prog)s:' + ' %s-%s' %(__version__, __date__)) - subparsers = parser.add_subparsers(title='subcommands', dest='command', - help='Aligner used', metavar='') - # TODO: This is a temporary fix for Python issue 9253 - subparsers.required = True - - # Parent parser - parser_parent = getCommonArgParser(seq_in=False, seq_out=False, log=False) - - # IgBlast Aligner - parser_igblast = subparsers.add_parser('igblast', parents=[parser_parent], - formatter_class=CommonHelpFormatter, - help='Process IgBLAST output.', - description='Process IgBLAST output.') - parser_igblast.add_argument('-i', nargs='+', action='store', dest='aligner_outputs', - required=True, - help='''IgBLAST output files in format 7 with query sequence - (IgBLAST argument \'-outfmt "7 std qseq sseq btop"\').''') - parser_igblast.add_argument('-r', nargs='+', action='store', dest='repo', required=True, - help='''List of folders and/or fasta files containing - IMGT-gapped germline sequences corresponding to the - set of germlines used in the IgBLAST alignment.''') - parser_igblast.add_argument('-s', action='store', nargs='+', dest='seq_files', - required=True, - help='''List of input FASTA files (with .fasta, .fna or .fa - extension), containing sequences.''') - parser_igblast.add_argument('--noparse', action='store_true', dest='no_parse', - help='''Specify to prevent input sequence headers from being parsed - to add new columns to database. Parsing of sequence headers requires - headers to be in the pRESTO annotation format, so this should be specified - when sequence headers are incompatible with the pRESTO annotation scheme. - Note, unrecognized header formats will default to this behavior.''') - parser_igblast.add_argument('--partial', action='store_true', dest='partial', - help='''If specified, include incomplete V(D)J alignments in - the pass file instead of the fail file.''') - parser_igblast.add_argument('--scores', action='store_true', dest='parse_scores', - help='''Specify if alignment score metrics should be - included in the output. Adds the V_SCORE, V_IDENTITY, - V_EVALUE, V_BTOP, J_SCORE, J_IDENTITY, - J_BTOP, and J_EVALUE columns.''') - parser_igblast.add_argument('--regions', action='store_true', dest='parse_regions', - help='''Specify if IMGT FWR and CDRs should be - included in the output. Adds the FWR1_IMGT, FWR2_IMGT, - FWR3_IMGT, FWR4_IMGT, CDR1_IMGT, CDR2_IMGT, and - CDR3_IMGT columns.''') - parser_igblast.add_argument('--cdr3', action='store_true', - dest='parse_igblast_cdr3', - help='''Specify if the CDR3 sequences generated by IgBLAST - should be included in the output. Adds the columns - CDR3_IGBLAST_NT and CDR3_IGBLAST_AA. Requires IgBLAST - version 1.5 or greater.''') - parser_igblast.set_defaults(func=parseIgBLAST) - - # IMGT aligner - parser_imgt = subparsers.add_parser('imgt', parents=[parser_parent], - formatter_class=CommonHelpFormatter, - help='''Process IMGT/HighV-Quest output - (does not work with V-QUEST).''', - description='''Process IMGT/HighV-Quest output - (does not work with V-QUEST).''') - parser_imgt.add_argument('-i', nargs='+', action='store', dest='aligner_outputs', - help='''Either zipped IMGT output files (.zip or .txz) or a - folder containing unzipped IMGT output files (which must - include 1_Summary, 2_IMGT-gapped, 3_Nt-sequences, - and 6_Junction).''') - parser_imgt.add_argument('-s', nargs='*', action='store', dest='seq_files', - required=False, - help='''List of input FASTA files (with .fasta, .fna or .fa - extension) containing sequences.''') - parser_imgt.add_argument('--noparse', action='store_true', dest='no_parse', - help='''Specify to prevent input sequence headers from being parsed - to add new columns to database. Parsing of sequence headers requires - headers to be in the pRESTO annotation format, so this should be specified - when sequence headers are incompatible with the pRESTO annotation scheme. - Note, unrecognized header formats will default to this behavior.''') - parser_imgt.add_argument('--partial', action='store_true', dest='partial', - help='''If specified, include incomplete V(D)J alignments in - the pass file instead of the fail file.''') - parser_imgt.add_argument('--scores', action='store_true', dest='parse_scores', - help='''Specify if alignment score metrics should be - included in the output. Adds the V_SCORE, V_IDENTITY, - J_SCORE and J_IDENTITY.''') - parser_imgt.add_argument('--regions', action='store_true', dest='parse_regions', - help='''Specify if IMGT FWRs and CDRs should be - included in the output. Adds the FWR1_IMGT, FWR2_IMGT, - FWR3_IMGT, FWR4_IMGT, CDR1_IMGT, CDR2_IMGT, and - CDR3_IMGT columns.''') - parser_imgt.add_argument('--junction', action='store_true', dest='parse_junction', - help='''Specify if detailed junction fields should be - included in the output. Adds the columns - N1_LENGTH, N2_LENGTH, P3V_LENGTH, P5D_LENGTH, P3D_LENGTH, - P5J_LENGTH, D_FRAME.''') - parser_imgt.set_defaults(func=parseIMGT) - - # iHMMuneAlign Aligner - parser_ihmm = subparsers.add_parser('ihmm', parents=[parser_parent], - formatter_class=CommonHelpFormatter, - help='Process iHMMune-Align output.', - description='Process iHMMune-Align output.') - parser_ihmm.add_argument('-i', nargs='+', action='store', dest='aligner_outputs', - required=True, - help='''iHMMune-Align output file.''') - parser_ihmm.add_argument('-r', nargs='+', action='store', dest='repo', required=True, - help='''List of folders and/or FASTA files containing - IMGT-gapped germline sequences corresponding to the - set of germlines used in the IgBLAST alignment.''') - parser_ihmm.add_argument('-s', action='store', nargs='+', dest='seq_files', - required=True, - help='''List of input FASTA files (with .fasta, .fna or .fa - extension) containing sequences.''') - parser_ihmm.add_argument('--noparse', action='store_true', dest='no_parse', - help='''Specify to prevent input sequence headers from being parsed - to add new columns to database. Parsing of sequence headers requires - headers to be in the pRESTO annotation format, so this should be specified - when sequence headers are incompatible with the pRESTO annotation scheme. - Note, unrecognized header formats will default to this behavior.''') - parser_ihmm.add_argument('--partial', action='store_true', dest='partial', - help='''If specified, include incomplete V(D)J alignments in - the pass file instead of the fail file.''') - parser_ihmm.add_argument('--scores', action='store_true', dest='parse_scores', - help='''Specify if alignment score metrics should be - included in the output. Adds the path score of the - iHMMune-Align hidden Markov model to HMM_SCORE.''') - parser_ihmm.add_argument('--regions', action='store_true', dest='parse_regions', - help='''Specify if IMGT FWRs and CDRs should be - included in the output. Adds the FWR1_IMGT, FWR2_IMGT, - FWR3_IMGT, FWR4_IMGT, CDR1_IMGT, CDR2_IMGT, and - CDR3_IMGT columns.''') - parser_ihmm.set_defaults(func=parseIHMM) - - return parser - - -if __name__ == "__main__": - """ - Parses command line arguments and calls main - """ - parser = getArgParser() - args = parser.parse_args() - args_dict = parseCommonArgs(args, in_arg='aligner_outputs') - - # Set no ID parsing if sequence files are not provided - if 'seq_files' in args_dict and not args_dict['seq_files']: - args_dict['no_parse'] = True - - # Delete - if 'seq_files' in args_dict: del args_dict['seq_files'] - if 'aligner_outputs' in args_dict: del args_dict['aligner_outputs'] - if 'command' in args_dict: del args_dict['command'] - if 'func' in args_dict: del args_dict['func'] - - if args.command == 'imgt': - for i in range(len(args.__dict__['aligner_outputs'])): - args_dict['aligner_output'] = args.__dict__['aligner_outputs'][i] - args_dict['seq_file'] = args.__dict__['seq_files'][i] \ - if args.__dict__['seq_files'] else None - args.func(**args_dict) - elif args.command == 'igblast' or args.command == 'ihmm': - for i in range(len(args.__dict__['aligner_outputs'])): - args_dict['aligner_output'] = args.__dict__['aligner_outputs'][i] - args_dict['seq_file'] = args.__dict__['seq_files'][i] - args.func(**args_dict)
--- a/merge_and_filter.r Tue Jun 18 04:47:44 2019 -0400 +++ b/merge_and_filter.r Wed Jun 19 04:31:44 2019 -0400 @@ -53,6 +53,10 @@ hotspots = fix_column_names(hotspots) AAs = fix_column_names(AAs) +if(!("Sequence.number" %in% names(summ))){ + summ["Sequence.number"] = 1:nrow(summ) +} + if(method == "blastn"){ #"qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore" gene_identification = gene_identification[!duplicated(gene_identification$qseqid),] @@ -140,9 +144,6 @@ names(sequences) = c("Sequence.ID", "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq") result = merge(result, sequences, by="Sequence.ID", all.x=T) -print("sequences files columns") -print("CDR3.IMGT") - AAs = AAs[,c("Sequence.ID", "CDR3.IMGT")] names(AAs) = c("Sequence.ID", "CDR3.IMGT.AA") result = merge(result, AAs, by="Sequence.ID", all.x=T) @@ -172,10 +173,17 @@ write.table(x=result, file=gsub("merged.txt$", "before_filters.txt", output), sep="\t",quote=F,row.names=F,col.names=T) -print(paste("Number of empty CDR1 sequences:", sum(result$CDR1.IMGT.seq == "", na.rm=T))) -print(paste("Number of empty FR2 sequences:", sum(result$FR2.IMGT.seq == "", na.rm=T))) -print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "", na.rm=T))) -print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "", na.rm=T))) +missing.FR1 = result$FR1.IMGT.seq == "" | is.na(result$FR1.IMGT.seq) +missing.CDR1 = result$CDR1.IMGT.seq == "" | is.na(result$CDR1.IMGT.seq) +missing.FR2 = result$FR2.IMGT.seq == "" | is.na(result$FR2.IMGT.seq) +missing.CDR2 = result$CDR2.IMGT.seq == "" | is.na(result$CDR2.IMGT.seq) +missing.FR3 = result$FR3.IMGT.seq == "" | is.na(result$FR3.IMGT.seq) + +print(paste("Number of empty CDR1 sequences:", sum(missing.FR1))) +print(paste("Number of empty FR2 sequences:", sum(missing.CDR1))) +print(paste("Number of empty CDR2 sequences:", sum(missing.FR2))) +print(paste("Number of empty FR3 sequences:", sum(missing.CDR2))) +print(paste("Number of empty FR3 sequences:", sum(missing.FR3))) if(empty.region.filter == "leader"){ result = result[result$FR1.IMGT.seq != "" & result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ] @@ -217,6 +225,7 @@ write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T) + if(filter.unique != "no"){ clmns = names(result) if(filter.unique == "remove_vjaa"){ @@ -291,6 +300,9 @@ matched.sequences.count = nrow(matched.sequences) unmatched.sequences.count = sum(grepl("^unmatched", result$best_match)) +if(matched.sequences.count <= unmatched.sequences.count){ + print("WARNING NO MATCHED (SUB)CLASS SEQUENCES!!") +} filtering.steps = rbind(filtering.steps, c("Number of matched sequences", matched.sequences.count)) filtering.steps = rbind(filtering.steps, c("Number of unmatched sequences", unmatched.sequences.count))
--- a/shm_csr.xml Tue Jun 18 04:47:44 2019 -0400 +++ b/shm_csr.xml Wed Jun 19 04:31:44 2019 -0400 @@ -8,7 +8,7 @@ <requirement type="package" version="0.5.0">r-scales</requirement> <requirement type="package" version="3.4_5">r-seqinr</requirement> <requirement type="package" version="1.11.4">r-data.table</requirement> - <requirement type="package" version="0.4.5">changeo</requirement> + <!--<requirement type="package" version="0.4.5">changeo</requirement>--> </requirements> <command interpreter="bash"> #if str ( $filter_unique.filter_unique_select ) == "remove":