changeset 83:729738462297 draft

"planemo upload commit c0ffc68aec5836d5b20b543106493056a87edf57"
author rhpvorderman
date Wed, 15 Sep 2021 12:24:06 +0000
parents a103134ee6e0
children 4db34e32dd47
files .gitattributes .gitignore CHANGELOG.md LICENSE README.md aa_histogram.r baseline/Baseline_Functions.r baseline/Baseline_Main.r baseline/FiveS_Mutability.RData baseline/FiveS_Substitution.RData baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa baseline/IMGTVHreferencedataset20161215.fa baseline/IMGTVHreferencedataset20161215.fasta baseline/baseline_url.txt baseline/comparePDFs.r baseline/filter.r baseline/script_imgt.py baseline/script_xlsx.py baseline/wrapper.sh change_o/change_o_url.txt change_o/define_clones.r change_o/define_clones.sh change_o/lr.txt change_o/makedb.sh change_o/select_first_in_clone.r check_unique_id.r conda_environment.yml datatypes_conf.xml gene_identification.py imgt_loader.r merge.r merge_and_filter.r mutation_column_checker.py naive_output.r new_imgt.r pattern_plots.r plot_pdf.r sequence_overview.r shm_clonality.htm shm_csr.htm shm_csr.py shm_csr.r shm_csr.xml shm_downloads.htm shm_first.htm shm_frequency.htm shm_overview.htm shm_selection.htm shm_transition.htm style.tar.gz subclass_definition.db.nhr subclass_definition.db.nin subclass_definition.db.nsq summary_to_fasta.py tests/.pytest_cache/.gitignore tests/.pytest_cache/CACHEDIR.TAG tests/.pytest_cache/README.md tests/.pytest_cache/v/cache/nodeids tests/.pytest_cache/v/cache/stepwise tests/__pycache__/test_shm_csr.cpython-37-pytest-6.2.4.pyc tests/data/CONTROL_NWK377_PB_IGHC_MID1_40nt_2.txz tests/sequence_overview/ntoverview.txt tests/sort_by_time.py tests/test_shm_csr.py tests/validation_data/IGA_pie.txt tests/validation_data/IGG_pie.txt tests/validation_data/aa_histogram_sum.txt tests/validation_data/aa_histogram_sum_IGA.txt tests/validation_data/aa_histogram_sum_IGG.txt tests/validation_data/absolute_mutations.txt tests/validation_data/frequency_ranges_classes.txt tests/validation_data/frequency_ranges_subclasses.txt tests/validation_data/mutation_by_id.txt tests/validation_data/relative_mutations.txt tests/validation_data/scatter.txt tests/validation_data/shm_overview.txt tests/validation_data/transitions_IGA1_sum.txt tests/validation_data/transitions_IGA2_sum.txt tests/validation_data/transitions_IGA_sum.txt tests/validation_data/transitions_IGE_sum.txt tests/validation_data/transitions_IGG1_sum.txt tests/validation_data/transitions_IGG2_sum.txt tests/validation_data/transitions_IGG3_sum.txt tests/validation_data/transitions_IGG4_sum.txt tests/validation_data/transitions_IGG_sum.txt tests/validation_data/transitions_all_sum.txt wrapper.sh
diffstat 59 files changed, 10707 insertions(+), 5433 deletions(-) [+]
line wrap: on
line diff
--- a/.gitattributes	Thu Feb 25 10:32:32 2021 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4 +0,0 @@
-# Auto detect text files and perform LF normalization
-* text=auto
-# Convert to LF line endings on checkout.
-*.sh text eol=lf
\ No newline at end of file
--- a/.gitignore	Thu Feb 25 10:32:32 2021 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4 +0,0 @@
-
-shm_csr\.tar\.gz
-
-\.vscode/settings\.json
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/CHANGELOG.md	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,8 @@
+version 1.1.0
+-------------
++ Added changeo as a dependency. Porting to python3 was necessary to achieve 
+  this. This will make sure the shm_csr package can be installed on all 
+  galaxies.
++ Make sure the wrapper script runs with `set -e -o pipefail` and fails on 
+  error.
++ Updated all python scripts to work on python3
--- a/LICENSE	Thu Feb 25 10:32:32 2021 +0000
+++ b/LICENSE	Wed Sep 15 12:24:06 2021 +0000
@@ -1,6 +1,7 @@
 MIT License
 
-Copyright (c) 2019 david
+Copyright (c) 2019 David van Zessen
+Copyright (c) 2021 Leiden University Medical Center
 
 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
--- a/README.md	Thu Feb 25 10:32:32 2021 +0000
+++ b/README.md	Wed Sep 15 12:24:06 2021 +0000
@@ -1,13 +1,13 @@
-# SHM CSR
-
-Somatic hypermutation and class switch recombination pipeline.  
-The docker version can be found [here](https://github.com/ErasmusMC-Bioinformatics/ARGalaxy-docker).
-
-# Dependencies
---------------------
-[Python 2.7](https://www.python.org/)  
-[Change-O](https://changeo.readthedocs.io/en/version-0.4.4/)  
-[Baseline](http://selection.med.yale.edu/baseline/)  
-[R data.table](https://cran.r-project.org/web/packages/data.table/data.table.pdf)
-[R ggplot2](https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf)
-[R reshape2](https://cran.r-project.org/web/packages/reshape/reshape.pdf)
+# SHM CSR
+
+Somatic hypermutation and class switch recombination pipeline.  
+The docker version can be found [here](https://github.com/ErasmusMC-Bioinformatics/ARGalaxy-docker).
+
+# Dependencies
+--------------------
+[Python 3.7](https://www.python.org/)  
+[Change-O](https://changeo.readthedocs.io/en/version-0.4.4/)  
+[Baseline](http://selection.med.yale.edu/baseline/)  
+[R data.table](https://cran.r-project.org/web/packages/data.table/data.table.pdf)
+[R ggplot2](https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf)
+[R reshape2](https://cran.r-project.org/web/packages/reshape/reshape.pdf)
--- a/aa_histogram.r	Thu Feb 25 10:32:32 2021 +0000
+++ b/aa_histogram.r	Wed Sep 15 12:24:06 2021 +0000
@@ -1,69 +1,69 @@
-library(ggplot2)
-
-args <- commandArgs(trailingOnly = TRUE)
-
-mutations.by.id.file = args[1]
-absent.aa.by.id.file = args[2]
-genes = strsplit(args[3], ",")[[1]]
-genes = c(genes, "")
-outdir = args[4]
-
-
-print("---------------- read input ----------------")
-
-mutations.by.id = read.table(mutations.by.id.file, sep="\t", fill=T, header=T, quote="")
-absent.aa.by.id = read.table(absent.aa.by.id.file, sep="\t", fill=T, header=T, quote="")
-
-for(gene in genes){
-	graph.title = paste(gene, "AA mutation frequency")
-	if(gene == ""){
-		mutations.by.id.gene = mutations.by.id[!grepl("unmatched", mutations.by.id$best_match),]
-		absent.aa.by.id.gene = absent.aa.by.id[!grepl("unmatched", absent.aa.by.id$best_match),]
-		
-		graph.title = "AA mutation frequency all"
-	} else {
-		mutations.by.id.gene = mutations.by.id[grepl(paste("^", gene, sep=""), mutations.by.id$best_match),]
-		absent.aa.by.id.gene = absent.aa.by.id[grepl(paste("^", gene, sep=""), absent.aa.by.id$best_match),]
-	}
-	print(paste("nrow", gene, nrow(absent.aa.by.id.gene)))
-	if(nrow(mutations.by.id.gene) == 0){
-		next
-	}
-
-	mutations.at.position = colSums(mutations.by.id.gene[,-c(1,2)])
-	aa.at.position = colSums(absent.aa.by.id.gene[,-c(1,2,3,4)])
-
-	dat_freq = mutations.at.position / aa.at.position
-	dat_freq[is.na(dat_freq)] = 0
-	dat_dt = data.frame(i=1:length(dat_freq), freq=dat_freq)
-	
-
-	print("---------------- plot ----------------")
-
-	m = ggplot(dat_dt, aes(x=i, y=freq)) + theme(axis.text.x = element_text(angle = 90, hjust = 1), text = element_text(size=13, colour="black"))
-	m = m + geom_bar(stat="identity", colour = "black", fill = "darkgrey", alpha=0.8) + scale_x_continuous(breaks=dat_dt$i, labels=dat_dt$i)
-	m = m + annotate("segment", x = 0.5, y = -0.05, xend=26.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.1, label="FR1")
-	m = m + annotate("segment", x = 26.5, y = -0.07, xend=38.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.15, label="CDR1")
-	m = m + annotate("segment", x = 38.5, y = -0.05, xend=55.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.1, label="FR2")
-	m = m + annotate("segment", x = 55.5, y = -0.07, xend=65.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.15, label="CDR2")
-	m = m + annotate("segment", x = 65.5, y = -0.05, xend=104.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.1, label="FR3")
-	m = m + expand_limits(y=c(-0.1,1)) + xlab("AA position") + ylab("Frequency") + ggtitle(graph.title) 
-	m = m + theme(panel.background = element_rect(fill = "white", colour="black"), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-	#m = m + scale_colour_manual(values=c("black"))
-
-	print("---------------- write/print ----------------")
-
-
-	dat.sums = data.frame(index=1:length(mutations.at.position), mutations.at.position=mutations.at.position, aa.at.position=aa.at.position)
-
-	write.table(dat.sums, paste(outdir, "/aa_histogram_sum_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	write.table(mutations.by.id.gene, paste(outdir, "/aa_histogram_count_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	write.table(absent.aa.by.id.gene, paste(outdir, "/aa_histogram_absent_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	write.table(dat_dt, paste(outdir, "/aa_histogram_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	
-	png(filename=paste(outdir, "/aa_histogram_", gene, ".png", sep=""), width=1280, height=720)
-	print(m)
-	dev.off()
-	
-	ggsave(paste(outdir, "/aa_histogram_", gene, ".pdf", sep=""), m, width=14, height=7)
-}
+library(ggplot2)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+mutations.by.id.file = args[1]
+absent.aa.by.id.file = args[2]
+genes = strsplit(args[3], ",")[[1]]
+genes = c(genes, "")
+outdir = args[4]
+
+
+print("---------------- read input ----------------")
+
+mutations.by.id = read.table(mutations.by.id.file, sep="\t", fill=T, header=T, quote="")
+absent.aa.by.id = read.table(absent.aa.by.id.file, sep="\t", fill=T, header=T, quote="")
+
+for(gene in genes){
+	graph.title = paste(gene, "AA mutation frequency")
+	if(gene == ""){
+		mutations.by.id.gene = mutations.by.id[!grepl("unmatched", mutations.by.id$best_match),]
+		absent.aa.by.id.gene = absent.aa.by.id[!grepl("unmatched", absent.aa.by.id$best_match),]
+		
+		graph.title = "AA mutation frequency all"
+	} else {
+		mutations.by.id.gene = mutations.by.id[grepl(paste("^", gene, sep=""), mutations.by.id$best_match),]
+		absent.aa.by.id.gene = absent.aa.by.id[grepl(paste("^", gene, sep=""), absent.aa.by.id$best_match),]
+	}
+	print(paste("nrow", gene, nrow(absent.aa.by.id.gene)))
+	if(nrow(mutations.by.id.gene) == 0){
+		next
+	}
+
+	mutations.at.position = colSums(mutations.by.id.gene[,-c(1,2)])
+	aa.at.position = colSums(absent.aa.by.id.gene[,-c(1,2,3,4)])
+
+	dat_freq = mutations.at.position / aa.at.position
+	dat_freq[is.na(dat_freq)] = 0
+	dat_dt = data.frame(i=1:length(dat_freq), freq=dat_freq)
+	
+
+	print("---------------- plot ----------------")
+
+	m = ggplot(dat_dt, aes(x=i, y=freq)) + theme(axis.text.x = element_text(angle = 90, hjust = 1), text = element_text(size=13, colour="black"))
+	m = m + geom_bar(stat="identity", colour = "black", fill = "darkgrey", alpha=0.8) + scale_x_continuous(breaks=dat_dt$i, labels=dat_dt$i)
+	m = m + annotate("segment", x = 0.5, y = -0.05, xend=26.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.1, label="FR1")
+	m = m + annotate("segment", x = 26.5, y = -0.07, xend=38.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.15, label="CDR1")
+	m = m + annotate("segment", x = 38.5, y = -0.05, xend=55.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.1, label="FR2")
+	m = m + annotate("segment", x = 55.5, y = -0.07, xend=65.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.15, label="CDR2")
+	m = m + annotate("segment", x = 65.5, y = -0.05, xend=104.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.1, label="FR3")
+	m = m + expand_limits(y=c(-0.1,1)) + xlab("AA position") + ylab("Frequency") + ggtitle(graph.title) 
+	m = m + theme(panel.background = element_rect(fill = "white", colour="black"), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
+	#m = m + scale_colour_manual(values=c("black"))
+
+	print("---------------- write/print ----------------")
+
+
+	dat.sums = data.frame(index=1:length(mutations.at.position), mutations.at.position=mutations.at.position, aa.at.position=aa.at.position)
+
+	write.table(dat.sums, paste(outdir, "/aa_histogram_sum_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	write.table(mutations.by.id.gene, paste(outdir, "/aa_histogram_count_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	write.table(absent.aa.by.id.gene, paste(outdir, "/aa_histogram_absent_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	write.table(dat_dt, paste(outdir, "/aa_histogram_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	
+	png(filename=paste(outdir, "/aa_histogram_", gene, ".png", sep=""), width=1280, height=720)
+	print(m)
+	dev.off()
+	
+	ggsave(paste(outdir, "/aa_histogram_", gene, ".pdf", sep=""), m, width=14, height=7)
+}
--- a/baseline/Baseline_Functions.r	Thu Feb 25 10:32:32 2021 +0000
+++ b/baseline/Baseline_Functions.r	Wed Sep 15 12:24:06 2021 +0000
@@ -1,2287 +1,2287 @@
-#########################################################################################
-# License Agreement
-# 
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
-# OR COPYRIGHT LAW IS PROHIBITED.
-# 
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-# Global variables  
-  
-  FILTER_BY_MUTATIONS = 1000
-
-  # Nucleotides
-  NUCLEOTIDES = c("A","C","G","T")
-  
-  # Amino Acids
-  AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
-  names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
-  names(AMINO_ACIDS) <- names(AMINO_ACIDS)
-
-  #Amino Acid Traits
-  #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
-  #B = "Hydrophobic/Burried"  N = "Intermediate/Neutral"  S="Hydrophilic/Surface") 
-  TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
-  names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
-  TRAITS_AMINO_ACIDS <- array(NA,21)
-  
-  # Codon Table
-  CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
-
-  # Substitution Model: Smith DS et al. 1996
-  substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  load("FiveS_Substitution.RData")
-
-  # Mutability Models: Shapiro GS et al. 2002
-  triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
-  triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
-  triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
-  load("FiveS_Mutability.RData")
-
-# Functions
-  
-  # Translate codon to amino acid
-  translateCodonToAminoAcid<-function(Codon){
-     return(AMINO_ACIDS[Codon])
-  }
-
-  # Translate amino acid to trait change
-  translateAminoAcidToTraitChange<-function(AminoAcid){
-     return(TRAITS_AMINO_ACIDS[AminoAcid])
-  }
-    
-  # Initialize Amino Acid Trait Changes
-  initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
-    if(!is.null(traitChangeFileName)){
-      tryCatch(
-          traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
-          , error = function(ex){
-            cat("Error|Error reading trait changes. Please check file name/path and format.\n")
-            q()
-          }
-        )
-    }else{
-      traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
-    }
-    TRAITS_AMINO_ACIDS <<- traitChange
- } 
-  
-  # Read in formatted nucleotide substitution matrix
-  initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
-    if(!is.null(subsMatFileName)){
-      tryCatch(
-          subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
-          , error = function(ex){
-            cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
-            q()
-          }
-        )
-      if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
-    }else{
-      if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
-      if(substitutionModel==2)subsMat <- substitution_Flu_Human      
-      if(substitutionModel==3)subsMat <- substitution_Flu25_Human      
-       
-    }
-
-    if(substitutionModel==0){
-      subsMat <- matrix(1,4,4)
-      subsMat[,] = 1/3
-      subsMat[1,1] = 0
-      subsMat[2,2] = 0
-      subsMat[3,3] = 0
-      subsMat[4,4] = 0
-    }
-    
-    
-    NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
-    if(substitutionModel==5){
-      subsMat <- FiveS_Substitution
-      return(subsMat)
-    }else{
-      subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
-      return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
-    }
-  }
-
-   
-  # Read in formatted Mutability file
-  initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
-    if(!is.null(mutabilityMatFileName)){
-        tryCatch(
-            mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
-            , error = function(ex){
-              cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
-              q()
-            }
-          )
-    }else{
-      mutabilityMat <- triMutability_Literature_Human
-      if(species==2) mutabilityMat <- triMutability_Literature_Mouse
-    }
-
-  if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
-  
-    if(mutabilityModel==5){
-      mutabilityMat <- FiveS_Mutability
-      return(mutabilityMat)
-    }else{
-      return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
-    }
-  }
-
-  # Read FASTA file formats
-  # Modified from read.fasta from the seqinR package
-  baseline.read.fasta <-
-  function (file = system.file("sequences/sample.fasta", package = "seqinr"), 
-      seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE, 
-      set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, 
-      strip.desc = FALSE,  sizeof.longlong = .Machine$sizeof.longlong, 
-      endian = .Platform$endian, apply.mask = TRUE) 
-  {
-      seqtype <- match.arg(seqtype)
-  
-          lines <- readLines(file)
-          
-          if (legacy.mode) {
-              comments <- grep("^;", lines)
-              if (length(comments) > 0) 
-                  lines <- lines[-comments]
-          }
-          
-          
-          ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
-          lines_mod<-lines
-  
-          if(!length(ind_groups)){
-              lines_mod<-c(">>>All sequences combined",lines)            
-          }
-          
-          ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
-  
-          lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
-          id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
-          lines[id] <- "THIS IS A FAKE SEQUENCE"
-          lines[-id] <- lines_mod
-          rm(lines_mod)
-  
-  		ind <- which(substr(lines, 1L, 1L) == ">")
-          nseq <- length(ind)
-          if (nseq == 0) {
-               stop("no line starting with a > character found")
-          }        
-          start <- ind + 1
-          end <- ind - 1
-  
-          while( any(which(ind%in%end)) ){
-            ind=ind[-which(ind%in%end)]
-            nseq <- length(ind)
-            if (nseq == 0) {
-                stop("no line starting with a > character found")
-            }        
-            start <- ind + 1
-            end <- ind - 1        
-          }
-          
-          end <- c(end[-1], length(lines))
-          sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
-          if (seqonly) 
-              return(sequences)
-          nomseq <- lapply(seq_len(nseq), function(i) {
-          
-              #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
-              substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
-          
-          })
-          if (seqtype == "DNA") {
-              if (forceDNAtolower) {
-                  sequences <- as.list(tolower(chartr(".","-",sequences)))
-              }else{
-                  sequences <- as.list(toupper(chartr(".","-",sequences)))
-              }
-          }
-          if (as.string == FALSE) 
-              sequences <- lapply(sequences, s2c)
-          if (set.attributes) {
-              for (i in seq_len(nseq)) {
-                  Annot <- lines[ind[i]]
-                  if (strip.desc) 
-                    Annot <- substr(Annot, 2L, nchar(Annot))
-                  attributes(sequences[[i]]) <- list(name = nomseq[[i]], 
-                    Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA", 
-                      DNA = "SeqFastadna"))
-              }
-          }
-          names(sequences) <- nomseq
-          return(sequences)
-  }
-
-  
-  # Replaces non FASTA characters in input files with N  
-  replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
-    gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
-  }    
-  
-  # Find the germlines in the FASTA list
-  germlinesInFile <- function(seqIDs){
-    firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
-    secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
-    return(firstChar==">" & secondChar!=">")
-  }
-  
-  # Find the groups in the FASTA list
-  groupsInFile <- function(seqIDs){
-    sapply(seqIDs,function(x){substr(x,1,2)})==">>"
-  }
-
-  # In the process of finding germlines/groups, expand from the start to end of the group
-  expandTillNext <- function(vecPosToID){    
-    IDs = names(vecPosToID)
-    posOfInterests =  which(vecPosToID)
-  
-    expandedID = rep(NA,length(IDs))
-    expandedIDNames = gsub(">","",IDs[posOfInterests])
-    startIndexes = c(1,posOfInterests[-1])
-    stopIndexes = c(posOfInterests[-1]-1,length(IDs))
-    expandedID  = unlist(sapply(1:length(startIndexes),function(i){
-                                    rep(i,stopIndexes[i]-startIndexes[i]+1)
-                                  }))
-    names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
-                                    rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
-                                  }))  
-    return(expandedID)                                                                                                  
-  }
-    
-  # Process FASTA (list) to return a matrix[input, germline)
-  processInputAdvanced <- function(inputFASTA){
-  
-    seqIDs = names(inputFASTA)
-    numbSeqs = length(seqIDs)
-    posGermlines1 = germlinesInFile(seqIDs)
-    numbGermlines = sum(posGermlines1)
-    posGroups1 = groupsInFile(seqIDs)
-    numbGroups = sum(posGroups1)
-    consDef = NA
-    
-    if(numbGermlines==0){
-      posGermlines = 2
-      numbGermlines = 1  
-    }
-  
-      glPositionsSum = cumsum(posGermlines1)
-      glPositions = table(glPositionsSum)
-      #Find the position of the conservation row
-      consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1  
-    if( length(consDefPos)> 0 ){
-      consDefID =  match(consDefPos, glPositionsSum) 
-      #The coservation rows need to be pulled out and stores seperately 
-      consDef =  inputFASTA[consDefID]
-      inputFASTA =  inputFASTA[-consDefID]
-  
-      seqIDs = names(inputFASTA)
-      numbSeqs = length(seqIDs)
-      posGermlines1 = germlinesInFile(seqIDs)
-      numbGermlines = sum(posGermlines1)
-      posGroups1 = groupsInFile(seqIDs)
-      numbGroups = sum(posGroups1)
-      if(numbGermlines==0){
-        posGermlines = 2
-        numbGermlines = 1  
-      }    
-    }
-    
-    posGroups <- expandTillNext(posGroups1)
-    posGermlines <- expandTillNext(posGermlines1)
-    posGermlines[posGroups1] = 0
-    names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
-    posInput = rep(TRUE,numbSeqs)
-    posInput[posGroups1 | posGermlines1] = FALSE
-    
-    matInput = matrix(NA, nrow=sum(posInput), ncol=2)
-    rownames(matInput) = seqIDs[posInput]
-    colnames(matInput) = c("Input","Germline")
-    
-    vecInputFASTA = unlist(inputFASTA)  
-    matInput[,1] = vecInputFASTA[posInput]
-    matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
-    
-    germlines = posGermlines[posInput]
-    groups = posGroups[posInput]
-    
-    return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))      
-  }
-
-
-  # Replace leading and trailing dashes in the sequence
-  replaceLeadingTrailingDashes <- function(x,readEnd){
-    iiGap = unlist(gregexpr("-",x[1]))
-    ggGap = unlist(gregexpr("-",x[2]))  
-    #posToChange = intersect(iiGap,ggGap)
-    
-    
-    seqIn = replaceLeadingTrailingDashesHelper(x[1])
-    seqGL = replaceLeadingTrailingDashesHelper(x[2])
-    seqTemplate = rep('N',readEnd)
-    seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
-    seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
-#    if(posToChange!=-1){
-#      seqIn[posToChange] = "-"
-#      seqGL[posToChange] = "-"
-#    }
-  
-    seqIn = c2s(seqIn[1:readEnd])
-    seqGL = c2s(seqGL[1:readEnd])
-  
-    lenGL = nchar(seqGL)
-    if(lenGL<readEnd){
-      seqGL = paste(seqGL,c2s(rep("N",readEnd-lenGL)),sep="")
-    }
-  
-    lenInput = nchar(seqIn)
-    if(lenInput<readEnd){
-      seqIn = paste(seqIn,c2s(rep("N",readEnd-lenInput)),sep="")
-    }    
-    return( c(seqIn,seqGL) )
-  }  
-
-  replaceLeadingTrailingDashesHelper <- function(x){
-    grepResults = gregexpr("-*",x)
-    grepResultsPos = unlist(grepResults)
-    grepResultsLen =  attr(grepResults[[1]],"match.length")   
-    #print(paste("x = '", x, "'", sep=""))
-    x = s2c(x)
-    if(x[1]=="-"){
-      x[1:grepResultsLen[1]] = "N"      
-    }
-    if(x[length(x)]=="-"){
-      x[(length(x)-grepResultsLen[length(grepResultsLen)]+1):length(x)] = "N"      
-    }
-    return(x)
-  }
-
-
-
-  
-  # Check sequences for indels
-  checkForInDels <- function(matInputP){
-    insPos <- checkInsertion(matInputP)
-    delPos <- checkDeletions(matInputP)
-    return(list("Insertions"=insPos, "Deletions"=delPos))
-  }
-
-  # Check sequences for insertions
-  checkInsertion <- function(matInputP){
-    insertionCheck = apply( matInputP,1, function(x){
-                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
-                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )                                          
-                                          return( is.finite( match(FALSE, glGaps%in%inputGaps ) ) )
-                                        })   
-    return(as.vector(insertionCheck))
-  }
-  # Fix inserstions
-  fixInsertions <- function(matInputP){
-    insPos <- checkInsertion(matInputP)
-    sapply((1:nrow(matInputP))[insPos],function(rowIndex){
-                                                x <- matInputP[rowIndex,]
-                                                inputGaps <- gregexpr("-",x[1])[[1]]
-                                                glGaps <- gregexpr("-",x[2])[[1]]
-                                                posInsertions <- glGaps[!(glGaps%in%inputGaps)]
-                                                inputInsertionToN <- s2c(x[2])
-                                                inputInsertionToN[posInsertions]!="-"
-                                                inputInsertionToN[posInsertions] <- "N"
-                                                inputInsertionToN <- c2s(inputInsertionToN)
-                                                matInput[rowIndex,2] <<- inputInsertionToN 
-                                              })                                                               
-    return(insPos)
-  } 
-    
-  # Check sequences for deletions
-  checkDeletions <-function(matInputP){
-    deletionCheck = apply( matInputP,1, function(x){
-                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
-                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )
-                                          return( is.finite( match(FALSE, inputGaps%in%glGaps ) ) )
-                                      })
-    return(as.vector(deletionCheck))                                      
-  }
-  # Fix sequences with deletions
-  fixDeletions <- function(matInputP){
-    delPos <- checkDeletions(matInputP)    
-    sapply((1:nrow(matInputP))[delPos],function(rowIndex){
-                                                x <- matInputP[rowIndex,]
-                                                inputGaps <- gregexpr("-",x[1])[[1]]
-                                                glGaps <- gregexpr("-",x[2])[[1]]
-                                                posDeletions <- inputGaps[!(inputGaps%in%glGaps)]
-                                                inputDeletionToN <- s2c(x[1])
-                                                inputDeletionToN[posDeletions] <- "N"
-                                                inputDeletionToN <- c2s(inputDeletionToN)
-                                                matInput[rowIndex,1] <<- inputDeletionToN 
-                                              })                                                                   
-    return(delPos)
-  }  
-    
-
-  # Trim DNA sequence to the last codon
-  trimToLastCodon <- function(seqToTrim){
-    seqLen = nchar(seqToTrim)  
-    trimmedSeq = s2c(seqToTrim)
-    poi = seqLen
-    tailLen = 0
-    
-    while(trimmedSeq[poi]=="-" || trimmedSeq[poi]=="."){
-      tailLen = tailLen + 1
-      poi = poi - 1   
-    }
-    
-    trimmedSeq = c2s(trimmedSeq[1:(seqLen-tailLen)])
-    seqLen = nchar(trimmedSeq)
-    # Trim sequence to last codon
-  	if( getCodonPos(seqLen)[3] > seqLen )
-  	  trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
-    
-    return(trimmedSeq)
-  }
-  
-  # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
-  # e.g. nuc 86 is part of nucs 85,86,87
-  getCodonPos <- function(nucPos){
-    codonNum =  (ceiling(nucPos/3))*3
-    return( (codonNum-2):codonNum)
-  }
-  
-  # Given a nuclotide position, returns the codon number
-  # e.g. nuc 86  = codon 29
-  getCodonNumb <- function(nucPos){
-    return( ceiling(nucPos/3) )
-  }
-  
-  # Given a codon, returns all the nuc positions that make the codon
-  getCodonNucs <- function(codonNumb){
-    getCodonPos(codonNumb*3)
-  }  
-
-  computeCodonTable <- function(testID=1){
-                  
-    if(testID<=4){    
-      # Pre-compute every codons
-      intCounter = 1
-      for(pOne in NUCLEOTIDES){
-        for(pTwo in NUCLEOTIDES){
-          for(pThree in NUCLEOTIDES){
-            codon = paste(pOne,pTwo,pThree,sep="")
-            colnames(CODON_TABLE)[intCounter] =  codon
-            intCounter = intCounter + 1
-            CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
-          }  
-        }
-      }
-      chars = c("N","A","C","G","T", "-")
-      for(a in chars){
-        for(b in chars){
-          for(c in chars){
-            if(a=="N" | b=="N" | c=="N"){ 
-              #cat(paste(a,b,c),sep="","\n") 
-              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
-            }
-          }  
-        }
-      }
-      
-      chars = c("-","A","C","G","T")
-      for(a in chars){
-        for(b in chars){
-          for(c in chars){
-            if(a=="-" | b=="-" | c=="-"){ 
-              #cat(paste(a,b,c),sep="","\n") 
-              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
-            }
-          }  
-        }
-      }
-      CODON_TABLE <<- as.matrix(CODON_TABLE)
-    }
-  }
-  
-  collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
-  #print(length(vecInputSeqs))
-    vecInputSeqs = unique(vecInputSeqs) 
-    if(length(vecInputSeqs)==1){
-      return( list( c(vecInputSeqs,glSeq), F) )
-    }else{
-      charInputSeqs <- sapply(vecInputSeqs, function(x){
-                                              s2c(x)[1:readEnd]
-                                            })
-      charGLSeq <- s2c(glSeq)
-      matClone <- sapply(1:readEnd, function(i){
-                                            posNucs = unique(charInputSeqs[i,])
-                                            posGL = charGLSeq[i]
-                                            error = FALSE                                            
-                                            if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
-                                              return(c("-",error))
-                                            }
-                                            if(length(posNucs)==1)
-                                              return(c(posNucs[1],error))
-                                            else{
-                                              if("N"%in%posNucs){
-                                                error=TRUE
-                                              }
-                                              if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
-                                                return( c(posGL,error) )  
-                                              }else{
-                                                #return( c(sample(posNucs[posNucs!="N"],1),error) )  
-                                                if(nonTerminalOnly==0){
-                                                  return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )  
-                                                }else{
-                                                  posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
-                                                  posNucsTable = table(posNucs)
-                                                  if(sum(posNucsTable>1)==0){
-                                                    return( c(posGL,error) )
-                                                  }else{
-                                                    return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
-                                                  }
-                                                }
-                                                
-                                              }
-                                            } 
-                                          })
-      
-                                          
-      #print(length(vecInputSeqs))                                        
-      return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
-    }
-  }
-
-  # Compute the expected for each sequence-germline pair
-  getExpectedIndividual <- function(matInput){
-  if( any(grep("multicore",search())) ){ 
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
-                                                      computeMutabilities(facLevels[x])
-                                                    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
-                                                      cInput = rep(NA,nchar(matInput[x,1]))
-                                                      cInput[s2c(matInput[x,1])!="N"] = 1
-                                                      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-                                                    })
-                                                    
-    LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
-                                                      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-                                                    })
-                                                    
-    LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
-                                                    #print(x)
-                                                    computeMutationTypes(matInput[x,2])
-                                                })
-    
-    LisGLs_Exp = mclapply(1:dim(matInput)[1],  function(x){
-                                                  computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
-                                                })
-    
-    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
-    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
-  }else{
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
-      computeMutabilities(facLevels[x])
-    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
-      cInput = rep(NA,nchar(matInput[x,1]))
-      cInput[s2c(matInput[x,1])!="N"] = 1
-      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-    })
-    
-    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
-      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-    })
-    
-    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
-      #print(x)
-      computeMutationTypes(matInput[x,2])
-    })
-    
-    LisGLs_Exp = lapply(1:dim(matInput)[1],  function(x){
-      computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
-    })
-    
-    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
-    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
-    
-  }
-  }
-
-  # Compute mutabilities of sequence based on the tri-nucleotide model
-  computeMutabilities <- function(paramSeq){
-    seqLen = nchar(paramSeq)
-    seqMutabilites = rep(NA,seqLen)
-  
-    gaplessSeq = gsub("-", "", paramSeq)
-    gaplessSeqLen = nchar(gaplessSeq)
-    gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
-    
-    if(mutabilityModel!=5){
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqMutabilites[pos] =      
-        tapply( c(
-                                        getMutability( substr(subSeq,1,3), 3) , 
-                                        getMutability( substr(subSeq,2,4), 2), 
-                                        getMutability( substr(subSeq,3,5), 1) 
-                                        ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
-                                      )
-      #Pos 1
-      subSeq =  substr(gaplessSeq,1,3)
-      gaplessSeqMutabilites[1] =  getMutability(subSeq , 1)
-      #Pos 2
-      subSeq =  substr(gaplessSeq,1,4)
-      gaplessSeqMutabilites[2] =  mean( c(
-                                            getMutability( substr(subSeq,1,3), 2) , 
-                                            getMutability( substr(subSeq,2,4), 1) 
-                                          ),na.rm=T
-                                      ) 
-      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
-      return(seqMutabilites)
-    }else{
-      
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
-      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
-      return(seqMutabilites)
-    }
-
-  }
-
-  # Returns the mutability of a triplet at a given position
-  getMutability <- function(codon, pos=1:3){
-    triplets <- rownames(mutability)
-    mutability[  match(codon,triplets) ,pos]
-  }
-
-  getMutability5 <- function(fivemer){
-    return(mutability[fivemer])
-  }
-
-  # Returns the substitution probabilty
-  getTransistionProb <- function(nuc){
-    substitution[nuc,]
-  }
-
-  getTransistionProb5 <- function(fivemer){    
-    if(any(which(fivemer==colnames(substitution)))){
-      return(substitution[,fivemer])
-    }else{
-      return(array(NA,4))
-    }
-  }
-
-  # Given a nuc, returns the other 3 nucs it can mutate to
-  canMutateTo <- function(nuc){
-    NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
-  }
-  
-  # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to 
-  canMutateToProb <- function(nuc){
-    substitution[nuc,canMutateTo(nuc)]
-  }
-
-  # Compute targeting, based on precomputed mutatbility & substitution  
-  computeTargeting <- function(param_strSeq,param_vecMutabilities){
-
-    if(substitutionModel!=5){
-      vecSeq = s2c(param_strSeq)
-      matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )  
-      #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
-      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(length(vecSeq))) 
-      return (matTargeting)
-    }else{
-      
-      seqLen = nchar(param_strSeq)
-      seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
-      paramSeq <- param_strSeq
-      gaplessSeq = gsub("-", "", paramSeq)
-      gaplessSeqLen = nchar(gaplessSeq)
-      gaplessSeqSubstitution  = matrix(NA,ncol=gaplessSeqLen,nrow=4) 
-      
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
-      seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
-      #matTargeting <- param_vecMutabilities  %*% seqsubstitution
-      matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
-      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(seqLen)) 
-      return (matTargeting)      
-    }
-  }  
-
-  # Compute the mutations types   
-  computeMutationTypes <- function(param_strSeq){
-  #cat(param_strSeq,"\n")
-    #vecSeq = trimToLastCodon(param_strSeq)
-    lenSeq = nchar(param_strSeq)
-    vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
-    matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
-    dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
-    return(matMutationTypes)   
-  }  
-  computeMutationTypesFast <- function(param_strSeq){
-    matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
-    #dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(length(vecSeq)))
-    return(matMutationTypes)   
-  }  
-  mutationTypeOptimized <- function( matOfCodons ){
-   apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } ) 
-  }  
-
-  # Returns a vector of codons 1 mutation away from the given codon
-  permutateAllCodon <- function(codon){
-    cCodon = s2c(codon)
-    matCodons = t(array(cCodon,dim=c(3,12)))
-    matCodons[1:4,1] = NUCLEOTIDES
-    matCodons[5:8,2] = NUCLEOTIDES
-    matCodons[9:12,3] = NUCLEOTIDES
-    apply(matCodons,1,c2s)
-  }
-
-  # Given two codons, tells you if the mutation is R or S (based on your definition)
-  mutationType <- function(codonFrom,codonTo){
-    if(testID==4){
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        mutationType = "S"
-        if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
-          mutationType = "R"                                                              
-        }
-        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
-          mutationType = "Stop"
-        }
-        return(mutationType)
-      }  
-    }else if(testID==5){  
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        if(codonFrom==codonTo){
-          mutationType = "S"
-        }else{
-          codonFrom = s2c(codonFrom)
-          codonTo = s2c(codonTo)  
-          mutationType = "Stop"
-          nucOfI = codonFrom[which(codonTo!=codonFrom)]
-          if(nucOfI=="C"){
-            mutationType = "R"  
-          }else if(nucOfI=="G"){
-            mutationType = "S"
-          }
-        }
-        return(mutationType)
-      }
-    }else{
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        mutationType = "S"
-        if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
-          mutationType = "R"                                                              
-        }
-        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
-          mutationType = "Stop"
-        }
-        return(mutationType)
-      }  
-    }    
-  }
-
-  
-  #given a mat of targeting & it's corresponding mutationtypes returns 
-  #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
-  computeExpected <- function(paramTargeting,paramMutationTypes){
-    # Replacements
-    RPos = which(paramMutationTypes=="R")  
-      #FWR
-      Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
-      #CDR
-      Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
-    # Silents
-    SPos = which(paramMutationTypes=="S")  
-      #FWR
-      Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
-      #CDR
-      Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
-  
-      return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
-  }
-  
-  # Count the mutations in a sequence
-  # each mutation is treated independently 
-  analyzeMutations2NucUri_website <- function( rev_in_matrix ){
-    paramGL = rev_in_matrix[2,]
-    paramSeq = rev_in_matrix[1,]  
-    
-    #Fill seq with GL seq if gapped
-    #if( any(paramSeq=="-") ){
-    #  gapPos_Seq =  which(paramSeq=="-")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}
-  
-  
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}  
-      
-    analyzeMutations2NucUri(  matrix(c( paramGL, paramSeq  ),2,length(paramGL),byrow=T)  )
-    
-  }
-
-  #1 = GL 
-  #2 = Seq
-  analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
-    paramGL = in_matrix[2,]
-    paramSeq = in_matrix[1,]
-    paramSeqUri = paramGL
-    #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
-    mutations_val = paramGL != paramSeq   
-    if(any(mutations_val)){
-      mutationPos = {1:length(mutations_val)}[mutations_val]  
-      mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-      if(any(mutationPos)){  
-
-        pos<- mutationPos
-        pos_array<-array(sapply(pos,getCodonPos))
-        codonGL =  paramGL[pos_array]
-        
-        codonSeq = sapply(pos,function(x){
-                                  seqP = paramGL[getCodonPos(x)]
-                                  muCodonPos = {x-1}%%3+1 
-                                  seqP[muCodonPos] = paramSeq[x]
-                                  return(seqP)
-                                })      
-        GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-        Seqcodons =   apply(codonSeq,2,c2s)
-        mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-        names(mutationInfo) = mutationPos
-    }
-    if(any(!is.na(mutationInfo))){
-      return(mutationInfo[!is.na(mutationInfo)])    
-    }else{
-      return(NA)
-    }
-    
-    
-    }else{
-      return (NA)
-    }
-  }
-  
-  processNucMutations2 <- function(mu){
-    if(!is.na(mu)){
-      #R
-      if(any(mu=="R")){
-        Rs = mu[mu=="R"]
-        nucNumbs = as.numeric(names(Rs))
-        R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
-        R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
-      }else{
-        R_CDR = 0
-        R_FWR = 0
-      }    
-      
-      #S
-      if(any(mu=="S")){
-        Ss = mu[mu=="S"]
-        nucNumbs = as.numeric(names(Ss))
-        S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
-        S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
-      }else{
-        S_CDR = 0
-        S_FWR = 0
-      }    
-      
-      
-      retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
-      retVec[is.na(retVec)]=0
-      return(retVec)
-    }else{
-      return(rep(0,4))
-    }
-  }        
-  
-  
-  ## Z-score Test
-  computeZScore <- function(mat, test="Focused"){
-    matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
-    if(test=="Focused"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }
-  
-    if(test=="Local"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }
-    
-    if(test=="Imbalanced"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
-      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
-      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }    
-      
-    matRes[is.nan(matRes)] = NA
-    return(matRes)
-  }
-
-  # Return a p-value for a z-score
-  z2p <- function(z){
-    p=NA
-    if( !is.nan(z) && !is.na(z)){   
-      if(z>0){
-        p = (1 - pnorm(z,0,1))
-      } else if(z<0){
-        p = (-1 * pnorm(z,0,1))
-      } else{
-        p = 0.5
-      }
-    }else{
-      p = NA
-    }
-    return(p)
-  }    
-  
-  
-  ## Bayesian  Test
-
-  # Fitted parameter for the bayesian framework
-BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
-  CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
-  
-  # Given x, M & p, returns a pdf 
-  calculate_bayes <- function ( x=3, N=10, p=0.33,
-                                i=CONST_i,
-                                max_sigma=20,length_sigma=4001
-                              ){
-    if(!0%in%N){
-      G <- max(length(x),length(N),length(p))
-      x=array(x,dim=G)
-      N=array(N,dim=G)
-      p=array(p,dim=G)
-      sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
-      sigma_1<-log({i/{1-i}}/{p/{1-p}})
-      index<-min(N,60)
-      y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
-      if(!sum(is.na(y))){
-        tmp<-approx(sigma_1,y,sigma_s)$y
-        tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
-      }else{
-        return(NA)
-      }
-    }else{
-      return(NA)
-    }
-  }  
-  # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
-  computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
-    flagOneSeq = F
-    if(nrow(mat)==1){
-      mat=rbind(mat,mat)
-      flagOneSeq = T
-    }
-    if(test=="Focused"){
-      #CDR
-      P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,1],0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,3],0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-    
-    if(test=="Local"){
-      #CDR
-      P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
-      X = c(mat[,1],0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,3],0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    } 
-     
-    if(test=="Imbalanced"){
-      #CDR
-      P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
-      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
-      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-
-    if(test=="ImbalancedSilent"){
-      #CDR
-      P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
-      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
-      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-        
-    if(flagOneSeq==T){
-      bayesCDR = bayesCDR[1]  
-      bayesFWR = bayesFWR[1]
-    }
-    return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
-  }
-  
-  ##Covolution
-  break2chunks<-function(G=1000){
-  base<-2^round(log(sqrt(G),2),0)
-  return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
-  }  
-  
-  PowersOfTwo <- function(G=100){
-    exponents <- array()
-    i = 0
-    while(G > 0){
-      i=i+1
-      exponents[i] <- floor( log2(G) )
-      G <- G-2^exponents[i]
-    }
-    return(exponents)
-  }
-  
-  convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
-    G = ncol(cons)
-    if(G>1){
-      for(gen in log(G,2):1){
-        ll<-seq(from=2,to=2^gen,by=2)
-        sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
-      }
-    }
-    return( cons[,1] )
-  }
-  
-  convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
-    if(length(ncol(cons))) G<-ncol(cons)
-    groups <- PowersOfTwo(G)
-    matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
-    startIndex = 1
-    for( i in 1:length(groups) ){
-      stopIndex <- 2^groups[i] + startIndex - 1
-      if(stopIndex!=startIndex){
-        matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
-        startIndex = stopIndex + 1
-      }
-      else {
-        if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
-        else matG[,i] <- cons
-        #startIndex = stopIndex + 1
-      }
-    }
-    return( list( matG, groups ) )
-  }
-  
-  weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
-    lx<-length(x)
-    ly<-length(y)
-    if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
-      if(w<1){
-        y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
-        x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
-        lx<-length(x1)
-        ly<-length(y1)
-      }
-      else {
-        y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
-        x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
-        lx<-length(x1)
-        ly<-length(y1)
-      }
-    }
-    else{
-      x1<-x
-      y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
-      ly<-length(y1)
-    }
-    tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
-    tmp[tmp<=0] = 0
-    return(tmp/sum(tmp))
-  }
-  
-  calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
-    matG <- listMatG[[1]]
-    groups <- listMatG[[2]]
-    i = 1
-    resConv <- matG[,i]
-    denom <- 2^groups[i]
-    if(length(groups)>1){
-      while( i<length(groups) ){
-        i = i + 1
-        resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
-        #cat({{2^groups[i]}/denom},"\n")
-        denom <- denom + 2^groups[i]
-      }
-    }
-    return(resConv)
-  }
-  
-  # Given a list of PDFs, returns a convoluted PDF    
-  groupPosteriors <- function( listPosteriors, max_sigma=20, length_sigma=4001 ,Threshold=2 ){  
-    listPosteriors = listPosteriors[ !is.na(listPosteriors) ]
-    Length_Postrior<-length(listPosteriors)
-    if(Length_Postrior>1 & Length_Postrior<=Threshold){
-      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
-      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
-      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }else if(Length_Postrior==1) return(listPosteriors[[1]])
-    else  if(Length_Postrior==0) return(NA)
-    else {
-      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
-      y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }
-  }
-
-  fastConv<-function(cons, max_sigma=20, length_sigma=4001){
-    chunks<-break2chunks(G=ncol(cons))
-    if(ncol(cons)==3) chunks<-2:1
-    index_chunks_end <- cumsum(chunks)
-    index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
-    index_chunks <- cbind(index_chunks_start,index_chunks_end)
-    
-    case <- sum(chunks!=chunks[1])
-    if(case==1) End <- max(1,((length(index_chunks)/2)-1))
-    else End <- max(1,((length(index_chunks)/2)))
-    
-    firsts <- sapply(1:End,function(i){
-          	    indexes<-index_chunks[i,1]:index_chunks[i,2]
-          	    convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
-          	  })
-    if(case==0){
-    	result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
-    }else if(case==1){
-      last<-list(calculate_bayesGHelper(
-      convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
-                                      ),0)
-      result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
-      result<-calculate_bayesGHelper(
-        list(
-          cbind(
-          result_first,last[[1]]),
-          c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
-        )
-      )
-    }
-    return(as.vector(result))
-  }
-    
-  # Computes the 95% CI for a pdf
-  calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
-    if(length(Pdf)!=length_sigma) return(NA)
-    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
-    cdf = cumsum(Pdf)
-    cdf = cdf/cdf[length(cdf)]  
-    return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) ) 
-  }
-  
-  # Computes a mean for a pdf
-  calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
-    if(length(Pdf)!=length_sigma) return(NA)
-    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
-    norm = {length_sigma-1}/2/max_sigma
-    return( (Pdf%*%sigma_s/norm)  ) 
-  }
-  
-  # Returns the mean, and the 95% CI for a pdf
-  calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
-    if(is.na(Pdf)) 
-     return(rep(NA,3))  
-    bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
-    bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
-    return(c(bMean, bCI))
-  }   
-
-  # Computes the p-value of a pdf
-  computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
-    if(length(Pdf)>1){
-      norm = {length_sigma-1}/2/max_sigma
-      pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
-      if(pVal>0.5){
-        pVal = pVal-1
-      }
-      return(pVal)
-    }else{
-      return(NA)
-    }
-  }    
-  
-  # Compute p-value of two distributions
-  compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
-  #print(c(length(dens1),length(dens2)))
-  if(length(dens1)>1 & length(dens2)>1 ){
-    dens1<-dens1/sum(dens1)
-    dens2<-dens2/sum(dens2)
-    cum2 <- cumsum(dens2)-dens2/2
-    tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
-    #print(tmp)
-    if(tmp>0.5)tmp<-tmp-1
-    return( tmp )
-    }
-    else {
-    return(NA)
-    }
-    #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
-  }  
-  
-  # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
-  numberOfSeqsWithMutations <- function(matMutations,test=1){
-    if(test==4)test=2
-    cdrSeqs <- 0
-    fwrSeqs <- 0    
-    if(test==1){#focused
-      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
-      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
-      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
-      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
-    }
-    if(test==2){#local
-      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
-      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
-      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
-      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
-    }
-  return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
-}  
-
-
-
-shadeColor <- function(sigmaVal=NA,pVal=NA){
-  if(is.na(sigmaVal) & is.na(pVal)) return(NA)
-  if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
-  if(is.na(pVal) || pVal==1 || pVal==0){
-    returnColor = "#FFFFFF";
-  }else{
-    colVal=abs(pVal);
-    
-    if(sigmaVal<0){      
-        if(colVal>0.1)
-          returnColor = "#CCFFCC";
-        if(colVal<=0.1)
-          returnColor = "#99FF99";
-        if(colVal<=0.050)
-          returnColor = "#66FF66";
-        if(colVal<=0.010)
-          returnColor = "#33FF33";
-        if(colVal<=0.005)
-          returnColor = "#00FF00";
-      
-    }else{
-      if(colVal>0.1)
-        returnColor = "#FFCCCC";
-      if(colVal<=0.1)
-        returnColor = "#FF9999";
-      if(colVal<=0.05)
-        returnColor = "#FF6666";
-      if(colVal<=0.01)
-        returnColor = "#FF3333";
-      if(colVal<0.005)
-        returnColor = "#FF0000";
-    }
-  }
-  
-  return(returnColor)
-}
-
-
-
-plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
-  if(!log){
-    x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
-    y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
-  }else {
-    if(log==2){
-      x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
-      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
-    }
-    if(log==1){
-      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
-      y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
-    }
-    if(log==3){
-      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
-      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
-    }
-  }
-  return(c("x"=x,"y"=y))
-}
-
-# SHMulation
-
-  # Based on targeting, introduce a single mutation & then update the targeting 
-  oneMutation <- function(){
-    # Pick a postion + mutation
-    posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
-    posNucNumb = ceiling(posMutation/4)                    # Nucleotide number
-    posNucKind = 4 - ( (posNucNumb*4) - posMutation )   # Nuc the position mutates to
-  
-    #mutate the simulation sequence
-    seqSimVec <-  s2c(seqSim)
-    seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
-    seqSim <<-  c2s(seqSimVec)
-    
-    #update Mutability, Targeting & MutationsTypes
-    updateMutabilityNTargeting(posNucNumb)
-  
-    #return(c(posNucNumb,NUCLEOTIDES[posNucKind])) 
-    return(posNucNumb)
-  }  
-  
-  updateMutabilityNTargeting <- function(position){
-    min_i<-max((position-2),1)
-    max_i<-min((position+2),nchar(seqSim))
-    min_ii<-min(min_i,3)
-    
-    #mutability - update locally
-    seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
-    
-    
-    #targeting - compute locally
-    seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])                 
-    seqTargeting[is.na(seqTargeting)] <<- 0
-    #mutCodonPos = getCodonPos(position) 
-    mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
-    #cat(mutCodonPos,"\n")                                                  
-    mutTypeCodon = getCodonPos(position)
-    seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) ) 
-    # Stop = 0
-    if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
-      seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
-    }
-    
-  
-    #Selection
-    selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))  
-    # CDR
-    selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
-    seqTargeting[selectedCDR] <<-  seqTargeting[selectedCDR] *  exp(selCDR)
-    seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
-        
-    # FWR
-    selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
-    seqTargeting[selectedFWR] <<-  seqTargeting[selectedFWR] *  exp(selFWR)
-    seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K      
-    
-  }  
-  
-
-
-  # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.   
-  validateMutation <- function(){  
-    if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
-      uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
-      mutatedPositions[uniqueMutationsIntroduced] <<-  mutatedPos  
-    }else{
-      if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
-        mutatedPositions <<-  mutatedPositions[-which(mutatedPositions==mutatedPos)]
-        uniqueMutationsIntroduced <<-  uniqueMutationsIntroduced - 1
-      }      
-    }
-  }  
-  
-  
-  
-  # Places text (labels) at normalized coordinates 
-  myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
-    par(xpd=TRUE)
-    if(!log)
-      text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
-    else {
-    if(log==2)
-    text(
-      par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
-      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
-      w,cex=cex,adj=adj,col=thecol)
-    if(log==1)
-      text(
-      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
-      par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
-      w,cex=cex,adj=adj,col=thecol)
-    if(log==3)
-      text(
-      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
-      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
-      w,cex=cex,adj=adj,col=thecol)
-    }
-    par(xpd=FALSE)
-  }
-  
-  
-  
-  # Count the mutations in a sequence
-  analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
-
-    paramGL = s2c(matInput[inputMatrixIndex,2])
-    paramSeq = s2c(matInput[inputMatrixIndex,1])            
-    
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}        
-    mutations_val = paramGL != paramSeq   
-    
-    if(any(mutations_val)){
-      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-                          
-      pos<- mutationPos
-      pos_array<-array(sapply(pos,getCodonPos))
-      codonGL =  paramGL[pos_array]
-      codonSeqWhole =  paramSeq[pos_array]
-      codonSeq = sapply(pos,function(x){
-                                seqP = paramGL[getCodonPos(x)]
-                                muCodonPos = {x-1}%%3+1 
-                                seqP[muCodonPos] = paramSeq[x]
-                                return(seqP)
-                              })
-      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
-      Seqcodons =   apply(codonSeq,2,c2s)
-      
-      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-      names(mutationInfo) = mutationPos     
-      
-      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
-      names(mutationInfoWhole) = mutationPos
-
-      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
-      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-      
-      if(any(!is.na(mutationInfo))){       
-  
-        #Filter based on Stop (at the codon level)
-        if(seqWithStops==1){
-          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
-          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
-          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
-        }else{
-          countStops = sum(mutationInfoWhole=="Stop")
-          if(seqWithStops==2 & countStops==0) mutationInfo = NA
-          if(seqWithStops==3 & countStops>0) mutationInfo = NA
-        }         
-        
-        if(any(!is.na(mutationInfo))){
-          #Filter mutations based on multipleMutation
-          if(multipleMutation==1 & !is.na(mutationInfo)){
-            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
-            tableMutationCodons <- table(mutationCodons)
-            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
-            if(any(codonsWithMultipleMutations)){
-              #remove the nucleotide mutations in the codons with multiple mutations
-              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
-              #replace those codons with Ns in the input sequence
-              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
-              matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
-            }
-          }
-
-          #Filter mutations based on the model
-          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
-            
-            if(model==1 & !is.na(mutationInfo)){
-              mutationInfo <- mutationInfo[mutationInfo=="S"]
-            }  
-            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
-            else return(NA)
-          }else{
-            return(NA)
-          }
-        }else{
-          return(NA)
-        }
-        
-        
-      }else{
-        return(NA)
-      }
-    
-    
-    }else{
-      return (NA)
-    }    
-  }  
-
-   analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
-
-    paramGL = s2c(inputArray[2])
-    paramSeq = s2c(inputArray[1])            
-    inputSeq <- inputArray[1]
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}        
-    mutations_val = paramGL != paramSeq   
-    
-    if(any(mutations_val)){
-      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-                          
-      pos<- mutationPos
-      pos_array<-array(sapply(pos,getCodonPos))
-      codonGL =  paramGL[pos_array]
-      codonSeqWhole =  paramSeq[pos_array]
-      codonSeq = sapply(pos,function(x){
-                                seqP = paramGL[getCodonPos(x)]
-                                muCodonPos = {x-1}%%3+1 
-                                seqP[muCodonPos] = paramSeq[x]
-                                return(seqP)
-                              })
-      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
-      Seqcodons =   apply(codonSeq,2,c2s)
-      
-      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-      names(mutationInfo) = mutationPos     
-      
-      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
-      names(mutationInfoWhole) = mutationPos
-
-      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
-      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-      
-      if(any(!is.na(mutationInfo))){       
-  
-        #Filter based on Stop (at the codon level)
-        if(seqWithStops==1){
-          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
-          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
-          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
-        }else{
-          countStops = sum(mutationInfoWhole=="Stop")
-          if(seqWithStops==2 & countStops==0) mutationInfo = NA
-          if(seqWithStops==3 & countStops>0) mutationInfo = NA
-        }         
-        
-        if(any(!is.na(mutationInfo))){
-          #Filter mutations based on multipleMutation
-          if(multipleMutation==1 & !is.na(mutationInfo)){
-            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
-            tableMutationCodons <- table(mutationCodons)
-            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
-            if(any(codonsWithMultipleMutations)){
-              #remove the nucleotide mutations in the codons with multiple mutations
-              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
-              #replace those codons with Ns in the input sequence
-              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
-              #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
-              inputSeq <- c2s(paramSeq)
-            }
-          }
-          
-          #Filter mutations based on the model
-          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
-            
-            if(model==1 & !is.na(mutationInfo)){
-              mutationInfo <- mutationInfo[mutationInfo=="S"]
-            }  
-            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
-            else return(list(NA,inputSeq))
-          }else{
-            return(list(NA,inputSeq))
-          }
-        }else{
-          return(list(NA,inputSeq))
-        }
-        
-        
-      }else{
-        return(list(NA,inputSeq))
-      }
-    
-    
-    }else{
-      return (list(NA,inputSeq))
-    }    
-  }  
- 
-  # triMutability Background Count
-  buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
-    
-    #rowOrigMatInput = matInput[inputMatrixIndex,]    
-    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
-    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
-    #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
-    tempInput <- cbind(seqInput,seqGL)
-    seqLength = nchar(seqGL)      
-    list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
-    mutationCount <- list_analyzeMutationsFixed[[1]]
-    seqInput <- list_analyzeMutationsFixed[[2]]
-    BackgroundMatrix = mutabilityMatrix
-    MutationMatrix = mutabilityMatrix    
-    MutationCountMatrix = mutabilityMatrix    
-    if(!is.na(mutationCount)){
-      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
-                  
-        fivermerStartPos = 1:(seqLength-4)
-        fivemerLength <- length(fivermerStartPos)
-        fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
-        fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
-    
-        #Background
-        for(fivemerIndex in 1:fivemerLength){
-          fivemer = fivemerGL[fivemerIndex]
-          if(!any(grep("N",fivemer))){
-            fivemerCodonPos = fivemerCodon(fivemerIndex)
-            fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
-            fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])          
-            
-            # All mutations model
-            #if(!any(grep("N",fivemerReadingFrameCodon))){
-              if(model==0){
-                if(stopMutations==0){
-                  if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
-                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)              
-                }else{
-                  if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
-                    positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
-                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
-                  }
-                }
-              }else{ # Only silent mutations
-                if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
-                  positionWithinCodon = which(fivemerCodonPos==3)
-                  BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
-                }
-              }
-            #}
-          }
-        }
-        
-        #Mutations
-        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
-        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
-        mutationPositions = as.numeric(names(mutationCount))
-        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        countMutations = 0 
-        for(mutationPosition in mutationPositions){
-          fivemerIndex = mutationPosition-2
-          fivemer = fivemerSeq[fivemerIndex]
-          GLfivemer = fivemerGL[fivemerIndex]
-          fivemerCodonPos = fivemerCodon(fivemerIndex)
-          fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
-          fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
-          if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
-            if(model==0){
-                countMutations = countMutations + 1              
-                MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
-                MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)             
-            }else{
-              if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
-                  countMutations = countMutations + 1
-                  positionWithinCodon = which(fivemerCodonPos==3)
-                  glNuc =  substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
-                  inputNuc =  substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
-                  MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
-                  MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)                                    
-              }                
-            }                  
-          }              
-        }
-        
-        seqMutability = MutationMatrix/BackgroundMatrix
-        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
-        #cat(inputMatrixIndex,"\t",countMutations,"\n")
-        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
-        
-      }        
-    }
-  
-  }  
-  
-  #Returns the codon position containing the middle nucleotide
-  fivemerCodon <- function(fivemerIndex){
-    codonPos = list(2:4,1:3,3:5)
-    fivemerType = fivemerIndex%%3
-    return(codonPos[[fivemerType+1]])
-  }
-
-  #returns probability values for one mutation in codons resulting in R, S or Stop
-  probMutations <- function(typeOfMutation){    
-    matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))   
-    for(codon in rownames(matMutationProb)){
-        if( !any(grep("N",codon)) ){
-        for(muPos in 1:3){
-          matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
-          glNuc = matCodon[1,muPos]
-          matCodon[,muPos] = canMutateTo(glNuc) 
-          substitutionRate = substitution[glNuc,matCodon[,muPos]]
-          typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})        
-          matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
-        }
-      }
-    }
-    
-    return(matMutationProb) 
-  }
-  
-  
-  
-  
-#Mapping Trinucleotides to fivemers
-mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
-  rownames(triMutability) <- triMutability_Names
-  Fivemer<-rep(NA,1024)
-  names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
-  Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
-  Fivemer<-Fivemer/sum(Fivemer)
-  return(Fivemer)
-}
-
-collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
-}
-
-
-
-CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
-}
-
-#Uses the real counts of the mutated fivemers
-CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
-}
-
-bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
-N<-sum(x)
-if(N){
-p<-x/N
-k<-length(x)-1
-tmp<-rmultinom(M, size = N, prob=p)
-tmp_p<-apply(tmp,2,function(y)y/N)
-(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
-}
-else return(matrix(0,2,length(x)))
-}
-
-
-
-
-bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
-
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
-(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
-}
-
-
-
-p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
-n=sum(x_obs)
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
-tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
-sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
-sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
-}
-
-#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
-# Remove SNPs from IMGT germline segment alleles
-generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
-  repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
-  alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
-  SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
-    Indices<-NULL
-    for(i in 1:length(x)){
-      firstSeq = s2c(x[[1]])
-      iSeq = s2c(x[[i]])
-      Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="."  ))
-    }
-    return(sort(unique(Indices)))
-  })
- repertoireOut <- repertoireIn
- repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
-                                        alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
-                                        geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
-                                        alleleSeq <- s2c(repertoireOut[[repertoireName]])
-                                        alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
-                                        alleleSeq <- c2s(alleleSeq)
-                                        repertoireOut[[repertoireName]] <- alleleSeq
-                                      })
-  names(repertoireOut) <- names(repertoireIn)
-  write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)                                               
-                                      
-}
-
-
-
-
-
-
-############
-groupBayes2 = function(indexes, param_resultMat){
-  
-  BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
-  BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
-  #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
-  #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
-  #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
-  #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
-  return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
-                "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
-                #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
-                #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
-#                "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
-#                "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
-
-
-}
-
-
-calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
-  G <- max(length(x),length(N),length(p))
-  x=array(x,dim=G)
-  N=array(N,dim=G)
-  p=array(p,dim=G)
-
-  indexOfZero = N>0 & p>0
-  N = N[indexOfZero]
-  x = x[indexOfZero]
-  p = p[indexOfZero]  
-  G <- length(x)
-  
-  if(G){
-    
-    cons<-array( dim=c(length_sigma,G) )
-    if(G==1) {
-    return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
-    }
-    else {
-      for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
-      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
-      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }
-  }else{
-    return(NA)
-  }
-}
-
-
-calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
-  matG <- listMatG[[1]]  
-  groups <- listMatG[[2]]
-  i = 1  
-  resConv <- matG[,i]
-  denom <- 2^groups[i]
-  if(length(groups)>1){
-    while( i<length(groups) ){
-      i = i + 1
-      resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
-      #cat({{2^groups[i]}/denom},"\n")
-      denom <- denom + 2^groups[i]
-    }
-  }
-  return(resConv)  
-}
-
-weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
-lx<-length(x)
-ly<-length(y)
-if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
-if(w<1){
-y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
-x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
-lx<-length(x1)
-ly<-length(y1)
-}
-else {
-y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
-x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
-lx<-length(x1)
-ly<-length(y1)
-}
-}
-else{
-x1<-x
-y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
-ly<-length(y1)
-}
-tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
-tmp[tmp<=0] = 0 
-return(tmp/sum(tmp))
-}
-
-########################
-
-
-
-
-mutabilityMatrixONE<-rep(0,4)
-names(mutabilityMatrixONE)<-NUCLEOTIDES
-
-  # triMutability Background Count
-  buildMutabilityModelONE <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
-    
-    #rowOrigMatInput = matInput[inputMatrixIndex,]    
-    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
-    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
-    matInput[inputMatrixIndex,] <<- c(seqInput,seqGL)
-    seqLength = nchar(seqGL)      
-    mutationCount <- analyzeMutations(inputMatrixIndex, model, multipleMutation, seqWithStops)
-    BackgroundMatrix = mutabilityMatrixONE
-    MutationMatrix = mutabilityMatrixONE    
-    MutationCountMatrix = mutabilityMatrixONE    
-    if(!is.na(mutationCount)){
-      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
-                  
-#         ONEmerStartPos = 1:(seqLength)
-#         ONEmerLength <- length(ONEmerStartPos)
-        ONEmerGL <- s2c(seqGL)
-        ONEmerSeq <- s2c(seqInput)
-    
-        #Background
-        for(ONEmerIndex in 1:seqLength){
-          ONEmer = ONEmerGL[ONEmerIndex]
-          if(ONEmer!="N"){
-            ONEmerCodonPos = getCodonPos(ONEmerIndex)
-            ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos]) 
-            ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )         
-            
-            # All mutations model
-            #if(!any(grep("N",ONEmerReadingFrameCodon))){
-              if(model==0){
-                if(stopMutations==0){
-                  if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
-                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)              
-                }else{
-                  if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
-                    positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
-                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
-                  }
-                }
-              }else{ # Only silent mutations
-                if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
-                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
-                  BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
-                }
-              }
-            }
-          }
-        }
-        
-        #Mutations
-        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
-        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
-        mutationPositions = as.numeric(names(mutationCount))
-        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        countMutations = 0 
-        for(mutationPosition in mutationPositions){
-          ONEmerIndex = mutationPosition
-          ONEmer = ONEmerSeq[ONEmerIndex]
-          GLONEmer = ONEmerGL[ONEmerIndex]
-          ONEmerCodonPos = getCodonPos(ONEmerIndex)
-          ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])  
-          ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])  
-          if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
-            if(model==0){
-                countMutations = countMutations + 1              
-                MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
-                MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)             
-            }else{
-              if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
-                  countMutations = countMutations + 1
-                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
-                  glNuc =  substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
-                  inputNuc =  substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
-                  MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
-                  MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)                                    
-              }                
-            }                  
-          }              
-        }
-        
-        seqMutability = MutationMatrix/BackgroundMatrix
-        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
-        #cat(inputMatrixIndex,"\t",countMutations,"\n")
-        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
-#         tmp<-list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
-      }        
-    }
-  
-################
-# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
-
-trim <- function(s, recode.factor=TRUE, ...)
-  UseMethod("trim", s)
-
-trim.default <- function(s, recode.factor=TRUE, ...)
-  s
-
-trim.character <- function(s, recode.factor=TRUE, ...)
-{
-  s <- sub(pattern="^ +", replacement="", x=s)
-  s <- sub(pattern=" +$", replacement="", x=s)
-  s
-}
-
-trim.factor <- function(s, recode.factor=TRUE, ...)
-{
-  levels(s) <- trim(levels(s))
-  if(recode.factor) {
-    dots <- list(x=s, ...)
-    if(is.null(dots$sort)) dots$sort <- sort
-    s <- do.call(what=reorder.factor, args=dots)
-  }
-  s
-}
-
-trim.list <- function(s, recode.factor=TRUE, ...)
-  lapply(s, trim, recode.factor=recode.factor, ...)
-
-trim.data.frame <- function(s, recode.factor=TRUE, ...)
-{
-  s[] <- trim.list(s, recode.factor=recode.factor, ...)
-  s
-}
-#######################################
-# Compute the expected for each sequence-germline pair by codon 
-getExpectedIndividualByCodon <- function(matInput){    
-if( any(grep("multicore",search())) ){  
-  facGL <- factor(matInput[,2])
-  facLevels = levels(facGL)
-  LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
-    computeMutabilities(facLevels[x])
-  })
-  facIndex = match(facGL,facLevels)
-  
-  LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
-    cInput = rep(NA,nchar(matInput[x,1]))
-    cInput[s2c(matInput[x,1])!="N"] = 1
-    LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-  })
-  
-  LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
-    computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-  })
-  
-  LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
-    #print(x)
-    computeMutationTypes(matInput[x,2])
-  })
-  
-  LisGLs_R_Exp = mclapply(1:nrow(matInput),  function(x){
-    Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                        function(codonNucs){                                                      
-                          RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
-                          sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
-                        }
-    )                                                   
-  })
-  
-  LisGLs_S_Exp = mclapply(1:nrow(matInput),  function(x){
-    Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                        function(codonNucs){                                                      
-                          SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
-                          sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
-                        }
-    )                                                 
-  })                                                
-  
-  Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-  Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-  return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
-  }else{
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
-      computeMutabilities(facLevels[x])
-    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
-      cInput = rep(NA,nchar(matInput[x,1]))
-      cInput[s2c(matInput[x,1])!="N"] = 1
-      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-    })
-    
-    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
-      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-    })
-    
-    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
-      #print(x)
-      computeMutationTypes(matInput[x,2])
-    })
-    
-    LisGLs_R_Exp = lapply(1:nrow(matInput),  function(x){
-      Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                          function(codonNucs){                                                      
-                            RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
-                            sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
-                          }
-      )                                                   
-    })
-    
-    LisGLs_S_Exp = lapply(1:nrow(matInput),  function(x){
-      Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                          function(codonNucs){                                                      
-                            SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
-                            sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
-                          }
-      )                                                 
-    })                                                
-    
-    Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-    Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-    return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )    
-  }
-}
-
-# getObservedMutationsByCodon <- function(listMutations){
-#   numbSeqs <- length(listMutations) 
-#   obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
-#   obsMu_S <- obsMu_R
-#   temp <- mclapply(1:length(listMutations), function(i){
-#     arrMutations = listMutations[[i]]
-#     RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
-#     RPos <- sapply(RPos,getCodonNumb)                                                                    
-#     if(any(RPos)){
-#       tabR <- table(RPos)
-#       obsMu_R[i,as.numeric(names(tabR))] <<- tabR
-#     }                                    
-#     
-#     SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
-#     SPos <- sapply(SPos,getCodonNumb)
-#     if(any(SPos)){
-#       tabS <- table(SPos)
-#       obsMu_S[i,names(tabS)] <<- tabS
-#     }                                          
-#   }
-#   )
-#   return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
-# }
-
-getObservedMutationsByCodon <- function(listMutations){
-  numbSeqs <- length(listMutations) 
-  obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
-  obsMu_S <- obsMu_R
-  temp <- lapply(1:length(listMutations), function(i){
-    arrMutations = listMutations[[i]]
-    RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
-    RPos <- sapply(RPos,getCodonNumb)                                                                    
-    if(any(RPos)){
-      tabR <- table(RPos)
-      obsMu_R[i,as.numeric(names(tabR))] <<- tabR
-    }                                    
-    
-    SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
-    SPos <- sapply(SPos,getCodonNumb)
-    if(any(SPos)){
-      tabS <- table(SPos)
-      obsMu_S[i,names(tabS)] <<- tabS
-    }                                          
-  }
-  )
-  return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
-}
-
+#########################################################################################
+# License Agreement
+# 
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
+# OR COPYRIGHT LAW IS PROHIBITED.
+# 
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+# Global variables  
+  
+  FILTER_BY_MUTATIONS = 1000
+
+  # Nucleotides
+  NUCLEOTIDES = c("A","C","G","T")
+  
+  # Amino Acids
+  AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
+  names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
+  names(AMINO_ACIDS) <- names(AMINO_ACIDS)
+
+  #Amino Acid Traits
+  #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
+  #B = "Hydrophobic/Burried"  N = "Intermediate/Neutral"  S="Hydrophilic/Surface") 
+  TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
+  names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
+  TRAITS_AMINO_ACIDS <- array(NA,21)
+  
+  # Codon Table
+  CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
+
+  # Substitution Model: Smith DS et al. 1996
+  substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  load("FiveS_Substitution.RData")
+
+  # Mutability Models: Shapiro GS et al. 2002
+  triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
+  triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
+  triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
+  load("FiveS_Mutability.RData")
+
+# Functions
+  
+  # Translate codon to amino acid
+  translateCodonToAminoAcid<-function(Codon){
+     return(AMINO_ACIDS[Codon])
+  }
+
+  # Translate amino acid to trait change
+  translateAminoAcidToTraitChange<-function(AminoAcid){
+     return(TRAITS_AMINO_ACIDS[AminoAcid])
+  }
+    
+  # Initialize Amino Acid Trait Changes
+  initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
+    if(!is.null(traitChangeFileName)){
+      tryCatch(
+          traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
+          , error = function(ex){
+            cat("Error|Error reading trait changes. Please check file name/path and format.\n")
+            q()
+          }
+        )
+    }else{
+      traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
+    }
+    TRAITS_AMINO_ACIDS <<- traitChange
+ } 
+  
+  # Read in formatted nucleotide substitution matrix
+  initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
+    if(!is.null(subsMatFileName)){
+      tryCatch(
+          subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
+          , error = function(ex){
+            cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
+            q()
+          }
+        )
+      if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
+    }else{
+      if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
+      if(substitutionModel==2)subsMat <- substitution_Flu_Human      
+      if(substitutionModel==3)subsMat <- substitution_Flu25_Human      
+       
+    }
+
+    if(substitutionModel==0){
+      subsMat <- matrix(1,4,4)
+      subsMat[,] = 1/3
+      subsMat[1,1] = 0
+      subsMat[2,2] = 0
+      subsMat[3,3] = 0
+      subsMat[4,4] = 0
+    }
+    
+    
+    NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
+    if(substitutionModel==5){
+      subsMat <- FiveS_Substitution
+      return(subsMat)
+    }else{
+      subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
+      return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
+    }
+  }
+
+   
+  # Read in formatted Mutability file
+  initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
+    if(!is.null(mutabilityMatFileName)){
+        tryCatch(
+            mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
+            , error = function(ex){
+              cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
+              q()
+            }
+          )
+    }else{
+      mutabilityMat <- triMutability_Literature_Human
+      if(species==2) mutabilityMat <- triMutability_Literature_Mouse
+    }
+
+  if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
+  
+    if(mutabilityModel==5){
+      mutabilityMat <- FiveS_Mutability
+      return(mutabilityMat)
+    }else{
+      return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
+    }
+  }
+
+  # Read FASTA file formats
+  # Modified from read.fasta from the seqinR package
+  baseline.read.fasta <-
+  function (file = system.file("sequences/sample.fasta", package = "seqinr"), 
+      seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE, 
+      set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, 
+      strip.desc = FALSE,  sizeof.longlong = .Machine$sizeof.longlong, 
+      endian = .Platform$endian, apply.mask = TRUE) 
+  {
+      seqtype <- match.arg(seqtype)
+  
+          lines <- readLines(file)
+          
+          if (legacy.mode) {
+              comments <- grep("^;", lines)
+              if (length(comments) > 0) 
+                  lines <- lines[-comments]
+          }
+          
+          
+          ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
+          lines_mod<-lines
+  
+          if(!length(ind_groups)){
+              lines_mod<-c(">>>All sequences combined",lines)            
+          }
+          
+          ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
+  
+          lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
+          id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
+          lines[id] <- "THIS IS A FAKE SEQUENCE"
+          lines[-id] <- lines_mod
+          rm(lines_mod)
+  
+  		ind <- which(substr(lines, 1L, 1L) == ">")
+          nseq <- length(ind)
+          if (nseq == 0) {
+               stop("no line starting with a > character found")
+          }        
+          start <- ind + 1
+          end <- ind - 1
+  
+          while( any(which(ind%in%end)) ){
+            ind=ind[-which(ind%in%end)]
+            nseq <- length(ind)
+            if (nseq == 0) {
+                stop("no line starting with a > character found")
+            }        
+            start <- ind + 1
+            end <- ind - 1        
+          }
+          
+          end <- c(end[-1], length(lines))
+          sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
+          if (seqonly) 
+              return(sequences)
+          nomseq <- lapply(seq_len(nseq), function(i) {
+          
+              #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
+              substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
+          
+          })
+          if (seqtype == "DNA") {
+              if (forceDNAtolower) {
+                  sequences <- as.list(tolower(chartr(".","-",sequences)))
+              }else{
+                  sequences <- as.list(toupper(chartr(".","-",sequences)))
+              }
+          }
+          if (as.string == FALSE) 
+              sequences <- lapply(sequences, s2c)
+          if (set.attributes) {
+              for (i in seq_len(nseq)) {
+                  Annot <- lines[ind[i]]
+                  if (strip.desc) 
+                    Annot <- substr(Annot, 2L, nchar(Annot))
+                  attributes(sequences[[i]]) <- list(name = nomseq[[i]], 
+                    Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA", 
+                      DNA = "SeqFastadna"))
+              }
+          }
+          names(sequences) <- nomseq
+          return(sequences)
+  }
+
+  
+  # Replaces non FASTA characters in input files with N  
+  replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
+    gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
+  }    
+  
+  # Find the germlines in the FASTA list
+  germlinesInFile <- function(seqIDs){
+    firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
+    secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
+    return(firstChar==">" & secondChar!=">")
+  }
+  
+  # Find the groups in the FASTA list
+  groupsInFile <- function(seqIDs){
+    sapply(seqIDs,function(x){substr(x,1,2)})==">>"
+  }
+
+  # In the process of finding germlines/groups, expand from the start to end of the group
+  expandTillNext <- function(vecPosToID){    
+    IDs = names(vecPosToID)
+    posOfInterests =  which(vecPosToID)
+  
+    expandedID = rep(NA,length(IDs))
+    expandedIDNames = gsub(">","",IDs[posOfInterests])
+    startIndexes = c(1,posOfInterests[-1])
+    stopIndexes = c(posOfInterests[-1]-1,length(IDs))
+    expandedID  = unlist(sapply(1:length(startIndexes),function(i){
+                                    rep(i,stopIndexes[i]-startIndexes[i]+1)
+                                  }))
+    names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
+                                    rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
+                                  }))  
+    return(expandedID)                                                                                                  
+  }
+    
+  # Process FASTA (list) to return a matrix[input, germline)
+  processInputAdvanced <- function(inputFASTA){
+  
+    seqIDs = names(inputFASTA)
+    numbSeqs = length(seqIDs)
+    posGermlines1 = germlinesInFile(seqIDs)
+    numbGermlines = sum(posGermlines1)
+    posGroups1 = groupsInFile(seqIDs)
+    numbGroups = sum(posGroups1)
+    consDef = NA
+    
+    if(numbGermlines==0){
+      posGermlines = 2
+      numbGermlines = 1  
+    }
+  
+      glPositionsSum = cumsum(posGermlines1)
+      glPositions = table(glPositionsSum)
+      #Find the position of the conservation row
+      consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1  
+    if( length(consDefPos)> 0 ){
+      consDefID =  match(consDefPos, glPositionsSum) 
+      #The coservation rows need to be pulled out and stores seperately 
+      consDef =  inputFASTA[consDefID]
+      inputFASTA =  inputFASTA[-consDefID]
+  
+      seqIDs = names(inputFASTA)
+      numbSeqs = length(seqIDs)
+      posGermlines1 = germlinesInFile(seqIDs)
+      numbGermlines = sum(posGermlines1)
+      posGroups1 = groupsInFile(seqIDs)
+      numbGroups = sum(posGroups1)
+      if(numbGermlines==0){
+        posGermlines = 2
+        numbGermlines = 1  
+      }    
+    }
+    
+    posGroups <- expandTillNext(posGroups1)
+    posGermlines <- expandTillNext(posGermlines1)
+    posGermlines[posGroups1] = 0
+    names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
+    posInput = rep(TRUE,numbSeqs)
+    posInput[posGroups1 | posGermlines1] = FALSE
+    
+    matInput = matrix(NA, nrow=sum(posInput), ncol=2)
+    rownames(matInput) = seqIDs[posInput]
+    colnames(matInput) = c("Input","Germline")
+    
+    vecInputFASTA = unlist(inputFASTA)  
+    matInput[,1] = vecInputFASTA[posInput]
+    matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
+    
+    germlines = posGermlines[posInput]
+    groups = posGroups[posInput]
+    
+    return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))      
+  }
+
+
+  # Replace leading and trailing dashes in the sequence
+  replaceLeadingTrailingDashes <- function(x,readEnd){
+    iiGap = unlist(gregexpr("-",x[1]))
+    ggGap = unlist(gregexpr("-",x[2]))  
+    #posToChange = intersect(iiGap,ggGap)
+    
+    
+    seqIn = replaceLeadingTrailingDashesHelper(x[1])
+    seqGL = replaceLeadingTrailingDashesHelper(x[2])
+    seqTemplate = rep('N',readEnd)
+    seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
+    seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
+#    if(posToChange!=-1){
+#      seqIn[posToChange] = "-"
+#      seqGL[posToChange] = "-"
+#    }
+  
+    seqIn = c2s(seqIn[1:readEnd])
+    seqGL = c2s(seqGL[1:readEnd])
+  
+    lenGL = nchar(seqGL)
+    if(lenGL<readEnd){
+      seqGL = paste(seqGL,c2s(rep("N",readEnd-lenGL)),sep="")
+    }
+  
+    lenInput = nchar(seqIn)
+    if(lenInput<readEnd){
+      seqIn = paste(seqIn,c2s(rep("N",readEnd-lenInput)),sep="")
+    }    
+    return( c(seqIn,seqGL) )
+  }  
+
+  replaceLeadingTrailingDashesHelper <- function(x){
+    grepResults = gregexpr("-*",x)
+    grepResultsPos = unlist(grepResults)
+    grepResultsLen =  attr(grepResults[[1]],"match.length")   
+    #print(paste("x = '", x, "'", sep=""))
+    x = s2c(x)
+    if(x[1]=="-"){
+      x[1:grepResultsLen[1]] = "N"      
+    }
+    if(x[length(x)]=="-"){
+      x[(length(x)-grepResultsLen[length(grepResultsLen)]+1):length(x)] = "N"      
+    }
+    return(x)
+  }
+
+
+
+  
+  # Check sequences for indels
+  checkForInDels <- function(matInputP){
+    insPos <- checkInsertion(matInputP)
+    delPos <- checkDeletions(matInputP)
+    return(list("Insertions"=insPos, "Deletions"=delPos))
+  }
+
+  # Check sequences for insertions
+  checkInsertion <- function(matInputP){
+    insertionCheck = apply( matInputP,1, function(x){
+                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
+                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )                                          
+                                          return( is.finite( match(FALSE, glGaps%in%inputGaps ) ) )
+                                        })   
+    return(as.vector(insertionCheck))
+  }
+  # Fix inserstions
+  fixInsertions <- function(matInputP){
+    insPos <- checkInsertion(matInputP)
+    sapply((1:nrow(matInputP))[insPos],function(rowIndex){
+                                                x <- matInputP[rowIndex,]
+                                                inputGaps <- gregexpr("-",x[1])[[1]]
+                                                glGaps <- gregexpr("-",x[2])[[1]]
+                                                posInsertions <- glGaps[!(glGaps%in%inputGaps)]
+                                                inputInsertionToN <- s2c(x[2])
+                                                inputInsertionToN[posInsertions]!="-"
+                                                inputInsertionToN[posInsertions] <- "N"
+                                                inputInsertionToN <- c2s(inputInsertionToN)
+                                                matInput[rowIndex,2] <<- inputInsertionToN 
+                                              })                                                               
+    return(insPos)
+  } 
+    
+  # Check sequences for deletions
+  checkDeletions <-function(matInputP){
+    deletionCheck = apply( matInputP,1, function(x){
+                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
+                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )
+                                          return( is.finite( match(FALSE, inputGaps%in%glGaps ) ) )
+                                      })
+    return(as.vector(deletionCheck))                                      
+  }
+  # Fix sequences with deletions
+  fixDeletions <- function(matInputP){
+    delPos <- checkDeletions(matInputP)    
+    sapply((1:nrow(matInputP))[delPos],function(rowIndex){
+                                                x <- matInputP[rowIndex,]
+                                                inputGaps <- gregexpr("-",x[1])[[1]]
+                                                glGaps <- gregexpr("-",x[2])[[1]]
+                                                posDeletions <- inputGaps[!(inputGaps%in%glGaps)]
+                                                inputDeletionToN <- s2c(x[1])
+                                                inputDeletionToN[posDeletions] <- "N"
+                                                inputDeletionToN <- c2s(inputDeletionToN)
+                                                matInput[rowIndex,1] <<- inputDeletionToN 
+                                              })                                                                   
+    return(delPos)
+  }  
+    
+
+  # Trim DNA sequence to the last codon
+  trimToLastCodon <- function(seqToTrim){
+    seqLen = nchar(seqToTrim)  
+    trimmedSeq = s2c(seqToTrim)
+    poi = seqLen
+    tailLen = 0
+    
+    while(trimmedSeq[poi]=="-" || trimmedSeq[poi]=="."){
+      tailLen = tailLen + 1
+      poi = poi - 1   
+    }
+    
+    trimmedSeq = c2s(trimmedSeq[1:(seqLen-tailLen)])
+    seqLen = nchar(trimmedSeq)
+    # Trim sequence to last codon
+  	if( getCodonPos(seqLen)[3] > seqLen )
+  	  trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
+    
+    return(trimmedSeq)
+  }
+  
+  # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
+  # e.g. nuc 86 is part of nucs 85,86,87
+  getCodonPos <- function(nucPos){
+    codonNum =  (ceiling(nucPos/3))*3
+    return( (codonNum-2):codonNum)
+  }
+  
+  # Given a nuclotide position, returns the codon number
+  # e.g. nuc 86  = codon 29
+  getCodonNumb <- function(nucPos){
+    return( ceiling(nucPos/3) )
+  }
+  
+  # Given a codon, returns all the nuc positions that make the codon
+  getCodonNucs <- function(codonNumb){
+    getCodonPos(codonNumb*3)
+  }  
+
+  computeCodonTable <- function(testID=1){
+                  
+    if(testID<=4){    
+      # Pre-compute every codons
+      intCounter = 1
+      for(pOne in NUCLEOTIDES){
+        for(pTwo in NUCLEOTIDES){
+          for(pThree in NUCLEOTIDES){
+            codon = paste(pOne,pTwo,pThree,sep="")
+            colnames(CODON_TABLE)[intCounter] =  codon
+            intCounter = intCounter + 1
+            CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
+          }  
+        }
+      }
+      chars = c("N","A","C","G","T", "-")
+      for(a in chars){
+        for(b in chars){
+          for(c in chars){
+            if(a=="N" | b=="N" | c=="N"){ 
+              #cat(paste(a,b,c),sep="","\n") 
+              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+            }
+          }  
+        }
+      }
+      
+      chars = c("-","A","C","G","T")
+      for(a in chars){
+        for(b in chars){
+          for(c in chars){
+            if(a=="-" | b=="-" | c=="-"){ 
+              #cat(paste(a,b,c),sep="","\n") 
+              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+            }
+          }  
+        }
+      }
+      CODON_TABLE <<- as.matrix(CODON_TABLE)
+    }
+  }
+  
+  collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
+  #print(length(vecInputSeqs))
+    vecInputSeqs = unique(vecInputSeqs) 
+    if(length(vecInputSeqs)==1){
+      return( list( c(vecInputSeqs,glSeq), F) )
+    }else{
+      charInputSeqs <- sapply(vecInputSeqs, function(x){
+                                              s2c(x)[1:readEnd]
+                                            })
+      charGLSeq <- s2c(glSeq)
+      matClone <- sapply(1:readEnd, function(i){
+                                            posNucs = unique(charInputSeqs[i,])
+                                            posGL = charGLSeq[i]
+                                            error = FALSE                                            
+                                            if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
+                                              return(c("-",error))
+                                            }
+                                            if(length(posNucs)==1)
+                                              return(c(posNucs[1],error))
+                                            else{
+                                              if("N"%in%posNucs){
+                                                error=TRUE
+                                              }
+                                              if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
+                                                return( c(posGL,error) )  
+                                              }else{
+                                                #return( c(sample(posNucs[posNucs!="N"],1),error) )  
+                                                if(nonTerminalOnly==0){
+                                                  return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )  
+                                                }else{
+                                                  posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
+                                                  posNucsTable = table(posNucs)
+                                                  if(sum(posNucsTable>1)==0){
+                                                    return( c(posGL,error) )
+                                                  }else{
+                                                    return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
+                                                  }
+                                                }
+                                                
+                                              }
+                                            } 
+                                          })
+      
+                                          
+      #print(length(vecInputSeqs))                                        
+      return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
+    }
+  }
+
+  # Compute the expected for each sequence-germline pair
+  getExpectedIndividual <- function(matInput){
+  if( any(grep("multicore",search())) ){ 
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
+                                                      computeMutabilities(facLevels[x])
+                                                    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
+                                                      cInput = rep(NA,nchar(matInput[x,1]))
+                                                      cInput[s2c(matInput[x,1])!="N"] = 1
+                                                      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+                                                    })
+                                                    
+    LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
+                                                      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+                                                    })
+                                                    
+    LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
+                                                    #print(x)
+                                                    computeMutationTypes(matInput[x,2])
+                                                })
+    
+    LisGLs_Exp = mclapply(1:dim(matInput)[1],  function(x){
+                                                  computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+                                                })
+    
+    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
+    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+  }else{
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
+      computeMutabilities(facLevels[x])
+    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
+      cInput = rep(NA,nchar(matInput[x,1]))
+      cInput[s2c(matInput[x,1])!="N"] = 1
+      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+    })
+    
+    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
+      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+    })
+    
+    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
+      #print(x)
+      computeMutationTypes(matInput[x,2])
+    })
+    
+    LisGLs_Exp = lapply(1:dim(matInput)[1],  function(x){
+      computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+    })
+    
+    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
+    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+    
+  }
+  }
+
+  # Compute mutabilities of sequence based on the tri-nucleotide model
+  computeMutabilities <- function(paramSeq){
+    seqLen = nchar(paramSeq)
+    seqMutabilites = rep(NA,seqLen)
+  
+    gaplessSeq = gsub("-", "", paramSeq)
+    gaplessSeqLen = nchar(gaplessSeq)
+    gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
+    
+    if(mutabilityModel!=5){
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqMutabilites[pos] =      
+        tapply( c(
+                                        getMutability( substr(subSeq,1,3), 3) , 
+                                        getMutability( substr(subSeq,2,4), 2), 
+                                        getMutability( substr(subSeq,3,5), 1) 
+                                        ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
+                                      )
+      #Pos 1
+      subSeq =  substr(gaplessSeq,1,3)
+      gaplessSeqMutabilites[1] =  getMutability(subSeq , 1)
+      #Pos 2
+      subSeq =  substr(gaplessSeq,1,4)
+      gaplessSeqMutabilites[2] =  mean( c(
+                                            getMutability( substr(subSeq,1,3), 2) , 
+                                            getMutability( substr(subSeq,2,4), 1) 
+                                          ),na.rm=T
+                                      ) 
+      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+      return(seqMutabilites)
+    }else{
+      
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
+      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+      return(seqMutabilites)
+    }
+
+  }
+
+  # Returns the mutability of a triplet at a given position
+  getMutability <- function(codon, pos=1:3){
+    triplets <- rownames(mutability)
+    mutability[  match(codon,triplets) ,pos]
+  }
+
+  getMutability5 <- function(fivemer){
+    return(mutability[fivemer])
+  }
+
+  # Returns the substitution probabilty
+  getTransistionProb <- function(nuc){
+    substitution[nuc,]
+  }
+
+  getTransistionProb5 <- function(fivemer){    
+    if(any(which(fivemer==colnames(substitution)))){
+      return(substitution[,fivemer])
+    }else{
+      return(array(NA,4))
+    }
+  }
+
+  # Given a nuc, returns the other 3 nucs it can mutate to
+  canMutateTo <- function(nuc){
+    NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
+  }
+  
+  # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to 
+  canMutateToProb <- function(nuc){
+    substitution[nuc,canMutateTo(nuc)]
+  }
+
+  # Compute targeting, based on precomputed mutatbility & substitution  
+  computeTargeting <- function(param_strSeq,param_vecMutabilities){
+
+    if(substitutionModel!=5){
+      vecSeq = s2c(param_strSeq)
+      matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )  
+      #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
+      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(length(vecSeq))) 
+      return (matTargeting)
+    }else{
+      
+      seqLen = nchar(param_strSeq)
+      seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
+      paramSeq <- param_strSeq
+      gaplessSeq = gsub("-", "", paramSeq)
+      gaplessSeqLen = nchar(gaplessSeq)
+      gaplessSeqSubstitution  = matrix(NA,ncol=gaplessSeqLen,nrow=4) 
+      
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
+      seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
+      #matTargeting <- param_vecMutabilities  %*% seqsubstitution
+      matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
+      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(seqLen)) 
+      return (matTargeting)      
+    }
+  }  
+
+  # Compute the mutations types   
+  computeMutationTypes <- function(param_strSeq){
+  #cat(param_strSeq,"\n")
+    #vecSeq = trimToLastCodon(param_strSeq)
+    lenSeq = nchar(param_strSeq)
+    vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
+    matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
+    dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
+    return(matMutationTypes)   
+  }  
+  computeMutationTypesFast <- function(param_strSeq){
+    matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
+    #dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(length(vecSeq)))
+    return(matMutationTypes)   
+  }  
+  mutationTypeOptimized <- function( matOfCodons ){
+   apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } ) 
+  }  
+
+  # Returns a vector of codons 1 mutation away from the given codon
+  permutateAllCodon <- function(codon){
+    cCodon = s2c(codon)
+    matCodons = t(array(cCodon,dim=c(3,12)))
+    matCodons[1:4,1] = NUCLEOTIDES
+    matCodons[5:8,2] = NUCLEOTIDES
+    matCodons[9:12,3] = NUCLEOTIDES
+    apply(matCodons,1,c2s)
+  }
+
+  # Given two codons, tells you if the mutation is R or S (based on your definition)
+  mutationType <- function(codonFrom,codonTo){
+    if(testID==4){
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        mutationType = "S"
+        if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
+          mutationType = "R"                                                              
+        }
+        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+          mutationType = "Stop"
+        }
+        return(mutationType)
+      }  
+    }else if(testID==5){  
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        if(codonFrom==codonTo){
+          mutationType = "S"
+        }else{
+          codonFrom = s2c(codonFrom)
+          codonTo = s2c(codonTo)  
+          mutationType = "Stop"
+          nucOfI = codonFrom[which(codonTo!=codonFrom)]
+          if(nucOfI=="C"){
+            mutationType = "R"  
+          }else if(nucOfI=="G"){
+            mutationType = "S"
+          }
+        }
+        return(mutationType)
+      }
+    }else{
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        mutationType = "S"
+        if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
+          mutationType = "R"                                                              
+        }
+        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+          mutationType = "Stop"
+        }
+        return(mutationType)
+      }  
+    }    
+  }
+
+  
+  #given a mat of targeting & it's corresponding mutationtypes returns 
+  #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
+  computeExpected <- function(paramTargeting,paramMutationTypes){
+    # Replacements
+    RPos = which(paramMutationTypes=="R")  
+      #FWR
+      Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+      #CDR
+      Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+    # Silents
+    SPos = which(paramMutationTypes=="S")  
+      #FWR
+      Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+      #CDR
+      Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+  
+      return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
+  }
+  
+  # Count the mutations in a sequence
+  # each mutation is treated independently 
+  analyzeMutations2NucUri_website <- function( rev_in_matrix ){
+    paramGL = rev_in_matrix[2,]
+    paramSeq = rev_in_matrix[1,]  
+    
+    #Fill seq with GL seq if gapped
+    #if( any(paramSeq=="-") ){
+    #  gapPos_Seq =  which(paramSeq=="-")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}
+  
+  
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}  
+      
+    analyzeMutations2NucUri(  matrix(c( paramGL, paramSeq  ),2,length(paramGL),byrow=T)  )
+    
+  }
+
+  #1 = GL 
+  #2 = Seq
+  analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
+    paramGL = in_matrix[2,]
+    paramSeq = in_matrix[1,]
+    paramSeqUri = paramGL
+    #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
+    mutations_val = paramGL != paramSeq   
+    if(any(mutations_val)){
+      mutationPos = {1:length(mutations_val)}[mutations_val]  
+      mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+      if(any(mutationPos)){  
+
+        pos<- mutationPos
+        pos_array<-array(sapply(pos,getCodonPos))
+        codonGL =  paramGL[pos_array]
+        
+        codonSeq = sapply(pos,function(x){
+                                  seqP = paramGL[getCodonPos(x)]
+                                  muCodonPos = {x-1}%%3+1 
+                                  seqP[muCodonPos] = paramSeq[x]
+                                  return(seqP)
+                                })      
+        GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+        Seqcodons =   apply(codonSeq,2,c2s)
+        mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+        names(mutationInfo) = mutationPos
+    }
+    if(any(!is.na(mutationInfo))){
+      return(mutationInfo[!is.na(mutationInfo)])    
+    }else{
+      return(NA)
+    }
+    
+    
+    }else{
+      return (NA)
+    }
+  }
+  
+  processNucMutations2 <- function(mu){
+    if(!is.na(mu)){
+      #R
+      if(any(mu=="R")){
+        Rs = mu[mu=="R"]
+        nucNumbs = as.numeric(names(Rs))
+        R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+        R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
+      }else{
+        R_CDR = 0
+        R_FWR = 0
+      }    
+      
+      #S
+      if(any(mu=="S")){
+        Ss = mu[mu=="S"]
+        nucNumbs = as.numeric(names(Ss))
+        S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+        S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
+      }else{
+        S_CDR = 0
+        S_FWR = 0
+      }    
+      
+      
+      retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
+      retVec[is.na(retVec)]=0
+      return(retVec)
+    }else{
+      return(rep(0,4))
+    }
+  }        
+  
+  
+  ## Z-score Test
+  computeZScore <- function(mat, test="Focused"){
+    matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
+    if(test=="Focused"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }
+  
+    if(test=="Local"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }
+    
+    if(test=="Imbalanced"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
+      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
+      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }    
+      
+    matRes[is.nan(matRes)] = NA
+    return(matRes)
+  }
+
+  # Return a p-value for a z-score
+  z2p <- function(z){
+    p=NA
+    if( !is.nan(z) && !is.na(z)){   
+      if(z>0){
+        p = (1 - pnorm(z,0,1))
+      } else if(z<0){
+        p = (-1 * pnorm(z,0,1))
+      } else{
+        p = 0.5
+      }
+    }else{
+      p = NA
+    }
+    return(p)
+  }    
+  
+  
+  ## Bayesian  Test
+
+  # Fitted parameter for the bayesian framework
+BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
+  CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
+  
+  # Given x, M & p, returns a pdf 
+  calculate_bayes <- function ( x=3, N=10, p=0.33,
+                                i=CONST_i,
+                                max_sigma=20,length_sigma=4001
+                              ){
+    if(!0%in%N){
+      G <- max(length(x),length(N),length(p))
+      x=array(x,dim=G)
+      N=array(N,dim=G)
+      p=array(p,dim=G)
+      sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
+      sigma_1<-log({i/{1-i}}/{p/{1-p}})
+      index<-min(N,60)
+      y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
+      if(!sum(is.na(y))){
+        tmp<-approx(sigma_1,y,sigma_s)$y
+        tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
+      }else{
+        return(NA)
+      }
+    }else{
+      return(NA)
+    }
+  }  
+  # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
+  computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
+    flagOneSeq = F
+    if(nrow(mat)==1){
+      mat=rbind(mat,mat)
+      flagOneSeq = T
+    }
+    if(test=="Focused"){
+      #CDR
+      P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,1],0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,3],0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+    
+    if(test=="Local"){
+      #CDR
+      P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
+      X = c(mat[,1],0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,3],0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    } 
+     
+    if(test=="Imbalanced"){
+      #CDR
+      P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
+      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
+      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+
+    if(test=="ImbalancedSilent"){
+      #CDR
+      P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
+      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
+      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+        
+    if(flagOneSeq==T){
+      bayesCDR = bayesCDR[1]  
+      bayesFWR = bayesFWR[1]
+    }
+    return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
+  }
+  
+  ##Covolution
+  break2chunks<-function(G=1000){
+  base<-2^round(log(sqrt(G),2),0)
+  return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
+  }  
+  
+  PowersOfTwo <- function(G=100){
+    exponents <- array()
+    i = 0
+    while(G > 0){
+      i=i+1
+      exponents[i] <- floor( log2(G) )
+      G <- G-2^exponents[i]
+    }
+    return(exponents)
+  }
+  
+  convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
+    G = ncol(cons)
+    if(G>1){
+      for(gen in log(G,2):1){
+        ll<-seq(from=2,to=2^gen,by=2)
+        sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
+      }
+    }
+    return( cons[,1] )
+  }
+  
+  convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
+    if(length(ncol(cons))) G<-ncol(cons)
+    groups <- PowersOfTwo(G)
+    matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
+    startIndex = 1
+    for( i in 1:length(groups) ){
+      stopIndex <- 2^groups[i] + startIndex - 1
+      if(stopIndex!=startIndex){
+        matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
+        startIndex = stopIndex + 1
+      }
+      else {
+        if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
+        else matG[,i] <- cons
+        #startIndex = stopIndex + 1
+      }
+    }
+    return( list( matG, groups ) )
+  }
+  
+  weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
+    lx<-length(x)
+    ly<-length(y)
+    if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
+      if(w<1){
+        y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
+        x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
+        lx<-length(x1)
+        ly<-length(y1)
+      }
+      else {
+        y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
+        x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
+        lx<-length(x1)
+        ly<-length(y1)
+      }
+    }
+    else{
+      x1<-x
+      y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
+      ly<-length(y1)
+    }
+    tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
+    tmp[tmp<=0] = 0
+    return(tmp/sum(tmp))
+  }
+  
+  calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
+    matG <- listMatG[[1]]
+    groups <- listMatG[[2]]
+    i = 1
+    resConv <- matG[,i]
+    denom <- 2^groups[i]
+    if(length(groups)>1){
+      while( i<length(groups) ){
+        i = i + 1
+        resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
+        #cat({{2^groups[i]}/denom},"\n")
+        denom <- denom + 2^groups[i]
+      }
+    }
+    return(resConv)
+  }
+  
+  # Given a list of PDFs, returns a convoluted PDF    
+  groupPosteriors <- function( listPosteriors, max_sigma=20, length_sigma=4001 ,Threshold=2 ){  
+    listPosteriors = listPosteriors[ !is.na(listPosteriors) ]
+    Length_Postrior<-length(listPosteriors)
+    if(Length_Postrior>1 & Length_Postrior<=Threshold){
+      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }else if(Length_Postrior==1) return(listPosteriors[[1]])
+    else  if(Length_Postrior==0) return(NA)
+    else {
+      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+      y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }
+  }
+
+  fastConv<-function(cons, max_sigma=20, length_sigma=4001){
+    chunks<-break2chunks(G=ncol(cons))
+    if(ncol(cons)==3) chunks<-2:1
+    index_chunks_end <- cumsum(chunks)
+    index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
+    index_chunks <- cbind(index_chunks_start,index_chunks_end)
+    
+    case <- sum(chunks!=chunks[1])
+    if(case==1) End <- max(1,((length(index_chunks)/2)-1))
+    else End <- max(1,((length(index_chunks)/2)))
+    
+    firsts <- sapply(1:End,function(i){
+          	    indexes<-index_chunks[i,1]:index_chunks[i,2]
+          	    convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
+          	  })
+    if(case==0){
+    	result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
+    }else if(case==1){
+      last<-list(calculate_bayesGHelper(
+      convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
+                                      ),0)
+      result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
+      result<-calculate_bayesGHelper(
+        list(
+          cbind(
+          result_first,last[[1]]),
+          c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
+        )
+      )
+    }
+    return(as.vector(result))
+  }
+    
+  # Computes the 95% CI for a pdf
+  calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+    if(length(Pdf)!=length_sigma) return(NA)
+    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+    cdf = cumsum(Pdf)
+    cdf = cdf/cdf[length(cdf)]  
+    return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) ) 
+  }
+  
+  # Computes a mean for a pdf
+  calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
+    if(length(Pdf)!=length_sigma) return(NA)
+    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+    norm = {length_sigma-1}/2/max_sigma
+    return( (Pdf%*%sigma_s/norm)  ) 
+  }
+  
+  # Returns the mean, and the 95% CI for a pdf
+  calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+    if(is.na(Pdf)) 
+     return(rep(NA,3))  
+    bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
+    bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
+    return(c(bMean, bCI))
+  }   
+
+  # Computes the p-value of a pdf
+  computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
+    if(length(Pdf)>1){
+      norm = {length_sigma-1}/2/max_sigma
+      pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
+      if(pVal>0.5){
+        pVal = pVal-1
+      }
+      return(pVal)
+    }else{
+      return(NA)
+    }
+  }    
+  
+  # Compute p-value of two distributions
+  compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+  #print(c(length(dens1),length(dens2)))
+  if(length(dens1)>1 & length(dens2)>1 ){
+    dens1<-dens1/sum(dens1)
+    dens2<-dens2/sum(dens2)
+    cum2 <- cumsum(dens2)-dens2/2
+    tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+    #print(tmp)
+    if(tmp>0.5)tmp<-tmp-1
+    return( tmp )
+    }
+    else {
+    return(NA)
+    }
+    #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+  }  
+  
+  # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
+  numberOfSeqsWithMutations <- function(matMutations,test=1){
+    if(test==4)test=2
+    cdrSeqs <- 0
+    fwrSeqs <- 0    
+    if(test==1){#focused
+      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
+      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
+      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
+    }
+    if(test==2){#local
+      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
+      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
+      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
+    }
+  return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
+}  
+
+
+
+shadeColor <- function(sigmaVal=NA,pVal=NA){
+  if(is.na(sigmaVal) & is.na(pVal)) return(NA)
+  if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
+  if(is.na(pVal) || pVal==1 || pVal==0){
+    returnColor = "#FFFFFF";
+  }else{
+    colVal=abs(pVal);
+    
+    if(sigmaVal<0){      
+        if(colVal>0.1)
+          returnColor = "#CCFFCC";
+        if(colVal<=0.1)
+          returnColor = "#99FF99";
+        if(colVal<=0.050)
+          returnColor = "#66FF66";
+        if(colVal<=0.010)
+          returnColor = "#33FF33";
+        if(colVal<=0.005)
+          returnColor = "#00FF00";
+      
+    }else{
+      if(colVal>0.1)
+        returnColor = "#FFCCCC";
+      if(colVal<=0.1)
+        returnColor = "#FF9999";
+      if(colVal<=0.05)
+        returnColor = "#FF6666";
+      if(colVal<=0.01)
+        returnColor = "#FF3333";
+      if(colVal<0.005)
+        returnColor = "#FF0000";
+    }
+  }
+  
+  return(returnColor)
+}
+
+
+
+plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
+  if(!log){
+    x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+    y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+  }else {
+    if(log==2){
+      x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+    }
+    if(log==1){
+      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+      y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+    }
+    if(log==3){
+      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+    }
+  }
+  return(c("x"=x,"y"=y))
+}
+
+# SHMulation
+
+  # Based on targeting, introduce a single mutation & then update the targeting 
+  oneMutation <- function(){
+    # Pick a postion + mutation
+    posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
+    posNucNumb = ceiling(posMutation/4)                    # Nucleotide number
+    posNucKind = 4 - ( (posNucNumb*4) - posMutation )   # Nuc the position mutates to
+  
+    #mutate the simulation sequence
+    seqSimVec <-  s2c(seqSim)
+    seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
+    seqSim <<-  c2s(seqSimVec)
+    
+    #update Mutability, Targeting & MutationsTypes
+    updateMutabilityNTargeting(posNucNumb)
+  
+    #return(c(posNucNumb,NUCLEOTIDES[posNucKind])) 
+    return(posNucNumb)
+  }  
+  
+  updateMutabilityNTargeting <- function(position){
+    min_i<-max((position-2),1)
+    max_i<-min((position+2),nchar(seqSim))
+    min_ii<-min(min_i,3)
+    
+    #mutability - update locally
+    seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
+    
+    
+    #targeting - compute locally
+    seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])                 
+    seqTargeting[is.na(seqTargeting)] <<- 0
+    #mutCodonPos = getCodonPos(position) 
+    mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
+    #cat(mutCodonPos,"\n")                                                  
+    mutTypeCodon = getCodonPos(position)
+    seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) ) 
+    # Stop = 0
+    if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
+      seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
+    }
+    
+  
+    #Selection
+    selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))  
+    # CDR
+    selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
+    seqTargeting[selectedCDR] <<-  seqTargeting[selectedCDR] *  exp(selCDR)
+    seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
+        
+    # FWR
+    selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
+    seqTargeting[selectedFWR] <<-  seqTargeting[selectedFWR] *  exp(selFWR)
+    seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K      
+    
+  }  
+  
+
+
+  # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.   
+  validateMutation <- function(){  
+    if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
+      uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
+      mutatedPositions[uniqueMutationsIntroduced] <<-  mutatedPos  
+    }else{
+      if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
+        mutatedPositions <<-  mutatedPositions[-which(mutatedPositions==mutatedPos)]
+        uniqueMutationsIntroduced <<-  uniqueMutationsIntroduced - 1
+      }      
+    }
+  }  
+  
+  
+  
+  # Places text (labels) at normalized coordinates 
+  myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
+    par(xpd=TRUE)
+    if(!log)
+      text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
+    else {
+    if(log==2)
+    text(
+      par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
+      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+      w,cex=cex,adj=adj,col=thecol)
+    if(log==1)
+      text(
+      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+      par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
+      w,cex=cex,adj=adj,col=thecol)
+    if(log==3)
+      text(
+      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+      w,cex=cex,adj=adj,col=thecol)
+    }
+    par(xpd=FALSE)
+  }
+  
+  
+  
+  # Count the mutations in a sequence
+  analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
+
+    paramGL = s2c(matInput[inputMatrixIndex,2])
+    paramSeq = s2c(matInput[inputMatrixIndex,1])            
+    
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}        
+    mutations_val = paramGL != paramSeq   
+    
+    if(any(mutations_val)){
+      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+                          
+      pos<- mutationPos
+      pos_array<-array(sapply(pos,getCodonPos))
+      codonGL =  paramGL[pos_array]
+      codonSeqWhole =  paramSeq[pos_array]
+      codonSeq = sapply(pos,function(x){
+                                seqP = paramGL[getCodonPos(x)]
+                                muCodonPos = {x-1}%%3+1 
+                                seqP[muCodonPos] = paramSeq[x]
+                                return(seqP)
+                              })
+      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
+      Seqcodons =   apply(codonSeq,2,c2s)
+      
+      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+      names(mutationInfo) = mutationPos     
+      
+      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
+      names(mutationInfoWhole) = mutationPos
+
+      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+      
+      if(any(!is.na(mutationInfo))){       
+  
+        #Filter based on Stop (at the codon level)
+        if(seqWithStops==1){
+          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+        }else{
+          countStops = sum(mutationInfoWhole=="Stop")
+          if(seqWithStops==2 & countStops==0) mutationInfo = NA
+          if(seqWithStops==3 & countStops>0) mutationInfo = NA
+        }         
+        
+        if(any(!is.na(mutationInfo))){
+          #Filter mutations based on multipleMutation
+          if(multipleMutation==1 & !is.na(mutationInfo)){
+            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+            tableMutationCodons <- table(mutationCodons)
+            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+            if(any(codonsWithMultipleMutations)){
+              #remove the nucleotide mutations in the codons with multiple mutations
+              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+              #replace those codons with Ns in the input sequence
+              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+              matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+            }
+          }
+
+          #Filter mutations based on the model
+          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
+            
+            if(model==1 & !is.na(mutationInfo)){
+              mutationInfo <- mutationInfo[mutationInfo=="S"]
+            }  
+            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
+            else return(NA)
+          }else{
+            return(NA)
+          }
+        }else{
+          return(NA)
+        }
+        
+        
+      }else{
+        return(NA)
+      }
+    
+    
+    }else{
+      return (NA)
+    }    
+  }  
+
+   analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
+
+    paramGL = s2c(inputArray[2])
+    paramSeq = s2c(inputArray[1])            
+    inputSeq <- inputArray[1]
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}        
+    mutations_val = paramGL != paramSeq   
+    
+    if(any(mutations_val)){
+      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+                          
+      pos<- mutationPos
+      pos_array<-array(sapply(pos,getCodonPos))
+      codonGL =  paramGL[pos_array]
+      codonSeqWhole =  paramSeq[pos_array]
+      codonSeq = sapply(pos,function(x){
+                                seqP = paramGL[getCodonPos(x)]
+                                muCodonPos = {x-1}%%3+1 
+                                seqP[muCodonPos] = paramSeq[x]
+                                return(seqP)
+                              })
+      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
+      Seqcodons =   apply(codonSeq,2,c2s)
+      
+      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+      names(mutationInfo) = mutationPos     
+      
+      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
+      names(mutationInfoWhole) = mutationPos
+
+      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+      
+      if(any(!is.na(mutationInfo))){       
+  
+        #Filter based on Stop (at the codon level)
+        if(seqWithStops==1){
+          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+        }else{
+          countStops = sum(mutationInfoWhole=="Stop")
+          if(seqWithStops==2 & countStops==0) mutationInfo = NA
+          if(seqWithStops==3 & countStops>0) mutationInfo = NA
+        }         
+        
+        if(any(!is.na(mutationInfo))){
+          #Filter mutations based on multipleMutation
+          if(multipleMutation==1 & !is.na(mutationInfo)){
+            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+            tableMutationCodons <- table(mutationCodons)
+            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+            if(any(codonsWithMultipleMutations)){
+              #remove the nucleotide mutations in the codons with multiple mutations
+              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+              #replace those codons with Ns in the input sequence
+              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+              #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+              inputSeq <- c2s(paramSeq)
+            }
+          }
+          
+          #Filter mutations based on the model
+          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
+            
+            if(model==1 & !is.na(mutationInfo)){
+              mutationInfo <- mutationInfo[mutationInfo=="S"]
+            }  
+            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
+            else return(list(NA,inputSeq))
+          }else{
+            return(list(NA,inputSeq))
+          }
+        }else{
+          return(list(NA,inputSeq))
+        }
+        
+        
+      }else{
+        return(list(NA,inputSeq))
+      }
+    
+    
+    }else{
+      return (list(NA,inputSeq))
+    }    
+  }  
+ 
+  # triMutability Background Count
+  buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
+    
+    #rowOrigMatInput = matInput[inputMatrixIndex,]    
+    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
+    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
+    #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
+    tempInput <- cbind(seqInput,seqGL)
+    seqLength = nchar(seqGL)      
+    list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
+    mutationCount <- list_analyzeMutationsFixed[[1]]
+    seqInput <- list_analyzeMutationsFixed[[2]]
+    BackgroundMatrix = mutabilityMatrix
+    MutationMatrix = mutabilityMatrix    
+    MutationCountMatrix = mutabilityMatrix    
+    if(!is.na(mutationCount)){
+      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
+                  
+        fivermerStartPos = 1:(seqLength-4)
+        fivemerLength <- length(fivermerStartPos)
+        fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+        fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+    
+        #Background
+        for(fivemerIndex in 1:fivemerLength){
+          fivemer = fivemerGL[fivemerIndex]
+          if(!any(grep("N",fivemer))){
+            fivemerCodonPos = fivemerCodon(fivemerIndex)
+            fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
+            fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])          
+            
+            # All mutations model
+            #if(!any(grep("N",fivemerReadingFrameCodon))){
+              if(model==0){
+                if(stopMutations==0){
+                  if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
+                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)              
+                }else{
+                  if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
+                    positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
+                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
+                  }
+                }
+              }else{ # Only silent mutations
+                if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
+                  positionWithinCodon = which(fivemerCodonPos==3)
+                  BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
+                }
+              }
+            #}
+          }
+        }
+        
+        #Mutations
+        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
+        mutationPositions = as.numeric(names(mutationCount))
+        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        countMutations = 0 
+        for(mutationPosition in mutationPositions){
+          fivemerIndex = mutationPosition-2
+          fivemer = fivemerSeq[fivemerIndex]
+          GLfivemer = fivemerGL[fivemerIndex]
+          fivemerCodonPos = fivemerCodon(fivemerIndex)
+          fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
+          fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
+          if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
+            if(model==0){
+                countMutations = countMutations + 1              
+                MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
+                MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)             
+            }else{
+              if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
+                  countMutations = countMutations + 1
+                  positionWithinCodon = which(fivemerCodonPos==3)
+                  glNuc =  substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+                  inputNuc =  substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+                  MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
+                  MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)                                    
+              }                
+            }                  
+          }              
+        }
+        
+        seqMutability = MutationMatrix/BackgroundMatrix
+        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+        #cat(inputMatrixIndex,"\t",countMutations,"\n")
+        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
+        
+      }        
+    }
+  
+  }  
+  
+  #Returns the codon position containing the middle nucleotide
+  fivemerCodon <- function(fivemerIndex){
+    codonPos = list(2:4,1:3,3:5)
+    fivemerType = fivemerIndex%%3
+    return(codonPos[[fivemerType+1]])
+  }
+
+  #returns probability values for one mutation in codons resulting in R, S or Stop
+  probMutations <- function(typeOfMutation){    
+    matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))   
+    for(codon in rownames(matMutationProb)){
+        if( !any(grep("N",codon)) ){
+        for(muPos in 1:3){
+          matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
+          glNuc = matCodon[1,muPos]
+          matCodon[,muPos] = canMutateTo(glNuc) 
+          substitutionRate = substitution[glNuc,matCodon[,muPos]]
+          typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})        
+          matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
+        }
+      }
+    }
+    
+    return(matMutationProb) 
+  }
+  
+  
+  
+  
+#Mapping Trinucleotides to fivemers
+mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
+  rownames(triMutability) <- triMutability_Names
+  Fivemer<-rep(NA,1024)
+  names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
+  Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
+  Fivemer<-Fivemer/sum(Fivemer)
+  return(Fivemer)
+}
+
+collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
+}
+
+
+
+CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
+}
+
+#Uses the real counts of the mutated fivemers
+CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
+}
+
+bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
+N<-sum(x)
+if(N){
+p<-x/N
+k<-length(x)-1
+tmp<-rmultinom(M, size = N, prob=p)
+tmp_p<-apply(tmp,2,function(y)y/N)
+(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
+}
+else return(matrix(0,2,length(x)))
+}
+
+
+
+
+bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
+
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
+(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
+}
+
+
+
+p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
+n=sum(x_obs)
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
+tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
+sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
+sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
+}
+
+#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
+# Remove SNPs from IMGT germline segment alleles
+generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
+  repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+  alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
+  SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
+    Indices<-NULL
+    for(i in 1:length(x)){
+      firstSeq = s2c(x[[1]])
+      iSeq = s2c(x[[i]])
+      Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="."  ))
+    }
+    return(sort(unique(Indices)))
+  })
+ repertoireOut <- repertoireIn
+ repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
+                                        alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
+                                        geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
+                                        alleleSeq <- s2c(repertoireOut[[repertoireName]])
+                                        alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
+                                        alleleSeq <- c2s(alleleSeq)
+                                        repertoireOut[[repertoireName]] <- alleleSeq
+                                      })
+  names(repertoireOut) <- names(repertoireIn)
+  write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)                                               
+                                      
+}
+
+
+
+
+
+
+############
+groupBayes2 = function(indexes, param_resultMat){
+  
+  BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
+  BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
+  #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
+  #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
+  #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
+  #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
+  return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
+                "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
+                #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
+                #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
+#                "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
+#                "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
+
+
+}
+
+
+calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
+  G <- max(length(x),length(N),length(p))
+  x=array(x,dim=G)
+  N=array(N,dim=G)
+  p=array(p,dim=G)
+
+  indexOfZero = N>0 & p>0
+  N = N[indexOfZero]
+  x = x[indexOfZero]
+  p = p[indexOfZero]  
+  G <- length(x)
+  
+  if(G){
+    
+    cons<-array( dim=c(length_sigma,G) )
+    if(G==1) {
+    return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
+    }
+    else {
+      for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
+      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }
+  }else{
+    return(NA)
+  }
+}
+
+
+calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
+  matG <- listMatG[[1]]  
+  groups <- listMatG[[2]]
+  i = 1  
+  resConv <- matG[,i]
+  denom <- 2^groups[i]
+  if(length(groups)>1){
+    while( i<length(groups) ){
+      i = i + 1
+      resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
+      #cat({{2^groups[i]}/denom},"\n")
+      denom <- denom + 2^groups[i]
+    }
+  }
+  return(resConv)  
+}
+
+weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
+lx<-length(x)
+ly<-length(y)
+if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
+if(w<1){
+y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
+x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
+lx<-length(x1)
+ly<-length(y1)
+}
+else {
+y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
+x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
+lx<-length(x1)
+ly<-length(y1)
+}
+}
+else{
+x1<-x
+y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
+ly<-length(y1)
+}
+tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
+tmp[tmp<=0] = 0 
+return(tmp/sum(tmp))
+}
+
+########################
+
+
+
+
+mutabilityMatrixONE<-rep(0,4)
+names(mutabilityMatrixONE)<-NUCLEOTIDES
+
+  # triMutability Background Count
+  buildMutabilityModelONE <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
+    
+    #rowOrigMatInput = matInput[inputMatrixIndex,]    
+    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
+    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
+    matInput[inputMatrixIndex,] <<- c(seqInput,seqGL)
+    seqLength = nchar(seqGL)      
+    mutationCount <- analyzeMutations(inputMatrixIndex, model, multipleMutation, seqWithStops)
+    BackgroundMatrix = mutabilityMatrixONE
+    MutationMatrix = mutabilityMatrixONE    
+    MutationCountMatrix = mutabilityMatrixONE    
+    if(!is.na(mutationCount)){
+      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
+                  
+#         ONEmerStartPos = 1:(seqLength)
+#         ONEmerLength <- length(ONEmerStartPos)
+        ONEmerGL <- s2c(seqGL)
+        ONEmerSeq <- s2c(seqInput)
+    
+        #Background
+        for(ONEmerIndex in 1:seqLength){
+          ONEmer = ONEmerGL[ONEmerIndex]
+          if(ONEmer!="N"){
+            ONEmerCodonPos = getCodonPos(ONEmerIndex)
+            ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos]) 
+            ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )         
+            
+            # All mutations model
+            #if(!any(grep("N",ONEmerReadingFrameCodon))){
+              if(model==0){
+                if(stopMutations==0){
+                  if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
+                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)              
+                }else{
+                  if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
+                    positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
+                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+                  }
+                }
+              }else{ # Only silent mutations
+                if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
+                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+                  BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+                }
+              }
+            }
+          }
+        }
+        
+        #Mutations
+        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
+        mutationPositions = as.numeric(names(mutationCount))
+        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        countMutations = 0 
+        for(mutationPosition in mutationPositions){
+          ONEmerIndex = mutationPosition
+          ONEmer = ONEmerSeq[ONEmerIndex]
+          GLONEmer = ONEmerGL[ONEmerIndex]
+          ONEmerCodonPos = getCodonPos(ONEmerIndex)
+          ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])  
+          ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])  
+          if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
+            if(model==0){
+                countMutations = countMutations + 1              
+                MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
+                MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)             
+            }else{
+              if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
+                  countMutations = countMutations + 1
+                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+                  glNuc =  substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+                  inputNuc =  substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+                  MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
+                  MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)                                    
+              }                
+            }                  
+          }              
+        }
+        
+        seqMutability = MutationMatrix/BackgroundMatrix
+        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+        #cat(inputMatrixIndex,"\t",countMutations,"\n")
+        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
+#         tmp<-list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
+      }        
+    }
+  
+################
+# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
+
+trim <- function(s, recode.factor=TRUE, ...)
+  UseMethod("trim", s)
+
+trim.default <- function(s, recode.factor=TRUE, ...)
+  s
+
+trim.character <- function(s, recode.factor=TRUE, ...)
+{
+  s <- sub(pattern="^ +", replacement="", x=s)
+  s <- sub(pattern=" +$", replacement="", x=s)
+  s
+}
+
+trim.factor <- function(s, recode.factor=TRUE, ...)
+{
+  levels(s) <- trim(levels(s))
+  if(recode.factor) {
+    dots <- list(x=s, ...)
+    if(is.null(dots$sort)) dots$sort <- sort
+    s <- do.call(what=reorder.factor, args=dots)
+  }
+  s
+}
+
+trim.list <- function(s, recode.factor=TRUE, ...)
+  lapply(s, trim, recode.factor=recode.factor, ...)
+
+trim.data.frame <- function(s, recode.factor=TRUE, ...)
+{
+  s[] <- trim.list(s, recode.factor=recode.factor, ...)
+  s
+}
+#######################################
+# Compute the expected for each sequence-germline pair by codon 
+getExpectedIndividualByCodon <- function(matInput){    
+if( any(grep("multicore",search())) ){  
+  facGL <- factor(matInput[,2])
+  facLevels = levels(facGL)
+  LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
+    computeMutabilities(facLevels[x])
+  })
+  facIndex = match(facGL,facLevels)
+  
+  LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
+    cInput = rep(NA,nchar(matInput[x,1]))
+    cInput[s2c(matInput[x,1])!="N"] = 1
+    LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+  })
+  
+  LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
+    computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+  })
+  
+  LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
+    #print(x)
+    computeMutationTypes(matInput[x,2])
+  })
+  
+  LisGLs_R_Exp = mclapply(1:nrow(matInput),  function(x){
+    Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                        function(codonNucs){                                                      
+                          RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
+                          sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
+                        }
+    )                                                   
+  })
+  
+  LisGLs_S_Exp = mclapply(1:nrow(matInput),  function(x){
+    Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                        function(codonNucs){                                                      
+                          SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
+                          sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+                        }
+    )                                                 
+  })                                                
+  
+  Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+  Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+  return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
+  }else{
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
+      computeMutabilities(facLevels[x])
+    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
+      cInput = rep(NA,nchar(matInput[x,1]))
+      cInput[s2c(matInput[x,1])!="N"] = 1
+      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+    })
+    
+    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
+      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+    })
+    
+    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
+      #print(x)
+      computeMutationTypes(matInput[x,2])
+    })
+    
+    LisGLs_R_Exp = lapply(1:nrow(matInput),  function(x){
+      Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                          function(codonNucs){                                                      
+                            RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
+                            sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
+                          }
+      )                                                   
+    })
+    
+    LisGLs_S_Exp = lapply(1:nrow(matInput),  function(x){
+      Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                          function(codonNucs){                                                      
+                            SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
+                            sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+                          }
+      )                                                 
+    })                                                
+    
+    Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+    Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+    return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )    
+  }
+}
+
+# getObservedMutationsByCodon <- function(listMutations){
+#   numbSeqs <- length(listMutations) 
+#   obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+#   obsMu_S <- obsMu_R
+#   temp <- mclapply(1:length(listMutations), function(i){
+#     arrMutations = listMutations[[i]]
+#     RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+#     RPos <- sapply(RPos,getCodonNumb)                                                                    
+#     if(any(RPos)){
+#       tabR <- table(RPos)
+#       obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+#     }                                    
+#     
+#     SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+#     SPos <- sapply(SPos,getCodonNumb)
+#     if(any(SPos)){
+#       tabS <- table(SPos)
+#       obsMu_S[i,names(tabS)] <<- tabS
+#     }                                          
+#   }
+#   )
+#   return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
+# }
+
+getObservedMutationsByCodon <- function(listMutations){
+  numbSeqs <- length(listMutations) 
+  obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+  obsMu_S <- obsMu_R
+  temp <- lapply(1:length(listMutations), function(i){
+    arrMutations = listMutations[[i]]
+    RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+    RPos <- sapply(RPos,getCodonNumb)                                                                    
+    if(any(RPos)){
+      tabR <- table(RPos)
+      obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+    }                                    
+    
+    SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+    SPos <- sapply(SPos,getCodonNumb)
+    if(any(SPos)){
+      tabS <- table(SPos)
+      obsMu_S[i,names(tabS)] <<- tabS
+    }                                          
+  }
+  )
+  return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
+}
+
--- a/baseline/Baseline_Main.r	Thu Feb 25 10:32:32 2021 +0000
+++ b/baseline/Baseline_Main.r	Wed Sep 15 12:24:06 2021 +0000
@@ -1,388 +1,388 @@
-#########################################################################################
-# License Agreement
-# 
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
-# OR COPYRIGHT LAW IS PROHIBITED.
-# 
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-op <- options();
-options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
-library('seqinr')
-if( F & Sys.info()[1]=="Linux"){
-  library("multicore")
-}
-
-# Load functions and initialize global variables
-source("Baseline_Functions.r")
-
-# Initialize parameters with user provided arguments
-  arg <- commandArgs(TRUE)                       
-  #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
-  #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
-  #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
-  testID <- as.numeric(arg[1])                    # 1 = Focused, 2 = Local
-  species <- as.numeric(arg[2])                   # 1 = Human. 2 = Mouse
-  substitutionModel <- as.numeric(arg[3])         # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
-  mutabilityModel <- as.numeric(arg[4])           # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002)  , 5 = FiveS
-  clonal <- as.numeric(arg[5])                    # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
-  fixIndels <- as.numeric(arg[6])                 # 0 = Do nothing, 1 = Try and fix Indels
-  region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
-  inputFilePath <- arg[8]                         # Full path to input file
-  outputPath <- arg[9]                            # Full path to location of output files
-  outputID <- arg[10]                             # ID for session output  
-  
-
-  if(testID==5){
-    traitChangeModel <- 1
-    if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11])    # 1 <- Chothia 1998
-    initializeTraitChange(traitChangeModel)    
-  }
-  
-# Initialize other parameters/variables
-    
-  # Initialzie the codon table ( definitions of R/S )
-  computeCodonTable(testID) 
-
-  # Initialize   
-  # Test Name
-  testName<-"Focused"
-  if(testID==2) testName<-"Local"
-  if(testID==3) testName<-"Imbalanced"    
-  if(testID==4) testName<-"ImbalancedSilent"    
-    
-  # Indel placeholders initialization
-  indelPos <- NULL
-  delPos <- NULL
-  insPos <- NULL
-
-  # Initialize in Tranistion & Mutability matrixes
-  substitution <- initializeSubstitutionMatrix(substitutionModel,species)
-  mutability <- initializeMutabilityMatrix(mutabilityModel,species)
-  
-  # FWR/CDR boundaries
-  flagTrim <- F
-  if( is.na(region[7])){
-    flagTrim <- T
-    region[7]<-region[6]
-  }
-  readStart = min(region,na.rm=T)
-  readEnd = max(region,na.rm=T)
-  if(readStart>1){
-    region = region - (readStart - 1)
-  }
-  region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
-  region_Cod = region
-  
-  readStart = (readStart*3)-2
-  readEnd = (readEnd*3)
-    
-    FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
-                  rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
-                  rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
-                  rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
-                  rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
-                  rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
-                )
-    CDR_Nuc <- (1-FWR_Nuc)
-    CDR_Nuc <- as.logical(CDR_Nuc)
-    FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
-    CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
-    
-    FWR_Codon <- c( rep(TRUE,(region[2])),
-                  rep(FALSE,(region[3]-region[2])),
-                  rep(TRUE,(region[4]-region[3])),
-                  rep(FALSE,(region[5]-region[4])),
-                  rep(TRUE,(region[6]-region[5])),
-                  rep(FALSE,(region[7]-region[6]))
-                )
-    CDR_Codon <- (1-FWR_Codon)
-    CDR_Codon <- as.logical(CDR_Codon)
-
-
-# Read input FASTA file
-  tryCatch(
-    inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
-    , error = function(ex){
-      cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
-      q()
-    }
-  )
-  
-  if (length(inputFASTA)==1) {
-    cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
-    q()
-  }
-
-  # Process sequence IDs/names
-  names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
-  
-  # Convert non nucleotide characters to N
-  inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
-  inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
-
-  # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
-  processedInput <- processInputAdvanced(inputFASTA)
-  matInput <- processedInput[[1]]
-  germlines <- processedInput[[2]]
-  lenGermlines = length(unique(germlines))
-  groups <- processedInput[[3]]
-  lenGroups = length(unique(groups))
-  rm(processedInput)
-  rm(inputFASTA)
-
-#   # remove clones with less than 2 seqeunces
-#   tableGL <- table(germlines)
-#   singletons <- which(tableGL<8)
-#   rowsToRemove <- match(singletons,germlines)
-#   if(any(rowsToRemove)){    
-#     matInput <- matInput[-rowsToRemove,]
-#     germlines <- germlines[-rowsToRemove]    
-#     groups <- groups[-rowsToRemove]
-#   }
-# 
-#   # remove unproductive seqs
-#   nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
-#   if(any(nonFuctionalSeqs)){
-#     if(sum(nonFuctionalSeqs)==length(germlines)){
-#       write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#       q()      
-#     }
-#     matInput <- matInput[-which(nonFuctionalSeqs),]
-#     germlines <- germlines[-which(nonFuctionalSeqs)]
-#     germlines[1:length(germlines)] <- 1:length(germlines)
-#     groups <- groups[-which(nonFuctionalSeqs)]
-#   }
-# 
-#   if(class(matInput)=="character"){
-#     write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#     q()    
-#   }
-#   
-#   if(nrow(matInput)<10 | is.null(nrow(matInput))){
-#     write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#     q()
-#   }
-
-# replace leading & trailing "-" with "N:
-  matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
-    
-  # Trim (nucleotide) input sequences to the last codon
-  #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon) 
-
-#   # Check for Indels
-#   if(fixIndels){
-#     delPos <- fixDeletions(matInput)
-#     insPos <- fixInsertions(matInput)
-#   }else{
-#     # Check for indels
-#     indelPos <- checkForInDels(matInput)
-#     indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
-#   }
-  
-  # If indels are present, remove mutations in the seqeunce & throw warning at end
-  #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
-  
-  colnames(matInput)=c("Input","Germline")
-
-  # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
-  germlinesOriginal = NULL
-  if(clonal){
-    germlinesOriginal <- germlines
-    collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
-                                                                collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
-                                                              })
-    matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
-    names_groups = tapply(groups,germlines,function(x){names(x[1])})  
-    groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})  
-    names(groups) = names_groups
-  
-    names_germlines =  tapply(germlines,germlines,function(x){names(x[1])})  
-    germlines = tapply(   germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))}   )
-    names(germlines) = names_germlines
-    matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})  
-  }
-
-
-# Selection Analysis
-
-  
-#  if (length(germlines)>sequenceLimit) {
-#    # Code to parallelize processing goes here
-#    stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
-#  }
-
-#  if (length(germlines)<sequenceLimit) {}
-  
-    # Compute expected mutation frequencies
-    matExpected <- getExpectedIndividual(matInput)
-    
-    # Count observed number of mutations in the different regions
-    mutations <- lapply( 1:nrow(matInput),  function(i){
-                                              #cat(i,"\n")
-                                              seqI = s2c(matInput[i,1])
-                                              seqG = s2c(matInput[i,2])
-                                              matIGL = matrix(c(seqI,seqG),ncol=length(seqI),nrow=2,byrow=T)    
-                                              retVal <- NA
-                                              tryCatch(
-                                                retVal <- analyzeMutations2NucUri(matIGL)
-                                                , error = function(ex){
-                                                  retVal <- NA
-                                                }
-                                              )                                              
-                                              
-                                              
-                                              return( retVal )
-                                            })
-
-    matObserved <- t(sapply( mutations, processNucMutations2 ))
-    numberOfSeqsWithMutations <- numberOfSeqsWithMutations(matObserved, testID)
-
-    #if(sum(numberOfSeqsWithMutations)==0){
-    #  write.table("No mutated sequences",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-    #  q()      
-    #}
-    
-    matMutationInfo <- cbind(matObserved,matExpected)
-    rm(matObserved,matExpected)
-    
-     
-    #Bayesian  PDFs
-    bayes_pdf = computeBayesianScore(matMutationInfo, test=testName, max_sigma=20,length_sigma=4001)
-    bayesPDF_cdr = bayes_pdf[[1]]
-    bayesPDF_fwr = bayes_pdf[[2]]    
-    rm(bayes_pdf)
-
-    bayesPDF_germlines_cdr = tapply(bayesPDF_cdr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
-    bayesPDF_germlines_fwr = tapply(bayesPDF_fwr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
-    
-    bayesPDF_groups_cdr = tapply(bayesPDF_cdr,groups,function(x) groupPosteriors(x,length_sigma=4001))
-    bayesPDF_groups_fwr = tapply(bayesPDF_fwr,groups,function(x) groupPosteriors(x,length_sigma=4001))
-    
-    if(lenGroups>1){
-      groups <- c(groups,lenGroups+1)
-      names(groups)[length(groups)] = "All sequences combined"
-      bayesPDF_groups_cdr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
-      bayesPDF_groups_fwr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
-    }
-    
-    #Bayesian  Outputs
-    bayes_cdr =  t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
-    bayes_fwr =  t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
-    bayes_germlines_cdr =  t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
-    bayes_germlines_fwr =  t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
-    bayes_groups_cdr =  t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
-    bayes_groups_fwr =  t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
-    
-    #P-values
-    simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
-    simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
-    
-    simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
-    simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
-    
-    simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
-    simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
-    
-    
-    #Format output
-    
-    # Round expected mutation frequencies to 3 decimal places
-    matMutationInfo[germlinesOriginal[indelPos],] = NA
-    if(nrow(matMutationInfo)==1){
-      matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
-    }else{
-      matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
-    }
-    
-    listPDFs = list()
-    nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
-    
-    matOutput = matrix(NA,ncol=18,nrow=nRows)
-    rowNumb = 1
-    for(G in unique(groups)){
-      #print(G)
-      matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
-      listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
-      names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
-      #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
-      gs = unique(germlines[groups==G])
-      rowNumb = rowNumb+1
-      if( !is.na(gs) ){
-        for( g in gs ){
-          matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
-          listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
-          names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
-          rowNumb = rowNumb+1
-          indexesOfInterest = which(germlines==g)
-          numbSeqsOfInterest =  length(indexesOfInterest)
-          rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
-          matOutput[rowNumb,] = matrix(   c(  rep("Sequence",numbSeqsOfInterest),
-                                              rownames(matInput)[indexesOfInterest],
-                                              c(matMutationInfo[indexesOfInterest,1:4]),
-                                              c(matMutationInfo[indexesOfInterest,5:8]),
-                                              c(bayes_cdr[indexesOfInterest,]),
-                                              c(bayes_fwr[indexesOfInterest,]),
-                                              c(simgaP_cdr[indexesOfInterest]),
-                                              c(simgaP_fwr[indexesOfInterest])                                              
-          ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
-          increment=0
-          for( ioi in indexesOfInterest){
-            listPDFs[[min(rowNumb)+increment]] =  list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
-            names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
-            increment = increment + 1
-          }
-          rowNumb=max(rowNumb)+1
-
-        }
-      }
-    }
-    colsToFormat = 11:18
-    matOutput[,colsToFormat] = formatC(  matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) ,  digits=3)
-    matOutput[matOutput== " NaN"] = NA
-    
-    
-    
-    colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
-                            "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
-                            paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
-                            paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
-    )
-    fileName = paste(outputPath,outputID,".txt",sep="")
-    write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
-    fileName = paste(outputPath,outputID,".RData",sep="")
-    save(listPDFs,file=fileName)
-
-indelWarning = FALSE
-if(sum(indelPos)>0){
-  indelWarning = "<P>Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
-  indelWarning = paste( indelWarning , "<UL>", sep="" )
-  for(indels in names(indelPos)[indelPos]){
-    indelWarning = paste( indelWarning , "<LI>", indels, "</LI>", sep="" )
-  }
-  indelWarning = paste( indelWarning , "</UL></P>", sep="" )
-}
-
-cloneWarning = FALSE
-if(clonal==1){
-  if(sum(matInputErrors)>0){
-    cloneWarning = "<P>Warning: The following clones have sequences of unequal length.";
-    cloneWarning = paste( cloneWarning , "<UL>", sep="" )
-    for(clone in names(matInputErrors)[matInputErrors]){
-      cloneWarning = paste( cloneWarning , "<LI>", names(germlines)[as.numeric(clone)], "</LI>", sep="" )
-    }
-    cloneWarning = paste( cloneWarning , "</UL></P>", sep="" )
-  }
-}
-cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
+#########################################################################################
+# License Agreement
+# 
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
+# OR COPYRIGHT LAW IS PROHIBITED.
+# 
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+op <- options();
+options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
+library('seqinr')
+if( F & Sys.info()[1]=="Linux"){
+  library("multicore")
+}
+
+# Load functions and initialize global variables
+source("Baseline_Functions.r")
+
+# Initialize parameters with user provided arguments
+  arg <- commandArgs(TRUE)                       
+  #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
+  #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
+  #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
+  testID <- as.numeric(arg[1])                    # 1 = Focused, 2 = Local
+  species <- as.numeric(arg[2])                   # 1 = Human. 2 = Mouse
+  substitutionModel <- as.numeric(arg[3])         # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
+  mutabilityModel <- as.numeric(arg[4])           # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002)  , 5 = FiveS
+  clonal <- as.numeric(arg[5])                    # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
+  fixIndels <- as.numeric(arg[6])                 # 0 = Do nothing, 1 = Try and fix Indels
+  region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
+  inputFilePath <- arg[8]                         # Full path to input file
+  outputPath <- arg[9]                            # Full path to location of output files
+  outputID <- arg[10]                             # ID for session output  
+  
+
+  if(testID==5){
+    traitChangeModel <- 1
+    if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11])    # 1 <- Chothia 1998
+    initializeTraitChange(traitChangeModel)    
+  }
+  
+# Initialize other parameters/variables
+    
+  # Initialzie the codon table ( definitions of R/S )
+  computeCodonTable(testID) 
+
+  # Initialize   
+  # Test Name
+  testName<-"Focused"
+  if(testID==2) testName<-"Local"
+  if(testID==3) testName<-"Imbalanced"    
+  if(testID==4) testName<-"ImbalancedSilent"    
+    
+  # Indel placeholders initialization
+  indelPos <- NULL
+  delPos <- NULL
+  insPos <- NULL
+
+  # Initialize in Tranistion & Mutability matrixes
+  substitution <- initializeSubstitutionMatrix(substitutionModel,species)
+  mutability <- initializeMutabilityMatrix(mutabilityModel,species)
+  
+  # FWR/CDR boundaries
+  flagTrim <- F
+  if( is.na(region[7])){
+    flagTrim <- T
+    region[7]<-region[6]
+  }
+  readStart = min(region,na.rm=T)
+  readEnd = max(region,na.rm=T)
+  if(readStart>1){
+    region = region - (readStart - 1)
+  }
+  region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
+  region_Cod = region
+  
+  readStart = (readStart*3)-2
+  readEnd = (readEnd*3)
+    
+    FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
+                  rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
+                  rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
+                  rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
+                  rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
+                  rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
+                )
+    CDR_Nuc <- (1-FWR_Nuc)
+    CDR_Nuc <- as.logical(CDR_Nuc)
+    FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
+    CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
+    
+    FWR_Codon <- c( rep(TRUE,(region[2])),
+                  rep(FALSE,(region[3]-region[2])),
+                  rep(TRUE,(region[4]-region[3])),
+                  rep(FALSE,(region[5]-region[4])),
+                  rep(TRUE,(region[6]-region[5])),
+                  rep(FALSE,(region[7]-region[6]))
+                )
+    CDR_Codon <- (1-FWR_Codon)
+    CDR_Codon <- as.logical(CDR_Codon)
+
+
+# Read input FASTA file
+  tryCatch(
+    inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+    , error = function(ex){
+      cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+      q()
+    }
+  )
+  
+  if (length(inputFASTA)==1) {
+    cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+    q()
+  }
+
+  # Process sequence IDs/names
+  names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
+  
+  # Convert non nucleotide characters to N
+  inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
+  inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
+
+  # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
+  processedInput <- processInputAdvanced(inputFASTA)
+  matInput <- processedInput[[1]]
+  germlines <- processedInput[[2]]
+  lenGermlines = length(unique(germlines))
+  groups <- processedInput[[3]]
+  lenGroups = length(unique(groups))
+  rm(processedInput)
+  rm(inputFASTA)
+
+#   # remove clones with less than 2 seqeunces
+#   tableGL <- table(germlines)
+#   singletons <- which(tableGL<8)
+#   rowsToRemove <- match(singletons,germlines)
+#   if(any(rowsToRemove)){    
+#     matInput <- matInput[-rowsToRemove,]
+#     germlines <- germlines[-rowsToRemove]    
+#     groups <- groups[-rowsToRemove]
+#   }
+# 
+#   # remove unproductive seqs
+#   nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
+#   if(any(nonFuctionalSeqs)){
+#     if(sum(nonFuctionalSeqs)==length(germlines)){
+#       write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#       q()      
+#     }
+#     matInput <- matInput[-which(nonFuctionalSeqs),]
+#     germlines <- germlines[-which(nonFuctionalSeqs)]
+#     germlines[1:length(germlines)] <- 1:length(germlines)
+#     groups <- groups[-which(nonFuctionalSeqs)]
+#   }
+# 
+#   if(class(matInput)=="character"){
+#     write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#     q()    
+#   }
+#   
+#   if(nrow(matInput)<10 | is.null(nrow(matInput))){
+#     write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#     q()
+#   }
+
+# replace leading & trailing "-" with "N:
+  matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
+    
+  # Trim (nucleotide) input sequences to the last codon
+  #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon) 
+
+#   # Check for Indels
+#   if(fixIndels){
+#     delPos <- fixDeletions(matInput)
+#     insPos <- fixInsertions(matInput)
+#   }else{
+#     # Check for indels
+#     indelPos <- checkForInDels(matInput)
+#     indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
+#   }
+  
+  # If indels are present, remove mutations in the seqeunce & throw warning at end
+  #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
+  
+  colnames(matInput)=c("Input","Germline")
+
+  # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
+  germlinesOriginal = NULL
+  if(clonal){
+    germlinesOriginal <- germlines
+    collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
+                                                                collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
+                                                              })
+    matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
+    names_groups = tapply(groups,germlines,function(x){names(x[1])})  
+    groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})  
+    names(groups) = names_groups
+  
+    names_germlines =  tapply(germlines,germlines,function(x){names(x[1])})  
+    germlines = tapply(   germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))}   )
+    names(germlines) = names_germlines
+    matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})  
+  }
+
+
+# Selection Analysis
+
+  
+#  if (length(germlines)>sequenceLimit) {
+#    # Code to parallelize processing goes here
+#    stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
+#  }
+
+#  if (length(germlines)<sequenceLimit) {}
+  
+    # Compute expected mutation frequencies
+    matExpected <- getExpectedIndividual(matInput)
+    
+    # Count observed number of mutations in the different regions
+    mutations <- lapply( 1:nrow(matInput),  function(i){
+                                              #cat(i,"\n")
+                                              seqI = s2c(matInput[i,1])
+                                              seqG = s2c(matInput[i,2])
+                                              matIGL = matrix(c(seqI,seqG),ncol=length(seqI),nrow=2,byrow=T)    
+                                              retVal <- NA
+                                              tryCatch(
+                                                retVal <- analyzeMutations2NucUri(matIGL)
+                                                , error = function(ex){
+                                                  retVal <- NA
+                                                }
+                                              )                                              
+                                              
+                                              
+                                              return( retVal )
+                                            })
+
+    matObserved <- t(sapply( mutations, processNucMutations2 ))
+    numberOfSeqsWithMutations <- numberOfSeqsWithMutations(matObserved, testID)
+
+    #if(sum(numberOfSeqsWithMutations)==0){
+    #  write.table("No mutated sequences",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+    #  q()      
+    #}
+    
+    matMutationInfo <- cbind(matObserved,matExpected)
+    rm(matObserved,matExpected)
+    
+     
+    #Bayesian  PDFs
+    bayes_pdf = computeBayesianScore(matMutationInfo, test=testName, max_sigma=20,length_sigma=4001)
+    bayesPDF_cdr = bayes_pdf[[1]]
+    bayesPDF_fwr = bayes_pdf[[2]]    
+    rm(bayes_pdf)
+
+    bayesPDF_germlines_cdr = tapply(bayesPDF_cdr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
+    bayesPDF_germlines_fwr = tapply(bayesPDF_fwr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
+    
+    bayesPDF_groups_cdr = tapply(bayesPDF_cdr,groups,function(x) groupPosteriors(x,length_sigma=4001))
+    bayesPDF_groups_fwr = tapply(bayesPDF_fwr,groups,function(x) groupPosteriors(x,length_sigma=4001))
+    
+    if(lenGroups>1){
+      groups <- c(groups,lenGroups+1)
+      names(groups)[length(groups)] = "All sequences combined"
+      bayesPDF_groups_cdr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
+      bayesPDF_groups_fwr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
+    }
+    
+    #Bayesian  Outputs
+    bayes_cdr =  t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
+    bayes_fwr =  t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
+    bayes_germlines_cdr =  t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
+    bayes_germlines_fwr =  t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
+    bayes_groups_cdr =  t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
+    bayes_groups_fwr =  t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
+    
+    #P-values
+    simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
+    simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
+    
+    simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
+    simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
+    
+    simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
+    simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
+    
+    
+    #Format output
+    
+    # Round expected mutation frequencies to 3 decimal places
+    matMutationInfo[germlinesOriginal[indelPos],] = NA
+    if(nrow(matMutationInfo)==1){
+      matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
+    }else{
+      matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
+    }
+    
+    listPDFs = list()
+    nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
+    
+    matOutput = matrix(NA,ncol=18,nrow=nRows)
+    rowNumb = 1
+    for(G in unique(groups)){
+      #print(G)
+      matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
+      listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
+      names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
+      #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
+      gs = unique(germlines[groups==G])
+      rowNumb = rowNumb+1
+      if( !is.na(gs) ){
+        for( g in gs ){
+          matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
+          listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
+          names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
+          rowNumb = rowNumb+1
+          indexesOfInterest = which(germlines==g)
+          numbSeqsOfInterest =  length(indexesOfInterest)
+          rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
+          matOutput[rowNumb,] = matrix(   c(  rep("Sequence",numbSeqsOfInterest),
+                                              rownames(matInput)[indexesOfInterest],
+                                              c(matMutationInfo[indexesOfInterest,1:4]),
+                                              c(matMutationInfo[indexesOfInterest,5:8]),
+                                              c(bayes_cdr[indexesOfInterest,]),
+                                              c(bayes_fwr[indexesOfInterest,]),
+                                              c(simgaP_cdr[indexesOfInterest]),
+                                              c(simgaP_fwr[indexesOfInterest])                                              
+          ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
+          increment=0
+          for( ioi in indexesOfInterest){
+            listPDFs[[min(rowNumb)+increment]] =  list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
+            names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
+            increment = increment + 1
+          }
+          rowNumb=max(rowNumb)+1
+
+        }
+      }
+    }
+    colsToFormat = 11:18
+    matOutput[,colsToFormat] = formatC(  matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) ,  digits=3)
+    matOutput[matOutput== " NaN"] = NA
+    
+    
+    
+    colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
+                            "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
+                            paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
+                            paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
+    )
+    fileName = paste(outputPath,outputID,".txt",sep="")
+    write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
+    fileName = paste(outputPath,outputID,".RData",sep="")
+    save(listPDFs,file=fileName)
+
+indelWarning = FALSE
+if(sum(indelPos)>0){
+  indelWarning = "<P>Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
+  indelWarning = paste( indelWarning , "<UL>", sep="" )
+  for(indels in names(indelPos)[indelPos]){
+    indelWarning = paste( indelWarning , "<LI>", indels, "</LI>", sep="" )
+  }
+  indelWarning = paste( indelWarning , "</UL></P>", sep="" )
+}
+
+cloneWarning = FALSE
+if(clonal==1){
+  if(sum(matInputErrors)>0){
+    cloneWarning = "<P>Warning: The following clones have sequences of unequal length.";
+    cloneWarning = paste( cloneWarning , "<UL>", sep="" )
+    for(clone in names(matInputErrors)[matInputErrors]){
+      cloneWarning = paste( cloneWarning , "<LI>", names(germlines)[as.numeric(clone)], "</LI>", sep="" )
+    }
+    cloneWarning = paste( cloneWarning , "</UL></P>", sep="" )
+  }
+}
+cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
--- a/baseline/comparePDFs.r	Thu Feb 25 10:32:32 2021 +0000
+++ b/baseline/comparePDFs.r	Wed Sep 15 12:24:06 2021 +0000
@@ -1,225 +1,225 @@
-options("warn"=-1)
-
-#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
-# Compute p-value of two distributions
-compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
-#print(c(length(dens1),length(dens2)))
-if(length(dens1)>1 & length(dens2)>1 ){
-	dens1<-dens1/sum(dens1)
-	dens2<-dens2/sum(dens2)
-	cum2 <- cumsum(dens2)-dens2/2
-	tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
-	#print(tmp)
-	if(tmp>0.5)tmp<-tmp-1
-	return( tmp )
-	}
-	else {
-	return(NA)
-	}
-	#return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
-}  
-
-
-require("grid")
-arg <- commandArgs(TRUE)
-#arg <- c("300143","4","5")
-arg[!arg=="clonal"]
-input <- arg[1]
-output <- arg[2]
-rowIDs <- as.numeric(  sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } )  )
-
-numbSeqs = length(rowIDs)
-
-if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
-  stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
-}
-
-#load( paste("output/",sessionID,".RData",sep="") )
-load( input )
-#input
-
-xMarks = seq(-20,20,length.out=4001)
-
-plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
-  yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
-
-  if(length(xlim==2)){
-    xMin=xlim[1]
-    xMax=xlim[2]
-  } else {
-    xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
-    xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
-    xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
-    xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
-  
-    xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
-    xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
-    xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
-    xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
-  
-    xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
-    xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
-  }
-
-  sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
-  grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
-  x <- sigma
-  pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
-  #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
-  pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
-  grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
-  grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
-  grid.rect()
-  grid.xaxis(gp = gpar(cex=cex/1.1))
-  yticks = pretty(c(-yMax,yMax),8)
-  yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
-  grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
-  if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
-    ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
-  }
-  if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
-    yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
-   }
-
-  if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
-    ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
-  }
-  if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
-    yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
-   }
-
-  grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
-  grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
-
-  grid.text("All", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
-  grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
-  
-  if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
-    pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])       
-    pval = formatC(as.numeric(pCDRFWR),digits=3)
-    grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
-  }
-  grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
-  grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
-  popViewport(2)
-}
-#plot_grid_s(1)
-
-
-p2col<-function(p=0.01){
-  breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
-  i<-findInterval(p,breaks)
-  cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
-            rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
-  return(cols[i])
-}
-
-
-plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
-  if(upper){
-    pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])       
-    pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
-    pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])       
-    pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
-    grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
-         
-    grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
-    grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
-
-    grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    
-           
- #   grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
- #   grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
-  }
-  else{
-  }
-}
-
-
-##################################################################################
-################## The whole OCD's matrix ########################################
-##################################################################################
-
-#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
-pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3) 
-
-pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
-
-for( seqOne in 1:numbSeqs+1){
-  pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
-  if(seqOne>2){ 
-    grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
-    grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
-    grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
-       
-    grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
-    grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
-  }
-  grid.rect(gp = gpar(col=grey(0.9)))
-  grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
-  popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
-  pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
-  if(seqOne<=numbSeqs){   
-    grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
-    grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
-    grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
-    grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
-    grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
-  }
-  grid.rect(gp = gpar(col=grey(0.9)))
-  grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
-  popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
-  for(seqTwo in 1:numbSeqs+1){
-    pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
-    if(seqTwo>seqOne){
-      plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
-      grid.rect()
-    }    
-    popViewport(1)
-  }
-}
-   
-
-xMin=0
-xMax=0.01
-for(pdf1 in rowIDs){
-  xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
-  xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
-  xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
-  xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
-  xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
-  xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
-}
-
-
-
-for(i in 1:numbSeqs+1){
-  for(j in (i-1):numbSeqs){    
-    pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
-    grid.rect()
-    plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
-    popViewport(1)
-  }
-}
-
-dev.off() 
-
-cat("Success", paste(rowIDs,collapse="_"),sep=":")
-
+options("warn"=-1)
+
+#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
+# Compute p-value of two distributions
+compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+#print(c(length(dens1),length(dens2)))
+if(length(dens1)>1 & length(dens2)>1 ){
+	dens1<-dens1/sum(dens1)
+	dens2<-dens2/sum(dens2)
+	cum2 <- cumsum(dens2)-dens2/2
+	tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+	#print(tmp)
+	if(tmp>0.5)tmp<-tmp-1
+	return( tmp )
+	}
+	else {
+	return(NA)
+	}
+	#return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+}  
+
+
+require("grid")
+arg <- commandArgs(TRUE)
+#arg <- c("300143","4","5")
+arg[!arg=="clonal"]
+input <- arg[1]
+output <- arg[2]
+rowIDs <- as.numeric(  sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } )  )
+
+numbSeqs = length(rowIDs)
+
+if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
+  stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
+}
+
+#load( paste("output/",sessionID,".RData",sep="") )
+load( input )
+#input
+
+xMarks = seq(-20,20,length.out=4001)
+
+plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
+  yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
+
+  if(length(xlim==2)){
+    xMin=xlim[1]
+    xMax=xlim[2]
+  } else {
+    xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+    xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+    xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+    xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+  
+    xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
+    xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
+    xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
+    xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
+  
+    xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
+    xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
+  }
+
+  sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
+  grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
+  x <- sigma
+  pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
+  #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
+  pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
+  grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
+  grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
+  grid.rect()
+  grid.xaxis(gp = gpar(cex=cex/1.1))
+  yticks = pretty(c(-yMax,yMax),8)
+  yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
+  grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
+  if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
+    ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
+  }
+  if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
+    yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
+   }
+
+  if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
+    ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
+  }
+  if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
+    yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
+   }
+
+  grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
+  grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
+
+  grid.text("All", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
+  grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
+  
+  if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
+    pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])       
+    pval = formatC(as.numeric(pCDRFWR),digits=3)
+    grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
+  }
+  grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
+  grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
+  popViewport(2)
+}
+#plot_grid_s(1)
+
+
+p2col<-function(p=0.01){
+  breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
+  i<-findInterval(p,breaks)
+  cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
+            rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
+  return(cols[i])
+}
+
+
+plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
+  if(upper){
+    pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])       
+    pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
+    pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])       
+    pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
+    grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
+         
+    grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
+    grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
+
+    grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    
+           
+ #   grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
+ #   grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
+  }
+  else{
+  }
+}
+
+
+##################################################################################
+################## The whole OCD's matrix ########################################
+##################################################################################
+
+#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
+pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3) 
+
+pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
+
+for( seqOne in 1:numbSeqs+1){
+  pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
+  if(seqOne>2){ 
+    grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+    grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+    grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
+       
+    grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
+    grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
+  }
+  grid.rect(gp = gpar(col=grey(0.9)))
+  grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
+  popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+  pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
+  if(seqOne<=numbSeqs){   
+    grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+    grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+    grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
+    grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
+    grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
+  }
+  grid.rect(gp = gpar(col=grey(0.9)))
+  grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
+  popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+  for(seqTwo in 1:numbSeqs+1){
+    pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
+    if(seqTwo>seqOne){
+      plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
+      grid.rect()
+    }    
+    popViewport(1)
+  }
+}
+   
+
+xMin=0
+xMax=0.01
+for(pdf1 in rowIDs){
+  xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+  xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+  xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+  xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+  xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
+  xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
+}
+
+
+
+for(i in 1:numbSeqs+1){
+  for(j in (i-1):numbSeqs){    
+    pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
+    grid.rect()
+    plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
+    popViewport(1)
+  }
+}
+
+dev.off() 
+
+cat("Success", paste(rowIDs,collapse="_"),sep=":")
+
--- a/baseline/script_imgt.py	Thu Feb 25 10:32:32 2021 +0000
+++ b/baseline/script_imgt.py	Wed Sep 15 12:24:06 2021 +0000
@@ -1,86 +1,86 @@
-#import xlrd #avoid dep
-import argparse
-import re
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
-
-args = parser.parse_args()
-
-print "script_imgt.py"
-print "input:", args.input
-print "ref:", args.ref
-print "output:", args.output
-print "id:", args.id
-
-refdic = dict()
-with open(args.ref, 'rU') as ref:
-	currentSeq = ""
-	currentId = ""
-	for line in ref:
-		if line.startswith(">"):
-			if currentSeq is not "" and currentId is not "":
-				refdic[currentId[1:]] = currentSeq
-			currentId = line.rstrip()
-			currentSeq = ""
-		else:
-			currentSeq += line.rstrip()
-	refdic[currentId[1:]] = currentSeq
-
-print "Have", str(len(refdic)), "reference sequences"
-
-vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
-#						r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
-#						r"(IGKV[0-3]D?-[0-9]{1,2})",
-#						r"(IGLV[0-9]-[0-9]{1,2})",
-#						r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
-#						r"(TRGV[234589])",
-#						r"(TRDV[1-3])"]
-
-#vPattern = re.compile(r"|".join(vPattern))
-vPattern = re.compile("|".join(vPattern))
-
-def filterGene(s, pattern):
-    if type(s) is not str:
-        return None
-    res = pattern.search(s)
-    if res:
-        return res.group(0)
-    return None
-
-
-
-currentSeq = ""
-currentId = ""
-first=True
-with open(args.input, 'r') as i:
-	with open(args.output, 'a') as o:
-		o.write(">>>" + args.id + "\n")
-		outputdic = dict()
-		for line in i:
-			if first:
-				first = False
-				continue
-			linesplt = line.split("\t")
-			ref = filterGene(linesplt[1], vPattern)
-			if not ref or not linesplt[2].rstrip():
-				continue
-			if ref in outputdic:
-				outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
-			else:
-				outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
-		#print outputdic
-		
-		for k in outputdic.keys():
-			if k in refdic:
-				o.write(">>" + k + "\n")
-				o.write(refdic[k] + "\n")
-				for seq in outputdic[k]:
-					#print seq
-					o.write(">" + seq[0] + "\n")
-					o.write(seq[1] + "\n")
-			else:
-				print k + " not in reference, skipping " + k
+#import xlrd #avoid dep
+import argparse
+import re
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
+
+args = parser.parse_args()
+
+print("script_imgt.py")
+print("input:", args.input)
+print("ref:", args.ref)
+print("output:", args.output)
+print("id:", args.id)
+
+refdic = dict()
+with open(args.ref, 'rU') as ref:
+	currentSeq = ""
+	currentId = ""
+	for line in ref:
+		if line.startswith(">"):
+			if currentSeq is not "" and currentId is not "":
+				refdic[currentId[1:]] = currentSeq
+			currentId = line.rstrip()
+			currentSeq = ""
+		else:
+			currentSeq += line.rstrip()
+	refdic[currentId[1:]] = currentSeq
+
+print("Have", str(len(refdic)), "reference sequences")
+
+vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
+#						r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
+#						r"(IGKV[0-3]D?-[0-9]{1,2})",
+#						r"(IGLV[0-9]-[0-9]{1,2})",
+#						r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
+#						r"(TRGV[234589])",
+#						r"(TRDV[1-3])"]
+
+#vPattern = re.compile(r"|".join(vPattern))
+vPattern = re.compile("|".join(vPattern))
+
+def filterGene(s, pattern):
+    if type(s) is not str:
+        return None
+    res = pattern.search(s)
+    if res:
+        return res.group(0)
+    return None
+
+
+
+currentSeq = ""
+currentId = ""
+first=True
+with open(args.input, 'r') as i:
+	with open(args.output, 'a') as o:
+		o.write(">>>" + args.id + "\n")
+		outputdic = dict()
+		for line in i:
+			if first:
+				first = False
+				continue
+			linesplt = line.split("\t")
+			ref = filterGene(linesplt[1], vPattern)
+			if not ref or not linesplt[2].rstrip():
+				continue
+			if ref in outputdic:
+				outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+			else:
+				outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+		#print outputdic
+		
+		for k in list(outputdic.keys()):
+			if k in refdic:
+				o.write(">>" + k + "\n")
+				o.write(refdic[k] + "\n")
+				for seq in outputdic[k]:
+					#print seq
+					o.write(">" + seq[0] + "\n")
+					o.write(seq[1] + "\n")
+			else:
+				print(k + " not in reference, skipping " + k)
--- a/baseline/script_xlsx.py	Thu Feb 25 10:32:32 2021 +0000
+++ b/baseline/script_xlsx.py	Wed Sep 15 12:24:06 2021 +0000
@@ -1,58 +1,58 @@
-import xlrd
-import argparse
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-
-args = parser.parse_args()
-
-gene_column = 6
-id_column = 7
-seq_column = 8
-LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
-
-
-refdic = dict()
-with open(args.ref, 'r') as ref:
-	currentSeq = ""
-	currentId = ""
-	for line in ref.readlines():
-		if line[0] is ">":
-			if currentSeq is not "" and currentId is not "":
-				refdic[currentId[1:]] = currentSeq
-			currentId = line.rstrip()
-			currentSeq = ""
-		else:
-			currentSeq += line.rstrip()
-	refdic[currentId[1:]] = currentSeq
-	
-currentSeq = ""
-currentId = ""
-with xlrd.open_workbook(args.input, 'r') as wb:
-	with open(args.output, 'a') as o:
-		for sheet in wb.sheets():
-			if sheet.cell(1,gene_column).value.find("IGHV") < 0:
-				print "Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name
-				continue
-			o.write(">>>" + sheet.name + "\n")
-			outputdic = dict()
-			for rowindex in range(1, sheet.nrows):
-				ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
-				if ref in outputdic:
-					outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
-				else:
-					outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
-			#print outputdic
-			
-			for k in outputdic.keys():
-				if k in refdic:
-					o.write(">>" + k + "\n")
-					o.write(refdic[k] + "\n")
-					for seq in outputdic[k]:
-						#print seq
-						o.write(">" + seq[0] + "\n")
-						o.write(seq[1] + "\n")
-				else:
-					print k + " not in reference, skipping " + k
+import xlrd
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+
+args = parser.parse_args()
+
+gene_column = 6
+id_column = 7
+seq_column = 8
+LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
+
+
+refdic = dict()
+with open(args.ref, 'r') as ref:
+	currentSeq = ""
+	currentId = ""
+	for line in ref.readlines():
+		if line[0] is ">":
+			if currentSeq is not "" and currentId is not "":
+				refdic[currentId[1:]] = currentSeq
+			currentId = line.rstrip()
+			currentSeq = ""
+		else:
+			currentSeq += line.rstrip()
+	refdic[currentId[1:]] = currentSeq
+	
+currentSeq = ""
+currentId = ""
+with xlrd.open_workbook(args.input, 'r') as wb:
+	with open(args.output, 'a') as o:
+		for sheet in wb.sheets():
+			if sheet.cell(1,gene_column).value.find("IGHV") < 0:
+				print("Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name)
+				continue
+			o.write(">>>" + sheet.name + "\n")
+			outputdic = dict()
+			for rowindex in range(1, sheet.nrows):
+				ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
+				if ref in outputdic:
+					outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+				else:
+					outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+			#print outputdic
+			
+			for k in list(outputdic.keys()):
+				if k in refdic:
+					o.write(">>" + k + "\n")
+					o.write(refdic[k] + "\n")
+					for seq in outputdic[k]:
+						#print seq
+						o.write(">" + seq[0] + "\n")
+						o.write(seq[1] + "\n")
+				else:
+					print(k + " not in reference, skipping " + k)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/conda_environment.yml	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,23 @@
+name: shm_csr
+channels:
+  - conda-forge
+  - bioconda
+  - defaults
+dependencies:
+  - python=3.7
+  - changeo=0.4.4
+  - biopython=1.72  # Higher versions break changeo
+  - unzip=6.0
+  - bash=4.4.18
+  - tar=1.34
+  - xlrd=1.2.0
+  - r-ggplot2=3.0.0
+  - r-reshape2=1.4.3
+  - r-scales=0.5.0
+  - r-seqinr=3.4_5
+  - r-data.table=1.11.4
+  - file=5.39
+  # Test dependencies below
+  - pytest
+  # Add planemo so tool can be uploaded
+  - planemo
--- a/gene_identification.py	Thu Feb 25 10:32:32 2021 +0000
+++ b/gene_identification.py	Wed Sep 15 12:24:06 2021 +0000
@@ -23,23 +23,23 @@
 seqIndex = 0
 
 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
-	for line in f:
-		total += 1
-		linesplt = line.split("\t")
-		if first:
-			print "linesplt", linesplt
-			IDIndex = linesplt.index("Sequence ID")
-			seqIndex = linesplt.index("Sequence")
-			first = False
-			continue
-		
-		ID = linesplt[IDIndex]
-		if len(linesplt) < 28: #weird rows without a sequence
-			dic[ID] = ""
-		else:
-			dic[ID] = linesplt[seqIndex]
-			
-print "Number of input sequences:", len(dic)
+    for line in f:
+        total += 1
+        linesplt = line.split("\t")
+        if first:
+            print("linesplt", linesplt)
+            IDIndex = linesplt.index("Sequence ID")
+            seqIndex = linesplt.index("Sequence")
+            first = False
+            continue
+        
+        ID = linesplt[IDIndex]
+        if len(linesplt) < 28: #weird rows without a sequence
+            dic[ID] = ""
+        else:
+            dic[ID] = linesplt[seqIndex]
+            
+print("Number of input sequences:", len(dic))
 
 #old cm sequence: gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc
 #old cg sequence: ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag
@@ -73,13 +73,13 @@
 chunklength = 8
 
 #create the chunks of the reference sequence with regular expressions for the variable nucleotides
-for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2):
+for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength // 2):
   pos = i
   chunk = searchstrings["ca"][i:i+chunklength]
   result = ""
   varsInResult = 0
   for c in chunk:
-    if pos in ca1.keys():
+    if pos in list(ca1.keys()):
       varsInResult += 1
       result += "[" + ca1[pos] + ca2[pos] + "]"
     else:
@@ -87,13 +87,13 @@
     pos += 1
   compiledregex["ca"].append((re.compile(result), varsInResult))
 
-for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2):
+for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength // 2):
   pos = i
   chunk = searchstrings["cg"][i:i+chunklength]
   result = ""
   varsInResult = 0
   for c in chunk:
-    if pos in cg1.keys():
+    if pos in list(cg1.keys()):
       varsInResult += 1
       result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]"
     else:
@@ -101,10 +101,10 @@
     pos += 1
   compiledregex["cg"].append((re.compile(result), varsInResult))
 
-for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2):
+for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength // 2):
   compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False))
 
-for i in range(0, len(searchstrings["ce"]) - chunklength + 1, chunklength / 2):
+for i in range(0, len(searchstrings["ce"]) - chunklength + 1, chunklength // 2):
   compiledregex["ce"].append((re.compile(searchstrings["ce"][i:i+chunklength]), False))
 
 def removeAndReturnMaxIndex(x): #simplifies a list comprehension
@@ -117,108 +117,108 @@
 start_location = dict()
 hits = dict()
 alltotal = 0
-for key in compiledregex.keys(): #for ca/cg/cm/ce
-	regularexpressions = compiledregex[key] #get the compiled regular expressions
-	for ID in dic.keys()[0:]: #for every ID
-		if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists
-			hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ce_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0}
-		currentIDHits = hits[ID]
-		seq = dic[ID]
-		lastindex = 0
-		start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0)
-		start = [0] * (len(seq) + start_zero)
-		for i, regexp in enumerate(regularexpressions): #for every regular expression
-			relativeStartLocation = lastindex - (chunklength / 2) * i
-			if relativeStartLocation >= len(seq):
-				break
-			regex, hasVar = regexp
-			matches = regex.finditer(seq[lastindex:])
-			for match in matches: #for every match with the current regex, only uses the first hit because of the break at the end of this loop
-				lastindex += match.start()
-				start[relativeStartLocation + start_zero] += 1
-				if hasVar: #if the regex has a variable nt in it
-					chunkstart = chunklength / 2 * i #where in the reference does this chunk start
-					chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end
-					if key == "ca": #just calculate the variable nt score for 'ca', cheaper
-						currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]])
-						currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]])
-					elif key == "cg": #just calculate the variable nt score for 'cg', cheaper
-						currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]])
-						currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]])
-						currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]])
-						currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]])
-					else: #key == "cm" #no variable regions in 'cm' or 'ce'
-						pass
-				break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped
-			else: #only runs if there were no hits
-				continue
-			#print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i]
-			currentIDHits[key + "_hits"] += 1
-		start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1])
-		#start_location[ID + "_" + key] = str(start.index(max(start)))
+for key in compiledregex: #for ca/cg/cm/ce
+    regularexpressions = compiledregex[key]  # get the compiled regular expressions
+    for ID in list(dic.keys())[0:]: #for every ID
+        if ID not in list(hits.keys()): #ensure that the dictionairy that keeps track of the hits for every gene exists
+            hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ce_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0}
+        currentIDHits = hits[ID]
+        seq = dic[ID]
+        lastindex = 0
+        start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0)
+        start = [0] * (len(seq) + start_zero)
+        for i, regexp in enumerate(regularexpressions): #for every regular expression
+            relativeStartLocation = lastindex - (chunklength // 2) * i
+            if relativeStartLocation >= len(seq):
+                break
+            regex, hasVar = regexp
+            matches = regex.finditer(seq[lastindex:])
+            for match in matches: #for every match with the current regex, only uses the first hit because of the break at the end of this loop
+                lastindex += match.start()
+                start[relativeStartLocation + start_zero] += 1
+                if hasVar: #if the regex has a variable nt in it
+                    chunkstart = chunklength // 2 * i #where in the reference does this chunk start
+                    chunkend = chunklength // 2 * i + chunklength #where in the reference does this chunk end
+                    if key == "ca": #just calculate the variable nt score for 'ca', cheaper
+                        currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]])
+                        currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]])
+                    elif key == "cg": #just calculate the variable nt score for 'cg', cheaper
+                        currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]])
+                        currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]])
+                        currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]])
+                        currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]])
+                    else: #key == "cm" #no variable regions in 'cm' or 'ce'
+                        pass
+                break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped
+            else: #only runs if there were no hits
+                continue
+            #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i]
+            currentIDHits[key + "_hits"] += 1
+        start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1])
+        #start_location[ID + "_" + key] = str(start.index(max(start)))
 
 
-varsInCA = float(len(ca1.keys()) * 2)
-varsInCG = float(len(cg1.keys()) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice
+varsInCA = float(len(list(ca1.keys())) * 2)
+varsInCG = float(len(list(cg1.keys())) * 2) - 2 # -2 because the sliding window doesn't hit the first and last nt twice
 varsInCM = 0
 varsInCE = 0
 
 def round_int(val):
-	return int(round(val))
+    return int(round(val))
 
 first = True
 seq_write_count=0
 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
-	with open(output, 'w') as o:
-		for line in f:
-			total += 1
-			if first:
-				o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
-				first = False
-				continue
-			linesplt = line.split("\t")
-			if linesplt[2] == "No results":
-				pass
-			ID = linesplt[1]
-			currentIDHits = hits[ID]
-			possibleca = float(len(compiledregex["ca"]))
-			possiblecg = float(len(compiledregex["cg"]))
-			possiblecm = float(len(compiledregex["cm"]))
-			possiblece = float(len(compiledregex["ce"]))
-			cahits = currentIDHits["ca_hits"]
-			cghits = currentIDHits["cg_hits"]
-			cmhits = currentIDHits["cm_hits"]
-			cehits = currentIDHits["ce_hits"]
-			if cahits >= cghits and cahits >= cmhits and cahits >= cehits: #its a ca gene
-				ca1hits = currentIDHits["ca1"]
-				ca2hits = currentIDHits["ca2"]
-				if ca1hits >= ca2hits:
-					o.write(ID + "\tIGA1\t" + str(round_int(ca1hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
-				else:
-					o.write(ID + "\tIGA2\t" + str(round_int(ca2hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
-			elif cghits >= cahits and cghits >= cmhits and cghits >= cehits: #its a cg gene
-				cg1hits = currentIDHits["cg1"]
-				cg2hits = currentIDHits["cg2"]
-				cg3hits = currentIDHits["cg3"]
-				cg4hits = currentIDHits["cg4"]
-				if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene
-					o.write(ID + "\tIGG1\t" + str(round_int(cg1hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
-				elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene
-					o.write(ID + "\tIGG2\t" + str(round_int(cg2hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
-				elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene
-					o.write(ID + "\tIGG3\t" + str(round_int(cg3hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
-				else: #cg4 gene
-					o.write(ID + "\tIGG4\t" + str(round_int(cg4hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
-			else: #its a cm or ce gene
-				if cmhits >= cehits:
-					o.write(ID + "\tIGM\t100\t" + str(round_int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n")
-				else:
-					o.write(ID + "\tIGE\t100\t" + str(round_int(cehits / possiblece * 100)) + "\t" + start_location[ID + "_ce"] + "\n")
-			seq_write_count += 1
+    with open(output, 'w') as o:
+        for line in f:
+            total += 1
+            if first:
+                o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
+                first = False
+                continue
+            linesplt = line.split("\t")
+            if linesplt[2] == "No results":
+                pass
+            ID = linesplt[1]
+            currentIDHits = hits[ID]
+            possibleca = float(len(compiledregex["ca"]))
+            possiblecg = float(len(compiledregex["cg"]))
+            possiblecm = float(len(compiledregex["cm"]))
+            possiblece = float(len(compiledregex["ce"]))
+            cahits = currentIDHits["ca_hits"]
+            cghits = currentIDHits["cg_hits"]
+            cmhits = currentIDHits["cm_hits"]
+            cehits = currentIDHits["ce_hits"]
+            if cahits >= cghits and cahits >= cmhits and cahits >= cehits: #its a ca gene
+                ca1hits = currentIDHits["ca1"]
+                ca2hits = currentIDHits["ca2"]
+                if ca1hits >= ca2hits:
+                    o.write(ID + "\tIGA1\t" + str(round_int(ca1hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
+                else:
+                    o.write(ID + "\tIGA2\t" + str(round_int(ca2hits / varsInCA * 100)) + "\t" + str(round_int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
+            elif cghits >= cahits and cghits >= cmhits and cghits >= cehits: #its a cg gene
+                cg1hits = currentIDHits["cg1"]
+                cg2hits = currentIDHits["cg2"]
+                cg3hits = currentIDHits["cg3"]
+                cg4hits = currentIDHits["cg4"]
+                if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene
+                    o.write(ID + "\tIGG1\t" + str(round_int(cg1hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+                elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene
+                    o.write(ID + "\tIGG2\t" + str(round_int(cg2hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+                elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene
+                    o.write(ID + "\tIGG3\t" + str(round_int(cg3hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+                else: #cg4 gene
+                    o.write(ID + "\tIGG4\t" + str(round_int(cg4hits / varsInCG * 100)) + "\t" + str(round_int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
+            else: #its a cm or ce gene
+                if cmhits >= cehits:
+                    o.write(ID + "\tIGM\t100\t" + str(round_int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n")
+                else:
+                    o.write(ID + "\tIGE\t100\t" + str(round_int(cehits / possiblece * 100)) + "\t" + start_location[ID + "_ce"] + "\n")
+            seq_write_count += 1
 
-print "Time: %i" % (int(time.time() * 1000) - starttime)
+print("Time: %i" % (int(time.time() * 1000) - starttime))
 
-print "Number of sequences written to file:", seq_write_count
+print("Number of sequences written to file:", seq_write_count)
 
 
 
--- a/merge_and_filter.r	Thu Feb 25 10:32:32 2021 +0000
+++ b/merge_and_filter.r	Wed Sep 15 12:24:06 2021 +0000
@@ -1,304 +1,304 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-
-summaryfile = args[1]
-sequencesfile = args[2]
-mutationanalysisfile = args[3]
-mutationstatsfile = args[4]
-hotspotsfile = args[5]
-aafile = args[6]
-gene_identification_file= args[7]
-output = args[8]
-before.unique.file = args[9]
-unmatchedfile = args[10]
-method=args[11]
-functionality=args[12]
-unique.type=args[13]
-filter.unique=args[14]
-filter.unique.count=as.numeric(args[15])
-class.filter=args[16]
-empty.region.filter=args[17]
-
-print(paste("filter.unique.count:", filter.unique.count))
-
-summ = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-sequences = read.table(sequencesfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-mutationanalysis = read.table(mutationanalysisfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-mutationstats = read.table(mutationstatsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-hotspots = read.table(hotspotsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-AAs = read.table(aafile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-gene_identification = read.table(gene_identification_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-
-fix_column_names = function(df){
-    if("V.DOMAIN.Functionality" %in% names(df)){
-        names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
-        print("found V.DOMAIN.Functionality, changed")
-    }
-    if("V.DOMAIN.Functionality.comment" %in% names(df)){
-        names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
-        print("found V.DOMAIN.Functionality.comment, changed")
-    }
-    return(df)
-}
-
-fix_non_unique_ids = function(df){
-	df$Sequence.ID = paste(df$Sequence.ID, 1:nrow(df))
-	return(df)
-}
-
-summ = fix_column_names(summ)
-sequences = fix_column_names(sequences)
-mutationanalysis = fix_column_names(mutationanalysis)
-mutationstats = fix_column_names(mutationstats)
-hotspots = fix_column_names(hotspots)
-AAs = fix_column_names(AAs)
-
-if(method == "blastn"){
-	#"qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore"
-	gene_identification = gene_identification[!duplicated(gene_identification$qseqid),]
-	ref_length = data.frame(sseqid=c("ca1", "ca2", "cg1", "cg2", "cg3", "cg4", "cm"), ref.length=c(81,81,141,141,141,141,52))
-	gene_identification = merge(gene_identification, ref_length, by="sseqid", all.x=T)
-	gene_identification$chunk_hit_percentage = (gene_identification$length / gene_identification$ref.length) * 100
-	gene_identification = gene_identification[,c("qseqid", "chunk_hit_percentage", "pident", "qstart", "sseqid")]
-	colnames(gene_identification) = c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")
-}
-
-#print("Summary analysis files columns")
-#print(names(summ))
-
-
-
-input.sequence.count = nrow(summ)
-print(paste("Number of sequences in summary file:", input.sequence.count))
-
-filtering.steps = data.frame(character(0), numeric(0))
-
-filtering.steps = rbind(filtering.steps, c("Input", input.sequence.count))
-
-filtering.steps[,1] = as.character(filtering.steps[,1])
-filtering.steps[,2] = as.character(filtering.steps[,2])
-#filtering.steps[,3] = as.numeric(filtering.steps[,3])
-
-#print("summary files columns")
-#print(names(summ))
-
-summ = merge(summ, gene_identification, by="Sequence.ID")
-
-print(paste("Number of sequences after merging with gene identification:", nrow(summ)))
-
-summ = summ[summ$Functionality != "No results",]
-
-print(paste("Number of sequences after 'No results' filter:", nrow(summ)))
-
-filtering.steps = rbind(filtering.steps, c("After 'No results' filter", nrow(summ)))
-
-if(functionality == "productive"){
-	summ = summ[summ$Functionality == "productive (see comment)" | summ$Functionality == "productive",]
-} else if (functionality == "unproductive"){
-	summ = summ[summ$Functionality == "unproductive (see comment)" | summ$Functionality == "unproductive",]
-} else if (functionality == "remove_unknown"){
-	summ = summ[summ$Functionality != "No results" & summ$Functionality != "unknown (see comment)" & summ$Functionality != "unknown",]
-}
-
-print(paste("Number of sequences after functionality filter:", nrow(summ)))
-
-filtering.steps = rbind(filtering.steps, c("After functionality filter", nrow(summ)))
-
-if(F){ #to speed up debugging
-    set.seed(1)
-    summ = summ[sample(nrow(summ), floor(nrow(summ) * 0.03)),]
-    print(paste("Number of sequences after sampling 3%:", nrow(summ)))
-
-    filtering.steps = rbind(filtering.steps, c("Number of sequences after sampling 3%", nrow(summ)))
-}
-
-print("mutation analysis files columns")
-print(names(mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])]))
-
-result = merge(summ, mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with mutation analysis file:", nrow(result)))
-
-#print("mutation stats files columns")
-#print(names(mutationstats[,!(names(mutationstats) %in% names(result)[-1])]))
-
-result = merge(result, mutationstats[,!(names(mutationstats) %in% names(result)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with mutation stats file:", nrow(result)))
-
-print("hotspots files columns")
-print(names(hotspots[,!(names(hotspots) %in% names(result)[-1])]))
-
-result = merge(result, hotspots[,!(names(hotspots) %in% names(result)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with hotspots file:", nrow(result)))
-
-print("sequences files columns")
-print(c("FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT"))
-
-sequences = sequences[,c("Sequence.ID", "FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT")]
-names(sequences) = c("Sequence.ID", "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq")
-result = merge(result, sequences, by="Sequence.ID", all.x=T)
-
-AAs = AAs[,c("Sequence.ID", "CDR3.IMGT")]
-names(AAs) = c("Sequence.ID", "CDR3.IMGT.AA")
-result = merge(result, AAs, by="Sequence.ID", all.x=T)
-
-print(paste("Number of sequences in result after merging with sequences:", nrow(result)))
-
-result$VGene = gsub("^Homsap ", "", result$V.GENE.and.allele)
-result$VGene = gsub("[*].*", "", result$VGene)
-result$DGene = gsub("^Homsap ", "", result$D.GENE.and.allele)
-result$DGene = gsub("[*].*", "", result$DGene)
-result$JGene = gsub("^Homsap ", "", result$J.GENE.and.allele)
-result$JGene = gsub("[*].*", "", result$JGene)
-
-splt = strsplit(class.filter, "_")[[1]]
-chunk_hit_threshold = as.numeric(splt[1])
-nt_hit_threshold = as.numeric(splt[2])
-
-higher_than=(result$chunk_hit_percentage >= chunk_hit_threshold & result$nt_hit_percentage >= nt_hit_threshold)
-
-if(!all(higher_than, na.rm=T)){ #check for no unmatched
-	result[!higher_than,"best_match"] = paste("unmatched,", result[!higher_than,"best_match"])
-}
-
-if(class.filter == "101_101"){
-	result$best_match = "all"
-}
-
-write.table(x=result, file=gsub("merged.txt$", "before_filters.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
-
-print(paste("Number of empty CDR1 sequences:", sum(result$CDR1.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty FR2 sequences:", sum(result$FR2.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "", na.rm=T)))
-
-if(empty.region.filter == "leader"){
-	result = result[result$FR1.IMGT.seq != "" & result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "FR1"){
-	result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "CDR1"){
-	result = result[result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "FR2"){
-	result = result[result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-}
-
-print(paste("After removal sequences that are missing a gene region:", nrow(result)))
-filtering.steps = rbind(filtering.steps, c("After removal sequences that are missing a gene region", nrow(result)))
-
-if(empty.region.filter == "leader"){
-	result = result[!(grepl("n|N", result$FR1.IMGT.seq) | grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "FR1"){
-	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "CDR1"){
-	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "FR2"){
-	result = result[!(grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-}
-
-print(paste("Number of sequences in result after n filtering:", nrow(result)))
-filtering.steps = rbind(filtering.steps, c("After N filter", nrow(result)))
-
-cleanup_columns = c("FR1.IMGT.Nb.of.mutations", 
-                    "CDR1.IMGT.Nb.of.mutations", 
-                    "FR2.IMGT.Nb.of.mutations", 
-                    "CDR2.IMGT.Nb.of.mutations", 
-                    "FR3.IMGT.Nb.of.mutations")
-
-for(col in cleanup_columns){
-  result[,col] = gsub("\\(.*\\)", "", result[,col])
-  result[,col] = as.numeric(result[,col])
-  result[is.na(result[,col]),] = 0
-}
-
-write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T)
-
-
-if(filter.unique != "no"){
-	clmns = names(result)
-	if(filter.unique == "remove_vjaa"){
-		result$unique.def = paste(result$VGene, result$JGene, result$CDR3.IMGT.AA)
-	} else if(empty.region.filter == "leader"){
-		result$unique.def = paste(result$FR1.IMGT.seq, result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	} else if(empty.region.filter == "FR1"){
-		result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	} else if(empty.region.filter == "CDR1"){
-		result$unique.def = paste(result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	} else if(empty.region.filter == "FR2"){
-		result$unique.def = paste(result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	}
-	
-	if(grepl("remove", filter.unique)){
-		result = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),]
-		unique.defs = data.frame(table(result$unique.def))
-		unique.defs = unique.defs[unique.defs$Freq >= filter.unique.count,]
-		result = result[result$unique.def %in% unique.defs$Var1,]
-	}
-
-	if(filter.unique != "remove_vjaa"){
-		result$unique.def = paste(result$unique.def, gsub(",.*", "", result$best_match)) #keep the unique sequences that are in multiple classes, gsub so the unmatched don't have a class after it
-	}
-
-	result = result[!duplicated(result$unique.def),]
-}
-
-write.table(result, gsub("before_unique_filter.txt", "after_unique_filter.txt", before.unique.file), sep="\t", quote=F,row.names=F,col.names=T)
-
-filtering.steps = rbind(filtering.steps, c("After filter unique sequences", nrow(result)))
-
-print(paste("Number of sequences in result after unique filtering:", nrow(result)))
-
-if(nrow(summ) == 0){
-	stop("No data remaining after filter")
-}
-
-result$best_match_class = gsub(",.*", "", result$best_match) #gsub so the unmatched don't have a class after it
-
-#result$past = ""
-#cls = unlist(strsplit(unique.type, ","))
-#for (i in 1:nrow(result)){
-#	result[i,"past"] = paste(result[i,cls], collapse=":")
-#}
-
-
-
-result$past = do.call(paste, c(result[unlist(strsplit(unique.type, ","))], sep = ":"))
-
-result.matched = result[!grepl("unmatched", result$best_match),]
-result.unmatched = result[grepl("unmatched", result$best_match),]
-
-result = rbind(result.matched, result.unmatched)
-
-result = result[!(duplicated(result$past)), ]
-
-result = result[,!(names(result) %in% c("past", "best_match_class"))]
-
-print(paste("Number of sequences in result after", unique.type, "filtering:", nrow(result)))
-
-filtering.steps = rbind(filtering.steps, c("After remove duplicates based on filter", nrow(result)))
-
-unmatched = result[grepl("^unmatched", result$best_match),c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")]
-
-print(paste("Number of rows in result:", nrow(result)))
-print(paste("Number of rows in unmatched:", nrow(unmatched)))
-
-matched.sequences = result[!grepl("^unmatched", result$best_match),]
-
-write.table(x=matched.sequences, file=gsub("merged.txt$", "filtered.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
-
-matched.sequences.count = nrow(matched.sequences)
-unmatched.sequences.count = sum(grepl("^unmatched", result$best_match))
-if(matched.sequences.count <= unmatched.sequences.count){
-	print("WARNING NO MATCHED (SUB)CLASS SEQUENCES!!")
-}
-
-filtering.steps = rbind(filtering.steps, c("Number of matched sequences", matched.sequences.count))
-filtering.steps = rbind(filtering.steps, c("Number of unmatched sequences", unmatched.sequences.count))
-filtering.steps[,2] = as.numeric(filtering.steps[,2])
-filtering.steps$perc = round(filtering.steps[,2] / input.sequence.count * 100, 2)
-
-write.table(x=filtering.steps, file=gsub("unmatched", "filtering_steps", unmatchedfile), sep="\t",quote=F,row.names=F,col.names=F)
-
-write.table(x=result, file=output, sep="\t",quote=F,row.names=F,col.names=T)
-write.table(x=unmatched, file=unmatchedfile, sep="\t",quote=F,row.names=F,col.names=T)
+args <- commandArgs(trailingOnly = TRUE)
+
+
+summaryfile = args[1]
+sequencesfile = args[2]
+mutationanalysisfile = args[3]
+mutationstatsfile = args[4]
+hotspotsfile = args[5]
+aafile = args[6]
+gene_identification_file= args[7]
+output = args[8]
+before.unique.file = args[9]
+unmatchedfile = args[10]
+method=args[11]
+functionality=args[12]
+unique.type=args[13]
+filter.unique=args[14]
+filter.unique.count=as.numeric(args[15])
+class.filter=args[16]
+empty.region.filter=args[17]
+
+print(paste("filter.unique.count:", filter.unique.count))
+
+summ = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+sequences = read.table(sequencesfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+mutationanalysis = read.table(mutationanalysisfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+mutationstats = read.table(mutationstatsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+hotspots = read.table(hotspotsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+AAs = read.table(aafile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+gene_identification = read.table(gene_identification_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+
+fix_column_names = function(df){
+    if("V.DOMAIN.Functionality" %in% names(df)){
+        names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
+        print("found V.DOMAIN.Functionality, changed")
+    }
+    if("V.DOMAIN.Functionality.comment" %in% names(df)){
+        names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
+        print("found V.DOMAIN.Functionality.comment, changed")
+    }
+    return(df)
+}
+
+fix_non_unique_ids = function(df){
+	df$Sequence.ID = paste(df$Sequence.ID, 1:nrow(df))
+	return(df)
+}
+
+summ = fix_column_names(summ)
+sequences = fix_column_names(sequences)
+mutationanalysis = fix_column_names(mutationanalysis)
+mutationstats = fix_column_names(mutationstats)
+hotspots = fix_column_names(hotspots)
+AAs = fix_column_names(AAs)
+
+if(method == "blastn"){
+	#"qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore"
+	gene_identification = gene_identification[!duplicated(gene_identification$qseqid),]
+	ref_length = data.frame(sseqid=c("ca1", "ca2", "cg1", "cg2", "cg3", "cg4", "cm"), ref.length=c(81,81,141,141,141,141,52))
+	gene_identification = merge(gene_identification, ref_length, by="sseqid", all.x=T)
+	gene_identification$chunk_hit_percentage = (gene_identification$length / gene_identification$ref.length) * 100
+	gene_identification = gene_identification[,c("qseqid", "chunk_hit_percentage", "pident", "qstart", "sseqid")]
+	colnames(gene_identification) = c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")
+}
+
+#print("Summary analysis files columns")
+#print(names(summ))
+
+
+
+input.sequence.count = nrow(summ)
+print(paste("Number of sequences in summary file:", input.sequence.count))
+
+filtering.steps = data.frame(character(0), numeric(0))
+
+filtering.steps = rbind(filtering.steps, c("Input", input.sequence.count))
+
+filtering.steps[,1] = as.character(filtering.steps[,1])
+filtering.steps[,2] = as.character(filtering.steps[,2])
+#filtering.steps[,3] = as.numeric(filtering.steps[,3])
+
+#print("summary files columns")
+#print(names(summ))
+
+summ = merge(summ, gene_identification, by="Sequence.ID")
+
+print(paste("Number of sequences after merging with gene identification:", nrow(summ)))
+
+summ = summ[summ$Functionality != "No results",]
+
+print(paste("Number of sequences after 'No results' filter:", nrow(summ)))
+
+filtering.steps = rbind(filtering.steps, c("After 'No results' filter", nrow(summ)))
+
+if(functionality == "productive"){
+	summ = summ[summ$Functionality == "productive (see comment)" | summ$Functionality == "productive",]
+} else if (functionality == "unproductive"){
+	summ = summ[summ$Functionality == "unproductive (see comment)" | summ$Functionality == "unproductive",]
+} else if (functionality == "remove_unknown"){
+	summ = summ[summ$Functionality != "No results" & summ$Functionality != "unknown (see comment)" & summ$Functionality != "unknown",]
+}
+
+print(paste("Number of sequences after functionality filter:", nrow(summ)))
+
+filtering.steps = rbind(filtering.steps, c("After functionality filter", nrow(summ)))
+
+if(F){ #to speed up debugging
+    set.seed(1)
+    summ = summ[sample(nrow(summ), floor(nrow(summ) * 0.03)),]
+    print(paste("Number of sequences after sampling 3%:", nrow(summ)))
+
+    filtering.steps = rbind(filtering.steps, c("Number of sequences after sampling 3%", nrow(summ)))
+}
+
+print("mutation analysis files columns")
+print(names(mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])]))
+
+result = merge(summ, mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with mutation analysis file:", nrow(result)))
+
+#print("mutation stats files columns")
+#print(names(mutationstats[,!(names(mutationstats) %in% names(result)[-1])]))
+
+result = merge(result, mutationstats[,!(names(mutationstats) %in% names(result)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with mutation stats file:", nrow(result)))
+
+print("hotspots files columns")
+print(names(hotspots[,!(names(hotspots) %in% names(result)[-1])]))
+
+result = merge(result, hotspots[,!(names(hotspots) %in% names(result)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with hotspots file:", nrow(result)))
+
+print("sequences files columns")
+print(c("FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT"))
+
+sequences = sequences[,c("Sequence.ID", "FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT")]
+names(sequences) = c("Sequence.ID", "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq")
+result = merge(result, sequences, by="Sequence.ID", all.x=T)
+
+AAs = AAs[,c("Sequence.ID", "CDR3.IMGT")]
+names(AAs) = c("Sequence.ID", "CDR3.IMGT.AA")
+result = merge(result, AAs, by="Sequence.ID", all.x=T)
+
+print(paste("Number of sequences in result after merging with sequences:", nrow(result)))
+
+result$VGene = gsub("^Homsap ", "", result$V.GENE.and.allele)
+result$VGene = gsub("[*].*", "", result$VGene)
+result$DGene = gsub("^Homsap ", "", result$D.GENE.and.allele)
+result$DGene = gsub("[*].*", "", result$DGene)
+result$JGene = gsub("^Homsap ", "", result$J.GENE.and.allele)
+result$JGene = gsub("[*].*", "", result$JGene)
+
+splt = strsplit(class.filter, "_")[[1]]
+chunk_hit_threshold = as.numeric(splt[1])
+nt_hit_threshold = as.numeric(splt[2])
+
+higher_than=(result$chunk_hit_percentage >= chunk_hit_threshold & result$nt_hit_percentage >= nt_hit_threshold)
+
+if(!all(higher_than, na.rm=T)){ #check for no unmatched
+	result[!higher_than,"best_match"] = paste("unmatched,", result[!higher_than,"best_match"])
+}
+
+if(class.filter == "101_101"){
+	result$best_match = "all"
+}
+
+write.table(x=result, file=gsub("merged.txt$", "before_filters.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
+
+print(paste("Number of empty CDR1 sequences:", sum(result$CDR1.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty FR2 sequences:", sum(result$FR2.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "", na.rm=T)))
+
+if(empty.region.filter == "leader"){
+	result = result[result$FR1.IMGT.seq != "" & result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "FR1"){
+	result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "CDR1"){
+	result = result[result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "FR2"){
+	result = result[result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+}
+
+print(paste("After removal sequences that are missing a gene region:", nrow(result)))
+filtering.steps = rbind(filtering.steps, c("After removal sequences that are missing a gene region", nrow(result)))
+
+if(empty.region.filter == "leader"){
+	result = result[!(grepl("n|N", result$FR1.IMGT.seq) | grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "FR1"){
+	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "CDR1"){
+	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "FR2"){
+	result = result[!(grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+}
+
+print(paste("Number of sequences in result after n filtering:", nrow(result)))
+filtering.steps = rbind(filtering.steps, c("After N filter", nrow(result)))
+
+cleanup_columns = c("FR1.IMGT.Nb.of.mutations", 
+                    "CDR1.IMGT.Nb.of.mutations", 
+                    "FR2.IMGT.Nb.of.mutations", 
+                    "CDR2.IMGT.Nb.of.mutations", 
+                    "FR3.IMGT.Nb.of.mutations")
+
+for(col in cleanup_columns){
+  result[,col] = gsub("\\(.*\\)", "", result[,col])
+  result[,col] = as.numeric(result[,col])
+  result[is.na(result[,col]),] = 0
+}
+
+write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T)
+
+
+if(filter.unique != "no"){
+	clmns = names(result)
+	if(filter.unique == "remove_vjaa"){
+		result$unique.def = paste(result$VGene, result$JGene, result$CDR3.IMGT.AA)
+	} else if(empty.region.filter == "leader"){
+		result$unique.def = paste(result$FR1.IMGT.seq, result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	} else if(empty.region.filter == "FR1"){
+		result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	} else if(empty.region.filter == "CDR1"){
+		result$unique.def = paste(result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	} else if(empty.region.filter == "FR2"){
+		result$unique.def = paste(result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	}
+	
+	if(grepl("remove", filter.unique)){
+		result = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),]
+		unique.defs = data.frame(table(result$unique.def))
+		unique.defs = unique.defs[unique.defs$Freq >= filter.unique.count,]
+		result = result[result$unique.def %in% unique.defs$Var1,]
+	}
+
+	if(filter.unique != "remove_vjaa"){
+		result$unique.def = paste(result$unique.def, gsub(",.*", "", result$best_match)) #keep the unique sequences that are in multiple classes, gsub so the unmatched don't have a class after it
+	}
+
+	result = result[!duplicated(result$unique.def),]
+}
+
+write.table(result, gsub("before_unique_filter.txt", "after_unique_filter.txt", before.unique.file), sep="\t", quote=F,row.names=F,col.names=T)
+
+filtering.steps = rbind(filtering.steps, c("After filter unique sequences", nrow(result)))
+
+print(paste("Number of sequences in result after unique filtering:", nrow(result)))
+
+if(nrow(summ) == 0){
+	stop("No data remaining after filter")
+}
+
+result$best_match_class = gsub(",.*", "", result$best_match) #gsub so the unmatched don't have a class after it
+
+#result$past = ""
+#cls = unlist(strsplit(unique.type, ","))
+#for (i in 1:nrow(result)){
+#	result[i,"past"] = paste(result[i,cls], collapse=":")
+#}
+
+
+
+result$past = do.call(paste, c(result[unlist(strsplit(unique.type, ","))], sep = ":"))
+
+result.matched = result[!grepl("unmatched", result$best_match),]
+result.unmatched = result[grepl("unmatched", result$best_match),]
+
+result = rbind(result.matched, result.unmatched)
+
+result = result[!(duplicated(result$past)), ]
+
+result = result[,!(names(result) %in% c("past", "best_match_class"))]
+
+print(paste("Number of sequences in result after", unique.type, "filtering:", nrow(result)))
+
+filtering.steps = rbind(filtering.steps, c("After remove duplicates based on filter", nrow(result)))
+
+unmatched = result[grepl("^unmatched", result$best_match),c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")]
+
+print(paste("Number of rows in result:", nrow(result)))
+print(paste("Number of rows in unmatched:", nrow(unmatched)))
+
+matched.sequences = result[!grepl("^unmatched", result$best_match),]
+
+write.table(x=matched.sequences, file=gsub("merged.txt$", "filtered.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
+
+matched.sequences.count = nrow(matched.sequences)
+unmatched.sequences.count = sum(grepl("^unmatched", result$best_match))
+if(matched.sequences.count <= unmatched.sequences.count){
+	print("WARNING NO MATCHED (SUB)CLASS SEQUENCES!!")
+}
+
+filtering.steps = rbind(filtering.steps, c("Number of matched sequences", matched.sequences.count))
+filtering.steps = rbind(filtering.steps, c("Number of unmatched sequences", unmatched.sequences.count))
+filtering.steps[,2] = as.numeric(filtering.steps[,2])
+filtering.steps$perc = round(filtering.steps[,2] / input.sequence.count * 100, 2)
+
+write.table(x=filtering.steps, file=gsub("unmatched", "filtering_steps", unmatchedfile), sep="\t",quote=F,row.names=F,col.names=F)
+
+write.table(x=result, file=output, sep="\t",quote=F,row.names=F,col.names=T)
+write.table(x=unmatched, file=unmatchedfile, sep="\t",quote=F,row.names=F,col.names=T)
--- a/mutation_column_checker.py	Thu Feb 25 10:32:32 2021 +0000
+++ b/mutation_column_checker.py	Wed Sep 15 12:24:06 2021 +0000
@@ -1,27 +1,27 @@
-import re
-
-mutationMatcher = re.compile("^([nactg])(\d+).([nactg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
-
-with open("7_V-REGION-mutation-and-AA-change-table.txt", 'r') as file_handle:
-    first = True
-    fr3_index = -1
-    for i, line in enumerate(file_handle):
-        line_split = line.split("\t")
-        if first:
-            fr3_index = line_split.index("FR3-IMGT")
-            first = False
-            continue
-
-        if len(line_split) < fr3_index:
-            continue
-        
-        fr3_data = line_split[fr3_index]
-        if len(fr3_data) > 5:
-            try:
-                test = [mutationMatcher.match(x).groups() for x in fr3_data.split("|") if x]
-            except:
-                print(line_split[1])
-                print("Something went wrong at line {line} with:".format(line=line_split[0]))
-                #print([x for x in fr3_data.split("|") if not mutationMatcher.match(x)])
-        if i % 100000 == 0:
-            print(i)
+import re
+
+mutationMatcher = re.compile("^([nactg])(\d+).([nactg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
+
+with open("7_V-REGION-mutation-and-AA-change-table.txt", 'r') as file_handle:
+    first = True
+    fr3_index = -1
+    for i, line in enumerate(file_handle):
+        line_split = line.split("\t")
+        if first:
+            fr3_index = line_split.index("FR3-IMGT")
+            first = False
+            continue
+
+        if len(line_split) < fr3_index:
+            continue
+        
+        fr3_data = line_split[fr3_index]
+        if len(fr3_data) > 5:
+            try:
+                test = [mutationMatcher.match(x).groups() for x in fr3_data.split("|") if x]
+            except:
+                print((line_split[1]))
+                print(("Something went wrong at line {line} with:".format(line=line_split[0])))
+                #print([x for x in fr3_data.split("|") if not mutationMatcher.match(x)])
+        if i % 100000 == 0:
+            print(i)
--- a/shm_clonality.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_clonality.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,144 +1,144 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
-@font-face
-	{font-family:Tahoma;
-	panose-1:2 11 6 4 3 5 4 4 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-p
-	{margin-right:0in;
-	margin-left:0in;
-	font-size:12.0pt;
-	font-family:"Times New Roman","serif";}
-p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
-	{mso-style-link:"Balloon Text Char";
-	margin:0in;
-	margin-bottom:.0001pt;
-	font-size:8.0pt;
-	font-family:"Tahoma","sans-serif";}
-p.msochpdefault, li.msochpdefault, div.msochpdefault
-	{mso-style-name:msochpdefault;
-	margin-right:0in;
-	margin-left:0in;
-	font-size:12.0pt;
-	font-family:"Calibri","sans-serif";}
-p.msopapdefault, li.msopapdefault, div.msopapdefault
-	{mso-style-name:msopapdefault;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:12.0pt;
-	font-family:"Times New Roman","serif";}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-span.BalloonTextChar
-	{mso-style-name:"Balloon Text Char";
-	mso-style-link:"Balloon Text";
-	font-family:"Tahoma","sans-serif";}
-.MsoChpDefault
-	{font-size:10.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><b><span lang=EN-GB style='color:black'>References</span></b></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>Gupta,
-Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria,
-Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). <a name="OLE_LINK106"></a><a
-name="OLE_LINK107"></a>Change-O: a toolkit for analyzing large-scale B cell
-immunoglobulin repertoire sequencing data: Table 1. In<span
-class=apple-converted-space>&nbsp;</span><em>Bioinformatics, 31 (20), pp.
-3356–3358.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><a
-href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
-lang=EN-GB style='color:#303030'>doi:10.1093/bioinformatics/btv359</span></a><span
-lang=EN-GB style='color:black'>][</span><a
-href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
-lang=EN-GB style='color:#303030'>Link</span></a><span lang=EN-GB
-style='color:black'>]</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><a name="OLE_LINK110"><u><span lang=EN-GB
-style='color:black'>All, IGA, IGG, IGM and IGE tabs</span></u></a></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>In
-these tabs information on the clonal relation of transcripts can be found. To
-calculate clonal relation Change-O is used (Gupta et al, PMID: 26069265).
-Transcripts are considered clonally related if they have maximal three nucleotides
-difference in their CDR3 sequence and the same first V segment (as assigned by
-IMGT). Results are represented in a table format showing the clone size and the
-number of clones or sequences with this clone size. Change-O settings used are
-the </span><span lang=EN-GB>nucleotide hamming distance substitution model with
-a complete distance of maximal three. For clonal assignment the first gene
-segments were used, and the distances were not normalized. In case of
-asymmetric distances, the minimal distance was used.<span style='color:black'> </span></span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><u><span lang=EN-GB style='color:black'>Overlap
-tab</span></u><span lang=EN-GB style='color:black'> </span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>This
-tab gives information on with which (sub)classe(s) each unique analyzed region
-(based on the exact nucleotide sequence of the analyzes region and the CDR3
-nucleotide sequence) is found with. This gives information if the combination
-of the exact same nucleotide sequence of the analyzed region and the CDR3
-sequence can be found in multiple (sub)classes.</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span style='color:black'><img src=""> Please note that this tab is based on all
-sequences before filter unique sequences and the remove duplicates based on
-filters are applied. In this table only sequences occuring more than once are
-included. </span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+@font-face
+	{font-family:Tahoma;
+	panose-1:2 11 6 4 3 5 4 4 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+p
+	{margin-right:0in;
+	margin-left:0in;
+	font-size:12.0pt;
+	font-family:"Times New Roman","serif";}
+p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
+	{mso-style-link:"Balloon Text Char";
+	margin:0in;
+	margin-bottom:.0001pt;
+	font-size:8.0pt;
+	font-family:"Tahoma","sans-serif";}
+p.msochpdefault, li.msochpdefault, div.msochpdefault
+	{mso-style-name:msochpdefault;
+	margin-right:0in;
+	margin-left:0in;
+	font-size:12.0pt;
+	font-family:"Calibri","sans-serif";}
+p.msopapdefault, li.msopapdefault, div.msopapdefault
+	{mso-style-name:msopapdefault;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:12.0pt;
+	font-family:"Times New Roman","serif";}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+span.BalloonTextChar
+	{mso-style-name:"Balloon Text Char";
+	mso-style-link:"Balloon Text";
+	font-family:"Tahoma","sans-serif";}
+.MsoChpDefault
+	{font-size:10.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><b><span lang=EN-GB style='color:black'>References</span></b></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>Gupta,
+Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria,
+Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). <a name="OLE_LINK106"></a><a
+name="OLE_LINK107"></a>Change-O: a toolkit for analyzing large-scale B cell
+immunoglobulin repertoire sequencing data: Table 1. In<span
+class=apple-converted-space>&nbsp;</span><em>Bioinformatics, 31 (20), pp.
+3356–3358.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><a
+href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
+lang=EN-GB style='color:#303030'>doi:10.1093/bioinformatics/btv359</span></a><span
+lang=EN-GB style='color:black'>][</span><a
+href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
+lang=EN-GB style='color:#303030'>Link</span></a><span lang=EN-GB
+style='color:black'>]</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><a name="OLE_LINK110"><u><span lang=EN-GB
+style='color:black'>All, IGA, IGG, IGM and IGE tabs</span></u></a></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>In
+these tabs information on the clonal relation of transcripts can be found. To
+calculate clonal relation Change-O is used (Gupta et al, PMID: 26069265).
+Transcripts are considered clonally related if they have maximal three nucleotides
+difference in their CDR3 sequence and the same first V segment (as assigned by
+IMGT). Results are represented in a table format showing the clone size and the
+number of clones or sequences with this clone size. Change-O settings used are
+the </span><span lang=EN-GB>nucleotide hamming distance substitution model with
+a complete distance of maximal three. For clonal assignment the first gene
+segments were used, and the distances were not normalized. In case of
+asymmetric distances, the minimal distance was used.<span style='color:black'> </span></span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><u><span lang=EN-GB style='color:black'>Overlap
+tab</span></u><span lang=EN-GB style='color:black'> </span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>This
+tab gives information on with which (sub)classe(s) each unique analyzed region
+(based on the exact nucleotide sequence of the analyzes region and the CDR3
+nucleotide sequence) is found with. This gives information if the combination
+of the exact same nucleotide sequence of the analyzed region and the CDR3
+sequence can be found in multiple (sub)classes.</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span style='color:black'><img src=""> Please note that this tab is based on all
+sequences before filter unique sequences and the remove duplicates based on
+filters are applied. In this table only sequences occuring more than once are
+included. </span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_csr.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_csr.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,95 +1,95 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
-graphs in this tab give insight into the subclass distribution of IGG and IGA
-transcripts. </span><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Human Cµ, C&#945;, C&#947; and C&#949;
-constant genes are assigned using a </span><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>custom script
-specifically designed for human (sub)class assignment in repertoire data as
-described in van Schouwenburg and IJspeert et al, submitted for publication. In
-this script the reference sequences for the subclasses are divided in 8
-nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are
-then individually aligned in the right order to each input sequence. The
-percentage of the chunks identified in each rearrangement is calculated in the
-‘chunk hit percentage’. </span><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>C&#945; and C&#947;
-subclasses are very homologous and only differ in a few nucleotides. To assign
-subclasses the </span><span lang=EN-GB style='font-size:12.0pt;line-height:
-115%;font-family:"Times New Roman","serif"'>‘nt hit percentage’ is calculated.
-This percentage indicates how well the chunks covering the subclass specific
-nucleotide match with the different subclasses. </span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Information
-on normal distribution of subclasses in healthy individuals of different ages
-can be found in IJspeert and van Schouwenburg et al, PMID: 27799928.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK100"></a><a
-name="OLE_LINK99"></a><a name="OLE_LINK25"><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGA
-subclass distribution</span></u></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
-chart showing the relative distribution of IGA1 and IGA2 transcripts in the
-sample.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGG
-subclass distribution</span></u></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
-chart showing the relative distribution of IGG1, IGG2, IGG3 and IGG4
-transcripts in the sample.</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
+graphs in this tab give insight into the subclass distribution of IGG and IGA
+transcripts. </span><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Human Cµ, C&#945;, C&#947; and C&#949;
+constant genes are assigned using a </span><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>custom script
+specifically designed for human (sub)class assignment in repertoire data as
+described in van Schouwenburg and IJspeert et al, submitted for publication. In
+this script the reference sequences for the subclasses are divided in 8
+nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are
+then individually aligned in the right order to each input sequence. The
+percentage of the chunks identified in each rearrangement is calculated in the
+‘chunk hit percentage’. </span><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>C&#945; and C&#947;
+subclasses are very homologous and only differ in a few nucleotides. To assign
+subclasses the </span><span lang=EN-GB style='font-size:12.0pt;line-height:
+115%;font-family:"Times New Roman","serif"'>‘nt hit percentage’ is calculated.
+This percentage indicates how well the chunks covering the subclass specific
+nucleotide match with the different subclasses. </span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Information
+on normal distribution of subclasses in healthy individuals of different ages
+can be found in IJspeert and van Schouwenburg et al, PMID: 27799928.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK100"></a><a
+name="OLE_LINK99"></a><a name="OLE_LINK25"><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGA
+subclass distribution</span></u></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
+chart showing the relative distribution of IGA1 and IGA2 transcripts in the
+sample.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGG
+subclass distribution</span></u></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
+chart showing the relative distribution of IGG1, IGG2, IGG3 and IGG4
+transcripts in the sample.</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_csr.py	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_csr.py	Wed Sep 15 12:24:06 2021 +0000
@@ -26,7 +26,7 @@
 	mutationMatcher = re.compile("^(.)(\d+).(.),?[ ]?(.)?(\d+)?.?(.)?(.?.?.?.?.?)?")
 	mutationMatcher = re.compile("^([actg])(\d+).([actg]),?[ ]?([A-Z])?(\d+)?.?([A-Z])?(.*)?")
 	mutationMatcher = re.compile("^([actg])(\d+).([actg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
-	mutationMatcher = re.compile("^([nactg])(\d+).([nactg]),?[ ]?([A-Z])?(\d+)?[>]?([A-Z;])?(.*)?")
+	mutationMatcher = re.compile(r"^([nactg])(\d+).([nactg]),?[ ]?([A-Z*])?(\d+)?[>]?([A-Z*;])?(.*)?")
 	NAMatchResult = (None, None, None, None, None, None, '')
 	geneMatchers = {gene: re.compile("^" + gene + ".*") for gene in genes}
 	linecount = 0
@@ -59,7 +59,7 @@
 	tandem_sum_by_class = defaultdict(int)
 	expected_tandem_sum_by_class = defaultdict(float)
 
-	with open(infile, 'ru') as i:
+	with open(infile, 'r') as i:
 		for line in i:
 			if first:
 				linesplt = line.split("\t")
@@ -130,10 +130,10 @@
 			fr3LengthDict[ID] = fr3Length
 
 			IDlist += [ID]
-	print "len(mutationdic) =", len(mutationdic)
+	print("len(mutationdic) =", len(mutationdic))
 
 	with open(os.path.join(os.path.dirname(os.path.abspath(infile)), "mutationdict.txt"), 'w') as out_handle:
-		for ID, lst in mutationdic.iteritems():
+		for ID, lst in mutationdic.items():
 			for mut in lst:
 				out_handle.write("{0}\t{1}\n".format(ID, "\t".join([str(x) for x in mut])))
 
@@ -230,7 +230,7 @@
 
 	tandem_freq_file = os.path.join(os.path.dirname(outfile), "tandem_frequency.txt")
 	with open(tandem_freq_file, 'w') as o:
-		for frq in sorted([int(x) for x in tandem_frequency.keys()]):
+		for frq in sorted([int(x) for x in list(tandem_frequency.keys())]):
 			o.write("{0}\t{1}\n".format(frq, tandem_frequency[str(frq)]))
 
 	tandem_row = []
@@ -256,11 +256,11 @@
 	AA_mutation_dic = {"IGA": AA_mutation[:], "IGG": AA_mutation[:], "IGM": AA_mutation[:], "IGE": AA_mutation[:], "unm": AA_mutation[:], "all": AA_mutation[:]}
 	AA_mutation_empty = AA_mutation[:]
 
-	print "AALength:", AALength
+	print("AALength:", AALength)
 	aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/aa_id_mutations.txt"
 	with open(aa_mutations_by_id_file, 'w') as o:
 		o.write("ID\tbest_match\t" + "\t".join([str(x) for x in range(1,AALength)]) + "\n")
-		for ID in mutationListByID.keys():
+		for ID in list(mutationListByID.keys()):
 			AA_mutation_for_ID = AA_mutation_empty[:]
 			for mutation in mutationListByID[ID]:
 				if mutation[4] and mutation[5] != ";":
@@ -269,8 +269,8 @@
 						AA_mutation[AA_mutation_position] += 1
 						AA_mutation_for_ID[AA_mutation_position] += 1
 					except Exception as e:
-						print e
-						print mutation
+						print(e)
+						print(mutation)
 						sys.exit()
 					clss = genedic[ID][:3]
 					AA_mutation_dic[clss][AA_mutation_position] += 1
@@ -280,32 +280,32 @@
 
 	#absent AA stuff
 	absentAACDR1Dic = defaultdict(list)
-	absentAACDR1Dic[5] = range(29,36)
-	absentAACDR1Dic[6] = range(29,35)
-	absentAACDR1Dic[7] = range(30,35)
-	absentAACDR1Dic[8] = range(30,34)
-	absentAACDR1Dic[9] = range(31,34)
-	absentAACDR1Dic[10] = range(31,33)
+	absentAACDR1Dic[5] = list(range(29,36))
+	absentAACDR1Dic[6] = list(range(29,35))
+	absentAACDR1Dic[7] = list(range(30,35))
+	absentAACDR1Dic[8] = list(range(30,34))
+	absentAACDR1Dic[9] = list(range(31,34))
+	absentAACDR1Dic[10] = list(range(31,33))
 	absentAACDR1Dic[11] = [32]
 
 	absentAACDR2Dic = defaultdict(list)
-	absentAACDR2Dic[0] = range(55,65)
-	absentAACDR2Dic[1] = range(56,65)
-	absentAACDR2Dic[2] = range(56,64)
-	absentAACDR2Dic[3] = range(57,64)
-	absentAACDR2Dic[4] = range(57,63)
-	absentAACDR2Dic[5] = range(58,63)
-	absentAACDR2Dic[6] = range(58,62)
-	absentAACDR2Dic[7] = range(59,62)
-	absentAACDR2Dic[8] = range(59,61)
+	absentAACDR2Dic[0] = list(range(55,65))
+	absentAACDR2Dic[1] = list(range(56,65))
+	absentAACDR2Dic[2] = list(range(56,64))
+	absentAACDR2Dic[3] = list(range(57,64))
+	absentAACDR2Dic[4] = list(range(57,63))
+	absentAACDR2Dic[5] = list(range(58,63))
+	absentAACDR2Dic[6] = list(range(58,62))
+	absentAACDR2Dic[7] = list(range(59,62))
+	absentAACDR2Dic[8] = list(range(59,61))
 	absentAACDR2Dic[9] = [60]
 
 	absentAA = [len(IDlist)] * (AALength-1)
-	for k, cdr1Length in cdr1LengthDic.iteritems():
+	for k, cdr1Length in cdr1LengthDic.items():
 		for c in absentAACDR1Dic[cdr1Length]:
 			absentAA[c] -= 1
 
-	for k, cdr2Length in cdr2LengthDic.iteritems():
+	for k, cdr2Length in cdr2LengthDic.items():
 		for c in absentAACDR2Dic[cdr2Length]:
 			absentAA[c] -= 1
 
@@ -325,14 +325,12 @@
 			o.write(ID + "\t" + str(cdr1Length) + "\t" + str(cdr2Length) + "\t" + genedic[ID] + "\t" + "\t".join([str(x) for x in absentAAbyID]) + "\n")
 
 	if linecount == 0:
-		print "No data, exiting"
+		print("No data, exiting")
 		with open(outfile, 'w') as o:
 			o.write("RGYW (%)," + ("0,0,0\n" * len(genes)))
 			o.write("WRCY (%)," + ("0,0,0\n" * len(genes)))
 			o.write("WA (%)," + ("0,0,0\n" * len(genes)))
 			o.write("TW (%)," + ("0,0,0\n" * len(genes)))
-		import sys
-
 		sys.exit()
 
 	hotspotMatcher = re.compile("[actg]+,(\d+)-(\d+)\((.*)\)")
@@ -347,7 +345,7 @@
 	aggctatIndex = 0
 	atagcctIndex = 0
 	first = True
-	with open(infile, 'ru') as i:
+	with open(infile, 'r') as i:
 		for line in i:
 			if first:
 				linesplt = line.split("\t")
@@ -412,7 +410,7 @@
 				motif_dic = {"RGYW": RGYW, "WRCY": WRCY, "WA": WA, "TW": TW}
 				for mutation in mutationList:
 					frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
-					for motif in motif_dic.keys():
+					for motif in list(motif_dic.keys()):
 							
 						for start, end, region in motif_dic[motif]:
 							if start <= int(where) <= end:
@@ -460,7 +458,7 @@
 	value = 0
 	valuedic = dict()
 
-	for fname in funcs.keys():
+	for fname in list(funcs.keys()):
 		for gene in genes:
 			with open(directory + gene + "_" + fname + "_value.txt", 'r') as v:
 				valuedic[gene + "_" + fname] = float(v.readlines()[0].rstrip())
@@ -477,7 +475,7 @@
 	dic = {"RGYW": RGYWCount, "WRCY": WRCYCount, "WA": WACount, "TW": TWCount}
 	arr = ["RGYW", "WRCY", "WA", "TW"]
 
-	for fname in funcs.keys():
+	for fname in list(funcs.keys()):
 		func = funcs[fname]
 		foutfile = outfile[:outfile.rindex("/")] + "/hotspot_analysis_" + fname + ".txt"
 		with open(foutfile, 'w') as o:
@@ -489,9 +487,9 @@
 					if valuedic[gene + "_" + fname] is 0:
 						o.write(",0,0,0")
 					else:
-						x, y, z = get_xyz([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]], gene, func, fname)
+						x, y, z = get_xyz([curr[x] for x in [y for y, z in genedic.items() if geneMatcher.match(z)]], gene, func, fname)
 						o.write("," + x + "," + y + "," + z)
-				x, y, z = get_xyz([y for x, y in curr.iteritems() if not genedic[x].startswith("unmatched")], "total", func, fname)
+				x, y, z = get_xyz([y for x, y in curr.items() if not genedic[x].startswith("unmatched")], "total", func, fname)
 				#x, y, z = get_xyz([y for x, y in curr.iteritems()], "total", func, fname)
 				o.write("," + x + "," + y + "," + z + "\n")
 
--- a/shm_csr.xml	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_csr.xml	Wed Sep 15 12:24:06 2021 +0000
@@ -1,240 +1,247 @@
-<tool id="shm_csr" name="SHM &amp; CSR pipeline" version="1.0">
-	<description></description>
-	<requirements>
-		<requirement type="package" version="2.7">python</requirement>
-		<requirement type="package" version="1.16.0">numpy</requirement>
-		<requirement type="package" version="1.2.0">xlrd</requirement>
-		<requirement type="package" version="3.0.0">r-ggplot2</requirement>
-		<requirement type="package" version="1.4.3">r-reshape2</requirement>
-		<requirement type="package" version="0.5.0">r-scales</requirement>
-		<requirement type="package" version="3.4_5">r-seqinr</requirement>
-		<requirement type="package" version="1.11.4">r-data.table</requirement>
-	</requirements>
-	<command interpreter="bash">
-		#if str ( $filter_unique.filter_unique_select ) == "remove":
-			wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select $filter_unique.filter_unique_clone_count $class_filter_cond.class_filter $empty_region_filter $fast
-		#else:
-			wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select 2 $class_filter_cond.class_filter $empty_region_filter $fast
-		#end if
-	</command>
-	<inputs>
-		<param name="in_file" type="data" format="data" label="IMGT zip file to be analysed" />
-		<param name="empty_region_filter" type="select" label="Sequence starts at" help="" >
-			<option value="leader" selected="true">Leader: include FR1, CDR1, FR2, CDR2, FR3 in filters</option>
-			<option value="FR1" selected="true">FR1: include CDR1,FR2,CDR2,FR3 in filters</option>
-			<option value="CDR1">CDR1: include FR2,CDR2,FR3 in filters</option>
-			<option value="FR2">FR2: include CDR2,FR3 in filters</option>
-		</param>
-		<param name="functionality" type="select" label="Functionality filter" help="" >
-			<option value="productive" selected="true">Productive (Productive and Productive see comment)</option>
-			<option value="unproductive">Unproductive (Unproductive and Unproductive see comment)</option>
-			<option value="remove_unknown">Productive and Unproductive (Productive, Productive see comment, Unproductive, Unproductive and Unproductive see comment)</option>
-		</param>
-		<conditional name="filter_unique">
-			<param name="filter_unique_select" type="select" label="Filter unique sequences" help="See below for an example.">
-				<option value="remove" selected="true">Remove uniques (Based on nucleotide sequence + C)</option>
-				<option value="remove_vjaa">Remove uniques (Based on V+J+CDR3 (AA))</option>
-				<option value="keep">Keep uniques (Based on nucleotide sequence + C)</option>
-				<option value="no">No</option>
-			</param>
-			<when value="remove">
-				<param name="filter_unique_clone_count" size="4" type="integer" label="How many sequences should be in a group to keep 1 of them" value="2" min="2"/>
-			</when>
-			<when value="keep"></when>
-			<when value="no"></when>
-		</conditional>
-		<param name="unique" type="select" label="Remove duplicates based on" help="" >
-			<option value="VGene,CDR3.IMGT.AA,best_match_class">Top.V.Gene, CDR3 (AA), C region</option>
-			<option value="VGene,CDR3.IMGT.AA">Top.V.Gene, CDR3 (AA)</option>
-			<option value="CDR3.IMGT.AA,best_match_class">CDR3 (AA), C region</option>
-			<option value="CDR3.IMGT.AA">CDR3 (AA)</option>
-			
-			<option value="VGene,CDR3.IMGT.seq,best_match_class">Top.V.Gene, CDR3 (nt), C region</option>
-			<option value="VGene,CDR3.IMGT.seq">Top.V.Gene, CDR3 (nt)</option>
-			<option value="CDR3.IMGT.seq,best_match_class">CDR3 (nt), C region</option>
-			<option value="CDR3.IMGT.seq">CDR3 (nt)</option>
-			<option value="Sequence.ID" selected="true">Don't remove duplicates</option>
-		</param>
-		<conditional name="class_filter_cond">
-			<param name="class_filter" type="select" label="Human Class/Subclass filter" help="" >
-				<option value="70_70" selected="true">>70% class and >70% subclass</option>
-				<option value="60_55">>60% class and >55% subclass</option>
-				<option value="70_0">>70% class</option>
-				<option value="60_0">>60% class</option>
-				<option value="19_0">>19% class</option>
-				<option value="101_101">Do not assign (sub)class</option>
-			</param>
-			<when value="70_70"></when>
-			<when value="60_55"></when>
-			<when value="70_0"></when>
-			<when value="60_0"></when>
-			<when value="19_0"></when>
-			<when value="101_101"></when>
-		</conditional>
-		<conditional name="naive_output_cond">
-			<param name="naive_output" type="select" label="Output new IMGT archives per class into your history?">
-				<option value="yes">Yes</option>
-				<option value="no" selected="true">No</option>
-			</param>
-			<when value="yes"></when>
-			<when value="no"></when>
-		</conditional>
-		<param name="fast" type="select" label="Fast" help="Skips generating the new ZIP files and Change-O/Baseline" >
-			<option value="yes">Yes</option>
-			<option value="no" selected="true">No</option>
-		</param>
-	</inputs>
-	<outputs>
-		<data format="html" name="out_file" label = "SHM &amp; CSR on ${in_file.name}"/>
-		<data format="imgt_archive" name="naive_output_ca" label = "Filtered IMGT IGA: ${in_file.name}" >
-		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
-		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
-		</data>
-		<data format="imgt_archive" name="naive_output_cg" label = "Filtered IMGT IGG: ${in_file.name}" >
-		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
-		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
-		</data>
-		<data format="imgt_archive" name="naive_output_cm" label = "Filtered IMGT IGM: ${in_file.name}" >
-		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
-		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
-		</data>
-		<data format="imgt_archive" name="naive_output_ce" label = "Filtered IMGT IGE: ${in_file.name}" >
-		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
-		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
-		</data>
-		<data format="imgt_archive" name="naive_output_all" label = "Filtered IMGT all: ${in_file.name}" >
-		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
-		    <filter>class_filter_cond['class_filter'] == "101_101"</filter>
-		</data>
-	</outputs>
-	<tests>
-		<test>
-			<param name="fast" value="yes"/>
-			<output name="out_file" file="test1.html"/>
-		</test>
-	</tests>
-	<help>
-<![CDATA[
-**References**
-
-Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying selection in high-throughput Immunoglobulin sequencing data sets. In *Nucleic Acids Research, 40 (17), pp. e134–e134.* [`doi:10.1093/nar/gks457`_]
-
-.. _doi:10.1093/nar/gks457: http://dx.doi.org/10.1093/nar/gks457
-
-Gupta, Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria, Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data: Table 1. *In Bioinformatics, 31 (20), pp. 3356–3358.* [`doi:10.1093/bioinformatics/btv359`_]
-
-.. _doi:10.1093/bioinformatics/btv359: http://dx.doi.org/10.1093/bioinformatics/btv359
-
------
-
-**Input files**
-
-IMGT/HighV-QUEST .zip and .txz are accepted as input files. The file to be analysed can be selected using the dropdown menu.
-
-.. class:: infomark
-
-Note: Files can be uploaded by using “get data†and “upload file†and selecting “IMGT archive“ as a file type. Special characters should be prevented in the file names of the uploaded samples as these can give errors when running the immune repertoire pipeline. Underscores are allowed in the file names.
-
------
-
-**Sequence starts at**
-
-Identifies the region which will be included in the analysis (analysed region)
-
-- Sequences which are missing a gene region (FR1/CDR1 etc) in the analysed region are excluded. 
-- Sequences containing an ambiguous base in the analysed region or the CDR3 are excluded. 
-- All other filtering/analysis is based on the analysed region.
-
------
-
-**Functionality filter**
-
-Allows filtering on productive rearrangements, unproductive rearrangements or both based on the assignment provided by IMGT. 
-
-**Filter unique sequences**
-
-*Remove unique:*
-
-
-This filter consists of two different steps.
-
-Step 1: removes all sequences of which the nucleotide sequence in the “analysed region†and the CDR3 (see sequence starts at filter) occurs only once. (Sub)classes are not taken into account in this filter step.
-
-Step 2: removes all duplicate sequences (sequences with the exact same nucleotide sequence in the analysed region, the CDR3 and the same (sub)class).
-
-.. class:: infomark
-
-This means that sequences with the same nucleotide sequence but a different (sub)class will be included in the results of both (sub)classes.
-
-*Keep unique:*
-
-Removes all duplicate sequences (sequences with the exact same nucleotide sequence in the analysed region and the same (sub)class).
-
-Example of the sequences that are included using either the “remove unique filter†or the “keep unique filterâ€
-
-+--------------------------+
-|       unique filter      |
-+--------+--------+--------+
-| values | remove | keep   |
-+--------+--------+--------+
-|   A    |   A    |   A    |
-+--------+--------+--------+
-|   A    |   B    |   B    |
-+--------+--------+--------+
-|   B    |   D    |   C    |
-+--------+--------+--------+
-|   B    |        |   D    |
-+--------+--------+--------+
-|   C    |        |        |
-+--------+--------+--------+
-|   D    |        |        |
-+--------+--------+--------+
-|   D    |        |        |
-+--------+--------+--------+
-
------
- 
-**Remove duplicates based on**
-
-Allows the selection of a single sequence per clone. Different definitions of a clone can be chosen. 
-
-.. class:: infomark
-
-Note: The first sequence (in the data set) of each clone is always included in the analysis. When the first matched sequence is unmatched (no subclass assigned) the first matched sequence will be included. This means that altering the data order (by for instance sorting) can change the sequence which is included in the analysis and therefore slightly influences the results. 
-
------
-
-**Human Class/Subclass filter**
-
-.. class:: warningmark
-
-Note: This filter should only be applied when analysing human IGH data in which a (sub)class specific sequence is present. Otherwise please select the do not assign (sub)class option to prevent errors when running the pipeline. 
-
-The class percentage is based on the ‘chunk hit percentage’ (see below). The subclass percentage is based on the ‘nt hit percentage’ (see below).
-
-The SHM & CSR pipeline identifies human Cµ, Cα, Cγ and Cε constant genes by dividing the reference sequences for the subclasses (NG_001019) in 8 nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are then individually aligned in the right order to each input sequence. This alignment is used to calculate the chunck hit percentage and the nt hit percentage. 
-
-*Chunk hit percentage*: The percentage of the chunks that is aligned 
-
-*Nt hit percentage*: The percentage of chunks covering the subclass specific nucleotide match with the different subclasses. The most stringent filter for the subclass is 70% ‘nt hit percentage’ which means that 5 out of 7 subclass specific nucleotides for Cα or 6 out of 8 subclass specific nucleotides of Cγ should match with the specific subclass. 
-The option “>25% class†can be chosen when you only are interested in the class (Cα/Cγ/Cµ/Cɛ) of  your sequences and the length of your sequence is not long enough to assign the subclasses.
-
------
-
-**Output new IMGT archives per class into your history?**
-
-If yes is selected, additional output files (one for each class) will be added to the history which contain information of the sequences that passed the selected filtering criteria. These files are in the same format as the IMGT/HighV-QUEST output files and therefore are also compatible with many other analysis programs, such as the Immune repertoire pipeline.  
-
------
-
-**Execute**
-
-Upon pressing execute a new analysis is added to your history (right side of the page). Initially this analysis will be grey, after initiating the analysis colour of the analysis in the history will change to yellow. When the analysis is finished it will turn green in the history. Now the analysis can be opened by clicking on the eye icon on the analysis of interest. When an analysis turns red an error has occurred when running the analysis. If you click on the analysis title additional information can be found on the analysis. In addition a bug icon appears. Here more information on the error can be found.
-
-]]>
-	</help>
-	<citations>
-		<citation type="doi">10.1093/nar/gks457</citation>
-		<citation type="doi">10.1093/bioinformatics/btv359</citation>
-	</citations>
-</tool>
+<tool id="shm_csr" name="SHM &amp; CSR pipeline" version="1.1">
+	<description></description>
+	<requirements>
+		<requirement type="package" version="3.7">python</requirement>
+		<requirement type="package" version="0.4.4">changeo</requirement>
+		<!--Biopython should be set at a version at the release of changeo 0.4.4.
+		 Later versions of biopython break changeo 0.4.4 because of the Alphabet deprecation.-->
+		<requirement type="package" version="1.72">biopython</requirement>
+		<requirement type="package" version="1.2.0">xlrd</requirement>
+		<requirement type="package" version="3.0.0">r-ggplot2</requirement>
+		<requirement type="package" version="1.4.3">r-reshape2</requirement>
+		<requirement type="package" version="0.5.0">r-scales</requirement>
+		<requirement type="package" version="3.4_5">r-seqinr</requirement>
+		<requirement type="package" version="1.11.4">r-data.table</requirement>
+		<requirement type="package" version="6.0">unzip</requirement>
+		<requirement type="package" version="4.4.18">bash</requirement>
+		<requirement type="package" version="1.34">tar</requirement>
+		<requirement type="package" version="5.39">file</requirement>
+	</requirements>
+	<command interpreter="bash">
+		#if str ( $filter_unique.filter_unique_select ) == "remove":
+			wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select $filter_unique.filter_unique_clone_count $class_filter_cond.class_filter $empty_region_filter $fast
+		#else:
+			wrapper.sh $in_file custom $out_file $out_file.files_path "${in_file.name}" "-" $functionality $unique $naive_output_cond.naive_output $naive_output_ca $naive_output_cg $naive_output_cm $naive_output_ce $naive_output_all $filter_unique.filter_unique_select 2 $class_filter_cond.class_filter $empty_region_filter $fast
+		#end if
+	</command>
+	<inputs>
+		<param name="in_file" type="data" format="data" label="IMGT zip file to be analysed" />
+		<param name="empty_region_filter" type="select" label="Sequence starts at" help="" >
+			<option value="leader" selected="true">Leader: include FR1, CDR1, FR2, CDR2, FR3 in filters</option>
+			<option value="FR1" selected="true">FR1: include CDR1,FR2,CDR2,FR3 in filters</option>
+			<option value="CDR1">CDR1: include FR2,CDR2,FR3 in filters</option>
+			<option value="FR2">FR2: include CDR2,FR3 in filters</option>
+		</param>
+		<param name="functionality" type="select" label="Functionality filter" help="" >
+			<option value="productive" selected="true">Productive (Productive and Productive see comment)</option>
+			<option value="unproductive">Unproductive (Unproductive and Unproductive see comment)</option>
+			<option value="remove_unknown">Productive and Unproductive (Productive, Productive see comment, Unproductive, Unproductive and Unproductive see comment)</option>
+		</param>
+		<conditional name="filter_unique">
+			<param name="filter_unique_select" type="select" label="Filter unique sequences" help="See below for an example.">
+				<option value="remove" selected="true">Remove uniques (Based on nucleotide sequence + C)</option>
+				<option value="remove_vjaa">Remove uniques (Based on V+J+CDR3 (AA))</option>
+				<option value="keep">Keep uniques (Based on nucleotide sequence + C)</option>
+				<option value="no">No</option>
+			</param>
+			<when value="remove">
+				<param name="filter_unique_clone_count" size="4" type="integer" label="How many sequences should be in a group to keep 1 of them" value="2" min="2"/>
+			</when>
+			<when value="keep"></when>
+			<when value="no"></when>
+		</conditional>
+		<param name="unique" type="select" label="Remove duplicates based on" help="" >
+			<option value="VGene,CDR3.IMGT.AA,best_match_class">Top.V.Gene, CDR3 (AA), C region</option>
+			<option value="VGene,CDR3.IMGT.AA">Top.V.Gene, CDR3 (AA)</option>
+			<option value="CDR3.IMGT.AA,best_match_class">CDR3 (AA), C region</option>
+			<option value="CDR3.IMGT.AA">CDR3 (AA)</option>
+			
+			<option value="VGene,CDR3.IMGT.seq,best_match_class">Top.V.Gene, CDR3 (nt), C region</option>
+			<option value="VGene,CDR3.IMGT.seq">Top.V.Gene, CDR3 (nt)</option>
+			<option value="CDR3.IMGT.seq,best_match_class">CDR3 (nt), C region</option>
+			<option value="CDR3.IMGT.seq">CDR3 (nt)</option>
+			<option value="Sequence.ID" selected="true">Don't remove duplicates</option>
+		</param>
+		<conditional name="class_filter_cond">
+			<param name="class_filter" type="select" label="Human Class/Subclass filter" help="" >
+				<option value="70_70" selected="true">>70% class and >70% subclass</option>
+				<option value="60_55">>60% class and >55% subclass</option>
+				<option value="70_0">>70% class</option>
+				<option value="60_0">>60% class</option>
+				<option value="19_0">>19% class</option>
+				<option value="101_101">Do not assign (sub)class</option>
+			</param>
+			<when value="70_70"></when>
+			<when value="60_55"></when>
+			<when value="70_0"></when>
+			<when value="60_0"></when>
+			<when value="19_0"></when>
+			<when value="101_101"></when>
+		</conditional>
+		<conditional name="naive_output_cond">
+			<param name="naive_output" type="select" label="Output new IMGT archives per class into your history?">
+				<option value="yes">Yes</option>
+				<option value="no" selected="true">No</option>
+			</param>
+			<when value="yes"></when>
+			<when value="no"></when>
+		</conditional>
+		<param name="fast" type="select" label="Fast" help="Skips generating the new ZIP files and Change-O/Baseline" >
+			<option value="yes">Yes</option>
+			<option value="no" selected="true">No</option>
+		</param>
+	</inputs>
+	<outputs>
+		<data format="html" name="out_file" label = "SHM &amp; CSR on ${in_file.name}"/>
+		<data format="imgt_archive" name="naive_output_ca" label = "Filtered IMGT IGA: ${in_file.name}" >
+		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
+		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
+		</data>
+		<data format="imgt_archive" name="naive_output_cg" label = "Filtered IMGT IGG: ${in_file.name}" >
+		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
+		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
+		</data>
+		<data format="imgt_archive" name="naive_output_cm" label = "Filtered IMGT IGM: ${in_file.name}" >
+		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
+		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
+		</data>
+		<data format="imgt_archive" name="naive_output_ce" label = "Filtered IMGT IGE: ${in_file.name}" >
+		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
+		    <filter>class_filter_cond['class_filter'] != "101_101"</filter>
+		</data>
+		<data format="imgt_archive" name="naive_output_all" label = "Filtered IMGT all: ${in_file.name}" >
+		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
+		    <filter>class_filter_cond['class_filter'] == "101_101"</filter>
+		</data>
+	</outputs>
+	<tests>
+		<test>
+			<param name="fast" value="yes"/>
+			<output name="out_file" file="test1.html"/>
+		</test>
+	</tests>
+	<help>
+<![CDATA[
+**References**
+
+Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying selection in high-throughput Immunoglobulin sequencing data sets. In *Nucleic Acids Research, 40 (17), pp. e134–e134.* [`doi:10.1093/nar/gks457`_]
+
+.. _doi:10.1093/nar/gks457: http://dx.doi.org/10.1093/nar/gks457
+
+Gupta, Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria, Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data: Table 1. *In Bioinformatics, 31 (20), pp. 3356–3358.* [`doi:10.1093/bioinformatics/btv359`_]
+
+.. _doi:10.1093/bioinformatics/btv359: http://dx.doi.org/10.1093/bioinformatics/btv359
+
+-----
+
+**Input files**
+
+IMGT/HighV-QUEST .zip and .txz are accepted as input files. The file to be analysed can be selected using the dropdown menu.
+
+.. class:: infomark
+
+Note: Files can be uploaded by using “get data†and “upload file†and selecting “IMGT archive“ as a file type. Special characters should be prevented in the file names of the uploaded samples as these can give errors when running the immune repertoire pipeline. Underscores are allowed in the file names.
+
+-----
+
+**Sequence starts at**
+
+Identifies the region which will be included in the analysis (analysed region)
+
+- Sequences which are missing a gene region (FR1/CDR1 etc) in the analysed region are excluded. 
+- Sequences containing an ambiguous base in the analysed region or the CDR3 are excluded. 
+- All other filtering/analysis is based on the analysed region.
+
+-----
+
+**Functionality filter**
+
+Allows filtering on productive rearrangements, unproductive rearrangements or both based on the assignment provided by IMGT. 
+
+**Filter unique sequences**
+
+*Remove unique:*
+
+
+This filter consists of two different steps.
+
+Step 1: removes all sequences of which the nucleotide sequence in the “analysed region†and the CDR3 (see sequence starts at filter) occurs only once. (Sub)classes are not taken into account in this filter step.
+
+Step 2: removes all duplicate sequences (sequences with the exact same nucleotide sequence in the analysed region, the CDR3 and the same (sub)class).
+
+.. class:: infomark
+
+This means that sequences with the same nucleotide sequence but a different (sub)class will be included in the results of both (sub)classes.
+
+*Keep unique:*
+
+Removes all duplicate sequences (sequences with the exact same nucleotide sequence in the analysed region and the same (sub)class).
+
+Example of the sequences that are included using either the “remove unique filter†or the “keep unique filterâ€
+
++--------------------------+
+|       unique filter      |
++--------+--------+--------+
+| values | remove | keep   |
++--------+--------+--------+
+|   A    |   A    |   A    |
++--------+--------+--------+
+|   A    |   B    |   B    |
++--------+--------+--------+
+|   B    |   D    |   C    |
++--------+--------+--------+
+|   B    |        |   D    |
++--------+--------+--------+
+|   C    |        |        |
++--------+--------+--------+
+|   D    |        |        |
++--------+--------+--------+
+|   D    |        |        |
++--------+--------+--------+
+
+-----
+ 
+**Remove duplicates based on**
+
+Allows the selection of a single sequence per clone. Different definitions of a clone can be chosen. 
+
+.. class:: infomark
+
+Note: The first sequence (in the data set) of each clone is always included in the analysis. When the first matched sequence is unmatched (no subclass assigned) the first matched sequence will be included. This means that altering the data order (by for instance sorting) can change the sequence which is included in the analysis and therefore slightly influences the results. 
+
+-----
+
+**Human Class/Subclass filter**
+
+.. class:: warningmark
+
+Note: This filter should only be applied when analysing human IGH data in which a (sub)class specific sequence is present. Otherwise please select the do not assign (sub)class option to prevent errors when running the pipeline. 
+
+The class percentage is based on the ‘chunk hit percentage’ (see below). The subclass percentage is based on the ‘nt hit percentage’ (see below).
+
+The SHM & CSR pipeline identifies human Cµ, Cα, Cγ and Cε constant genes by dividing the reference sequences for the subclasses (NG_001019) in 8 nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are then individually aligned in the right order to each input sequence. This alignment is used to calculate the chunck hit percentage and the nt hit percentage. 
+
+*Chunk hit percentage*: The percentage of the chunks that is aligned 
+
+*Nt hit percentage*: The percentage of chunks covering the subclass specific nucleotide match with the different subclasses. The most stringent filter for the subclass is 70% ‘nt hit percentage’ which means that 5 out of 7 subclass specific nucleotides for Cα or 6 out of 8 subclass specific nucleotides of Cγ should match with the specific subclass. 
+The option “>25% class†can be chosen when you only are interested in the class (Cα/Cγ/Cµ/Cɛ) of  your sequences and the length of your sequence is not long enough to assign the subclasses.
+
+-----
+
+**Output new IMGT archives per class into your history?**
+
+If yes is selected, additional output files (one for each class) will be added to the history which contain information of the sequences that passed the selected filtering criteria. These files are in the same format as the IMGT/HighV-QUEST output files and therefore are also compatible with many other analysis programs, such as the Immune repertoire pipeline.  
+
+-----
+
+**Execute**
+
+Upon pressing execute a new analysis is added to your history (right side of the page). Initially this analysis will be grey, after initiating the analysis colour of the analysis in the history will change to yellow. When the analysis is finished it will turn green in the history. Now the analysis can be opened by clicking on the eye icon on the analysis of interest. When an analysis turns red an error has occurred when running the analysis. If you click on the analysis title additional information can be found on the analysis. In addition a bug icon appears. Here more information on the error can be found.
+
+]]>
+	</help>
+	<citations>
+		<citation type="doi">10.1093/nar/gks457</citation>
+		<citation type="doi">10.1093/bioinformatics/btv359</citation>
+	</citations>
+</tool>
--- a/shm_downloads.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_downloads.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,538 +1,538 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing
-	{margin:0in;
-	margin-bottom:.0001pt;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Info</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The complete
-dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Allows downloading of the complete parsed data set.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The filtered
-dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Allows downloading of all parsed IMGT information of all transcripts that
-passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The alignment
-info on the unmatched sequences:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Provides information of the subclass
-alignment of all unmatched sequences. For each sequence the chunck hit
-percentage and the nt hit percentage is shown together with the best matched
-subclass.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Overview</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The SHM Overview
-table as a dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Allows downloading of the SHM Overview
-table as a data set.  </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Motif data per
-sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> Provides a file that contains information for each
-transcript on the number of mutations present in WA/TW and RGYW/WRCY motives.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Mutation data
-per sequence ID: </span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'>Provides a file containing information
-on the number of sequences bases, the number and location of mutations and the
-type of mutations found in each transcript. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Base count for
-every sequence:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> links to a page showing for each transcript the
-sequence of the analysed region (as dependent on the sequence starts at filter),
-the assigned subclass and the number of sequenced A,C,G and T’s.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the percentage of mutations in AID and pol eta motives plot:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Provides a file containing the values used to generate the percentage of
-mutations in AID and pol eta motives plot in the SHM overview tab.</span></p>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
-data used to generate the relative mutation patterns plot:</span></u><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Provides a download with the data used to generate the relative mutation
-patterns plot in the SHM overview tab.</span></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
-data used to generate the absolute mutation patterns plot:</span></u><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Provides a download with the data used to generate the absolute mutation
-patterns plot in the SHM overview tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Frequency</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data
-generate the frequency scatter plot:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
-downloading the data used to generate the frequency scatter plot in the SHM
-frequency tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the frequency by class plot:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
-downloading the data used to generate frequency by class plot included in the
-SHM frequency tab.           </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for
-frequency by subclass:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Provides information of the number and
-percentage of sequences that have 0%, 0-2%, 2-5%, 5-10%, 10-15%, 15-20%,
-&gt;20% SHM. Information is provided for each subclass.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Transition
-Tables</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'all' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGA' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGA sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGA1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGA1 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGA2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGA2 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG1 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG2 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG3' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG3 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG4' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG4 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGM' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGM sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGE' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the
-information used to generate the transition table for all IGE sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Antigen
-selection</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>AA mutation data
-per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> Provides for each transcript information on whether
-there is replacement mutation at each amino acid location (as defined by IMGT).
-For all amino acids outside of the analysed region the value 0 is given.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Presence of AA
-per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> Provides for each transcript information on which
-amino acid location (as defined by IMGT) is present. </span><span lang=NL
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>0 is absent, 1
-is present. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
-data used to generate the aa mutation frequency plot for all sequences in the
-antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGA:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>  Provides the
-data used to generate the aa mutation frequency plot for all IGA sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGG:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
-data used to generate the aa mutation frequency plot for all IGG sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGM:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
-data used to generate the aa mutation frequency plot for all IGM sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGE:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>   Provides the
-data used to generate the aa mutation frequency plot for all IGE sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline PDF (</span></u><span
-lang=EN-GB><a href="http://selection.med.yale.edu/baseline/"><span
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>http://selection.med.yale.edu/baseline/</span></a></span><u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>):</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
-containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline data:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual sequence and the sum of all
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
-PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGA sequence and the sum of
-all IGA sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
-PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGG
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGG sequence and the sum of
-all IGG sequences.        </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM PDF:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
-containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGM
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGM sequence and the sum of
-all IGM sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
-PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGE
-sequences.</span><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGE sequence and the sum of
-all IGE sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>CSR</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
-subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> </span><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Data used for
-the generation of the </span><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'>IGA subclass distribution plot provided
-in the CSR tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
-subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Data used for the generation of the </span><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGG
-subclass distribution plot provided in the CSR tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=NL
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Clonal relation</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Sequence overlap
-between subclasses:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Link to the overlap table as provided
-under the clonality overlap tab.         </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones and subclass annotation:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Downloads a table with the calculation of clonal relation between all
-sequences. For each individual transcript the results of the clonal assignment
-as provided by Change-O are provided. Sequences with the same number in the CLONE
-column are considered clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Gives a summary of the total number of
-clones in all sequences and their clone size.           </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGA:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
-calculation of clonal relation between all IGA sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGA:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGA sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGG:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
-calculation of clonal relation between all IGG sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGG:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGG sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGM:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table
-with the calculation of clonal relation between all IGM sequences. For each
-individual transcript the results of the clonal assignment as provided by
-Change-O are provided. Sequences with the same number in the CLONE column are
-considered clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGM:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGM sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGE:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
-calculation of clonal relation between all IGE sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGE:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGE sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Filtered IMGT
-output files</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGA sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGA
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGA1 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGA1
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGA2 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGA2
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGG
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG1 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG1
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG2 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG2
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG3 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGG3
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG4 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG4
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGM sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGM
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGE sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGE
-sequences that have passed the chosen filter settings.</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing
+	{margin:0in;
+	margin-bottom:.0001pt;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Info</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The complete
+dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Allows downloading of the complete parsed data set.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The filtered
+dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Allows downloading of all parsed IMGT information of all transcripts that
+passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The alignment
+info on the unmatched sequences:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Provides information of the subclass
+alignment of all unmatched sequences. For each sequence the chunck hit
+percentage and the nt hit percentage is shown together with the best matched
+subclass.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Overview</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The SHM Overview
+table as a dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Allows downloading of the SHM Overview
+table as a data set.  </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Motif data per
+sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> Provides a file that contains information for each
+transcript on the number of mutations present in WA/TW and RGYW/WRCY motives.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Mutation data
+per sequence ID: </span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'>Provides a file containing information
+on the number of sequences bases, the number and location of mutations and the
+type of mutations found in each transcript. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Base count for
+every sequence:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> links to a page showing for each transcript the
+sequence of the analysed region (as dependent on the sequence starts at filter),
+the assigned subclass and the number of sequenced A,C,G and T’s.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the percentage of mutations in AID and pol eta motives plot:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Provides a file containing the values used to generate the percentage of
+mutations in AID and pol eta motives plot in the SHM overview tab.</span></p>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
+data used to generate the relative mutation patterns plot:</span></u><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Provides a download with the data used to generate the relative mutation
+patterns plot in the SHM overview tab.</span></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
+data used to generate the absolute mutation patterns plot:</span></u><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Provides a download with the data used to generate the absolute mutation
+patterns plot in the SHM overview tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Frequency</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data
+generate the frequency scatter plot:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
+downloading the data used to generate the frequency scatter plot in the SHM
+frequency tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the frequency by class plot:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
+downloading the data used to generate frequency by class plot included in the
+SHM frequency tab.           </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for
+frequency by subclass:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Provides information of the number and
+percentage of sequences that have 0%, 0-2%, 2-5%, 5-10%, 10-15%, 15-20%,
+&gt;20% SHM. Information is provided for each subclass.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Transition
+Tables</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'all' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGA' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGA sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGA1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGA1 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGA2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGA2 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG1 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG2 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG3' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG3 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG4' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG4 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGM' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGM sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGE' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the
+information used to generate the transition table for all IGE sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Antigen
+selection</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>AA mutation data
+per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> Provides for each transcript information on whether
+there is replacement mutation at each amino acid location (as defined by IMGT).
+For all amino acids outside of the analysed region the value 0 is given.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Presence of AA
+per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> Provides for each transcript information on which
+amino acid location (as defined by IMGT) is present. </span><span lang=NL
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>0 is absent, 1
+is present. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
+data used to generate the aa mutation frequency plot for all sequences in the
+antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGA:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>  Provides the
+data used to generate the aa mutation frequency plot for all IGA sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGG:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
+data used to generate the aa mutation frequency plot for all IGG sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGM:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
+data used to generate the aa mutation frequency plot for all IGM sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGE:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>   Provides the
+data used to generate the aa mutation frequency plot for all IGE sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline PDF (</span></u><span
+lang=EN-GB><a href="http://selection.med.yale.edu/baseline/"><span
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>http://selection.med.yale.edu/baseline/</span></a></span><u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>):</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
+containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline data:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual sequence and the sum of all
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
+PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGA sequence and the sum of
+all IGA sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
+PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGG
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGG sequence and the sum of
+all IGG sequences.        </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM PDF:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
+containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGM
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGM sequence and the sum of
+all IGM sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
+PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGE
+sequences.</span><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGE sequence and the sum of
+all IGE sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>CSR</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
+subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> </span><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Data used for
+the generation of the </span><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'>IGA subclass distribution plot provided
+in the CSR tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
+subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Data used for the generation of the </span><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGG
+subclass distribution plot provided in the CSR tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=NL
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Clonal relation</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Sequence overlap
+between subclasses:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Link to the overlap table as provided
+under the clonality overlap tab.         </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones and subclass annotation:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Downloads a table with the calculation of clonal relation between all
+sequences. For each individual transcript the results of the clonal assignment
+as provided by Change-O are provided. Sequences with the same number in the CLONE
+column are considered clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Gives a summary of the total number of
+clones in all sequences and their clone size.           </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGA:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
+calculation of clonal relation between all IGA sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGA:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGA sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGG:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
+calculation of clonal relation between all IGG sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGG:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGG sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGM:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table
+with the calculation of clonal relation between all IGM sequences. For each
+individual transcript the results of the clonal assignment as provided by
+Change-O are provided. Sequences with the same number in the CLONE column are
+considered clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGM:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGM sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGE:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
+calculation of clonal relation between all IGE sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGE:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGE sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Filtered IMGT
+output files</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGA sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGA
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGA1 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGA1
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGA2 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGA2
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGG
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG1 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG1
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG2 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG2
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG3 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGG3
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG4 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG4
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGM sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGM
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGE sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGE
+sequences that have passed the chosen filter settings.</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_first.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_first.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,127 +1,127 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'>Table showing the order of each
-filtering step and the number and percentage of sequences after each filtering
-step. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'>Input:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
-number of sequences in the original IMGT file. This is always 100% of the
-sequences.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'>After &quot;no results&quot; filter: </span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IMGT
-classifies sequences either as &quot;productive&quot;, &quot;unproductive&quot;, &quot;unknown&quot;, or &quot;no
-results&quot;. Here, the number and percentages of sequences that are not classified
-as &quot;no results&quot; are reported.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'>After functionality filter:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
-number and percentages of sequences that have passed the functionality filter. The
-filtering performed is dependent on the settings of the functionality filter.
-Details on the functionality filter <a name="OLE_LINK12"></a><a
-name="OLE_LINK11"></a><a name="OLE_LINK10">can be found on the start page of
-the SHM&amp;CSR pipeline</a>.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-removal sequences that are missing a gene region:</span></u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-In this step all sequences that are missing a gene region (FR1, CDR1, FR2,
-CDR2, FR3) that should be present are removed from analysis. The sequence
-regions that should be present are dependent on the settings of the sequence
-starts at filter. <a name="OLE_LINK9"></a><a name="OLE_LINK8">The number and
-percentage of sequences that pass this filter step are reported.</a> </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-N filter:</span></u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> In this step all sequences that contain
-an ambiguous base (n) in the analysed region or the CDR3 are removed from the
-analysis. The analysed region is determined by the setting of the sequence
-starts at filter. The number and percentage of sequences that pass this filter
-step are reported.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-filter unique sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>: The number and
-percentage of sequences that pass the &quot;filter unique sequences&quot; filter. Details
-on this filter </span><span lang=EN-GB style='font-size:12.0pt;line-height:
-115%;font-family:"Times New Roman","serif"'>can be found on the start page of
-the SHM&amp;CSR pipeline</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-remove duplicate based on filter:</span></u><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'> The number and
-percentage of sequences that passed the remove duplicate filter. Details on the
-&quot;remove duplicate filter based on filter&quot; can be found on the start page of the
-SHM&amp;CSR pipeline.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK17"></a><a
-name="OLE_LINK16"><u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Number of matches sequences:</span></u></a><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-The number and percentage of sequences that passed all the filters described
-above and have a (sub)class assigned.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
-of unmatched sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>: The number and percentage
-of sequences that passed all the filters described above and do not have
-subclass assigned.</span></p>
-
-<p class=MsoNormal><span lang=EN-GB>&nbsp;</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'>Table showing the order of each
+filtering step and the number and percentage of sequences after each filtering
+step. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'>Input:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
+number of sequences in the original IMGT file. This is always 100% of the
+sequences.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'>After &quot;no results&quot; filter: </span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IMGT
+classifies sequences either as &quot;productive&quot;, &quot;unproductive&quot;, &quot;unknown&quot;, or &quot;no
+results&quot;. Here, the number and percentages of sequences that are not classified
+as &quot;no results&quot; are reported.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'>After functionality filter:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
+number and percentages of sequences that have passed the functionality filter. The
+filtering performed is dependent on the settings of the functionality filter.
+Details on the functionality filter <a name="OLE_LINK12"></a><a
+name="OLE_LINK11"></a><a name="OLE_LINK10">can be found on the start page of
+the SHM&amp;CSR pipeline</a>.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+removal sequences that are missing a gene region:</span></u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+In this step all sequences that are missing a gene region (FR1, CDR1, FR2,
+CDR2, FR3) that should be present are removed from analysis. The sequence
+regions that should be present are dependent on the settings of the sequence
+starts at filter. <a name="OLE_LINK9"></a><a name="OLE_LINK8">The number and
+percentage of sequences that pass this filter step are reported.</a> </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+N filter:</span></u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> In this step all sequences that contain
+an ambiguous base (n) in the analysed region or the CDR3 are removed from the
+analysis. The analysed region is determined by the setting of the sequence
+starts at filter. The number and percentage of sequences that pass this filter
+step are reported.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+filter unique sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>: The number and
+percentage of sequences that pass the &quot;filter unique sequences&quot; filter. Details
+on this filter </span><span lang=EN-GB style='font-size:12.0pt;line-height:
+115%;font-family:"Times New Roman","serif"'>can be found on the start page of
+the SHM&amp;CSR pipeline</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+remove duplicate based on filter:</span></u><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'> The number and
+percentage of sequences that passed the remove duplicate filter. Details on the
+&quot;remove duplicate filter based on filter&quot; can be found on the start page of the
+SHM&amp;CSR pipeline.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK17"></a><a
+name="OLE_LINK16"><u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Number of matches sequences:</span></u></a><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+The number and percentage of sequences that passed all the filters described
+above and have a (sub)class assigned.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
+of unmatched sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>: The number and percentage
+of sequences that passed all the filters described above and do not have
+subclass assigned.</span></p>
+
+<p class=MsoNormal><span lang=EN-GB>&nbsp;</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_frequency.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_frequency.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,87 +1,87 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><b><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>SHM
-frequency tab</span></u></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
-graphs give insight into the level of SHM. The data represented in these graphs
-can be downloaded in the download tab. <a name="OLE_LINK24"></a><a
-name="OLE_LINK23"></a><a name="OLE_LINK90"></a><a name="OLE_LINK89">More
-information on the values found in healthy individuals of different ages can be
-found in IJspeert and van Schouwenburg et al, PMID: 27799928. </a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Frequency
-scatter plot</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
-dot plot showing the percentage of SHM in each transcript divided into the
-different (sub)classes. </span><span lang=NL style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>In the graph each dot
-represents an individual transcript.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
-frequency by class</span></u></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
-bar graph showing the percentage of transcripts that contain 0%, 0-2%, 2-5%,
-5-10% 10-15%, 15-20% or more than 20% SHM for each subclass. </span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><b><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>SHM
+frequency tab</span></u></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
+graphs give insight into the level of SHM. The data represented in these graphs
+can be downloaded in the download tab. <a name="OLE_LINK24"></a><a
+name="OLE_LINK23"></a><a name="OLE_LINK90"></a><a name="OLE_LINK89">More
+information on the values found in healthy individuals of different ages can be
+found in IJspeert and van Schouwenburg et al, PMID: 27799928. </a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Frequency
+scatter plot</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
+dot plot showing the percentage of SHM in each transcript divided into the
+different (sub)classes. </span><span lang=NL style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>In the graph each dot
+represents an individual transcript.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
+frequency by class</span></u></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
+bar graph showing the percentage of transcripts that contain 0%, 0-2%, 2-5%,
+5-10% 10-15%, 15-20% or more than 20% SHM for each subclass. </span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_overview.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_overview.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,332 +1,332 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Info
-table</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>This
-table contains information on different characteristics of SHM. For all
-characteristics information can be found for all sequences or only sequences of
-a certain (sub)class. All results are based on the sequences that passed the filter
-settings chosen on the start page of the SHM &amp; CSR pipeline and only
-include details on the analysed region as determined by the setting of the
-sequence starts at filter. All data in this table can be downloaded via the
-“downloads” tab.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
-frequency:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK83"></a><a
-name="OLE_LINK82"></a><a name="OLE_LINK81"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
-give information on the level of SHM. </span></a><a name="OLE_LINK22"></a><a
-name="OLE_LINK21"></a><a name="OLE_LINK20"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
-on the values found in healthy individuals of different ages can be found in </span></a><a
-name="OLE_LINK15"></a><a name="OLE_LINK14"></a><a name="OLE_LINK13"><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IJspeert
-and van Schouwenburg et al, PMID: 27799928</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
-of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:
-115%;font-family:"Times New Roman","serif"'> Shows the number of total
-mutations / the number of sequenced bases (the % of mutated bases).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Median
-number of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'> Shows the median % of
-SHM of all sequences.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Patterns
-of SHM:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK72"></a><a
-name="OLE_LINK71"></a><a name="OLE_LINK70"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
-give insights into the targeting and patterns of SHM. These values can give
-insight into the repair pathways used to repair the U:G mismatches introduced
-by AID. </span></a><a name="OLE_LINK40"></a><a name="OLE_LINK39"></a><a
-name="OLE_LINK38"></a><a name="OLE_LINK60"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
-on the values found in healthy individuals of different ages can be found in
-IJspeert and van Schouwenburg et al, PMID: 27799928</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Shows the number of transition mutations / the number of total mutations (the
-percentage of mutations that are transitions). Transition mutations are C&gt;T,
-T&gt;C, A&gt;G, G&gt;A. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transversions:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Shows the number of transversion mutations / the number of total mutations (the
-percentage of mutations that are transitions). Transversion mutations are
-C&gt;A, C&gt;G, T&gt;A, T&gt;G, A&gt;T, A&gt;C, G&gt;T, G&gt;C.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
-at GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK2"></a><a
-name="OLE_LINK1">Shows the number of transitions at GC locations (C&gt;T,
-G&gt;A) / the total number of mutations at GC locations (the percentage of
-mutations at GC locations that are transitions).</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
-of GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK7"></a><a
-name="OLE_LINK6"></a><a name="OLE_LINK3">Shows the number of mutations at GC
-locations / the total number of mutations (the percentage of total mutations
-that are at GC locations).</a> </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
-at AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of transitions at AT
-locations (T&gt;C, A&gt;G) / the total number of mutations at AT locations (the
-percentage of mutations at AT locations that are transitions).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
-of AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of mutations at AT
-locations / the total number of mutations (the percentage of total mutations
-that are at AT locations).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>RGYW:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-<a name="OLE_LINK28"></a><a name="OLE_LINK27"></a><a name="OLE_LINK26">Shows
-the number of mutations that are in a RGYW motive / The number of total mutations
-(the percentage of mutations that are in a RGYW motive). </a><a
-name="OLE_LINK62"></a><a name="OLE_LINK61">RGYW motives are known to be
-preferentially targeted by AID </a></span><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
-Y=pyrimidine, W = A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WRCY:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-<a name="OLE_LINK34"></a><a name="OLE_LINK33">Shows the number of mutations
-that are in a </a><a name="OLE_LINK32"></a><a name="OLE_LINK31"></a><a
-name="OLE_LINK30"></a><a name="OLE_LINK29">WRCY</a> motive / The number of
-total mutations (the percentage of mutations that are in a WRCY motive). WRCY
-motives are known to be preferentially targeted by AID </span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
-Y=pyrimidine, W = A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WA:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-<a name="OLE_LINK37"></a><a name="OLE_LINK36"></a><a name="OLE_LINK35">Shows
-the number of mutations that are in a WA motive / The number of total mutations
-(the percentage of mutations that are in a WA motive). It is described that
-polymerase eta preferentially makes errors at WA motives </a></span><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
-= A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>TW:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Shows the number of mutations that are in a TW motive / The number of total mutations
-(the percentage of mutations that are in a TW motive). It is described that
-polymerase eta preferentially makes errors at TW motives </span><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
-= A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
-selection:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
-values give insight into antigen selection. It has been described that during
-antigen selection, there is selection against replacement mutations in the FR
-regions as these can cause instability of the B-cell receptor. In contrast
-replacement mutations in the CDR regions are important for changing the
-affinity of the B-cell receptor and therefore there is selection for this type
-of mutations. Silent mutations do not alter the amino acid sequence and
-therefore do not play a role in selection. More information on the values found
-in healthy individuals of different ages can be found in IJspeert and van
-Schouwenburg et al, PMID: 27799928</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>FR
-R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK43"></a><a
-name="OLE_LINK42"></a><a name="OLE_LINK41">Shows the number of replacement
-mutations in the FR regions / The number of silent mutations in the FR regions
-(the number of replacement mutations in the FR regions divided by the number of
-silent mutations in the FR regions)</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>CDR
-R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of replacement
-mutations in the CDR regions / The number of silent mutations in the CDR
-regions (the number of replacement mutations in the CDR regions divided by the
-number of silent mutations in the CDR regions)</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
-of sequences nucleotides:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
-values give information on the number of sequenced nucleotides.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
-in FR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK46"></a><a
-name="OLE_LINK45"></a><a name="OLE_LINK44">Shows the number of sequences bases
-that are located in the FR regions / The total number of sequenced bases (the
-percentage of sequenced bases that are present in the FR regions).</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
-in CDR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of sequenced bases
-that are located in the CDR regions / <a name="OLE_LINK48"></a><a
-name="OLE_LINK47">The total number of sequenced bases (the percentage of
-sequenced bases that are present in the CDR regions).</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A:
-</span></i><a name="OLE_LINK51"></a><a name="OLE_LINK50"></a><a
-name="OLE_LINK49"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Shows the total number of sequenced
-adenines / The total number of sequenced bases (the percentage of sequenced
-bases that were adenines).</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>C:
-</span></i><a name="OLE_LINK53"></a><a name="OLE_LINK52"><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
-the total number of sequenced cytosines / The total number of sequenced bases
-(the percentage of sequenced bases that were cytosines).</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>T:
-</span></i><a name="OLE_LINK57"></a><a name="OLE_LINK56"><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
-the total number of sequenced </span></a><a name="OLE_LINK55"></a><a
-name="OLE_LINK54"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>thymines</span></a><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-/ The total number of sequenced bases (the percentage of sequenced bases that
-were thymines).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>G:
-</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Shows the total number of sequenced <a
-name="OLE_LINK59"></a><a name="OLE_LINK58">guanine</a>s / The total number of
-sequenced bases (the percentage of sequenced bases that were guanines).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK69"><b><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK75"></a><a
-name="OLE_LINK74"></a><a name="OLE_LINK73"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs visualize
-information on the patterns and targeting of SHM and thereby give information
-into the repair pathways used to repair the U:G mismatches introduced by AID. The
-data represented in these graphs can be downloaded in the download tab. More
-information on the values found in healthy individuals of different ages can be
-found in IJspeert and van Schouwenburg et al, PMID: 27799928</span></a><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>.
-<a name="OLE_LINK85"></a><a name="OLE_LINK84"></a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Percentage
-of mutations in AID and pol eta motives</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
-<a name="OLE_LINK80"></a><a name="OLE_LINK79"></a><a name="OLE_LINK78">for each
-(sub)class </a>the percentage of mutations that are present in AID (RGYW or
-WRCY) or polymerase eta motives (WA or TW) in the different subclasses </span><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
-Y=pyrimidine, W = A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Relative
-mutation patterns</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
-for each (sub)class the distribution of mutations between mutations at AT
-locations and transitions or transversions at GC locations. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Absolute
-mutation patterns</span></u></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualized
-for each (sub)class the percentage of sequenced AT and GC bases that are
-mutated. The mutations at GC bases are divided into transition and transversion
-mutations<a name="OLE_LINK77"></a><a name="OLE_LINK76">. </a></span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Info
+table</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>This
+table contains information on different characteristics of SHM. For all
+characteristics information can be found for all sequences or only sequences of
+a certain (sub)class. All results are based on the sequences that passed the filter
+settings chosen on the start page of the SHM &amp; CSR pipeline and only
+include details on the analysed region as determined by the setting of the
+sequence starts at filter. All data in this table can be downloaded via the
+“downloads” tab.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
+frequency:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK83"></a><a
+name="OLE_LINK82"></a><a name="OLE_LINK81"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
+give information on the level of SHM. </span></a><a name="OLE_LINK22"></a><a
+name="OLE_LINK21"></a><a name="OLE_LINK20"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
+on the values found in healthy individuals of different ages can be found in </span></a><a
+name="OLE_LINK15"></a><a name="OLE_LINK14"></a><a name="OLE_LINK13"><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IJspeert
+and van Schouwenburg et al, PMID: 27799928</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
+of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:
+115%;font-family:"Times New Roman","serif"'> Shows the number of total
+mutations / the number of sequenced bases (the % of mutated bases).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Median
+number of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'> Shows the median % of
+SHM of all sequences.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Patterns
+of SHM:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK72"></a><a
+name="OLE_LINK71"></a><a name="OLE_LINK70"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
+give insights into the targeting and patterns of SHM. These values can give
+insight into the repair pathways used to repair the U:G mismatches introduced
+by AID. </span></a><a name="OLE_LINK40"></a><a name="OLE_LINK39"></a><a
+name="OLE_LINK38"></a><a name="OLE_LINK60"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
+on the values found in healthy individuals of different ages can be found in
+IJspeert and van Schouwenburg et al, PMID: 27799928</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Shows the number of transition mutations / the number of total mutations (the
+percentage of mutations that are transitions). Transition mutations are C&gt;T,
+T&gt;C, A&gt;G, G&gt;A. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transversions:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Shows the number of transversion mutations / the number of total mutations (the
+percentage of mutations that are transitions). Transversion mutations are
+C&gt;A, C&gt;G, T&gt;A, T&gt;G, A&gt;T, A&gt;C, G&gt;T, G&gt;C.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
+at GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK2"></a><a
+name="OLE_LINK1">Shows the number of transitions at GC locations (C&gt;T,
+G&gt;A) / the total number of mutations at GC locations (the percentage of
+mutations at GC locations that are transitions).</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
+of GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK7"></a><a
+name="OLE_LINK6"></a><a name="OLE_LINK3">Shows the number of mutations at GC
+locations / the total number of mutations (the percentage of total mutations
+that are at GC locations).</a> </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
+at AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of transitions at AT
+locations (T&gt;C, A&gt;G) / the total number of mutations at AT locations (the
+percentage of mutations at AT locations that are transitions).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
+of AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of mutations at AT
+locations / the total number of mutations (the percentage of total mutations
+that are at AT locations).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>RGYW:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+<a name="OLE_LINK28"></a><a name="OLE_LINK27"></a><a name="OLE_LINK26">Shows
+the number of mutations that are in a RGYW motive / The number of total mutations
+(the percentage of mutations that are in a RGYW motive). </a><a
+name="OLE_LINK62"></a><a name="OLE_LINK61">RGYW motives are known to be
+preferentially targeted by AID </a></span><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
+Y=pyrimidine, W = A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WRCY:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+<a name="OLE_LINK34"></a><a name="OLE_LINK33">Shows the number of mutations
+that are in a </a><a name="OLE_LINK32"></a><a name="OLE_LINK31"></a><a
+name="OLE_LINK30"></a><a name="OLE_LINK29">WRCY</a> motive / The number of
+total mutations (the percentage of mutations that are in a WRCY motive). WRCY
+motives are known to be preferentially targeted by AID </span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
+Y=pyrimidine, W = A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WA:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+<a name="OLE_LINK37"></a><a name="OLE_LINK36"></a><a name="OLE_LINK35">Shows
+the number of mutations that are in a WA motive / The number of total mutations
+(the percentage of mutations that are in a WA motive). It is described that
+polymerase eta preferentially makes errors at WA motives </a></span><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
+= A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>TW:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Shows the number of mutations that are in a TW motive / The number of total mutations
+(the percentage of mutations that are in a TW motive). It is described that
+polymerase eta preferentially makes errors at TW motives </span><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
+= A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
+selection:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
+values give insight into antigen selection. It has been described that during
+antigen selection, there is selection against replacement mutations in the FR
+regions as these can cause instability of the B-cell receptor. In contrast
+replacement mutations in the CDR regions are important for changing the
+affinity of the B-cell receptor and therefore there is selection for this type
+of mutations. Silent mutations do not alter the amino acid sequence and
+therefore do not play a role in selection. More information on the values found
+in healthy individuals of different ages can be found in IJspeert and van
+Schouwenburg et al, PMID: 27799928</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>FR
+R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK43"></a><a
+name="OLE_LINK42"></a><a name="OLE_LINK41">Shows the number of replacement
+mutations in the FR regions / The number of silent mutations in the FR regions
+(the number of replacement mutations in the FR regions divided by the number of
+silent mutations in the FR regions)</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>CDR
+R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of replacement
+mutations in the CDR regions / The number of silent mutations in the CDR
+regions (the number of replacement mutations in the CDR regions divided by the
+number of silent mutations in the CDR regions)</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
+of sequences nucleotides:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
+values give information on the number of sequenced nucleotides.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
+in FR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK46"></a><a
+name="OLE_LINK45"></a><a name="OLE_LINK44">Shows the number of sequences bases
+that are located in the FR regions / The total number of sequenced bases (the
+percentage of sequenced bases that are present in the FR regions).</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
+in CDR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of sequenced bases
+that are located in the CDR regions / <a name="OLE_LINK48"></a><a
+name="OLE_LINK47">The total number of sequenced bases (the percentage of
+sequenced bases that are present in the CDR regions).</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A:
+</span></i><a name="OLE_LINK51"></a><a name="OLE_LINK50"></a><a
+name="OLE_LINK49"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Shows the total number of sequenced
+adenines / The total number of sequenced bases (the percentage of sequenced
+bases that were adenines).</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>C:
+</span></i><a name="OLE_LINK53"></a><a name="OLE_LINK52"><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
+the total number of sequenced cytosines / The total number of sequenced bases
+(the percentage of sequenced bases that were cytosines).</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>T:
+</span></i><a name="OLE_LINK57"></a><a name="OLE_LINK56"><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
+the total number of sequenced </span></a><a name="OLE_LINK55"></a><a
+name="OLE_LINK54"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>thymines</span></a><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+/ The total number of sequenced bases (the percentage of sequenced bases that
+were thymines).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>G:
+</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Shows the total number of sequenced <a
+name="OLE_LINK59"></a><a name="OLE_LINK58">guanine</a>s / The total number of
+sequenced bases (the percentage of sequenced bases that were guanines).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK69"><b><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK75"></a><a
+name="OLE_LINK74"></a><a name="OLE_LINK73"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs visualize
+information on the patterns and targeting of SHM and thereby give information
+into the repair pathways used to repair the U:G mismatches introduced by AID. The
+data represented in these graphs can be downloaded in the download tab. More
+information on the values found in healthy individuals of different ages can be
+found in IJspeert and van Schouwenburg et al, PMID: 27799928</span></a><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>.
+<a name="OLE_LINK85"></a><a name="OLE_LINK84"></a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Percentage
+of mutations in AID and pol eta motives</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
+<a name="OLE_LINK80"></a><a name="OLE_LINK79"></a><a name="OLE_LINK78">for each
+(sub)class </a>the percentage of mutations that are present in AID (RGYW or
+WRCY) or polymerase eta motives (WA or TW) in the different subclasses </span><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
+Y=pyrimidine, W = A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Relative
+mutation patterns</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
+for each (sub)class the distribution of mutations between mutations at AT
+locations and transitions or transversions at GC locations. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Absolute
+mutation patterns</span></u></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualized
+for each (sub)class the percentage of sequenced AT and GC bases that are
+mutated. The mutations at GC bases are divided into transition and transversion
+mutations<a name="OLE_LINK77"></a><a name="OLE_LINK76">. </a></span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_selection.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_selection.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,128 +1,128 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
-@font-face
-	{font-family:UICTFontTextStyleBody;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>References</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:black'>Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying
-selection in high-throughput Immunoglobulin sequencing data sets. In<span
-class=apple-converted-space>&nbsp;</span><em>Nucleic Acids Research, 40 (17),
-pp. e134–e134.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><span
-lang=EN-GB><a href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:#303030'>doi:10.1093/nar/gks457</span></a></span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:black'>][</span><span lang=EN-GB><a
-href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:#303030'>Link</span></a></span><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif";color:black'>]</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>AA
-mutation frequency</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>For
-each class, the frequency of replacement mutations at each amino acid position
-is shown, which is calculated by dividing the number of replacement mutations
-at a particular amino acid position/the number sequences that have an amino
-acid at that particular position. Since the length of the CDR1 and CDR2 region
-is not the same for every VH gene, some amino acids positions are absent.
-Therefore we calculate the frequency using the number of amino acids present at
-that that particular location. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
-selection (BASELINe)</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
-the results of the analysis of antigen selection as performed using BASELINe.
-Details on the analysis performed by BASELINe can be found in Yaari et al,
-PMID: 22641856. The settings used for the analysis are</span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>:
-focused, SHM targeting model: human Tri-nucleotide, custom bounderies. The
-custom boundries are dependent on the ‘sequence starts at filter’. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>Leader:
-1:26:38:55:65:104:-</span></p>
-
-<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>FR1: 27:27:38:55:65:104:-</span></p>
-
-<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>CDR1:&nbsp;27:27:38:55:65:104:-</span></p>
-
-<p class=MsoNormalCxSpLast style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>FR2:&nbsp;27:27:38:55:65:104:-</span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+@font-face
+	{font-family:UICTFontTextStyleBody;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>References</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:black'>Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying
+selection in high-throughput Immunoglobulin sequencing data sets. In<span
+class=apple-converted-space>&nbsp;</span><em>Nucleic Acids Research, 40 (17),
+pp. e134–e134.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><span
+lang=EN-GB><a href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:#303030'>doi:10.1093/nar/gks457</span></a></span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:black'>][</span><span lang=EN-GB><a
+href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:#303030'>Link</span></a></span><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif";color:black'>]</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>AA
+mutation frequency</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>For
+each class, the frequency of replacement mutations at each amino acid position
+is shown, which is calculated by dividing the number of replacement mutations
+at a particular amino acid position/the number sequences that have an amino
+acid at that particular position. Since the length of the CDR1 and CDR2 region
+is not the same for every VH gene, some amino acids positions are absent.
+Therefore we calculate the frequency using the number of amino acids present at
+that that particular location. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
+selection (BASELINe)</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
+the results of the analysis of antigen selection as performed using BASELINe.
+Details on the analysis performed by BASELINe can be found in Yaari et al,
+PMID: 22641856. The settings used for the analysis are</span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>:
+focused, SHM targeting model: human Tri-nucleotide, custom bounderies. The
+custom boundries are dependent on the ‘sequence starts at filter’. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>Leader:
+1:26:38:55:65:104:-</span></p>
+
+<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>FR1: 27:27:38:55:65:104:-</span></p>
+
+<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>CDR1:&nbsp;27:27:38:55:65:104:-</span></p>
+
+<p class=MsoNormalCxSpLast style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>FR2:&nbsp;27:27:38:55:65:104:-</span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_transition.htm	Thu Feb 25 10:32:32 2021 +0000
+++ b/shm_transition.htm	Wed Sep 15 12:24:06 2021 +0000
@@ -1,120 +1,120 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-p.msochpdefault, li.msochpdefault, div.msochpdefault
-	{mso-style-name:msochpdefault;
-	margin-right:0in;
-	margin-left:0in;
-	font-size:12.0pt;
-	font-family:"Calibri","sans-serif";}
-p.msopapdefault, li.msopapdefault, div.msopapdefault
-	{mso-style-name:msopapdefault;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:12.0pt;
-	font-family:"Times New Roman","serif";}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-.MsoChpDefault
-	{font-size:10.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><span style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs and
-tables give insight into the targeting and patterns of SHM. This can give
-insight into the DNA repair pathways used to solve the U:G mismatches
-introduced by AID. More information on the values found in healthy individuals
-of different ages can be found in IJspeert and van Schouwenburg et al, PMID:
-27799928.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs
-</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK93"></a><a
-name="OLE_LINK92"></a><a name="OLE_LINK91"><u><span style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>Heatmap transition
-information</span></u></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK98"></a><a
-name="OLE_LINK97"><span style='font-size:12.0pt;line-height:115%;font-family:
-"Times New Roman","serif"'>Heatmaps visualizing for each subclass the frequency
-of all possible substitutions. On the x-axes the original base is shown, while
-the y-axes shows the new base. The darker the shade of blue, the more frequent
-this type of substitution is occurring.  </span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bargraph
-transition information</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bar graph
-visualizing for each original base the distribution of substitutions into the other
-bases. A graph is included for each (sub)class. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Tables</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transition
-tables are shown for each (sub)class. All the original bases are listed
-horizontally, while the new bases are listed vertically. </span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+p.msochpdefault, li.msochpdefault, div.msochpdefault
+	{mso-style-name:msochpdefault;
+	margin-right:0in;
+	margin-left:0in;
+	font-size:12.0pt;
+	font-family:"Calibri","sans-serif";}
+p.msopapdefault, li.msopapdefault, div.msopapdefault
+	{mso-style-name:msopapdefault;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:12.0pt;
+	font-family:"Times New Roman","serif";}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+.MsoChpDefault
+	{font-size:10.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><span style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs and
+tables give insight into the targeting and patterns of SHM. This can give
+insight into the DNA repair pathways used to solve the U:G mismatches
+introduced by AID. More information on the values found in healthy individuals
+of different ages can be found in IJspeert and van Schouwenburg et al, PMID:
+27799928.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs
+</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK93"></a><a
+name="OLE_LINK92"></a><a name="OLE_LINK91"><u><span style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>Heatmap transition
+information</span></u></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK98"></a><a
+name="OLE_LINK97"><span style='font-size:12.0pt;line-height:115%;font-family:
+"Times New Roman","serif"'>Heatmaps visualizing for each subclass the frequency
+of all possible substitutions. On the x-axes the original base is shown, while
+the y-axes shows the new base. The darker the shade of blue, the more frequent
+this type of substitution is occurring.  </span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bargraph
+transition information</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bar graph
+visualizing for each original base the distribution of substitutions into the other
+bases. A graph is included for each (sub)class. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Tables</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transition
+tables are shown for each (sub)class. All the original bases are listed
+horizontally, while the new bases are listed vertically. </span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/summary_to_fasta.py	Thu Feb 25 10:32:32 2021 +0000
+++ b/summary_to_fasta.py	Wed Sep 15 12:24:06 2021 +0000
@@ -37,6 +37,6 @@
 		o.write(">" + ID + "\n" + seq + "\n")
 		passed += 1
 			
-	print "No results:", no_results
-	print "No sequences:", no_seqs
-	print "Written to fasta file:", passed
+	print("No results:", no_results)
+	print("No sequences:", no_seqs)
+	print("Written to fasta file:", passed)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/.pytest_cache/.gitignore	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,2 @@
+# Created by pytest automatically.
+*
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/.pytest_cache/CACHEDIR.TAG	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,4 @@
+Signature: 8a477f597d28d172789f06886806bc55
+# This file is a cache directory tag created by pytest.
+# For information about cache directory tags, see:
+#	http://www.bford.info/cachedir/spec.html
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/.pytest_cache/README.md	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,8 @@
+# pytest cache directory #
+
+This directory contains data from the pytest's cache plugin,
+which provides the `--lf` and `--ff` options, as well as the `cache` fixture.
+
+**Do not** commit this to version control.
+
+See [the docs](https://docs.pytest.org/en/stable/cache.html) for more information.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/.pytest_cache/v/cache/nodeids	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,3 @@
+[
+  "test_shm_csr.py::test_aa_histogram_sum"
+]
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/.pytest_cache/v/cache/stepwise	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,1 @@
+[]
\ No newline at end of file
Binary file tests/__pycache__/test_shm_csr.cpython-37-pytest-6.2.4.pyc has changed
Binary file tests/data/CONTROL_NWK377_PB_IGHC_MID1_40nt_2.txz has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/sequence_overview/ntoverview.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,1577 @@
+Sequence.ID	best_match	Sequence of the analysed region	A	C	G	T
+JY8QFUQ01A0005	IGG1	ggtggctccatcaacagtagaaattattat tggggctggatccgccagcccccagggaagggtttggagtggattggaaat atctattatagtgggaacacc tactacaatccgtccctcaagagtcgagtcaccgtatccgtagacaggtctaagaaccagttgtccctgaagctgacctctctgaccgccgcagacacggccgtatattactgt	55	55	55	51
+JY8QFUQ01A004N	IGG1	ggtggctccgtcagtaggagtgcctactac tggggctggatccgccagcccccagggaaggggctggagtggattgggacc atctattatagtgggaccaca tactccaatccgtccctcaagactcgagtcaccatgtccttggacacgtccaagaaccacatctccctgaagctgaattctgtgaccgccgcagacacggctgtttattactgt	47	63	58	48
+JY8QFUQ01A006G	IGG1	ggtgactccatcagtagtactcattactat tggggctggatccggcagcccccagggaggggactggagtgggttgggagt atccactacactgggagcacc tactacaactggtccctcaagcatcgagtctctatatcggtggacacatcgagtaaccagttctccctgaggttgaggtctgtgaccgccgctgacacggctgtatactactgt	46	57	62	51
+JY8QFUQ01A018V	IGA1	ggtgtctccatgagcaatgagtcctattac tggacgtggatccggcagcccgtcgggaagggaccggagtggattgggcgc atctacaccagtgggagcacc aattataatccttccctcaagagtcgagtcaccatgtccttagacacgtccaagaggcagttctccctgaagttgacctctatgaccgccgcagacacggccacatatttctgt	50	61	57	48
+JY8QFUQ01A019O	IGG1	ggatacatctttaatatccactgg atcgcctgggtccgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtaactctgagacc aaatatagcccggccttccaaggccaggtcaccatctcagccgacaggaccaccaataccgcctacctgcagtggcgcggcctgaaggcctcggacaccgccatgtattactgt	49	66	56	42
+JY8QFUQ01A01KX	IGG1	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagct gtcagtggtggtgggggcgccaca aactacgcggagtccgtgaagggccggttcaccatctccagagacaattccagggggacggtgttcttacaaatgaacagcctgagagtcgaagacacagccttatattattgt	51	48	67	47
+JY8QFUQ01A0207	IGG2	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgaaaccaca taccacgcagaatccgtgcagggccggttcaccatctccagagacaactccaagaacaatctgtatctgcaaatgaacagtctgagagccgaggacacggccatttattactgt	56	53	59	45
+JY8QFUQ01A02HL	IGA1	ggattcactttcagtaactactgg atgtactgggtccgccaagctccagggaaggggctggagtgggtctcacgt attaatggtgatggaagtagtaca agttacgtggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaccctgtatctgcaaatgaacagtctgagagtcgacgacacggctgtttattactgt	56	48	59	50
+JY8QFUQ01A02KS	IGA2	ggattcacctttagtacctattgg atgacttgggtccgccaggctccagggaaggggctggagtgggtggccagc ataaaaaatgatggaagtgagaaa tcctatgtggactctgtaaagggccgattcaccatctccagagacaacgccgagaactcactgtatttgcaagtgaacaacctgagagccgaggacacggctgtatattactgt	59	46	61	47
+JY8QFUQ01A02XZ	IGG1	ggattcacctacagcagctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagca attagtggtggtggtgctagtaca taccacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatttgcaaatgaacagcctgagagccgacgacacggccgtatattactgt	54	55	61	43
+JY8QFUQ01A03E3	IGA2	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagccacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagttgtatttgcaaatgaacagtctgagaggcgaggacacggctgtctattattgt	56	51	62	44
+JY8QFUQ01A03N6	IGG1	ggtgactccatgagtagcgacacgtgg tggagctgggtccgccagacgccagagaagggactggaatggattggggag atcaatcaaagagggacgacc tcctacaacccgtccctcaggagtcgagtcgtcctgtcagtgggcgagtccaaaaatcaattctccctgaggctgacctctgtgaccgccgcggactcggccatctattattgt	49	57	65	42
+JY8QFUQ01A08XO	IGG1	ggtggctccgtcagcagtggtagttactac tggagctggatccggcagcccccagggaagggactggagtggattgggtat atctattacagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgt	50	59	61	46
+JY8QFUQ01A0939	IGA2	ggggacagtgtctctaccacccgtgctgct tggaactggatcaggcagtccccatcgggaggccttgagtggctgggaagg acatactacaggtccaagtggcttaat gattatgcagtgtctgtgaaaagtcgaattaccatcaatccagacacatccaagaaccagttttccctgcagttgaaatctgtcattcccgaggacacggctgtttattactgt	55	54	57	56
+JY8QFUQ01A09OY	IGA2	ggattcatcttcagtgactactac atgacctggatccgccaggctccagggaaggggctggagtgggtttcatac attcgtagtaatgggagtcccata tacaacgcagactctgggaggggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaatagtctgagagtcgaggacacggccgtgtattactgt	55	51	59	48
+JY8QFUQ01A0C2Y	IGG1	ggatttacttttaacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccaac ataaaacaacatggaggtgaaacg tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	59	48	60	46
+JY8QFUQ01A0C33	IGG1	ggattcaccttcgggaactatagc atgaactgggtccgccacgctccagggaaggggctggagtgggtctcctcc attagtaatagaggtagtttcaaa tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacgggtgtatatttctgt	58	52	57	46
+JY8QFUQ01A0C4X	IGG1	ggattcatcttcttgaaatatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaggt atatggtttgatggaagtaataca tactatgcggactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtatttgcaactgaacagcctgagagccgaggacacggctgtgtattactgt	54	46	63	50
+JY8QFUQ01A0D2K	IGG4	ggtttcaccttcaggagctctggc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagcagtagtactactaccaaa tactgcgcagactctgtgaagggccgattcaccatctccagagacaatgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	54	53	59	47
+JY8QFUQ01A0D5E	IGA1	ggattccagttagcaactatgcc atgagctgggtccgtcaggctcctgggaaggggctggagtgggtctcaact attagtaaagacggtgtttacacc tactaccccgactccgcgaagggccgggtcaccatctccagagacaattccaagaatacaatttatttgcaaatgaacagcctgacagccgaggacacggccagatattactgt	57	54	55	46
+JY8QFUQ01A0DA8	IGA1	ggattcaccctctccagctatgct atgcactgggtccgccagtctcccggcaaggggctagagtgggtggcagct atttcatatgatggaagtaaaata tattacgcagactccgtgaggggccgcttctccatctccagagacagttccaagaacactctgcatttgcaaatggacagcctgagacctgaggacacggctacatattactgt	53	56	54	50
+JY8QFUQ01A0DCS	IGG1	ggattcgcttttaccacgtactgg atcggctgggtgcgccagatgcccgggaagggcctggagttgatgggaatc atctttcctggtgactctgaggcc agatacagcccgtccttccaaggccaggtcaccctctcagccgacacgtccaccaccaccgtctatctgcagtggagcagtctgaggacctcggacaccgccgtgtattactgt	40	66	60	47
+JY8QFUQ01A0EF3	IGA1	ggattcaccttcagtcagtactgg atgtactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attaatggtgatggaagtagcaca agctatgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaccctgtatctgcaaatgaacagtctgagagtcgacgacacggctgtatattattgt	55	50	60	48
+JY8QFUQ01A0ESJ	IGA1	ggattcaccttcattagcgaagct atgcactgggtccgccaggctccaggcaaggggcttgagtgggtggcacta atatcatatgatgagagtgataaa caatatgtagactccgtgaagggccgattcaccatctccagagacaattccaagaacacactatatctgcaaatgaacagcctgagacgtgaggacacggctgtgtattactgt	62	48	55	48
+JY8QFUQ01A0FII	IGA1	ggattcgccttcagttggtattgg atgcactgggtccgccaagttccagggaaggggctggagtgggtcgcacgt atgaacgaagatgggagcatcaga aactacgcggactacgtgaagggccggtttaccatctcaagagacaacgccgagaacacactttatctgcaaatgagcagtctgagagccgaggacacggctatatattactgt	57	47	65	44
+JY8QFUQ01A0FO5	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	53	55	61	44
+JY8QFUQ01A0GVR	IGG1	ggtgactccatcagtagtgattctcactac tggagttggatccggcagcccgccgggaagggactggagtggattgggcgt gtctacgccagtgggaccacc aattacagcccctccctcaagagtcgagtcaccatttcagtggacacgtccaggaatcaattctccctgaagttgaattctgtgaccgccgctgacacggccgtttatttctgt	45	60	59	52
+JY8QFUQ01A0GVY	IGA1	ggattcaccttcgacgactatgtc atgcattgggtccggcaagttccagagaggggcctggagtgggtcgcaggc attaatggggaaagtaatagtttt ggctctgtggactctgtaaagggccgattcaccatctccagagacaaggccaagaataccctgtatttgcaaatgaatagcctgagagttgaggacacggccttgtattattgt	54	43	62	54
+JY8QFUQ01A0HBK	IGA1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtagtagttacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	51	57	47
+JY8QFUQ01A0IZI	IGG1	ggactcatgtttagcagctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcagtc agtagtagtactggttatttcaca tactacacagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagccgaagacacggccgtatattattgc	54	54	58	47
+JY8QFUQ01A0LAJ	IGA1	ggactcactttcagtgacgcctgg atgacctgggtccgccaggttccagggaaggggctggagtgggttgcccat attagatggaactctgatgactggaccaca gactacgctactcccgtgaagggcagattcaccatctcaaaagatatttcagagaacacgctgtatctacaaatgaacagcctgataagcgaggatacaggcgtttattactgt	59	51	59	50
+JY8QFUQ01A0LBC	IGA1	ggattcgacttcagtagttatggc ttccattgggtccgccaggctccaggcaaggggctggagtgggtggctttt atgtggactgatggaggagaaatc acctacgcagactccgtgaagggccgattcaccatttccagagacaatgtcaagaagacagtgtatctgcaaatgagcggcctgagagtcgaggacacggctgtctattattgt	51	45	66	51
+JY8QFUQ01A0LEW	IGA2	ggatacaccttcaccagttactat atgcactgggtccgacaggcccctggacaagggcttgagtggatgggaatg atcaaccctagtggcggaagcaca atctacgcacagaacttccagggcagagttgccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgt	56	56	61	40
+JY8QFUQ01A0LZ5	IGA1	ggattcacctttagtagtcatgtc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaagt attcgtgccagtaatgataggaca cactacgcagactccgtgaagggccgcttcaccatctccagagacaattccaagaacacactgtatttacaaatgtacagcctgagagtcgaggacacggccgtatattactgt	56	52	57	48
+JY8QFUQ01A0N2E	IGM	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtagtagttacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	51	57	47
+JY8QFUQ01A0N8H	IGA1	ggggacagtgtctctagcagcagtgttgtt tggaactggatcaggcagtccccattgagaggccttgagtggctgggaagg acattctacaggtccaggtggtataat gattattcattatctgtgaaaggtcgaataactatcaagccagacgcatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtatattactgt	56	49	60	57
+JY8QFUQ01A0OC8	IGA2	ggattcaccttcagtacctttggc atgcactgggtccgccaggctcccggcaaggggctggagtgggtggcaatc atatcaaatgatggaagtaagaaa tactacgcagactccgtgaagggccgattcacatttccagagaaaattccgagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgt	57	49	60	46
+JY8QFUQ01A0OMH	IGA1	ggattcactttccacacctcctgg atgcactgggtccgccaaggtccaggggaggggctaatgtgggtctcacga atcaatactgatgggagtaacaca atgtacgcggactccgtaaagggccggttcaccatttccagagacaatgccaagaatacggtgtttctgcaaatgaacagtctgaaagccgacgacacggctgtctattattgt	56	52	57	48
+JY8QFUQ01A0OTP	IGG1	ggcgactccatcagtggtcactac tggagctggatcaggcagcccccaggaagggactgcagtggattggttac atctatcacagtgggagcacc aactacaacccctccctcgagagtcgagtctccatttcagtagacacgtccaagaaccagttctccctgaggttgagttctgtgaccgctgcggacacggccgtgtattactgt	47	60	56	46
+JY8QFUQ01A0QXW	IGG1	ggtggctccatcagtagttactac tggagctggatccggcagcccccagggaagggactggagtggattgggtat atctattacagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgt	50	58	57	45
+JY8QFUQ01A0RJS	IGG1	ggattacttttaacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccaac ataaaacaacatggaggtgaaacg tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	59	48	60	45
+JY8QFUQ01A0S1H	IGA1	ggattcaccttcagctcccattgg atgagctgggtccgccagactccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgtgaag tattatgtggactctgtgaggggccgattcaccatctccagagacaacgccaagaattcattgtatctgcagatgaacagcctgagaggcgaggacacggctgtctattactgt	55	46	66	46
+JY8QFUQ01A0TAV	IGG2	ggattcaccttcagtagttatagc atgaactgggtccgcctggctccagggaaggggctggagtgggtctcggcc attagtattactagtagttccaca tattacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagacctcactgtttctgcaaatgaacagcctgagagccgaggacacggctctgtattactgt	53	54	56	50
+JY8QFUQ01A0TNI	IGG1	ggattcaccttcagtacctatgct atgtactgggtccgccaggctccaggcaaggggccagagtgggtgtcagtg atatcacatgatggaaataaggaa gaatacgcagactccgtgaagggccgattcaccatttccagagacaactccaagaaaatgttgtacctgcaaatgaacaaccagcgacctgatgacacggctgtttattattgt	62	49	54	48
+JY8QFUQ01A0UZS	IGA1	ggattcacctttagtagttctggc atgtattgggcccgccaggctccagggaaggggctggagtgggtctcagct attagtggtagtggtgatgccaca aattacgcagactccgtgaagggccggttcaccatctccagagacaactccatgaacacactgtatctgcaaatgaacagcctgggaaccgatgacacggccttatattactgt	52	52	59	50
+JY8QFUQ01A0VIE	IGA1	ggattcaccttcagtgcctttact atgcactgggtccgccaggctccaggcgagggactagagtgggtggcagct atatcatatgatggcagtaaaaaa tactatgcggactttgtgaagggccgattcaccatctccagagacaatcccaagagtacactgtatctacaaatgaacggcctgggaggtgatgacacggctttgtattactgt	56	48	57	52
+JY8QFUQ01A0WDV	IGG2	ggattcaccgtcagtagcagcttc atgacttgggtccgccaggctccaggaaagggactggagtgggtctcagtg ctttatgtcggtggtaacaca tactacgcagactccgtgaagggccgattcaccacctccagagacaattccgagaacactctgtatcttcaaatgaacaacctgagacctgaggactcggctgtgtattattgt	52	53	55	50
+JY8QFUQ01A0WZB	IGA1	ggattcaccgtcagtgggaagtat atgagttgggtccgccaggctccaggcaaggggctggagtgggtctcagtc ttatttagtactggcactgca tactacgcagactccgtgaaaggccggttcaccatctccagagacaattccaacaacaccctatatcttcagatgaacaacatcagacctgaagacgcggccacttattattgt	55	54	52	49
+JY8QFUQ01A0X8W	IGG1	ggattcaccttcaatagccatggc atgcactgggtccgccaggcgccaggcaaggggctggagtgggtggctgct atttggtttgatggaagtaataaa tactatgcagactccgtgaagggacgattcaccatctccagagacaattccaagaacacgttgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtactactgt	56	49	61	47
+JY8QFUQ01A0XE3	IGG1	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagct gtcagtggtggtggggcgccaca aactacgcggagtccgtgaagggccggttcaccatctccagagacaattccaggggacggtgttcttacaaatgaacagcctgagagtcgaagacacagccttatattattgt	51	48	65	47
+JY8QFUQ01A0Z64	IGA2	ggattcacctttagcaactttgcc atgacctgggtccgccaggctccagggaagggactggagtgggtctcaact attagtggtggtgatgatagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatatcactgt	55	55	58	45
+JY8QFUQ01A0ZW5	IGG4	ggtgtcgccaccagtagtggcacttactac tggagctggatccggcagtccgccggggcgggactagagtggattgggcgc atctataccggtcacaccacc atttacaacccctccctcaagggtcgagtcaccatgtcacttgacatgtccaagaaccagatctccctgaggctgacctctgtgaccgccgcagatacggccgtgtattactgt	45	67	58	46
+JY8QFUQ01A0ZX6	IGG1	ggagacaactttagcagatactgg atcggctgggtccgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgacacc agatacagtccgtccttccaaggccaggtcaccatctcagccgacaagtccaccagtaccgcctacctgcagtggagcagtctgaaggtctcggacaccgccacgtattactgt	49	63	59	42
+JY8QFUQ01A110D	IGA1	ggattcaccttcagtaactactgg atgtattgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attaatggtgatggcagtagcaca agctacggggactccgtgaagggccgattcaccgtctccagagacaacgccaagaacaccctgtatctgcaaatgaacagtctgcgagtcgacgacacggctctatattattgt	53	52	60	48
+JY8QFUQ01A12BY	IGG1	ggattcacatttagtaattattgg atgatctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaccaagatggaggtgacatg gcctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactctctgtatctgcaaatgaacagcctgagagccgaggacacggctatatattactgt	58	47	61	47
+JY8QFUQ01A12KV	IGG1	gggttcagtttcaacaactataac atggcctgggtccgccagactccagggaaggggctggagtgtgtggcatat attagtagtagaagtagtaacaga tattacacagcctctgtggagggccgattcaccatctccagagacaatgccaggaattctctgtatctccaaatgaatggcctgagagccgacgacacggctgtatattactgt	58	47	57	51
+JY8QFUQ01A12V0	IGA1	ggatttaccttcagtaagttctgg atgcattgggtccgccaagctccagggaaggggctgacttgggtctcacgt attaatcctgatgggactatcacg aactacacggactccgtgaggggccgattcatcacttccagagacaacgccaagaacacagtatatctgcagatgaacagtctgcgagtcgaggacacaggtgtatattactgt	56	50	57	50
+JY8QFUQ01A14EE	IGA1	ggattcagcttcaacagctacagc atgaactgggtccgccaggctccagggaagggactggaatggatctcatca attagtaccgctggcaccaccata ggctacgcagactctgtgaagggccgattcactatttccagagacaacgccaagaactcagtatctctgcagatggacagcctgagagacgaggacacggcggtatattactgt	59	55	57	42
+JY8QFUQ01A152R	IGA1	ggattcacctttagtaattactgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtttctgcaaatgaacagtctcagagtcgaggacacggctgtttattactgt	56	50	60	47
+JY8QFUQ01A15L6	IGA1	ggaggctccatcagcagtggaagttactac tggacctggatccggcagcccgccgggaagactctggagtggattgggcgc ttctacagtcgtgggggtgtc gactacaaccctccctcaggggtcgagtcaccatttcagcggacacgtccaagagccagttctcccttaatctgacttctgcgaccgccactgacacggccgtgtatttctgt	41	64	62	48
+JY8QFUQ01A15SR	IGA1	cctctggtttcacggttcagtggctctgct atgcactgggtccgccaggcttccgggaagggtctggagtacattggaagc atcttttatagtgggagcact tacttcaatccgtccctcaagagtcgagtcaccctatccgtagacacgtccaggaaccagttctccctgaggctgaagtctgtgaccgccgcagacacggctgtttattattgt	42	59	57	58
+JY8QFUQ01A16XV	IGG1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtagtagtagtagtaccata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	49	57	49
+JY8QFUQ01A17D9	IGA1	ggatacaactttgccacctattgg atcggctgggtgcgccacatgcccgggaaaggcctggaatggatggggatg gtctttgctggtgactctgacacc agatacagtccgtccttccgaggccaggtcaccatgtcagccgacaagtccatcaacaccgcctacctgcagtggagcagcctgatggcctcggacaccgccatatattactgt	46	63	59	45
+JY8QFUQ01A17TV	IGG2	ggattcagcttcagtgactactac atgagttgggtccgccaggctccagggaagggactggagtgggtttcatgc atcactactagtggtaccaca ttctacacggactctgtgaggggccgattcaccatgtccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgt	52	53	59	46
+JY8QFUQ01A18L5	IGA1	ggttacatcttcacccactatggt atcaactgggtgcgccaggcccctggacaagggcttgagtggatgggatgg atcagcgcctacagtggtaacaca aagtatgcacagaaggtccagggcagagtcaccatgaccacagacacttccacgagtacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgt	56	55	61	41
+JY8QFUQ01A1963	IGA2	ggattcatttcagtacttatcct atgcactgggtccgccaggctccagggaagggactggaatatgtttcagct attagtcgtaatggggataacgca tattatgcagactctgtgaagggcagattcaccatgtccagagacaattccaagagcacactgtatcttcagatgggcagcctgagagctgaggacatggctgtgtattactgt	55	44	57	56
+JY8QFUQ01A1ALH	IGA1	ggtggctccatcaacagtggtagttatcac tgggcctggatccgccagtccccagggaaggggctggagtggattgggagc gtctcctatggtgggaacacc tactacaacccgtccctcatgagtcgagtcgacatattcgtcgacacgtccaagagtcagttgtccctgaaggtgagctctgtgaccgccgcggacacggctgtgtattactgt	43	58	66	49
+JY8QFUQ01A1AYP	IGG2	acattcacgtttagtcggtattgg atgagctgggtccgccaggctccagggaagggcctggagtgggtggccaac ataaaggaagacggaagtgagaga tattatgtggactctgtgaagggccgattcaccatctccagagacaatgccaagaactctctgtatctgcaattgaacagcttgagagccgaggacacggctgtgtattactgt	56	44	65	48
+JY8QFUQ01A1BK7	IGA1	ggattcacctttagtagttactgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	56	50	63	44
+JY8QFUQ01A1BT3	IGA2	ggtgactccatcagtagttacttc tggagttggatccggcagcccccagggaagggactggagtggattggatat gtctattacagtggaagtacc aagtataatccttccctcgaaagtcgagtcaccatatcattagacacgcccaacaaccagttctccctgagcctgacctatgtcaccgctgcggacacggccatatactactgt	53	57	50	50
+JY8QFUQ01A1CLZ	IGG1	ggtggctccatcagcagtgataatttctac tggggctggatccgccagcccccagggaagggactgcagtggattgggact ttctattatagagggagtatc tattacaacccgtccctcaagagtcgagtcaccatatccgtggacacatccaagaaccagttctccctgaggctgacctctgtgaccgccgcagacacggctgtctattattgt	49	59	56	52
+JY8QFUQ01A1CTT	IGG1	ggatacacgtttatgaattactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtacctctgagacc agatacagcccgtcctttcaaggccaggtcaccatttcagccgacaagtccaccagcaccgcctacgtgcagtggagcagcctgaaggccccggacaccgccatatattactgt	49	62	59	43
+JY8QFUQ01A1DJR	IGG1	ggattcaccttcaacaactatgcc atgagttgggtccgccaggctccagggaaggggctggaatgggtctcaact attactagtggtggtggtagtaca ttgtacgcagactccgtgaagggccggttcaccatctccagagacaatttcaaggacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	54	51	60	48
+JY8QFUQ01A1DVA	IGG2	ggatccagtttcagtggttttggc gtgaactgggtccgccaggctccagggaaggggctggaatgggtctcacac gtcaatagtgccagtgactacaaa tattacgcggactcagtgaggggccggttcaccatttccagagacaatgccaagaactcagtgtatctgcgaatgaataacctgagagacgacgacacggctctatattactgt	55	49	61	48
+JY8QFUQ01A1E6T	IGA2	ggattcaccttcagttactcctgg atgcactgggtccgccaagttccaggaaaggggccggtgtgggtctcacaa attaaaagtgatgggagtacccca agttacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagtcgaggacacggctgtttattactgt	56	53	58	46
+JY8QFUQ01A1GYW	IGG1	gggttcaccatcagtcactactcc atggcctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgagggggcggcttatcatctccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	51	62	46
+JY8QFUQ01A1GZY	IGG2	ggattcagtttagtacacatggc atgaactgggtccgccaggctccagggaaggggccggaatgggtctcattc gttaatagtggaagtagttacatc tactacgcagactcagtgaggggccgattcaccatctccagagacgacgccaggaattcactgtatctgcaaatgcaccgcctgcgagtcgaggacacggctctctactattgt	52	53	59	48
+JY8QFUQ01A1ISV	IGG1	ggattcaccttcagtgactatcac atgtactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcatatgatggaagtaataaa tactatgtagactccgtgaagggccgattcaccatctccagagacaattccaagaatgcgctgtttctgcagatgaacagcctgagagctgacgacacggctgtgtattactgt	56	47	58	52
+JY8QFUQ01A1IV8	IGG4	ggtgtcgccaccagtagttactac tggagctggatccggcagtccgccggggcgggactagagtggattgggcgc atctataccggtcacaccacc atttacaaccctccctcaagggtcgagtcaccatgtcacttgacatgtccaagaaccagatctccctgaggctgacctctgtgaccgccgcagatacggccgtgtattactgt	44	64	56	45
+JY8QFUQ01A1IYG	IGG1	ggattcaccgtcaatagaaactac atgagctgggtccgccaggctccagggaagggactggagtgggtctcagtt atttccagcggtggttccaca tactacgcaaactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtatatcttcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	57	53	54	46
+JY8QFUQ01A1K37	IGG1	ggattcaccttcaggagttatatc atgaactgggtccgccaggctccagggaaggggctggagtggatttcatac attagtagtagtggtattatcata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattattgt	58	45	56	54
+JY8QFUQ01A1KQO	IGA2	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagctacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgtttttgcaaatgaacagtctgagaggcgaggacacggctgtctattactgt	55	52	62	44
+JY8QFUQ01A1L2W	IGA1	ggattcacctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctccggt attagtggtagtggtggtaacaca tacttcgcagactccgtgaagggccggttcaccatctccagagacaattccaggaacacgctgtttctacagctgaacagcctgagagccgccgacacggccgtatattactgt	48	56	62	47
+JY8QFUQ01A1LNA	IGA2	ggattcacctttatcaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgataccaca taccacgcagactccgtgcagggccgattcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagtcgaggacacggccgtttattactgt	53	53	59	48
+JY8QFUQ01A1MBV	IGA1	ggattcaagtttgatgaatatgcc atgcactgggtccggcgagttccagggaggggcctggagtgggtctcagtt ataagttgggatggtgatgacatc gcctatgcggactctgtgaagggccgattcagcatctccagagacaacgccaagaactccctgtacctggaaatgagcagtctgagagttgaggacacggccttctattactgt	50	46	66	51
+JY8QFUQ01A1MJG	IGA1	ggtgggtccttcagtgataactcc tggacctggatccgccagcccccagggaaggggctggagtggattggagag atcaatcatagtggaaacacc aactacaacccgtccctcaggagtcgagtaatcatgtcaatagacacgtccatgaaccaattctccctgaagctgacttctgtgaccgccgcggacacggctgtgtattattgt	52	56	56	46
+JY8QFUQ01A1MJU	IGG4	ggattcacctttcatgattatacc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt attagttggaatagtggtaacata gactatgcggcctctgtgaagggccgattcaccgtctccagagacaacgccaataactccctgtctcttcagatgaatggtctgagatctgaggacacggccctctattactgt	51	52	56	54
+JY8QFUQ01A1OLP	IGA1	ggattcccctttagtgtgtactgg atgtactgggtccgccaaagtcccgggaaggggccggtatgggtcgcacgt atcagtgatgatggcaagagtatc agttatgcggactccgtgaggggccgattcaccatctctagggacaacgcccagaacacactgtctctgcaaatggacaatgtgagagccgacgactcgtctgtctattattgt	48	51	63	51
+JY8QFUQ01A1PLD	IGA1	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagctacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgtttttgcaaatgaacagtctgagaggcgaggacacggctgtctattactgt	55	52	62	44
+JY8QFUQ01A1Q3N	IGA1	ggattcacctttagtagctatggc atgagttgggtccgccagtctccaaataagggactggagtgggtcgcaggc attagtgcaaatggtggcagtata aattatctggacgccgtgaagggccggtttatcatctctagagacaattccaagaacacgttgtatctgcaaatggacagcctgacagtcgaggacacggccgtttattactgt	55	44	60	54
+JY8QFUQ01A1QLN	IGG1	ggattcacgttcagtaattacgac atgcactgggtccgccaacctagaggaagaggtctggagtgggtctcagct attggcactggtggtgacaca tactatccagactccgtgaagggccgattcaccatctccagagaaaatgccaagaactccttatatcttcagatgaacagcctgagagccgggacacggctgtgtattactgt	55	51	55	48
+JY8QFUQ01A1R7K	IGA1	ggatacatcttcaaaactactat atattctgggtgcgacgggcccctggacaagggcttgagtggatgggttgg gtcaaccctaacagtggtgccaca cactatgcaccgaaatatcagggccgggtcaccatgaccagggacacgtcattcgccacagcctacatggatttgagcatgttgacatctgacgacacggccatgtattactgt	54	54	56	48
+JY8QFUQ01A1RAE	IGA1	ggattcaccttccgaagttatgat ctgcactgggtccgccaggctccaggcaaggggctagagtgggtggcattt atttcaaacgatggaagtgacaca gactacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaagacgctatatctgcaaatgaacagcctgagagttgaggacacggctgtgtattactgt	58	50	58	47
+JY8QFUQ01A1SIW	IGG1	ggattcaccttcagtgtccatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac cttagtagtggtagtgataccata tactacgcagactctgtgaggggccggttcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagtggcctgagagacgaggacacggctgtttattactgt	52	50	61	50
+JY8QFUQ01A1U7S	IGG1	tctgatacaattagtcgttatggc atgcactgggtccgccaggctccaggcaaggggctggagtggctggcaatt atttcatatgatggaaataggata tatgttggagactccgtgaagggccgcttcaccgtttccagagacaacgccgggaggactctgtttctgcaaatgaacagtctgagaggtgatgacaccgccacatatttttgt	52	45	61	55
+JY8QFUQ01A1U87	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtttgggtctcacgt gttaatggtgatgggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	53	54	61	45
+JY8QFUQ01A1UND	IGG1	ggattcacctttggttattatggc atgactggtccgccaactccgggggagggggctgagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	58	52
+JY8QFUQ01A1UXL	IGA2	ggattcaacttccgatcttatgcc atgtactgggtccgccaggccccaggcaaggggctggactgggtggcagtt atttggcatgatggcagtaatcaa tactatgcagattccgtgaagggccgattcaccatctccagagacaattccaagaacacattgtttctgcaaatgaacagcctgagagtcgaggacacggctgtctattactgt	54	51	56	52
+JY8QFUQ01A1UXZ	IGG1	agtgcctccatgatcagttactat tggacctggattcggcagcccccagggaagggactggagtggattggggac atctattcctttggaggcacc agatacaacccgtcccttggcagtcgagtctccatatcactggacacgtccaataatgagttctccctgcaactgaactctgtgaccgctgcggacacggccttatatcactgt	47	59	53	51
+JY8QFUQ01A1W6G	IGG1	ggtggctccatcaggagtggtagttactac tggagctggatccggcagcccgccgggaagggactggagtggattgggcgt atatatagcagtgggagcatc gacgccaacccctccctcaagagccgagtcaccatatcaattgacacgtccaagaaccaggtctccctgaaactgggctctgtgaccgccgcagacacggccgtctattattgt	49	60	64	43
+JY8QFUQ01A1WCP	IGA2	ggattctccgtcagtagttactgg atgcactgggtccgccaggctccaggggaggggctggagtgggtctcacgt attaatgaagatggtagtcggaca gactacgcggactccgtgaagggccgattcaccatttacagagacagcgccaagaacacactgtatctgcaaatgaacagtctgagagtcgaagacacggctgtctattattgt	54	48	64	47
+JY8QFUQ01A1X35	IGA1	ggtggctccatcaacagtggtgattcctcc tggacctggatccgccagtacccagggaagggcctggagtggattgggtac atctctggcagtggggactcc tactccaacccggccctcaagagtcgagttaccatatcagtggacacgtctaagagccagttcttcctggaactgagttctgtgactgccgcggacacggccgtctattactgt	43	61	62	50
+JY8QFUQ01A1X52	IGA1	ggattcaccttcagtagctatagc atgaattgggtccgccaggctccagggaagggactggagtgggtttcatac attagtggaagtagtaataccatg tactacgcagactctgtgaagggccgattcaccatctccagagacaatgcccagaattcactacatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgt	60	48	56	49
+JY8QFUQ01A1Y2H	IGA1	ggattcagcttcagtagctacagt atgaactgggtccgccaggctccagggaaggggctggagtggatttcatct attagcaccaccagtagtaccata ggctacgcagactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtttctgcaaatgaacagcctgagagacgaggacacggctgtgtactactgt	57	54	57	45
+JY8QFUQ01A1YN6	IGA1	ggactcaccttcagcagctatagt atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatat attagtagtactagtagtaccata aactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgt	60	49	56	48
+JY8QFUQ01A1Z5H	IGA2	ggattcattttcagtacttatcct atgcactgggtccgccaggctccagggaagggactggaatatgtttcagct attagtcgtaatggggataacgca tattatgcagactctgtgaagggcagattcaccatgtccagagacaattccaagagcacactgtatcttcagatgggcagcctgagagctgaggacatggctgtgtattactgt	55	44	57	57
+JY8QFUQ01A23OB	IGG2	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgaaaccaca taccacgcagaatccgtgcagggccggttcaccatctccagagacaactccaagaacaatctgtatctgcaaatgaacagtctgagagccgaggacacggccatttattactgt	56	53	59	45
+JY8QFUQ01A23UZ	IGG2	ggtacctccatcagcacttactat tggagttggttccggcagcccgccgagaagggactggagtggattgggcgt atctctgtctttgaaaactct aactacaacccctccctcgagagtcgcatcaccatgtcaatggacacgtccaagaaccagttctccctgacggtgaactctgtgaccgccgcggacacggccgtgtatttttgt	45	61	53	51
+JY8QFUQ01A26C2	IGG1	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtgtcagat attagtgggagtggtgttagcaca cactacgcggactccgtgcagggccggttcaccatctccagagacaattcgaagaacacgctgtatctgcaaatgaacagcctgagtgccgaggacacggccgtatattactgt	51	53	64	45
+JY8QFUQ01A26DA	IGA1	ggattcgccttcaatatcaagtgg atgagttgggtccgccaggctccggggaaggggcttgagtgggtcggccgc atcaagagcagcgctgatggtgcgacaaca gacaccattgagcgcgtgagagacagattcaccatctcaagagatgactcaaaaaatacactgtacttgcacatgaccagcctgagaaccgaggacacaggcatgtattattgt	61	51	64	43
+JY8QFUQ01A27H2	IGA2	ggattcaccttcagcaagtatgcc atgagctgggtccgccaggctccaggggaggggctgcagtgggtctcagca attagtggaaatggtgctgatata tactacgcagactccgtgaacggccagttcaccatctccagagacaattccaagaacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatactactgt	57	55	58	43
+JY8QFUQ01A27QT	IGA1	ggtggctccatgagtagtcactat tggagttggatccggcaatcttcagggaagggactggagtggcttggctac atacattacagtgggagcacc aggttcaacccctccctcaacagtcgagtcaccatatcggtggacacgtccaagagtcagttcttcctgctactgaactctgtgaccgctgcggacacggccacatattactgt	48	56	56	50
+JY8QFUQ01A287O	IGG1	ggattcacgttcagtaattacgac atgcactgggtccgccaacctagaggaagaggtctggagtgggtctcagct attggcactggtggtgacaca tactatccagactccgtgaagggccgattcaccatctccagagaaaatgccaagaactccttatatcttcagatgaacagcctgagagccggggacacggctgtgtattactgt	55	51	56	48
+JY8QFUQ01A29EP	IGG2	ggattcacctttagcagctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagct attagtggtagtggtggtagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	52	53	63	45
+JY8QFUQ01A2AEH	IGA1	ggattcacctttaacacttattgg atgaactgggtccgccaggctccagggaagggactggagtgggtggccaac ataaaccaagatgggagcaggaga cactatgtggactctgtgatgggccgattcaccatctccagagacaacaccaaggactcactgtatctgcaaatggacagcgtgagagccgaagacacggctgtctattactgt	59	50	61	43
+JY8QFUQ01A2ANY	IGA1	ggattcacctcgccgacttatagt atgagttgggtccgccaggctccaggaaaggggctggagtgggtctcaggt attagtgatcatggtattgacata tactatgcagactccgtgaggggccggtttaccatctccagagacatttccaagaacacggtgtatctacaaatgaacagcctgggagtcgaggacacggccgtatattactgt	53	47	61	52
+JY8QFUQ01A2AVP	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	62	45
+JY8QFUQ01A2B2A	IGG1	ggtggctccatcagtagttactac tggagctggatccggcagacccccaggaagggactggagtggattgggtat atctattacagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgt	51	58	56	45
+JY8QFUQ01A2BDN	IGG2	ggattcaccttcagtacatactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcccgt atcaatcctgatgggcgaatcaca aactacgcggactccgtgaatggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggactcggctgtgtactactgt	53	58	58	44
+JY8QFUQ01A2CO4	IGA1	ggattcacctttagcagctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtggtagtggtggtaggaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacactatatctgcaaatgaacagcctgagagccgaggacacggccatatattactgt	56	52	60	45
+JY8QFUQ01A2ECA	IGA1	gggttcgttttcagtgatgcctgg atgagttgggtccgccaggctccaggcaaggggctggagtggattggtcgt atcaagaacaaagctgacggagaggcaaca gattacgccgcgcccgtgaaaggcagattcgtcatctcaagggatgactcgaaaaacatggtgtatctgcaattgaaccgcctaagagccgaggacggaggcttgtacttctgt	54	47	71	47
+JY8QFUQ01A2EKG	IGG4	ggatttaactttgatcaatatgcc atgtattgggtccggcaagctccagggaagggcctggagtgggtctccggt atcactgggaatagtggttccata ggctatgcggactctgtgaggggccgattcaccatctccagagacaacgccaagaagtcactatatttggaaatgaatagtctgagtgttgaggacacggccttgtatttctgt	51	43	62	57
+JY8QFUQ01A2FAU	IGG1	ggattcactttcagtgacgcctgg atgagctgggtccgccaggctccagggaaagggctggagtgggttggccgt attccaagcaaagctgatggtgggacaaca gactacgctgcgcccgttaaaggcagattcaccatctcaagagaggattcaaaaaatatgctgtatctgcaattgaacagcctgaaaaccgaggacacagccgtgtatttctgt	59	50	63	47
+JY8QFUQ01A2FHS	IGG1	ggtggctccatcagcagtagtagttactac tggggctggatccgccagcccccagggaaggggctggagtggattgggagt atctattatagtgggagcacc tactacaacccgtccctcaagagtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgt	49	59	61	47
+JY8QFUQ01A2FU8	IGA1	ggtggctccatcaccaataataattacttc tggggctggatccgccagcccccagggaaggggctggagtggattggggat gtccagtatagtgggagcacc tactccagcccgtccctcaagaggcgggtcaccatgtctgtggacgtgtccaaaagtcaggtctccctgagactgagctctgtgaccgccacagacacggctatttattactgt	46	59	63	48
+JY8QFUQ01A2G8U	IGG1	gggttcaccatcagtcactactcc atggcctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgaggggcggcttatcatctccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	51	61	46
+JY8QFUQ01A2JAS	IGA1	ggtggctccatcgccacttatcattgg tggacttgggtccgccagaccccgggaagggactggagtggattggggaa gtctattatagtcgacagact aattacaacccgtccctccagagtcgcgttgacatttccattgacagtcccaacggtcagttcaccctatatctgagagatgtgaccgtcgcggacacggccgtttattattgc	46	56	57	53
+JY8QFUQ01A2MSQ	IGA2	ggattcacctttagtaactattac atgagttgggtccgccaggctccagggaaggggctggagtacgtggccagc ataaaacaagatgaaggtcagaca tactatgcgggctctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatcttcaaatgaacagcctgagagtcgaggacacggctgtgtatcactgt	60	50	58	45
+JY8QFUQ01A2PDE	IGG1	ggattctccttcagcaattatgcc atccactgggtccgccaggctccaggcaaggggctggagtgggtggcgacc atttcatatgatattaataaaaga tattatgcagagtccgtgaggggccgattcaccctctccagagacaattccaagaacactctcgatctgctcatggatacccttcggttcgacgacacggctgtctattattgt	51	55	52	55
+JY8QFUQ01A2Q7N	IGG1	ggattccctttcagcgactatggc atgcactgggtccgccagactccagacaagggactagaaattgtggccatt atctggcatgacggaagtcagcaa ttctatgcagactccgtgctgggtcgattcaccgtctccagagacaattccgacaacactctccagttgcagctgagcaggttgacagccgaagacacggctatttattattgt	53	56	53	51
+JY8QFUQ01A2QEG	IGA1	ggattcagtttcagtgactatgcc atgcactgggtccgccagactccaggcaaggggctggagtgggtggcagtt atttcatatgatgggagagagaag tactatgcagactccctgaagggccgattcaccacctccagagacaactccaagaaaatgctgtatctccaagtgaatagcctgagacctggagacacggctgtgtattactgt	56	49	60	48
+JY8QFUQ01A2S2S	IGA1	ggattcacctttaaaagttctgct atacagtgggtgcgacaggcccgtggacaacgccttgagtggataggatgg accgccgttggcagcggtaacaca gactacgcacagaagttccaggaaagagtcaccattacgagggacatgtccacaagcacagtctacatggagatgatcaacctgggatccgaggacacggccgtgtattactgt	59	51	61	42
+JY8QFUQ01A2WHC	IGA1	ggaatcagcgtcgggagcaactac atgaactgggtccgccaggctccggggaaggggctggagtgggtctcagtt atttataccgggggtagcaca tactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacaccctttatcttcaaatgaacagcctgagagctgaggacacggctgtgtacttctgt	53	52	60	45
+JY8QFUQ01A2XE9	IGA2	ggattcacgttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtgtcacgt agtaatacgggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	68	42
+JY8QFUQ01A2YCO	IGA1	ggatccaccgtcagtacctatagc ctgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtggtttttatata tactacgcggattcagtgaagggccgagtcaccatctccagagacaacgccaagaattcgctatttctgcaaatgaacaacctgcgagccgaggacacggctgtctattactgt	53	53	57	50
+JY8QFUQ01A2YPP	IGA1	ggattcaccttcagtgcctctggc ataaactgggtccgccaggctccagggaaggggctggaatgggtctcatcc atcactgggagtagtagtcacaca ttttatgcagactcagtgaagggccgattcaccatctccagagacaacgccgagaactcagtgtacctgcaaatgaacagcctgagagacgaggacacggctgtttattactgt	55	54	58	46
+JY8QFUQ01A2YVQ	IGG1	ggattcaacttggcgaagttcgcc atgagctgggtccgccaggctcctgggaaggggctggagtgggtctcagag atcagtggctccggtagtaaagtc ggatatgcggagtccgtgaagggccgattcaccatctccaaagacaattccaagaacacattgtacttgcaaatgaccgacctgagacccggcgacacggccatttattactgt	52	53	63	45
+JY8QFUQ01A2ZLE	IGG1	gacttcacctttaatagctatgcc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcggct attggtgccagtggctacagcaca tactacgcagactccgtcaagggccgcttcaccatctccagagaccattccaacagcacgctgcatctgcaaatgaacagcctgagagccgaagacacggccgtttattactgt	49	63	57	44
+JY8QFUQ01A30CD	IGG2	ggattcaacctcaatacctttggc atgaactgggtccgccaggcgccagggaagggactggagtgggtctcacac gtcaatcggggtagtactcacata tactacgcaggctcagtgaggggccggttcaccatctccagagacgacgccgggaactcagtctatctgcaaatgaatagcctgagagccgaggacacgggtttatattattgt	53	53	62	45
+JY8QFUQ01A312M	IGA2	ggattcaggtttagcatctattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaagtgagaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagcagcctgagagccgaggacacggctgtgtattactgt	58	45	66	44
+JY8QFUQ01A313A	IGG2	ggactcatgtttagcagctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcagtc agtagtagtactggttatttcaca tactacacagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagccgaagacacggccgtatattattgc	54	54	58	47
+JY8QFUQ01A33TY	IGG2	ggtgggtccatcagcagtactagttactac tggagctggatccggcagcccgccgggaagggactggagtggatggggcgt atctataccagtgggatcacc aactacaacccctccctcgagagtcgagtcaccttttcagtggacacgtccaagaaccagttctccctgaagctgaagtctgtgacccccgcagacacggccgtttattactgt	48	62	60	46
+JY8QFUQ01A33U2	IGG1	ggtggctccatcaacagtagaaattattat tggggctggatccgccagccccccagggaagggtttgagtggattggaaat atctattatagtgggaacacc tactacaatccgtccctcaagagtcgagtcaccgtatccgtagacaggtctaagaaccagttgtccctgaagctgacctctctgaccgccgcagacacggccgtatattactgt	55	56	54	51
+JY8QFUQ01A33ZY	IGA1	ggattctccgtcagtaattactgg atgcactgggtccgccaggctccaggggaggggctggagtgggtctcacgt attaatgaagatggtagtcggaca gactacgcggactccgtgaagggccgattcaccatttacagagacagcgccaagaacacactgtatctgcaaatgaacagtctgagagtcgaagacacggctgtctattattgt	55	48	63	47
+JY8QFUQ01A3552	IGA1	ggattcacgttcagcagctatgcc atgacctgggtccgccagactccagggaaggggctggagtgggtctcaact attcatggcggtggtggcaccaca gactacgcggtctccgcccagggtcgattcaccatctccagagacaattccaagagcacactgtatttgcaaatgagcgacctgagacccgaggacacggccctctatttctgt	48	62	59	44
+JY8QFUQ01A35C3	IGA1	ggtgggtccctcaggggttacccc tggacctggatccgccacaccgcagagaagggactggagtggattggtcaa atcaatagtgatggaaggaca acctacaactcggccctcatgggtcgagtcaccatttcaacagacacatccaagaatcagttctcgctgactgtggtttctgttgtcgccgcggacacggcaatgtattattgt	50	54	58	48
+JY8QFUQ01A35F3	IGA1	ggattcacgtttagagactattgg atgagttgggtccgccaggctcctgggagggggctggagtgggtggccaac ataaagcaagatgcaagtgaggaa tactatgtggactctgtgaagggccggttcaccatctccagagacaacgccaagagctcactgcatttgcaaatgaacagcctgagagccgaggacacggctatgtattactgt	56	45	67	45
+JY8QFUQ01A35NF	IGA1	aatggctccatcagcggaagtgtttactac tgggcctggatccgccagcccccagagaagggtctggagtacattggaagc atcttttatagtgggagcact tacttcaatccgtccctcaagagtcgagtcaccctatccgtagacacgtccaggaaccagttctccctgaggctgaagtctgtgaccgccgcagacacggctgtttattattgt	49	59	55	53
+JY8QFUQ01A365U	IGA2	ggattccccatcagtggctttaga atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attgatagttttagtcagaacata tactacagagactcagtgaggggccgattcaccatctccagagacaacgccaggaactcattgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	50	59	48
+JY8QFUQ01A36CM	IGG2	ggattccccttcaatatatggagc atgaattgggtccgccaggctccggggaagggactggagttgatcgcatac atcacaagtgatgaaagaaccata tactacgcagactctgtgaagggccgcttcaccatctctagagacaatgccaggaacctagtacatctggaaatgaacagcctgagggacggcgatctggctatctattactgc	60	51	56	46
+JY8QFUQ01A39KY	IGA1	ggaggctccttcggcagctacact atcacctgggtgcgacaggcccctggacaagggcttgagtggatgggaagg atcacccctatccttggttcaaca agctactcacagaagttccagggcagagtcacgattaccgcggacacattcacgggcacagcctacatggagctgagcagcctgacatctgaagacacggccgtatattactgt	53	60	59	41
+JY8QFUQ01A3A5F	IGA1	ggatacaccttcaccgattatgag atcaactgggtgcgacaggccactggacaagggcttgagtggatgggaagg ataaagcccaatactggttacaca gaatatgtacagaagttccagggcagagtcaccctgaccagggacacgtccatgggtacagcctacatggagttgcacagcctgagatctgacgacacggccgtgtattattgc	60	50	61	42
+JY8QFUQ01A3BD5	IGG1	ggcgactccatcagtggtcactac tggagctggatcaggcagcccccagggaagggactgcagtggattggttac atctatcacagtgggagcacc aactacaacccctccctcgagagtcgagtctccatttcagtagacacgtccaagaaccagttctccctgaggttgagttctgtgaccgctgcggacacggccgtgtattactgt	47	60	57	46
+JY8QFUQ01A3C67	IGA1	ggattcaccttcagtcgttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatac attagtaggactactactgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatatttctgt	58	53	55	47
+JY8QFUQ01A3DG1	IGA1	ggattcacctttagcaactatgcc atgagttgggtccgccaggctcaagggaaggggctggactgggtctcagat attagtaatagtggtggtgacaca ttctacgcaggctccgtgaagggccgcttcaccatctccagagacaacgccaagaacaccctgtatctgcaaatgaacagtctgagagtcgacgacacggctgtatattattgt	55	51	58	49
+JY8QFUQ01A3EUV	IGG1	ggattcacctttaacaactacgcc atgtcctgggtccgccaggctccagggaaggggcttgagtgggtctcagct ataactgatagcggtctttacaca tactacgcagactccgtgaggggccggttcaccgtctccagagacacttccaagaacacgctgtttctgcaaatggacagcctgagagccgaggacacggccgtatatttctgt	49	59	57	48
+JY8QFUQ01A3F5T	IGA1	ggattcacctttgatgattttggc atgagatgggtccgccaagtcccagggaaggggctacagtgggtctctggg attaattggaatggtgctaaaaca ggttatgcagcctctgtgcagggccgattcaccatctccagagacaacgacaacaacgtcctgtatctgcaaatgaacagtttgagacccgaggacacggccttgtatcgctgt	53	49	60	51
+JY8QFUQ01A3H9O	IGG1	ggattcacctttagtaattatgcc ctgagctgggtccgccaggctccagggaaggggctggagtgggtctcagga atcagtagtagtggtgagatccca aactacgcagactccgtgaagggccggttcaccatctccagagacaattccaggaacacgctgtatctgcaaatgaacagcctgagagtcgaggacacggccgtatattactgt	54	52	62	45
+JY8QFUQ01A3HCE	IGA1	ggattcaccttcaaagactactat atgacctggatccgccaagttccagggaaggggctggagcggatctcatat atcagtggcagtggtggcaccatt tactacgcagactctgtgaagggccggttcgccatctccagggacaacgccaagaacttactatacttacagatgaacagcctgagagtcgaggacacggccatatatcactgt	58	54	55	46
+JY8QFUQ01A3I1N	IGA2	ggatacaactttgacaccgattgg atcgcctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctgctgactctgatacc agatacagtccgtccttccaaggccaagtcaccatctcagccgacaagtccatcaacaccgcctacctgcagtggagcggcctgaaggcctcggacaccgccatctattattgt	49	65	55	44
+JY8QFUQ01A3I5W	IGG2	ggattcacctttagaagctatgcc atgagctgggtccgccaggttccagggaaggggctggagtgggtctcagct attagtggtaatggtgctaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaaatgaacagcctgagagccgaggacacggccctatattactgt	55	53	58	47
+JY8QFUQ01A3IIQ	IGA1	ggattcaacttcagaacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcacgatggaagtgacaag tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactcattgtttttgcaaatggacagcctgagagccgaggacacggctgtgtactactgt	55	48	66	44
+JY8QFUQ01A3IMB	IGG1	ggattcatgttcagcagttattgg atgagctgggtccgccaggatccagggaaggggctggagtgggtggccaat ataaacgaagaaggaagtgagaaa tattatgtggactctgggaagggccgattcaggatctccagagacaacgccaagaattccgtgtatctgcaaatggacagcctgagagccgaggacacggctgtgtattactgt	59	39	70	45
+JY8QFUQ01A3IWM	IGG2	ggattcacctttagaagctatgcc atgagctgggtccgccaggttccagggaaggggctggagtgggtctcagct attagtggtaatggtgctaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaatgaacagcctgagagccgaggacacggccctatattactgt	54	53	58	47
+JY8QFUQ01A3KYL	IGA2	ggattcaccttcagtagctactgg atgcattgggtccgccaagctccagggaaggggctggagtgggtctcacgt attcatagtgatgggactaccaca tactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaggaacacgttgtatctgcaattgaacagtctgagagccgaggacacggctgtgtattattgt	52	52	61	48
+JY8QFUQ01A3MV4	IGA1	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtttgggtctcacgt gttaatggtgatgggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	53	54	61	45
+JY8QFUQ01A3NLN	IGA1	ggattcacctttagtaggtttgg atgacctgggtccgccagggtccagggaaggggctggagtgggtggccaac ataaagcaagttggaaatgagaga tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcattgtatctgcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	57	44	64	47
+JY8QFUQ01A3OS9	IGA1	ggtgaccccatcggcaacactgcttactcc tggggctggatccgccagcccccagggaaggggctggagtggatcgcgact gtacattatgctggcagcacc tactacaacccgtccctcaggagtcgagtcaccatctctgtggacacgtccaagaatcacttctccctgaagctgaattctgtgaccgcctcagacacggctgtatacttctgt	45	69	55	47
+JY8QFUQ01A3QD4	IGG1	ggtggctccatcagtagttcctac tggagctggatccggcagcccccagggaagggactggagtggattgggtat atctattacagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgacctctgtgaccgctgcggacacggccgtgtattactgt	49	60	56	45
+JY8QFUQ01A3QEB	IGA1	ggattcacctttgatggttatgcc atgcactgggtccggcaagctccaggggagggcctggaatgggtctcaagt attaactggaatagtgatacaata gactacgcggactctgtgaagggccgattcactatctccagagacaacgccaagcactccctgtatctacaaatgaacaatctgagaaatgaggacacggccttgtattactgt	59	49	55	50
+JY8QFUQ01A3QNJ	IGA1	ggggactccattagtggttactat tggacgtggatccggcaggccccagggaagggactggagtggattggaaat gtccattacactgggagtacc aagtacagcccctccctcaagagtcgagtcaccatgtcagttgacatgtccaggaaccagttcaccctcaaattgacctctgtagccgctgcggacacggccgtctattactgt	49	56	58	47
+JY8QFUQ01A3R6Q	IGA2	ggggacagtgtctctaccaacagagctgct tggaactggatcaggcagtccccatcgagaggccttgagtggctgggaagg acatactacaggtccaagtggtataat gattatgcagtgtctgtgaaaagtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagttgaattctgtgactcccgaggacacggctgtgtattactgt	60	53	58	51
+JY8QFUQ01A3SN3	IGA2	ggatttagctttagaaccttttgg atgagctgggtccgccaggctccagggagggggctggagtgggtggccaac ataaagtcagatggaagtgacaaa tggtatgtggactctgtgaagggccgattcaccatctccagagacaacgcgaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctatatattactgt	58	44	65	46
+JY8QFUQ01A3V0Z	IGG2	ggtttcagcttaagtgactattgg atgaactgggtccgccaggctccagggaaggggctcgagtgggtggccatc ataaagaaagatggaagtgaagaa ctctatttggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactcactgtatctggaaatgaacagcctgagccccgaggacacggctgtatatttctgt	57	47	62	47
+JY8QFUQ01A3VGZ	IGG1	ggattcacctttggttattatggc atgactggtccgccaagctccggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	59	52
+JY8QFUQ01A3VOS	IGG1	ggattcaccttcagtacatactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcccgt atcaatcctgatgggcgaatcaca aactacgcggactccgtgaatggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggactcggctgtgtactactgt	53	58	58	44
+JY8QFUQ01A3W9F	IGA1	gatgggtccatcggaagttactac tggacttggatccggcagcccgccgggaaggcaatggagtggatcgggcgt gtctttagaactgggaacacg aattacaacccctccctcaagagtcgggtcaccatgtcagttgacacgtccaagaatcaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgttttactgt	47	57	60	46
+JY8QFUQ01A3YON	IGG1	ggattcaccttcagtagttataac atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcatatgatggaagaaataaa tactatgcagactccgtgaagggccgactcaccatctccagagacaattccaagaacatgttgtatctgcaaatgaacagcctgagacctgaggacacggctgtgtattactgt	61	47	56	49
+JY8QFUQ01A3ZB9	IGA1	ggatacaccttcagtaattatgct atacattggttgcgccaggcccccggacaaaggcttgagtggatgggatgg atcaacgctggcacgggtaacaca aaatattcacagaagttccagggcagagtcaccattaccagggacacagccgcgaccacagcctacatggaattgagcagcctgaaatctgaggacacggccgtgtattactgt	61	53	57	42
+JY8QFUQ01A3ZD4	IGA1	ggtgactctcacttc tggagctggatccggcagcccccagggaagggcccggagtggattggttat gtctataacagtgggaccacc aactacaacccctccctcaggagtcgagtcaccatttctatcgacacgtccaagaagcagatctccctgaagttgaactctgtgaccgctgcggacacggccgtgtattactgt	45	59	53	44
+JY8QFUQ01A44PN	IGG1	ggtggctccatcaacagtggtggttactac tggagttggatccgccagcacccagggaagggcctggagtggattgggtac atctattacagtgggagtacc tactacaacccgtccctcaagagtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgt	50	56	60	50
+JY8QFUQ01A453G	IGA1	ggattcaccttcagtgactatgcc atgagctgggtccgccaggctccagcgaaggggctggaatgggtctcagcg attagcagtagtggtgatagaaca tactacgcagactccgtgaagggccgattcaccatctccagagacagttccagggggactctgtatttgcaaatgaaccgcctgagcgccgaggacacggccctatatttctgt	50	55	62	46
+JY8QFUQ01A45ND	IGA1	ggatacaccttcaccagctactat atacactgggtgcgacaggcccctggacaagggcttgagtggatgggaata atcgaccctagtggtggtgccaca agctacgcacagcagttccagggcagagtcaccatgaccagggacacgtccacgagcacagtctatatggagctgagcagcctgagatctgacgacacggccgtgtattactgt	55	57	61	40
+JY8QFUQ01A465M	IGG1	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagct gtcagtggtggtggggggcgcaca aactacgcggagtccgtgaagggccggttcaccatctccagagacaattccagggggacggtgttcttacaaatgaacagcctgagagtcgaagacacagccttatattattgt	51	47	68	47
+JY8QFUQ01A476X	IGA1	ggattcacgtttagtgactactac atgacctggattcgtcaggctccagggaagggcctggagtgggttacatat attagtagtagtggtggtaacaca cattacgcagactctgtgaagggccgattcaccatctccagggacaacgccaagaacgcactgtatctgcaaatgaacagcctgagggccgaggacacggccgtgtattactgt	56	49	60	48
+JY8QFUQ01A47U3	IGA2	ggattcaccttcagtagctatggc atacactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatggtatgatggaagtgaaata tactatgcagactccgtgaagggccgcttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	49	61	47
+JY8QFUQ01A481H	IGG2	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgatagaaca taccacgcagactccgtgcagggccggttcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagccgacgacgcgggcgtatattactgt	53	53	62	45
+JY8QFUQ01A48DI	IGA2	ggattcaccttcagcaagtatgcc atgagctgggtccgccaggctccaggggaggggctgcagtgggtctcagca attagtggaaatggtgctgatata tactacgcagactccgtgaacggccggttcaccatctccagagacaattccaagaacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatactactgt	56	55	59	43
+JY8QFUQ01A4AB0	IGG4	ggattcaccttcagtagctatgct atgcactgggtccgccagactccaggcaagggactagagtgggtggcagtt atatcatatgatggaagtgactac gactacgcaggctccgtgaagggccgattcaccatctccagagacagttccaagaacatgctgtatctgcaaatgaacagcctgagacctgaggacacggctgtgtatcactgt	56	52	58	47
+JY8QFUQ01A4BI4	IGA1	ggatttacctttagcagttatgcc atgaactgggtccgccaggctccagggaaggggctgcagtgggtctctggt attagtggtggtggtgatgacaca tactacgcagactccgtgaagggccggttcaccgtctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagccgaagacacggccgtgtattactgt	50	51	64	48
+JY8QFUQ01A4C55	IGG1	ggtgactccttcagaactcactac tggagttggattcgacagcccccggggaggagattggaatggattggcaat atatattatattgggaccacc aactacaacccctccctcaagagtcgagtcaccatgttagtggacacgtccaagaagcagttctccctgagactgagttctgtgaccgctgcggacacggccatgtattattgt	53	53	53	51
+JY8QFUQ01A4D0Z	IGA2	ggatacaccttcagtacctatact atgaattgggtgcgccaggcccccggacaaaggcttgagtggatgggatgg atcaacgctgaccttggcaacaca aaatattcacagaagttccagggcagactcaccattaccagggacacatccgcgaacacagcctacatggagctgagcagcctgacatctgaagacacggctgtgtattactgt	61	56	54	42
+JY8QFUQ01A4E73	IGA2	ggattcacctttagtagatattgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attaatgaagatgggaggaccaca acctacgcggactccgtgaatggccgattcctcatctccagagacaacgccaagaatacgttgtatctgcagatgagcagtctgagagtcgaggacacggccatgtattattgt	54	48	62	49
+JY8QFUQ01A4ENF	IGA2	ggattcaccttcaaaaagtatggc atgaactggctccgccaggctccagggaaggggctggagtgggtcgcaacc attcgcagtagtggtacttccata cactatgccgactccgtgaagggccgattcactatcaccagagacaacgccaacaactcactgtatctgcaattgaacagcctgggagtcgaggactcggctgtgtatttctgt	53	56	57	47
+JY8QFUQ01A4HOH	IGG1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtagtagttacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	51	57	47
+JY8QFUQ01A4HT0	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccggggagggggctggagtgggtctctggt attaatcggaatggtgatagca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	48	50	61	52
+JY8QFUQ01A4I3A	IGG1	ggattcaccttcagtagttatagc atgcactgggtccgccaggctccagggaagggactggagtgggtctcctcc attagtagtaatagtgcctacaca gaccacgcagactcagtgaagggccgattcaccatctccagagacaacgacaagaggtcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	57	54	58	44
+JY8QFUQ01A4IGN	IGG2	ggattcacatttagtaattattgg atgatctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaccaagatggaggtgacatg gcctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactctctgtatctgcaaatgaacagcctgagagccgaggacacggctatatattactgt	58	47	61	47
+JY8QFUQ01A4IHW	IGA1	ggattcagtttcagagacgcctgg atgaattgggtccgccagtctccagggaaggggctggagtgggttggccgt gttaaaaggaaaactgatggtgggacgtcg gaatatgctgcattcgtgaaaggcagattcaccatctcaagagatgattcagaaaacacactgtatctgcaaatgaacagcctggaaatcgacgacacagctgtgtatcgttgt	61	42	66	50
+JY8QFUQ01A4J2Q	IGA1	gggttctccgtcagtttcaactac atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagtt atctatgccgatggaagtaca ttctatgcagactccgtgaagggccgattcatcatctccagagacaattcaaagaacacgctcaatcttcaaatgaatagtttgagagttgacgacacggctgtgtattactgt	53	47	56	54
+JY8QFUQ01A4JI5	IGG1	ggattcaccttcggtaactcaacc atgaactgggtccgccaggctccagggaaggggctggaatggctgtcatat cttagtagtggtggtgatgtcaaa tactacgcaggctctctgaagggccgattcaccatctccagagacagtgccaggaactcactgtatctgcaaatgaacagcctgacagacgaggacacggccgtatattactgt	55	53	58	47
+JY8QFUQ01A4KIH	IGG1	ggattcatcttcagtagctatgcc atgaattgggtccgccagactccagggaaggggctggagtgggtctcagcc attagtggtagtggtggtaacaca tactacgcagactccgtgaagggccggttcaccgtctccagagacaattccaacaacacgctgtatctgcaattggacagcctgcgagccgaggacacggccgtatattactgt	51	54	61	47
+JY8QFUQ01A4KIW	IGA2	ggattcacctttactagttacagt ttcaactgggtccgccaggctccagggaaggcgctggagtggatttcatac atcactatcaatggtaatgacaag ttctacgcaggctctgtgaagggccgattcgccgtctccagagacgatgccaagaattctctgtatctgcaaatgagcagcctgagagccgaagacacgggtgtttattactgt	53	50	56	54
+JY8QFUQ01A4LR9	IGG3	ggtgggtccatcagcagtactagttactac tggagctggatccggcagcccgccgggaagggactggagtggatggggcgt atctataccagtgggatcacc aactacaacccctccctcgagagtcgagtcaccttttcagtggacacgtccaagaaccagttctccctgaagctgaagtctgtgaccccgcagacacggccgtttattactgt	48	61	60	46
+JY8QFUQ01A4LRG	IGA2	ggatacaccttcaccgtctactat ctattctgggtgcgacgggcccctggacaagggcttgagtggatgggatgg atcaaccctaagagtggtgacaca cactatgcaccgaaattccagggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggaactgaataggctgagatctgacgacacggccgtgtattactgt	55	56	59	43
+JY8QFUQ01A4LRU	IGG2	ggattcacctttaccacctccgcc atggcctgggtccgccaggttccagggaaggggctggagtgggtctcaact attagacctagtggtgagagaacc tactacgcagagtccgtgaggggccgcttcaccatctccagagacaattccgagaacacgttgtatctacaactgaacaacctgagagtcgaggacacggccatatattactgt	53	58	57	45
+JY8QFUQ01A4MB9	IGG1	ggtggctccgtcagcagtggaaattcctac tggacctggatccgccagtcccccgagaagggactggagtggcttgcatat attcgaaacactgggacaacc aactacaacccctccctcaagagtagactcaccatgtctctggacatgtctaggaatcagttctccctgaggctgaacgatgtgaccgctgcggacacggccatatattactgt	53	62	54	47
+JY8QFUQ01A4MZ9	IGA1	ggattcacctttagtgactatgcc ataagctgggtccgccaggctccaggaaaggggctggagtgggtctcctct attagtgctactggtggaattaca tcttacgcagattccgtgaagggccggttcaccattttcagagacaactccaaagacacgctgtatctgcaaatgggcagcctgagagacgaggacacggccatttattactgt	52	51	58	52
+JY8QFUQ01A4NWM	IGG2	ggattcacctctagcgcctatacc atgagttgggtccgccaggctccagggaaggggctggagtgcgtctcagct attagtggtggtggtactagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacacttccaagaacacactgtctctgcacctgaacagcctgagagtcgaggacacggccatatatttctgt	49	59	58	47
+JY8QFUQ01A4ORW	IGG1	ggattcgactttaaggaatatgcc atacactgggtccggcaagttccaggaaagggcctggagtgggtcgcgggc atcaactggaatcggggcaaagca ttgtatggggactctgtgaggggccgattcaccatctccagagacaacgcccagaactccgtgtctctgcaaatgaacagtctgaggcctgacgacacggccttgtatatctgt	52	52	64	45
+JY8QFUQ01A4P7X	IGG2	ggattcacctttagcagctatgcc atgagctgggtccgccaggctccagggaagggctggagtgggtctcagct attagtggtagtggtggtagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	52	53	62	45
+JY8QFUQ01A4PSY	IGG2	ggattcgactttagcggctttgcc atgagctgggtccgccaggccccagggaaggggctggagtgggtctcaact attactagtggtggtggtgtcgta ctctacgcagactccgtgaagggccgattcaccatctccagagacaatgccaagaacacactgtatctgcagatgaacagcctgcgagccgaggacacggccgtttatttctgt	46	55	64	48
+JY8QFUQ01A4RGQ	IGA1	ggattcatcctcagtgactaccac atggagtgggtccgccaggctccagggaaggggctggagtgggttggccgt agtagaaagaaagctaatagttacagtaca gaatatgccgcgtctgtgaaaggcagattctccatttcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaatcgacgacacggccgtgtattattgt	64	45	60	50
+JY8QFUQ01A4RRU	IGA1	ggattcacctttcgcagctatgcc atgacctgggtccgccaggctccagggaaggggctggaatgggtctcaact attagtggtagtgctggtagcaca ttctacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgacgacacggccatctacttctgt	51	59	57	46
+JY8QFUQ01A4SGO	IGA1	ggatacaccttcaccgtctactat ctattctgggtgcgacgggcccctggacaagggcttgagtggatgggatgg atcaaccctaagagtggtgacaca cactatgcaccgaaattccagggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggaactgaataggctgagatctgacgacacggccgtgtattactgt	55	56	59	43
+JY8QFUQ01A4U6K	IGG1	ggtggctccatcagcagtggtagtcactac tggagttggatccggcagcccgccgggaagggactggagtggattgggcgt atctatgccggttggaccacc aattacaatccctccctcaagagtcgagtcaccatatctatagacacgtcccagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgt	46	62	61	47
+JY8QFUQ01A4UD9	IGA2	ggattcaccttcagtaactatagt atgaactgggtccgccaggctccagggaagggcctggagtgggtctcatcc atcagtagtggtggtagtttcaaa caccacgcagactcagcgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattattgt	57	54	57	45
+JY8QFUQ01A4UI3	IGA1	ggattcacctttaccaactatggc atgaggtgggtccgccaggctccagggaaggggctggagtgggtctcagat attagcgctggtggcgataacaca tactacgcagactccgtgaagggccggttcaccatctccagagacaatttcaggaacacgctgtatctgcaaatgagcagcctgagagccgaggacacggccctttattactgt	52	54	62	45
+JY8QFUQ01A4VB0	IGA2	ggtgcctccatcaccagtggtactttttac tgggcctggatccgccagcccccagggaaggggctggagtgggttggcaat atctattctagtggtgtcgcc tattacaacccgtccctcaagagtcgagtcaccatgtccgtcgacacgtccaagaatgagttttccctgacactgacctctgtgaccgccgcagacacggctgtatatttctgt	42	63	56	55
+JY8QFUQ01A4W5D	IGA2	gggttcaccgtcagtagcaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaatt acttatcctgatggtactaca tattatggagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	53	50	58	49
+JY8QFUQ01A4X8T	IGA1	ggattcacctttgacgactatggc atgcactgggtccggcaaggtccagggaagggcctggagtgggtctcaagt atcagttggaacagtgctaagata gactatgcggacgctgtgaagggccgattcaccacatccagagacaacgccaagaactccatctttttgcaaatgaacagtctgagaaatgacgacacggccttctacttttgt	57	50	58	48
+JY8QFUQ01A4XPO	IGA1	ggattcaccttcagttctcacact atgaactgggtccggcaggctccagggaaggggccggagtgggtctcaacc attggtactagaggtagatccata tactacgcggactcagtgaagggccgattcaccacctccagagacaacgccaagaaatcactttatctggatatgcacagcctgagagccgaggacacggctatctattactgt	56	56	56	45
+JY8QFUQ01A4XSE	IGA1	ggatatagttttgccacctactgg atcggctgggtgcgccagaggcccgggaagggcctggagtggatgggggtc atctatcctggtgactctgatacc agatacagcccgtccttccaaggccgggtcaccatttcagccgacaagtccctcagtatcgcctacctgcagtggagcagcctgaaggcctcggacaccgccatatattactgt	43	62	62	46
+JY8QFUQ01A528Y	IGA2	ggatttaccttcagtggctatggc atgcactgggtccgccaggctccaggcaagggcctggagtgggtgacagtt gtttcatatgatggaagtattaag aattatgcagactccgtgaagggccgattcaccatctccagagacgattccaagaatacgctgtatctgcaaatgagcagcctgggacctgaagacacggctatatattactgt	55	47	59	52
+JY8QFUQ01A53DH	IGA1	ggattcaccttcggaacctatgcc atgacgtgggtccgcctgactcctgggaaagggctggagtgggtttcatgg attagtgatatcggtgacaca cgctatgcagattctgtgaagggccgattcaccatctccagagacaatgccaagaattcactgtttctgcaaatggacagtctcagagccgacgacacggctatatattattgt	52	49	56	53
+JY8QFUQ01A53VQ	IGG2	ggattcacctttagtagttttgcc atgacctgggtccgtcaggctccagggaaggggctggagtgggtctcaact attcattataatggtgataacaca tactacgcagactccgtgaggggccgattcaccatctccagagacgattccaagaccacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	54	53	56	50
+JY8QFUQ01A554Z	IGG2	ggattcacctttagtacctatggc atgctctgggtccgccatgttgcaggcaaggggctggagtgggtggcaact atatcagctgatggacgaaataaa tactatgcagattccgtgatgggccgattcgccctctccagagacaaatccaagaacacggattatctgcaaatgaacagcctgagaactgacgacacggctgtatattactgt	58	49	56	50
+JY8QFUQ01A55FP	IGA2	ggattcagctttagttactattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	58	45	66	44
+JY8QFUQ01A56UP	IGA1	ggtggccccatcagcagtggtacttactac tggacttggatccggcaggccgccggggagggactggagtggatcggacgt gtttatattagtgggagcacc acctacaatccctccctcaagagtcgaatcaccatatcactagacacgtccaagaaccagatcttcctgaagttgaggtctgtgaccgccgctgacacggccgtatattactgt	50	59	59	48
+JY8QFUQ01A572P	IGA1	agattcaccttcagtagctataat atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagtc atattatatgatggaagtaacagt tattacgcagactccgtgaagggccgattcaccgtctccagagacaattccaagaacacactgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgt	60	48	56	49
+JY8QFUQ01A58UD	IGG1	ggattccttttagaacctattgg atgagttgggtccgccaggctccagggaaagggctggagtgggtggcccac ataaaccaagatggacgtgaggca tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	58	45	61	48
+JY8QFUQ01A5935	IGA1	ggtggccccatcagcagcagcacttactac tggacttggatccggcaggccgccggggagggactggagtggatcggacgt gtttatattagtgggagcacc aactacaatccctccctcaagagtcgaatcaccatatcactagacacgtccaagaaccagatcttcctgaagttgaggtctgtgaccgcctctgacacggccgtatattactgt	52	60	57	47
+JY8QFUQ01A5AND	IGA1	ggattcacctttagtaaatattcc atgaactgggtccgccaggctccaggcaaggggctcgagtgggtggcactt atatcatacgatggaagtagaaaa atctacgcagattccgtgaagggccgattcaccatctccagagacaattccaagaacacggtatatctccaaatgagtagcctgagacctgaggacacggctgtctattactgt	61	50	53	49
+JY8QFUQ01A5ATC	IGA2	ggatacaccttcaccaggcactat atgcactgggtgcgacaggcccctggacaaggacttgagtacatgggagta atcaaccctagtggtggcgacaca agctacgcacagaggttccggggcagagtcgccgtgaccagagacacgtccacgagcacagtctatatggacttgagcagcctgagacctgaggacacggccatgtattattgt	56	56	62	39
+JY8QFUQ01A5BO8	IGA2	ggattcacctttagtagttactgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	56	50	63	44
+JY8QFUQ01A5C4M	IGA1	ggattcatttttagaaattttgcc atgagttggctccgccaggcaccagggaaggggctggaatgggtctcgact atcagcagcagtggtgacacggca tattactcagactccgtgaggggccgcttttccatctccagagacaactccaagagcactctgttcttgcagatgaacagcctgagtgccgaagacacggccatttactactgt	51	54	57	51
+JY8QFUQ01A5D4P	IGA1	ggattcgactttagcagcgcttcc atggcctgggtccgccaggctccagggaaggggctggagtggatctcagct gtcagtggacgtggtgacaacacc ttctacgcagcctccgtgaagggccggttcaccatctccagagaccattccaagaacacgctgtggcttcaaatgaacaacctgagagccgaagacacggccctatattactgt	49	61	60	43
+JY8QFUQ01A5FS2	IGA2	ggattcaccttcagtaactatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtgctaggtacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtctctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	57	53	57	46
+JY8QFUQ01A5FUX	IGG2	ggattcaccttcagtacctatgct atgtactgggtccgccaggctccaggcaaggggccagagtgggtgtcagtg atatcacatgatggaaataaggaa gaatacgcagactccgtgaagggccgattcaccatttccagagacaactccaagaaaatgttgtacctgcaaatgaacaaccagcgacctgatgacacggctgtttattattgt	62	49	54	48
+JY8QFUQ01A5GJK	IGG2	ggattcaccttcagtagttactgg atgcactgggtccgccaagttccagggaagggactggtgtgggtctcacga attaatactgatgggagtgccaca agttacgcggactccgtgaggggccgattcaccatctccagagacaacgccaagaacacgctatatcttcaaatgaacagtctgagagtcgaagacacggctgtctattactgt	56	51	58	48
+JY8QFUQ01A5HXY	IGG1	ggtgggtccttcagtggttacttc tggaactggatccgccagcccccagggaaggggccggagtggattggagaa gtcagtcatgatggaagtacc aacttcaatccgtccctcaagagtcgagtctccatgtcagttgacacgatcaagaagcaggtcttcctgaaactgagctctgtgactgccggggacacggctatatattattgt	49	50	61	50
+JY8QFUQ01A5I8W	IGA1	ggattcaccttcagtagctactgg atgcattgggtccgccaagctccagggaaggggctggagtgggtctcacgt attcatagtgatgggactaccaca tactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaggaacacgttgtatctgcaattgaacagtctgagagccgaggacacggctgtgtattattgt	52	52	61	48
+JY8QFUQ01A5IKH	IGG1	ggattcgctttaccacgtactgg atcggctgggtgcgccagatgcccgggaagggcctggagttgatgggaatc atctttcctggtgactctgaggcc agatacagcccgtccttccaaggccaggtcaccctctcagccgacacgtccaccaccaccgtctatctgcagtggagcagtctgaggacctcggacaccgccgtgtattactgt	40	66	60	46
+JY8QFUQ01A5IOF	IGG1	ggattcacatttggtgactacgtc atgacttggatccgccaggctccagggaaggggctggagtggatttcgtac atcaccactgatggttctttgata gaatatgcagaatctgtgaagggccggttcaccatttccagggacaacgccaagaactcactgtggctgcagatggacaacctgagagtcgacgacacggccgtttattactgt	52	49	60	52
+JY8QFUQ01A5JVK	IGA1	ggattcgccttcagtagttccagc atgaactgggtccgccagggtccagggaaggggctggagtggatttcacac attaggggtagtagtagtaccacc cactacgcagactctgtgaagggccggttcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	54	52	60	47
+JY8QFUQ01A5MH8	IGG1	ggattcacctacagcagctatgcc atgagctggtccgccaggctccagggaaggggctggagtgggtctcagca attagtggtggtggtgctagtaca taccacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatttgcaaatgaacagcctgagagccgacgacacggccgtatattactgt	54	55	60	43
+JY8QFUQ01A5NL9	IGA1	ggatacagcttcactaatcacatt atccattgggtgcgccaggcccccggacaagggcttgagtgggtggggtcg atcaacgctggcaatggcaataca agatattcacagaagttgcagggcagagtcaccatttccagggacacatccgcgagcatcgccaacatggagttgagcagtctgagatatgaagacacggctgtatattattgt	58	49	60	46
+JY8QFUQ01A5OJ5	IGG1	ggattcaacttcaatagttttggc atgcactgggtccgccaggctccgggcaagggactggagtgggtggcaaac atatggtatgatggaggtagtcaa cactatgcagacctcgtgaagggccgattcaccatctctagagacaattccaagaacatcttgttcctgcaaatgagcgacctgagagccgaggacacggctgtttattattgt	55	47	60	51
+JY8QFUQ01A5SB0	IGG1	ggattcagcttcagtacctataac atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc ataagtagtggtagtacttacata tatcacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaagacactttacctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	60	52	56	45
+JY8QFUQ01A5U3W	IGA1	ggattcattttcagtacttatcct atgcactgggtccgccaggctccagggaagggactggaatatgtttcagct attagtcgtaatggggataacgca tattatgcagactctgtgaagggcagattcaccatgtccagagacaattccaagagcacactgtatcttcagatgggcagcctgagagctgaggacatggctgtgtattactgt	55	44	57	57
+JY8QFUQ01A5V9M	IGA1	ggattcacctttagtgattataga atgaattgggtccgccaggctccagggatggggctggaatgggttgcacac attagtaccagtggtagtagtata tactatgcagactctgtgaagggccgattcaccgtctccagagacgatgccaagaattcactttttctgcaaatggacagcctgagagacgacgacacggctgtatattactgt	56	44	58	55
+JY8QFUQ01A5VSB	IGA1	ggattcaccttcagcaagtatgcc atgagctgggtccgccaggctccaggggaggggctgcagtgggtctcagca attagtggaaatggtgctgatata tactacgcagactccgtgaacggccggttcaccatctccagagacaattccaagaacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatactactgt	56	55	59	43
+JY8QFUQ01A5WKX	IGG1	ggattcacgtttggcagccacgcc atgagctgggtccgccaggctccagggaaggggctggagtacgtctcaatt gttactggtagcggacgcagcaca tactacgcagagtctgtgaagggccggttcaccgtctccagagacaattccaaggacaccctgtatctgcaaatggacagcctgagagccgaggacacggccgtgtattattgt	49	56	65	43
+JY8QFUQ01A5XDS	IGA1	ggatacaccttcaccggctactat ctattctgggtgcgacgggcccctggacaagggcttgagtggatgggatgg atcaaccctaagagtggtgacaca cactatgcaccgaaattccagggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggaactgaataggctgagatctgacgacacggccgtgtattactgt	55	56	60	42
+JY8QFUQ01A5ZKW	IGA2	ggattcactttcagtgacgcctgg atggtctgggtccgccaggctccagggaaggggctggagtgggttggcctt attaagaccaaacctgatggttggacaaca atctactctgcacccgtgaaaggcagattcatcatttcaagagatgattcaaaaaacatggtgtttctgcaaatgaacaacctgagaaccgaggacacagccctttattactgt	60	49	57	53
+JY8QFUQ01A60V7	IGA1	ggattcctcttcagtagctttaac atgaactgggtccgccaggttccagggaagggtctggagtgggtttcatac attaatagtagaggtactaacata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaggaattcactgtatctgcaaatgaacagcctgagagccgacgacacggccatctactactgt	59	51	52	51
+JY8QFUQ01A64VB	IGA1	ggtggctccatcaccagtagtctttaccgc tggggctggatccgccagtccccagggaagggcctggagtggatagggaat atcttttatggtgggaccacc tactacaacccgtccctcaagagtcgagtcaccttatccatagacacgtccaagagccagttctccctgaagctgtcctctgtgaccgccgcagacacggctctatattactgt	46	65	55	50
+JY8QFUQ01A666E	IGA1	ggattcacctttagtcgttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatac attagtaagactactaatgacata tactatgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtatttctgt	59	50	55	49
+JY8QFUQ01A68J9	IGA2	ggattcaccttcagtaactatagc atgaactgggtccgccaggctccagggaagggctggagtgggtctcatcc attagtagtagtgctaggtacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtctctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	57	53	56	46
+JY8QFUQ01A698F	IGA1	ggattcacgtttaggacctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctccggt attggtggtagtggtcgaaccaca cactacgcagactccgtgcagggccggttcaccatctccagagacaattccaagaacacggtggatctgcaaatgaacagcctgagagccgaggacacggccatatattactgt	51	56	64	42
+JY8QFUQ01A699S	IGA1	ggattcccctttagcaactatgcc atgacctgggtccgccaggctccaggggagggactggaatgggtctcaagt attagaggtagtggtgacaggaca tcctacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacacggtgtatctgcagctgaacaacctgagagccgaggacagggccgaatattactgt	54	54	63	42
+JY8QFUQ01A69S0	IGG1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtagtagtagtagtaccata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgc	58	50	57	48
+JY8QFUQ01A6BXT	IGG2	ggattcacttttgatgactctgcc atgcactgggtgcggcaagctccagggaagggcccggagtgggtcgcaggt attagtggaaatagtggaaatata ggatatgcggactcagtgaagggccgatgcaccatctccagagacaacgccaagaagtccctgtttctgcaaattaaaagtctgagagttgaggacacggccttatattattgt	57	43	63	50
+JY8QFUQ01A6CNG	IGG1	ggtggctccgtcagcagtggaaattcctac tggacttggatccgccagtcccccgagaagggactggagtggcttgcatat attcgaaacactgggacaacc aactacaacccctccctcaagagtagactcaccatgtctctggacatgtctaggaatcagttctccctgaggctgaacgatgtgaccgctgcggacacggccatatattactgt	53	61	54	48
+JY8QFUQ01A6CSB	IGA1	ggatacaactttcccagatattgg atcgcctgggtgcgccagattcccgggagaggcctggagtgggtggggatg atctatcctggtgactctgagacc agatacagtccgtccttccaaggccaggtcaccatctcagccgacgcgtccatgaacaccgcctacctgcagtggagcagcctgaaggcctccgacaccgccatatacttctgt	45	65	59	44
+JY8QFUQ01A6HGP	IGA1	gcattcatgttcaacaaagcctgg atgaattgggtccgccaggctccaggaaagggactggagtgggttggccgt attaaaagtaacggcgacggtgcgacagtc gactacgctgcacccgtgaaaggccgattcaccatctcaagagatgattcacagaataccctcttcttacaaatgagcagcctgaaagccgaggacacagccgtctattattgt	61	54	58	46
+JY8QFUQ01A6IQL	IGA2	ggtggctccatcagcagtgttaactgg tggagttgggtccgccagcccccagggaaggggctggagtggattggggag atctctcacagtgggaacacc aactacagcccgtccctcaagggtcgagtcaccatatcaataaacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgt	50	59	62	42
+JY8QFUQ01A6IZH	IGG2	ggattcacctctcctagatactgg atgaattgggtccgccaggcttccgggaaggggctggagtgggtggccaac ataaagcaagacggaagtgagaaa aactttgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaattcaatgtctctacaaatgaacagcctgagagtcgaggacacggctgtatattattgc	59	47	62	45
+JY8QFUQ01A6JX4	IGG1	ggattcaccttcgacagatacagt atgaactgggtccgccaggctccagggaggggactggagtggatttcatac ataagtactactactagtaacaga tactacgcagacgctgtgaagggccgattcaccatctccagagacaatgccaagaactcgctgtatttgcaaatggacagcctgagagacgaggacacggctgtatattattgt	62	48	56	47
+JY8QFUQ01A6L65	IGG4	ggattcacctttcatgattatacc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt attagttggaatagtggtaacata gactatgcggcctctgtgaggggccgattcaccgtctccagagacaacgccaataactccctgtctcttcagatgaatggtctgagatctgaggacacggccctctattactgt	50	52	57	54
+JY8QFUQ01A6LFT	IGA2	ggttacacctttaccagatatggt attagttgggtgcgacaggcccctggacaagggcttgagtggatgggatgg atcagcgtttccaatggtgacaca aactatgcacagaagctccagggcagagtcaccatgaccgcagacccatccacgagcacagcctacttggaactgaggagcctgacatctgacgacacggccgtatattactgt	56	54	59	44
+JY8QFUQ01A6MYW	IGA1	ggatcacctttggtgattatagt atgagttggttccgccaggctccagggaaggggctggagtgggtcggtttc attagaagcaaagctgatgatgggacaaca gaatacgccgcgtctgtgaaaggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaatagcctgaaaaccggggacacagccgtgtattactgt	61	45	62	50
+JY8QFUQ01A6PW0	IGG3	ggattcaccttcagtagctatgct atgcactgggtccgccagactccaggcaagggactagagtgggtggcagtt atatcatatgatggaagtgactac gactacgcaggctccgtgaagggccgattcaccatctccagagacagttccaagaacatgctgtatctgcaaatgaacagcctgagacctgaggacacggctgtgtatcactgt	56	52	58	47
+JY8QFUQ01A6T5J	IGA1	ggattcaacttcagtggctatggc atgcactgggtccgccaggctccaggcaagggcctggagtgggtggcagtc attgcatacaatggaggaaatata tactacgcagactccgtgaagggccgattcaccatctccagagacaattccaaggataccctgtacttgcacatgaccagtctgagacctgatgacacggccatgtattactgt	55	54	57	47
+JY8QFUQ01A6UEX	IGA2	ggattcgccttcagtacatatatc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagttttagtagtgattacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgacgacacggccgtgtattactgt	57	52	54	50
+JY8QFUQ01A6V15	IGA2	ggattcacctttaacgactatggc atgacttgggtccgccaggctccagggatggggctgcagtgggtcgcaacc attagtggaagtggcgacagaaca ttctacgcagactccgtgaagggccgcttcatcgtttccagagacaactccaagaacacgctgtatctgcaaattaccagcccgagagccgaggacacggccgttttttattgt	51	56	59	47
+JY8QFUQ01A6VGQ	IGG1	ggatacacgtttatgaattactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtacctctgagacc agatacagcccgtcctttcaaggccaggtcaccatttcagccgacaagtccaccagcaccgccttcgtgcagtggagcagcctgaaggccccggacaccgccatatattactgt	48	62	59	44
+JY8QFUQ01A6VPK	IGG1	ggtggctccatgaggaattattac tggagctggatccggcagcccccagggaagggactggagttgatagggact gtctattacactgggcgcacg gagtacaacccctccctcaagagtcgactcaccttatcactagacacgtccaagaaccagttctccctaaagctgggctctgtgaccgctgcggactcggccatttattactgt	48	59	56	47
+JY8QFUQ01A6W08	IGA1	ggtttcacctttagtaacgattgg atggactgggtccgccaggctccagggaaggggctggagtgggtggccaat ataaagggagatggaagtgagaaa actatgtagactctgcgaagggccgattcatcatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattactgt	59	43	65	45
+JY8QFUQ01A6XI0	IGG2	ggattcaccttcagtcgctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtagtcatagtatttacata tactatgcagactcagtggagggccgattcaccgtctccagagacaacgccgagaactcgctgtatctgcacatgaacaccctcagagccgacgacacggctatatattactgt	55	55	54	49
+JY8QFUQ01A6ZD5	IGA1	ggattcagcttagttactattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	58	45	66	43
+JY8QFUQ01A6ZI7	IGA2	ggattcaccttcagtacctttggc atgcactgggtccgccaggctcccggcaaggggctggagtgggtggcaatc atatcaaatgatggaagtaagaaa tactacgcagactccgtgaagggccgattcaccatttccagagaaaattccgagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgt	57	50	60	46
+JY8QFUQ01A70EP	IGA1	ggatacaccttcagcgactactac atacactggctgcgacaggcccctggacaacgacttgagtggatgggatgg ctgaaccctaataatggtgacaca gcttatggccagagctttcagggccgggtcaccatgaccagggacacgtccgtcagcacagtgtacgtggaggtgaggaggctgagatctgacgacacagccctttatttctgt	52	55	62	44
+JY8QFUQ01A70L0	IGG1	ggattccccttcaatatatggagc atgaattgggtccgccaggctccggggaagggactggagttgatcgcatac atcacaagtgatgaaagaaccata tactacgcagactctgtgaagggccgcttcaccatctctagagacaatgccaggaacctagtacatctggaaatgaacagcctgagggacggcgatctggctatctattactgc	60	51	56	46
+JY8QFUQ01A720R	IGA1	ggattcacatttgctgaatatacc atgcactgggtccgtcaagttccggggaagggtccggagtgggtctctctt attagttgggatggtggcagcaca tactatgcagactctgtgaagggccgattcaccatctccagagacaacagcaaggactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgt	53	50	57	53
+JY8QFUQ01A72BF	IGA1	ggtggctccgtcagcagagatatttactac tggagctggatccggcagcccccagggaagggactggagtggattgggtat atgtatcacagagggaacact aagtataatccctccctcgagagtcgagtcaccatttcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgt	52	55	61	48
+JY8QFUQ01A72FV	IGA1	ggattcaccttcagtgactaccac atgggctggatccgccaggctccagggaaggggctggagtgcgtttcatac attagcactagtggtcgtgacata tacaacgcagactctgtgaagggccgattcaccatctccagggacaacgcccagaagtcactgtatctgcaaatgaacagcctgagagccgaggacacagccgtgtatttctgt	54	56	58	45
+JY8QFUQ01A79R5	IGG2	ggattcaactttaataattatgcc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt attagttggaataatggtaacaca gactatgcgggctctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagaactgaggacacggccttatattactgt	60	48	55	50
+JY8QFUQ01A7AMF	IGA1	ggtggctccatcagtagttactac tggagctggatccggcagcccccagggaagggactggagtggattgggtat atctataaaagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaagcagttctccctgaaactgacctctgtgaccgctgcggacacggccgtgtattactgt	53	57	56	44
+JY8QFUQ01A7C1U	IGG1	ggattcaccttcagtagttactgg atgcactgggtccgccaagttccagggaagggactggtgtgggtctcacga attaatactgatgggagtgccaca agttacgcggactccgtgaggggccgattcaccatctccagagacaacgccaagaacacgctatatcttcaaatgaacagtctgagagtcgaagacacggctgtctattactgt	56	51	58	48
+JY8QFUQ01A7C84	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccggggaggggctgggatgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	52
+JY8QFUQ01A7G35	IGA1	ggatacagcttcagcaattatgat atcaactgggtgcggcaggccactggacaagggcttcagtggatggggtgg atgaacccccacagtgccaatatc gtctacgcgcagaaatttcagggcagagtcaccatgaccagtgacgcctccataaccacagcctacatggaactgagcaacctgaaatctgacgacacggccgtgtattattgt	59	55	56	43
+JY8QFUQ01A7GLV	IGA1	ggaggctccatcagcagtggaagttactac tggacctggatccggcagcccgccgggaagactctggagtggattgggcgc ttctacagtcgtgggggtgtc gactacaacccctccctcaggggtcgagtcaccatttcagcggacacgtccaagagccagttctcccttaatctgacttctgcgaccgccactgacacggccgtgtatttctgt	41	65	62	48
+JY8QFUQ01A7HLN	IGA1	ggattcacttttagcagccatatg atgagttgggtccgccaggctccagggaaggggctggaatgggtctcaact attcgtgccagtggtgataggaca cactatgcagactccgtgaggggccgcttcaccatctccagagacaattccaagaacacgctgcatttgcaaatgtacagcctgagagtcgaggacacggccgtatactactgt	53	53	60	47
+JY8QFUQ01A7KJZ	IGA1	ggattcacctttagtgactatttg atgacttgggtccgccaggctccaggaaagggactggagtgggtggccaac ataaaagaagatggacttgctaca ttctatgtggactctgtgagggaccgattcaccatctccagagacaacgccaagaactcactttatttgcaaatgaattacctgagagtcgaggacacggctgtttattattgt	58	44	55	56
+JY8QFUQ01A7LQC	IGG1	ggtggctccgtcagcagttattac tggagctggatccgacagcccccagggaagggactggagtggattggctat atccatgacagtgggagcagc aactacaacccctccctcaagagtcgagtcaccatatctgtggacacgtccaagaaccagttctccctgaagctgacttctgtgaccgctgcggacacggccgtatattactgt	49	59	57	45
+JY8QFUQ01A7MBK	IGA1	ggattcaccttcagtagatactgg atgcactgggtccgccaggctccagggaaggggctggagtgggtcgcacgt actaatgaagatgggagtactaaa aactacgcggactccgtgaagggccgattcaccatcttcagagacaacaccaagaacacactatatctgcaaatgaacagtctgagagacgaggacacggctgtgtattattgt	62	48	60	43
+JY8QFUQ01A7MWW	IGA1	ggattcaggtttgatgattatgcc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt atcagctggggtggtgctagtatc ctctatgcggactccgtgaagggccgattcaccatctccagagacaatgccaggaactccctctacttgcaaatggacagtctgagacctgatgacacggccttctattactgt	47	53	61	52
+JY8QFUQ01A7NVO	IGA1	ggatacaccttcacttcttatgct gtaaactgggtgcgccaggcccccggacaaaggcttgagtggatgggatgg atcaacgctggcacgggtaacaca aaatattcacagaagtttcagggcagagtcaccattaccagggacacatccgcggacacagtcttcatggagctgagcagtctaagatctgaagacacggctgtgtattattgt	58	50	58	47
+JY8QFUQ01A7QC0	IGG1	ggattctccttcagcaattatgcc atccactgggtccgccaggctccaggcaagggctggagtgggtggcgacc atttcatatgatttaatgaaaaga tattatgcagagtccgtgaggggccgattcaccctctccagagacaattccaagaacactctcgatctgctcatggatacccttcggttcgacgacacggctgtctattattgt	50	55	52	55
+JY8QFUQ01A7S16	IGA2	cacaactttaccggctactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgatacc agatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccgtgtattactgt	45	66	58	41
+JY8QFUQ01A7TR1	IGA2	ggattcacctttagtagtttctgg atgcactgggtccgccaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggagggccgattcaccatctccagagacaacaccaagaacaggctatatctgcaaatgaacagtctgagagccgaggacacggctatttattactgt	56	49	61	47
+JY8QFUQ01A7TRV	IGA1	gggttcacctttagcagctatgcc atgacttgggtccgccaggctccagggaaggggctggagtgggtctcaagt atcagttttagtggtgagagaaca tattatgcagactccgtgaagggccggttcaccatctccagagacaactccaagaacacagtacatttgcaaatggacagcctgagagccgaggacacggccgtatattactgt	55	50	61	47
+JY8QFUQ01A7TW1	IGA1	ggattcaccttcagtagttatacc atgcactgggtccgccaggctccagggaaggggctggaatgggtctcatcc attagtagtagtagtactaccata tactacgcagactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacggcctgagagccgaggacacggctgtttattcctgt	55	55	54	49
+JY8QFUQ01A7XAB	IGG2	ggtggctccttcagtaattaccac tggagctggatccggaagcccgccgggaaggaactggagtggattgggcgt atccatcacagtgggctcacc aactccaacccctccctcaagaatcgagtcgtcgtgtcagtggatacgtccaagaatcagttgtccctggagctgagctctgtgaccgccgcggacacggccgtgtattactgt	44	60	61	45
+JY8QFUQ01A7XDX	IGA2	ggattcacctttagtacctattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcatgatgcaagtgagaaa tactatgtggactctgtaaaaggccgattcaccatctccagagacaacgccaagaactcattgtatttacaaatgaacaacctgagagccgaggacacggctgtgtattactgt	62	46	58	47
+JY8QFUQ01A7Z2B	IGG1	ggatacatgtttatgaattactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtacctctgagacc agatacagcccgtcctttcaaggccaggtcaccatttcagccgacaagtccaccagcaccgcctacgtgcagtggagcagcctgaaggccccggacaccgccatatattactgt	49	61	59	44
+JY8QFUQ01A7Z8B	IGA1	ggagtcaattcagaaacgcctgg atgaattgggtccgccaggctccagggaaggggctggagtgggttggccgt attaagagcaaagctgatggtgggacaaca gactacgccacacccgtgagaggcagattcaccatctcaagagatgattcaaaaaacacgttttatctgcaaatgaatagcctaaaaaccgaagacacagccgtctattactgt	68	48	59	43
+JY8QFUQ01A82FB	IGA1	ggtggctccgtcaacagtggtgattactac tggacctggatccgccagcaccctgggaagggcctggagtggattggatac atctattacagtgggagcact tactacaatccgtccctggagagtcgagttaccatatcaatagacatgtctaagaaccagttctccctgaaagtgagctctgtgactgccgcggatacggccgtgtatcattgt	51	53	59	53
+JY8QFUQ01A82HJ	IGA1	ggattcaccttcagtgaccactac atagactgggtccgccaggctccaggaaaggggctggagtgggttggccgt actcgaaataaagctaacggttacagtaca gagtatgccgcgtctgtgaaaggcagattcaccgtctcaagagataactcagagaacttagtgcatctgcaaatgaacagcctgaaaagcgaggacacggccctgtattactgt	63	51	60	45
+JY8QFUQ01A82RF	IGA1	gacttaagcgtcagtgacaattac atgacctgggtccgccaggctccagggaaggggctggagtgggtctcaatt atgtatagcggaggtcgcaca tactacgcagagtccgtgaagggccgattcgccgtctccagagacaattcccagaatacactgtatcttcaaatgaacagcctgaggaccgaagacacggccgtgtactattgt	55	52	59	44
+JY8QFUQ01A82RW	IGG1	ggattcaacttcagtaactatgct gtgcactgggtccgccgggctccaggcaaggggctagagtggatgggagtt atatcatttgatggagataataaa tactacacagactccgtgaagggccgattcaccatgtctagagacaattccaagaacacactatatctccaaatgaacagcctgtcagctgaggacacggctgtctattactgt	61	48	53	51
+JY8QFUQ01A8412	IGA2	agattcacctttaatggttactgg atgagttgggtccgccaggctccaggaaaggggctggagtggctggccaac ataaagccggatggaaatgagaaa tgctatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagagttcgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtatatttctgt	56	47	63	47
+JY8QFUQ01A8464	IGG2	ggtggctccgtcaacagtggtaatttctac tggagctggatccggcagcccgccgggaagggactggagtggatagggcgt atctatgccagtgggagcacc aactacaacccctccctcaagagtcgaatcaccatatcagcagacacatccaagaatcagttctccctgaggctgagttctgtgaccgccgcagacacaggcgtttattattgt	52	59	59	46
+JY8QFUQ01A86GB	IGA1	ggattcatgtttaggaactatgcc atgagttgggtccgccaggctccagggagggggctggagtgggtctcaact attagcaataatggaagccacaca tactacgcagactccgtcaagggccggttcaccatctccagagacaattccaagaacacggtgtatatgcagatgaacaggctgagagtcgaggagacggccctgtactactgt	57	50	62	44
+JY8QFUQ01A86IT	IGG1	gggttgaccgtcggtgccgaccac atgtactgggtccgccaggctccagggaaggggctgaagtgggtctcagtt ctttatggcggtggcaccttg gactacgcagactccgtgaagggccgattcaccatctccagagacaactcgaggaacactgtgtatcttcagatggagagactgagccccgaggacacggccgtctactactgt	44	57	66	43
+JY8QFUQ01A87BG	IGA2	ggattcacctttagcagctatgcc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcagtt attagtggaagtggtgataccaca tcgtacgcagactccgtgaagggccggttcaccatctcccgagacaattccaagaacacgatgtatctgcaaatgagtagcctgagagccgacgacacggccctttattactgt	52	54	60	47
+JY8QFUQ01A87UU	IGG2	ggtttcaccttcaggagctctggc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagcagtagtactactaccaaa tactgcgcagactctgtgaagggccgattcaccatctccagagacaatgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	54	53	59	47
+JY8QFUQ01A8AJT	IGA1	ggattcacttttagcagccatatg atgacttgggtccgccaggctccagggaaggggctggaatgggtcgcaagt attcgtgccagtggtggtaggaca cactacgcagactccgtgaagggccgcttcaccatctccagagacaactccaagaacacgttgtatttgcaaatgtacagtctgagagtcgaggacacggccttatattattgt	53	50	60	50
+JY8QFUQ01A8ALV	IGA2	ggattcaccttcggcagttatagg atgagctgggtccgccaggctccagggaaggggctggagtggatttcatac attagtagtagtagtagtgccatc tattacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcagtgtatctgcaaatgaacagcctgagagacgaggacacggctatatattactgt	58	46	59	50
+JY8QFUQ01A8BTW	IGA2	gatgggtcgttcatgggttacctc tggaattggatccgccagcccccagggaaggggctggagtggattggggaa atcagtcctagcggcgtcagt aagtacaatacgtccctcaagagtcgcgttgttatgagaatggacacgtcgaagaagcaattctccctggagatcaactctgtgaccgccgcggacacggctacttattattgt	49	49	63	49
+JY8QFUQ01A8CRV	IGG1	ggcttcagtttgagtacttatacc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcactc attagtaagactagtaatgtcata tactacgcggactctgtgaagggccggttcaccatctccagagacaatgccgagaattcactgtttctgcaaatggacagcctgagtgccgaggacacgggtgtatattactgt	52	47	60	54
+JY8QFUQ01A8FGD	IGG4	ggactcatgtttagcagctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcagtc agtagtagtactggttatttcaca tactacacagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagccgaagacacggccgtatattattgc	54	54	58	47
+JY8QFUQ01A8FJO	IGA1	ggatacagctttaccgcctactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtgggtggcgatc atctatcctggtgactctgaaacc agatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcaccaccgcctacctgcattggaccagcctgaaggcctcggacaccgccatgtattactgt	46	69	56	42
+JY8QFUQ01A8FM1	IGA1	ggatacaccctcaatgaattatcc atgcactgggtgcgacagactcctggaaaagggcttgagtcgatgggcggt tttgatcctgaatatggtaaaaca atctacgcgcagaagttccagggcagagtcaccatgaccgaggacacatctgcagacacagcctacatggagttgagaagcctgagatttgaggacacggccgtgtattattgt	60	47	59	47
+JY8QFUQ01A8FSV	IGG1	ggatttatcttcagtgattatagc atgaattgggtccgccagactccagggaaggggctggagtgggtctcttcc attagtagtcgaagtactttcgaa tattacgcggactcagtgaagggccgattcaccatctccagagacaactccaataactcagtgtatctgcagatgaacagggtgacagccgacgacgcggcagtctatttctgt	54	48	57	54
+JY8QFUQ01A8G0E	IGA1	ggattcaccttcagtgactactac atgagctggatccgccaggctccagggaagggactggagtgggtctcatat attagcagtactggtggttccata tattacgcagactctgtgaagggccgcttcaccacctccagggacaacaccaaaactcaatgtctctgcaaatgaacagcctgagcgtcgacgacacgggcgtctattattgc	54	56	54	48
+JY8QFUQ01A8GGU	IGG1	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccagggaagggctggagtgggtgtcagat attagtgggagtggtgttagcaca cactacgcggactccgtgcagggccggttcaccatctccagagacaattcgaagaacacgctgtatctgcaaatgaacagcctgagtgccgaggacacggccgtatattactgt	51	53	63	45
+JY8QFUQ01A8GWB	IGA2	gatgggtcctgcagaaactgcttc tggagttggatccgccagtccccagggaaggggctggagtggattggggag gtcaatgatagaggaggcatc gactacaacccgtccctcaagagtcgagtcaccatatcattagacacgtccaacaaccaagtctccctgaggttgagctctgtgaccgccgcggacacggctgtgtattactgt	49	54	63	44
+JY8QFUQ01A8JNL	IGA1	gggttctcactcagtaacagtggagtgggt gtgggctgggtccgtcagcccccaggaaaggccctggagtggcttggacac attttttgggatgatgataag cgctacagtccctctctgaaaagcaggctcaccctcaccaaggatacctccaaagaccaggtggtccttgaaatgaccaacatggaccctgtggacacagccacttattactgt	52	57	59	48
+JY8QFUQ01A8JZF	IGA2	ggattcagctttagttattattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagaga cactatgtggactctgtgatgggccggttcaccatctccagagacaacgccaagaggtcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	56	43	68	46
+JY8QFUQ01A8KHD	IGA1	ggattcacttttaatgaacatggc atgcagtgggtccggcaagctccagggaagggcctggagtgggtcgcaggt atcagcggtaatggtgatgtcata ggatatgcggactctgtgaagggccgagtcaccgtctccagagacaacgccaaagactctctatatttgcagatggacagtctgagagttaatgacacggccttatattattgt	54	43	64	52
+JY8QFUQ01A8KQW	IGG2	ggattcacctttagttatcactgg atgagttgggtccgccaggctccagggaaggggctggagtgggtggccctc ataaggcaagatggaagtgaggaa tactatgtggactctgtgaggggccgattcagcatctccagagacaacgccaagaattcagtgtacttggaaatgaacaacctgagagccgaggacacggctgtttattactgt	55	43	67	48
+JY8QFUQ01A8KZQ	IGA1	ggattcacttttagtgactattgg atgagttgggtccgccaggctccagggaagggactggagtgggtggccacc acaaacgaggacgagactaagaaa tactctgcggactctgtgaggggccgattcaccatctccagagacaacgccaagaactcactgtacttgcagatgagcagcctgagagccgacgacgcggccgtctattattgt	54	52	64	43
+JY8QFUQ01A8LEY	IGG1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaagggctggagtgggtttcatac attagtagtagtagtagtaccata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	49	56	49
+JY8QFUQ01A8MAI	IGA2	ggtggctccatgagcagtggtaattactgc tggggctggggccgccagcccccaggaaaggggctggagtggattggaagt atgtgttatggtgggagcacc tactacagcttgtcccccaagggtcgagtcaccatatccatagactcgtcgaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgt	45	55	68	48
+JY8QFUQ01A8MS3	IGA1	ggtggctccatcgatagttactac tggacctggatccggcagcccccagggaagggactggagtggattggctat atgtattacagtaggagctcc aactacaacccctccctcaagagtcgagtcaccatttcagtagacacgtccaagaagcagttctccctaaacctgagctctgtgaccgctgcggacacggccgtgtattactgt	50	59	54	47
+JY8QFUQ01A8NED	IGG1	ggattcaccttcagtgaccatggc atgcactgggtccgccaggctccagggaagggtctgcagtgggtggcagtt gtttggcatactggagacaataaa tattatgcagagtccgtgaggggccgattcaccatctccagggacaattccaagaacacactgtatctgcaaatggacgacctgagaggcgaggacacggctatgtattattgt	54	48	63	48
+JY8QFUQ01A8SUT	IGG1	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgatagaaca taccacgcagactccgtgcagggccggttcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagccgacgacgcgggcgtatattactgt	53	53	62	45
+JY8QFUQ01A8VFH	IGA2	ggattcagcttcaatagttactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacat attaatattgatgggagtaccaca gactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	57	51	59	46
+JY8QFUQ01A8WCU	IGG1	ggattcacctttagcagctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagct attagtggtagtggtggtagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	52	53	63	45
+JY8QFUQ01A8XXA	IGA1	gattcaccctcagtgactactac atgacttggatccgccaggctccagggaaggggctggagtgggtttcgtac attagtagtctcactagttccata tattacgcagactctgtgaagggccgattcaccatctccagggacaacgccaagaactcactatatctgcaaatggacagcctgagagccgaggacacggccgtgtattactgt	54	55	54	49
+JY8QFUQ01A8Y0H	IGA2	agattcacctttaggacatattgg atgagttgggtccgccaagctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagata cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtttctccaaatgaacagcttgagagtcgatgacacggctgtgtattactgt	61	44	61	47
+JY8QFUQ01A8Y8J	IGA1	ggattcaccttcagtacctatggc acacattgggtccgccaggctccaggcaaggggctggactgggtggcagtt agttggcatgatggaagtcaggaa tattatgcagactccgtgaggggccgattcactgtctccagagacaattccaagaacacggcatatctgcatatgaatgtcctgagaggcgaagacacggctgtctactactgt	53	50	62	48
+JY8QFUQ01A91GC	IGA1	ggtggctccatcagcagtagtagttactac tggggctggatccgccagcccccagggaaggggctggagtggattgggagt atccaatatagtgggagcacc tattacaatccgtccctcaagagtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgacctctgtggccgccgcagacacggctgtgtattactgt	49	59	61	47
+JY8QFUQ01A91H2	IGA1	agattcacctttaggacatattgg atgagttgggtccgccaagctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagata cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtttctccaaatgaacagcttgagagtcgatgacacggctgtgtattactgt	61	44	61	47
+JY8QFUQ01A91ZM	IGA2	ggattcagatttagcagctatgcc atgagctgggtccgccagactccagaaaaggggcttgaatgggtctcaggc atcaatgataacggtcgaagcata aactacgcgggctccgtgaagggccggttcaccatctccagagacaattccaagagcacgttgtatctgcagatggatagcctgagccccgaggactcgggcatatattattgt	56	51	60	46
+JY8QFUQ01A9228	IGG2	ggattcacgtttggcagccacgcc atgagctgggtccgccaggctccagggaaggggctggagtacgtctcaatt gttactggtagcggacgcagcaca tactacgcagagtctgtgaagggccggttcaccgtctccagagacaattccaaggacaccctgtatctgcaaatggacagcctgagagccgaggacacggccgtgtattattgt	49	56	65	43
+JY8QFUQ01A928N	IGG1	ggattcagcttcagtacctataac atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc ataagtagtggtagtacttacata tatcacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaagacactttacctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	60	52	56	45
+JY8QFUQ01A94FS	IGA2	ggattcacctctggaaagtatgcc atgcactgggtccggcaagctccagggaaggacctggagtgggtctcaggc ttgggtttggataatggtaggata gactacgcggactctgtgaagggccgattcaccatctccaaagacaacgccaagaattccctgtatctgcaaatgaacagcctgagagttgaggacacggccatgtattactgt	55	49	62	47
+JY8QFUQ01A96A4	IGA1	ggatacagcttcactaactacaat atccattgggtgcgccaggcccccggacaagggcttgagtgggtgggatgg atcaacgctggcaatggcaataca agatattcacagaaattgcagggcagagtcaccatttccagggacacatccgcgagcattgccaacatggagttgagcagcctgagatatgaagacacggctgtatattattgt	61	48	59	45
+JY8QFUQ01A96T1	IGA2	ggattccctttcagtagagatgcc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatg gtatggtatgatggaagtaataca caccatgcagattccgtgaagggccgattcatcatttccagagacaattccaagaataaagtgtatctgcaaatgaacagtctgagagacgaggacacggctgtctattattgt	59	43	61	50
+JY8QFUQ01A98LD	IGG2	ggattcatttttagcaattatgcc atgaactgggtccgccaggctccagggaaggggccggagtgggtctcagct tttagtggtggtggcactaagacc tactacgcagactccgtgaagggccggttcttcatctccagagacaattccaagaacactctacatctgcatatgagcagcctgagggccgaggacacggccacatattactgt	51	54	59	49
+JY8QFUQ01A98NE	IGG1	ggtggctccatgaggaattattac tggagctggatccggcagtccccaggaagggactggagttgatagggact gtctattacactgggcgcacg gagtacaacccctccctcaagagtcgactcaccttatcactagacacgtccaagaaccagttctccctaaagctgggctctgtgaccgctgcggactcggccatttattactgt	48	58	55	48
+JY8QFUQ01A9C87	IGG1	ggtgactccatcagtactaataattactac tgggcctggatccgccagcccccagggagggggctggagtggattgggaat atctattatagcgggaccacc tactacaatccgtccctcaagagtcgagtcaccatgtccgtagacacgtccaagaaccacttctccctgaggttgagttctgtgaccgccgcagacacggctctctattactgc	50	63	54	49
+JY8QFUQ01A9CIV	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	61	52
+JY8QFUQ01A9D9E	IGA2	ggattcgcctttaggagtgagtgg atgaactgggtccgccaagccccagggaaggggctggagtgggtcgcacac attgacactgatgggagtatcgca gtctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaatactttgtatctgcaaatggacagtctgagagccgacgacacggctatatattactgt	54	51	64	44
+JY8QFUQ01A9DAX	IGG1	ggattcctttttagaacctattgg atgagttgggtccgccaggctccagggaaagggctggagtgggtggcccac ataaaccaagatggacgtgaggca tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	58	45	61	49
+JY8QFUQ01A9DEW	IGG1	ggattcagtttcagtacttataac atgaattgggtccgccaggctccagggaaggggctggagtgggtctcatcc atgggtagtagtagtatttacata tattacgcagactcagtgaagggccgattcaccatctccagagacgacgccaagagttcactgtatctgcaaatgaacagcctgagagccgaggacacggctatatattactgt	58	46	57	52
+JY8QFUQ01A9DTT	IGG1	ggtgcctccatcaggagttattat tggagttggatccggcagcccccaggaaagggactggagtggattggttat attaattatgttggggacacc gattacaaccctccctcaagagtcgagtctccatgtcagcagccacgtccaagaaccaggtcttcctgcagctgacctctgtgaccgctgcggacaccgcctattatttctgt	46	56	54	53
+JY8QFUQ01A9E7L	IGA1	ggttacacctttaccagctatggt ctcagctgggtgcgacaggcccctggccaagggcttgagtggatgggatgg atcttcgtttttaacggtaacaca aaatatgcacagcacctccagggcagagtcaccatgaccacagacacatccacggacacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgt	54	57	58	44
+JY8QFUQ01A9FXS	IGA2	ggattcaccttcagttcttatgcc atgaactgggtccgcctggtccaggcaaggggctggaatggctttcattt attggtaatactggtagtgtcata tactacgcagactctgtgaaggggcgattcaccatctccagagacaatgccaagaactcaatgtctctacaaatgagcagcctgagagccgaggacacggctctatattattgt	54	49	53	56
+JY8QFUQ01A9G63	IGA2	ggattcaactttggcatctatacc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcagct attcgtgatcatgatagcaca tactacgcagactccgtgcagggccggtttttcatctcgagagacaatttcaataatacattgtatctgcaaatggatggcctgcgagccgacgacacggccgtctattactgt	48	52	57	53
+JY8QFUQ01A9GRS	IGG2	ggcgactccatcagtggtcactac tggagctggatcaggcagcccccagggaagggactgcagtggattggttac atctatcacagtgggagcacc aactacaacccctccctcgagagtcgagtctccatttcagtagacacgtccaagaaccagttctccctgaggttgagttctgtgaccgctgcggacacggccgtgtattactgt	47	60	57	46
+JY8QFUQ01A9HIP	IGA2	ggattcacgtttggcatctatgcc atgagttgggtccgccaggctccagggagggggctggagtgggtcgcaagc atgggtaatagtgctggcagtaca tactacgcaggctccgtgaagggtcgcttcaacatctccagagacaattccaagaaaaccctgtatcttcaaatggacagcctgagagtcgacgacacggccagatattactgt	53	51	63	46
+JY8QFUQ01A9JOS	IGG1	ggattcaccttcagtgactactac atgagctggatccgccaggctccagggaaggggctggagtggatttcacac attagtagtagtggtagcatggta tacctggcagactctgtgaagggccgattcatcatctccagggacaacggcgagaactcactgtatcttcaaatgaacagcctgagagccgaagacacggccgtgtattactgt	55	50	60	48
+JY8QFUQ01A9KHI	IGA1	ggatacacgttcaccgactactat gtccactgggtgcgacaggcccctggacaagggcttgagtggatggcgtgg atcaaccctaacattggtgtcacc aagtctgcacaaaaatttcagggcagggtcaccatgaccagggacacgtccatcagcacagccttcatggagctgagcagcctgagatctgacgacacggccgtttattactgt	53	58	58	44
+JY8QFUQ01A9LZM	IGA1	ccggtcaacagtaatgactgctct tggacatggatccgagagtccgccgggaggggactggagtggattggccgt gtccatatgaatggccagacc gactacaatccatccttcggcagtcgtctcgccatgtccattgacacagtcaagaatgaattctcccttcgaatggtctctgtgaccgccgcagacacggccctatattactgt	47	59	55	49
+JY8QFUQ01A9M1O	IGA2	ggtgactctgtcactatgtcttat tgggcctggatacgtcagcccgccgggggaggcctggagttaattggacga acttctgccagtccaaaagtt acctacaatccctccctcaggagtcgagccaccatattcgaagacacttcaaagaatcaacttatcttgaaattggcctctgtgaccgccgcggacacggccatctactactgt	50	60	49	51
+JY8QFUQ01A9M5C	IGA1	ggattcaccttcagcaaccataac atgaactgggtccgccaggctccagggaagggctggagtgggtctcatgt attggtagtagtagtagtgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaagacacggctgtgtattactgt	60	50	56	46
+JY8QFUQ01A9MMF	IGA1	ggattcacctttagtaggttttgg atgacctgggtccgccagggtccagggaaggggctggagtgggtggccaac ataaagcaagttggaaatgagaga tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcattgtatctgcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	57	44	64	48
+JY8QFUQ01A9OA6	IGA2	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgataccaca taccacgcagactccgtgcagggccgattcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagtcgaggacacggccgtttattactgt	53	54	59	47
+JY8QFUQ01A9PH6	IGG1	ggattcaccttcagcagctataac atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtagtaggagtagtaccaaa aactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaattcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattattgt	61	47	57	48
+JY8QFUQ01A9PP5	IGA1	ggattcaccttcagtagctacggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt gtctcatttgatggaattcttgaa cactatgcagactccgtgaagggccgattcaccatctccagagacaattccaggaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggccgtgtattcctgt	50	54	61	48
+JY8QFUQ01A9R46	IGA1	ggattcacgttcagtagttatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatc atctggtatgatggaagtaatcaa tattatgcagactccgtgaagggccgattcaccgtctccagagacaattccaagaacacggtgtatctacaaatgaacagcctgagagccgaggacacggctgtctattattgt	56	47	61	49
+JY8QFUQ01A9S2H	IGA1	ggatacaccttcaccgactacttc atacactggctgcgacaggcccctggacaacgacttgagtggatgggatgg atcaaccctaagaatggtgacaca aagtatgcacagaactttcagggccgggtcaccatgaccagggacacgtccgtcagcaccatatatgtggaggtgagcagcctggaatctgacgacgcagccacttattactgt	58	57	56	42
+JY8QFUQ01A9W4E	IGA1	ggtgtctccatgagcagtcttacttactac tggggctggattcgccagccccccgggaagggcctggagtggattgggact ctcttttatagtgggagcacc tactacaatccgtccctcaggagtcgagtcaccatatccgctgactcgtccaagaaccagttctccctgaacctaaggtctgtgaccgccgcagacacggctgtctatttctgt	42	64	56	54
+JY8QFUQ01A9XRP	IGG1	ggattcaccttcagtagttatagc atgaactgggtccgcctggctccagggaaggggctggagtgggtctcggcc attagtattactagtagttccaca tattacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagacctcactgtttctgcaaatgaacagcctgagagccgaggacacggctctgtattactgt	53	54	56	50
+JY8QFUQ01A9YO5	IGA1	ggtggctccatcaccggaagtagttattat tggggctggattcgccagcccccagggaaggggctggagtggattggaagt atgtattacactgggagcacc gactacaacccgtccctcaagagtcgggtcacgatatccgcagacaagtcgaagagccaggtctacctgaagttggactctgtgaccgccgcagacacaggtgtttattactgc	51	54	65	46
+JY8QFUQ01A9ZDI	IGG1	ggattgcatttcaacagctatgcc atgcactgggtccgccaggctccaggcaagggcctggagtgggtggcagtt atatggtttgatggaagtaaaaa tattacgcagactcagtgaagggccgatccaccgtctccagagacaactccaagaacacgttgtatctgcaaatgaacagcctgagagccggggacacggccgtgtattattgt	56	49	61	46
+JY8QFUQ01AA0DL	IGA1	ggattcacctttagtagatattcc atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcactt atatcatacgatggaagtagaaga atctacgcagactccgtgaagggccgattcaccatctccagagacacttccaagaacacggtgtatctgcaaatgagtagcctgagacctgaggacacggctgtgtattactgt	57	50	58	48
+JY8QFUQ01AA0M8	IGA2	ggattcatcttcagcaaccttgcg atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatt atatcatatgatggaggtattaag tactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatctacaaatgaacaacctgagacttgaggacacggctgtgtattactgt	58	49	56	50
+JY8QFUQ01AA3GK	IGA1	aaattcacttttagtaactattgg atgaattgggtccgccaggctccagcgaagggactggagtgggtggccagt ataaagcaggatggggggagaca tattatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagaagtcactgtatctgcaaatgaacagcctgggagtcgaagacacggctgtttattactgt	59	43	62	48
+JY8QFUQ01AA57U	IGA1	gggttcgtttttgagaaatacgcc atgagttgggtccgccaggctcccggaaaggggctggagtgggtctcggct attggtgttgatgatgttggcaca tactacgcagcctccgtgaagggtcggttcaccatatccagagacgattccagggagattctctatctacaaatgagtaacctgagagtcgacgatacggccgtctattactgt	47	47	64	55
+JY8QFUQ01AA63Y	IGA1	ggatttgtctttagtagatatgcc atggcctgggtccgccaggctccagggcaggggctggagtgggtcgccagt attggcgggagtggtgataacaca tactacgcggactccgtgaagggccggttcaccatctccagagacaactccaataacaaactgtttctgcaaatggacagtttgcgagccggggacacggccagatatttctgt	48	51	66	48
+JY8QFUQ01AA9O7	IGG1	ggacgctccttgagaagctttggc atgcactgggtccgccaggctccaggcaagggactggagtgggtggcactt acttcgtatgacggaataggaaa tattatgcagactccgtgaagggccgattcaccatctccagagacaactccaagaatacgttatttctgcaaatggacagtctgagagctgaggacacggctctttattactgt	54	49	59	50
+JY8QFUQ01AA9UM	IGG1	ggtggctccatcggcagtggtagttattac tggagctggatccggcagcccgccgggaagggactggaataccttgggcgt atctataccagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatttcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgctgacacggccatttattactgt	49	63	57	47
+JY8QFUQ01AAQL2	IGA1	ggtggctccgtcagaagtaccagttactac tggggctggatccgccagcccccagggaaggggctggagtggattagtaac attcattctagtggaaccacc tactacaacccgtccctcaacagtcgagtcaccatgtccgtaaacacgtccaagaaccagttctccctgaggctgagttctgtgaccgccgcggacacggctgtatattactgt	50	63	56	47
+JY8QFUQ01AARBP	IGA2	ggattaaccctcagtgaccactac atggactgggtccgccaggctccagggaaggggctggagtgggttggccgt actagaaacaaagctaacagttacaccaca gaatacgccgcgtctgtgaagggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgt	65	54	58	42
+JY8QFUQ01AARXS	IGG1	ggattcattttcaacagctatgcc atgcactgggtccgccaggctccaggcaagggcctggagtgggtggcagtt atatggtttgatggaagtaaaaaa tattacgcagactcagtgaagggccgatccaccgtctccagagacaactccaagaacacgttgtatctgcaaatgaacagcctgagagccggggacacggccgtgtattattgt	57	49	60	47
+JY8QFUQ01AAS9C	IGG1	gggttctcactcaccactactggagtgggt gtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcagtc attttttgggatgatgatgag cgccacagcccatctctgaggagaaggctcaccatcaccaaggacatctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgt	53	60	57	46
+JY8QFUQ01AATZ4	IGA1	ggatacaccttcatcggccattat atacattgggtgcgacaggcccctggacaagggcttgaatgggtggggtgg atcaaccctaacagtggtgttaca aactatgcacagcagtttcaggacagggtcaccatgaccgtcgacacgtccatcagcactgcctacatggacctcaaaagtctaaagtctgacgacacggccatctattactgt	57	56	53	47
+JY8QFUQ01AAUM2	IGA2	ggattcaccttcaaaagtatggc atgaactggctccgccaggctccagggaaggggctggagtgggtcgcaacc attcgcagtagtggtacttccata cactatgccgactccgtgaagggccgattcactatcaccagagacaacgccaacaactcactgtatctgcaattgaacagcctgggagtcgaggactcggctgtgtatttctgt	52	56	57	47
+JY8QFUQ01AAUWG	IGA1	ggatatagttttgccacctactgg atcggctgggtgcgccagaggcccgggaagggcctggagtggatgggggtc atctatcctggtgactctgatacc agatacagcccgtccttccaaggccaggtcaccatttcagccgacaagtccctcagtatcgcctacctgcagtggagcagcctgcaggcctcggacaccgccatatattactgt	43	63	61	46
+JY8QFUQ01AAWVK	IGA1	ggattcacctttagtaaccattgg atgaactgggtccgccaggctccagggaaggggctggagtgggtggccaac ataatgccagatggaggtgagaaa ttctatgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	55	47	65	46
+JY8QFUQ01AAZ6M	IGA1	ggtgactccatcagcagtagttcttactac tggggctggatccgccagcccccagggaaggggctggagtggattgggagt atctttcatagagggagcacc tactccaacccgtccctcaagagtcgagtcaccatatccgtagacacgtccaagaaccttttctccctgaatctgagctctgtgaccgccacagacacggctgtttattactgt	48	62	55	51
+JY8QFUQ01AB19P	IGG1	ggattcagttttagtgacttttgg atgcactgggtccgccaggctccagggaaggggctggagtgggtggcccac gtgaaccaagacgggactgagaga tactatgccgactctgtgaagggccgcttcaccatctccagagacaacgccaagaaatcactgtttctgcaaatgaatggcctgagagccgaggacacggctctttattggtgt	50	50	66	47
+JY8QFUQ01AB1K5	IGG2	ggattcacctttaacaactacgcc atgtcctgggtccgccaggctccagggaaggggcttgagtgggtctcagct ataactgatagcggtctttacaca tactacgcagactccgtgaggggccggttcaccgtctccagagacacttccaagaacacgctgtttctgcaaatggacagcctgagagccgaggacacggccgtatatttctgt	49	59	57	48
+JY8QFUQ01AB3G5	IGA1	ggtggctccgtcagcagtagcacttactac tggggctggctccgccagtccccagggaaggctctggagtggattgggact atccatcatagtgggagcacc taccagaacccgtccctcaagagtcgagtcaccatgtccgtagacacgtccaggaaccagttctccctgaggctgagctctgtgaccgccgcagacacggctctttattactgt	44	66	60	46
+JY8QFUQ01AB3KI	IGA1	ggattcaccctcagtgactactac atgagttggttccgccaggctccagggaaggggctggagtggctttcatac attgcaggaagtggaaccaca tattacgcagattctgtgaagggccgattcaccatctccagggacaatgccgagcactcggtatacctgcaaatgaacagcctgagagtcgaagacacggccgtgtattactgt	54	52	58	46
+JY8QFUQ01AB51E	IGA1	ggattcgccttcagtagttccagc atgaactgggtccgccagggtccagggaaggggctggagtggatttcacac attaggggtagtagtagtaccacc cactacgcagactctgtgaagggccggttcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtctattactgt	55	53	60	45
+JY8QFUQ01ABDY1	IGA2	ggattcaccttcagtacctactgg atgcactgggtccgccaagttccagggaaggggctggtgtgggtctcacgt gttgatagtgatgggactagcaca gtctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacgctatatctgcaaatgaacagtctgaaagccgaggacacggctgtatattactgt	54	53	60	46
+JY8QFUQ01ABF8G	IGA1	ggtgactccattggtagcagtgcctactac tggggctgggtccgccagccccccgggaaggggctggagtggattggaagt atctattatggtggcaacacc tactacaacccgtccctcaggagtcgagtcagcatttccgcagacacgtccaagaaccagttctccctgcatctctactccgtgaccgccgcagacacggctctgtattactgt	44	66	58	48
+JY8QFUQ01ABFPI	IGG1	ggattcaccttcaacaactatgcc atgagttgggtccgccaggctccagggaaggggctggaatgggtctcaact attactagtggtggtggtagtaca ttgtacgcagactccgtgaagggccggttcaccatctccagagacaatttcaaggacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	55	51	59	48
+JY8QFUQ01ABGCX	IGA2	ggatatagttttgccacctactgg atcggctgggtgcgccagaggcccgggaagggcctggagtggatgggggtc atctatcctggtgactctgatacc agatacagcccgtccttccaaggccaggtcaccatttcagccgacaagtccctcagtatcgcctacctgcagtggagcagcctgcaggcctcggacaccgccatatattactgt	43	63	61	46
+JY8QFUQ01ABI4U	IGG1	ggtggctccatcaacagtagaattattat tggggctggatccgccagcccccagggaagggtttggagtggattggaaat atctattatagtgggaacacc tactacaatccgtccctcaagagtcgagtcaccgtatccgtagacaggtctaagaaccagttgtccctgaagctgacctctctgaccgccgcagacacggccgtatattactgt	54	55	55	51
+JY8QFUQ01ABKJ7	IGA1	ggattcagtttcagtgactactac atgagttggatccgccaggctccagggagggggctggagtgggtttcatat attgatagcggtggtaccgccatg tactactcagactccgtgaagggccgattcaccatctccagggacaacgccaagaagtcactgtttctgcaaatgagtagcctgagagccgaagacacggccgtgtactattgt	51	50	62	50
+JY8QFUQ01ABL5K	IGA1	ggattcaccttcagtatttattct atgcattgggtccgccaggccccaggcaaggggctagagtgggtggcagtt atatcacatgatggaactaataaa tattactcagactccgtgaagggccgattcaccatctccagagacaattccaagagcgcgctgtatctgcagctgaacgtcctgagcgccgaggacacggctgtctatttctgt	52	53	55	53
+JY8QFUQ01ABTVQ	IGA1	ggttacattgttaccacctctggt ttcagctgggtgcgacaggcccctggacaaggcctggagtggatgggatgg gtcagcggttataatgataaatcc aactatgcacagaagttcaaagacagaattatcatgaccacagacatatcaacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccatgtattattgt	61	47	57	48
+JY8QFUQ01ABYQ3	IGA1	ggattcgcttttggagattatgcc atgaactgggtccgccaggccccagggaagggactggagtgggtctcaggt ttgagcggtagaggcgtcagcaaa tattatgcagactccgtgaggggccggttctccatttccagagacaactccgggagcgaggcagtccttcaaatgagcagcctgagagtcgaggacacggccacttactactgt	48	51	69	45
+JY8QFUQ01ABZLF	IGG1	acattcacgtttagtcggtattgg atgagctgggtccgccaggctccagggaagggcctggagtgggtggccaac ataaaggaagacggaagtgagaga tattatgtggactctgtgaagggccgattcaccatctccagagacaatgccaagaactctctgtatctgcaattgaacagcttgagagccgaggacacggctgtgtattactgt	56	44	65	48
+JY8QFUQ01ABZPQ	IGG1	gaattcatccttgacagttatgcc atgagttgggtccgccaggccccagggaagggctggagtgggtctcggct attagtggaagtggtgcaaccaca tactacgcagactccgtgaagggccggttcgccatctccagagacaattccaagaacacgctatatctacaaatgaacaacctaggggccgaggacacggccgtttattactgt	54	54	59	45
+JY8QFUQ01AC0DA	IGG3	ggtttcaccttcaggagctctggc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagcagtagtactactaccaaa tactgcgcagactctgtgaagggccgattcaccatctccagagacaatgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	54	53	59	47
+JY8QFUQ01AC0DP	IGA1	ggtggctccatcagcggtacttctcattac tggggctgggtccgccagcccccagggaaggggctggagtggattggcagt atctactctggtgggaccacc tactacaacccgtccctcaagagtcgactcaccatgtccgtcgacacgtccaagaaccagatgtccctgcggctgagctctgtgaccgccgcagacacggctgtctattactgt	41	68	61	46
+JY8QFUQ01AC0IS	IGA2	ggattcacctttagccactttgcc gtgacctgggtccgccaggctccagggaagggtctggaatgggtctcaact attagcggtagtgatggtagcaag tactacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacaccctatatctgcaaatgaccagcctgagagccgaggacacggccgtatatttctgc	51	58	58	46
+JY8QFUQ01AC33X	IGA1	ggtagttccatcagtagcagtgattactac tggggctgggtccgccagtccccagggaagggtctggagtggattggaagt gtctattacagggggacgcag tacctcaacccgtccctccagagtcgagtttccatttccattggcacgtccaagacgcaattctccctgagactgaggtctgtgaccgccgcagacacggctatgtattactgt	45	57	62	52
+JY8QFUQ01AC5GC	IGA1	ggtggctccgtcagcagtggtaattactac tggaactggatccgccagtccccagggaaggggctggagtggattgggagc gtctcctatggtgggaacacc tactacaacccgtccctcatgagtcgagtcgacatattcgtcgacacgtccaagagtcagttgtccctgaaggtgagctctgtgaccgccgcggacacggctgtgtattactgt	44	57	66	49
+JY8QFUQ01AC792	IGG1	ggattcaccttcagtagttatagc atgaactgggtccgccaggctccagggaaggggctggagtggatttcatac attagtggtagtggcggtaccata tactatgcagactctgtgaagggccgcttcaccatctccagagacaatgccaagaagtcactgtatcttcaaatggacagcctgagagacgaggacacggctgtgtattactgt	55	47	60	51
+JY8QFUQ01AC7WH	IGA2	ggattcaccttcagtagctataga atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attgatagtagtagtcacaacata tactacagagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	61	51	56	45
+JY8QFUQ01ACBLB	IGA2	ggattcatatttactagatatgcc atgacctgggtccgccaggctccagggaagggtctggagtgggtcgcttct atcagtggtagtgggattagtaaa aagtacgcagacggcgtggagggccgattcaccatctccagagacagttccgagagaacactgtatctacaaatgaacagcctgagagtcgaggacacggccacatattattgt	57	46	62	48
+JY8QFUQ01ACCKZ	IGA2	ggattcacttttagtggcgcctgg atgagctgggtccgccaggctccagggaagggctggagtgggttggccgt gttagaagcggtgggacaaca gactaccctgcacccgtggaaggcagattcaccatctctagagatgatcgaaaaaacacgttgtatctggaaataagtagcctgaaaatcgaagacacagccgtatattactgt	56	45	63	45
+JY8QFUQ01ACENJ	IGA1	ggattcgccttcagtacatatatc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagttttagtagtgattacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgacgacacggccgtgtattactgt	57	52	54	50
+JY8QFUQ01ACFOO	IGA1	ggattcaggtttgatgattatgcc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggt attagctggaatagtggtagtata gggtatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgcgacctgaggacacggccttgtattactgt	51	47	64	51
+JY8QFUQ01ACH9Z	IGA1	ggattcacctttaacaactatgcc atgacctgggtccgccaggctccggggaaggggctggagtgggtctcagct atcagtggcagtggcggtaccact tactacgcagactccgtgcagggccgcttcaccatttccagagacaatcacgaaaacaccctgtatctggaaatgagtagcctgagagccgaggacgcggccgtctattactgt	49	59	61	44
+JY8QFUQ01ACHS4	IGA2	ggtggctccatcagtagtcattac tggagctggatccggcagcccccaggggagggactggagtggattggctat atctctgacagtggaagcacc aattacaacccctccctcaagagtcgagtcactatatcagtagacacgtccgagaggcagatctccctgaagctgacctctgtgaccgctgcggacacggccgtatattactgt	49	58	58	45
+JY8QFUQ01ACLAL	IGG1	ggtgcctccatcaggagttattat tggagttggatccggcagcccccaggaaagggactggagtggattggttat attaattatgttggggacacc gattacaacccctccctcaagagtcgagtctccatgtcagcagccacgtccaagaaccaggtcttcctgcagctgacctctgtgaccgctgcggacaccgcctattatttctgt	46	57	54	53
+JY8QFUQ01ACLRQ	IGA1	ggtggctccatcagcagtgataattgg tggagttgggtccgccagcccccagggaagggactggaatggattggggaa atatatcatagtgggagcacc tactacaacccgtccctcaagagtcgagtcaccatatccctagacaagtccaagagtcaattcttcctggagctgaggtctgtgaccgccgcggacacggccgtatattattgt	52	53	61	47
+JY8QFUQ01ACLU1	IGA2	ggattcacctttagtacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaacaagatggaagtgacaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	59	47	62	45
+JY8QFUQ01ACRP3	IGA1	ggattcatcttcagcaaccttgcg atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatt atatcatatgatggaggtattaag tactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatctacaaatgaacaacctgagacttgaggacacggctgtgtattactgt	58	49	56	50
+JY8QFUQ01ACRUV	IGA2	gggttcagcgtcagtaataacttc atgacctgggtccgccaggttccagggaaggggctggagtgggtctcagtt atttatagcaatggtgaaaca atctacgcagactccgtgaagggccgattcactatgtccagagacaattccaagaacacactgtttcttcaaatgaacagcctgagaggcgaggacacggccgtgtaccactgt	56	49	58	47
+JY8QFUQ01ACT7P	IGG1	ggattcaccttcagtgaccacttc atgagttggatccgccaggctccagggaaggggctggagtgggtttcatac attagtggcagtggtagtataata tattacgcagactctgtgaggggccgattcaccatctccagggacaacgccaagaattccctctatctgcaaatggacagcctgagagacgaggacacggccgtgtatttttgt	52	49	60	52
+JY8QFUQ01ACURH	IGA1	ggtggctccatcaccacttactac atcagctggctccggcagcccccagggaagggactggagtggattgggtgt atctcttatggtggggacact acctacaactcctccctcaagagtcgagtcaccatatcaggacaagggtccacgcgccagttctccctgaggctgagctccgtgaccgttgcggacacggccgtgtattactgt	42	63	59	46
+JY8QFUQ01ACVQ4	IGA1	ggtggccccatcaacacacatgacttctat tggacgtggatccggcagtccgccgggaggggactggagtggctcggacgt gtctatatgaatggcattagt gaccacaatccagtcttcactagtcgtctcaccatgtccattgacacgtccaagaaccagttctccctgaggctgacctctgtgaccgccgcggactcggccctatattactgt	45	64	56	51
+JY8QFUQ01ACXAI	IGG1	ggattcacctttaccaactacgcc atgagctgggttcgccaggttccagggaaggggctggagtgggtctcactt attagtgttcgtggcgatgacacc ttctatgcagactccgtgaagggccggttcaccatctccagagacaactccaagaacacgctgtatctgcaaatggacatcctgaaacccgaggacacggccgtttatttttgc	49	57	56	51
+JY8QFUQ01ACXLB	IGA1	ggattcaccgtcagtaccaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagta atttatcctgatggtactaca cactatggagcctccgtgaggggccggttcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	51	53	59	47
+JY8QFUQ01ACXOG	IGA1	ggattcaccttcaattcctatacc atgatgtgggtccgccaggctccggggaagggactggagtgggtctcaacc attagtcctagtagtcagtacata tactatgcagactctgtggagggccgattcaccatctccagagtcgacgcccggagttcagtgtttctgcaaatgaacagcctgagagacgacgacacggctgtgtattactgt	50	53	58	52
+JY8QFUQ01ACXS7	IGA2	ggattcacgtttggcatctatgcc atgagttgggtccgccaggctccagggaggggcgtggagtgggtcgcaagc atgggtaatagtgctggcagtaca tactacgcaggctccgtgaagggtcgcttcaacatctccagagacaattccaagaaaaccctgtatcttcaaatggacagcctgagagtcgacgacacggccagatattactgt	53	51	63	46
+JY8QFUQ01ACXSL	IGG1	ggtgagtccttcactaattactac tggagctggatccgccagtcccccaggaagggtctggagtggcttggggag gtccatcatagtggacgcacc gactacaacccgtccctcaagagtcgaatcaccatgtcgttagacacgtccgaaaatcagttctccctgaagttgacttctttgaccgccgcggacacggcagtatattattgt	48	58	54	50
+JY8QFUQ01AD4KE	IGA1	ggtggccccatcagcagcagcacttactac tggacttggatccggcaggccgccgggagggactggagtggatcggacgt gtttatactagtgggagcacc aactacaatccctccctcaagagtcgaatcaccatatcactagacacgtccaagaaccagatcttcctgaagttgaggtctgtgaccgcctctgacacggccgtatattactgt	52	61	56	46
+JY8QFUQ01AD5QJ	IGA2	ggattcatgtttagtagctttccc atggcctgggtccgccaggctccagggaaggggctggagtgggtctctagt attagtggtaggggtggtaacaca tacttcgcagactccgtgaagggccggttcaacatctccagagacaattccaagaacacgatgtatttgcaaatgaacagcctgagagccgaggacacggccttatattactgt	52	48	62	51
+JY8QFUQ01AD5UE	IGA1	ggattcaccttcagtaattactgg atgtactgggtccgccaagttccagggaaggggctggtgtgggtcgcccgt attaataacgatgggagtagcaaa acttacgcagactccgtgaggggccgattcaccatctccagagacaacgccaagaacacactgtttctgcaaatgaacagtctgagaggcgaggacacggcttcatattattgt	57	49	59	48
+JY8QFUQ01AD74T	IGA2	ggattcaccttcatcagttatggc atgagttgggtccgccagtttccagggaaggggctggagtgggtctcatct attagtgattatggtaataccgca ttctacgcagactccgtgaagggccggttcaccatctccagagacaattccaacaacacgctgtttctgcaaatgagcagcctgagagccgaggacacggccgtttattattgt	50	51	57	55
+JY8QFUQ01AD79A	IGG1	ggaatcaactttcgtgatcatgcc atgagctggttccgccaggttccagggaaggggctggagtgggtaggtttc attagaagttctcaatacggtggagataca gaatacgccgcgtctgtggaaggcagattcaccatctcaagagacgattccaaaagcatcgcctatttggatatgaatagcctgaaaatcgacgacacagccctatattactgt	61	47	58	53
+JY8QFUQ01ADCX5	IGG2	ggtggctccatgagaagtggaagcaactac tgggcctggatccggcagcccgccgggaagggactggagtggcttgggcgt atatatgccactgggagcagc aaccacaacccctccctgcagggtcgagtcaccatgtcagtagacacgtccaaaaaccagttctccctgaggctgatctctgtgaccgccgcagacacggccgtgtacttctgt	47	64	65	40
+JY8QFUQ01ADDDA	IGA1	ggtgactccatcagtagtaactac tggaactggatccggcagcccccagggaagggactggagtggattgggtat atctatcacagtgggagcacc agctacaacccctccctcaggagtcgagtcaccatatcattagacacgtccaagaaccagttctccctgaaactgagctctgtgaccgctgcggacacggccgtgtattactgt	52	59	55	44
+JY8QFUQ01ADG23	IGG1	ggtggctccatcgacactcaaaattactac tggggctggattcgccagcccccagggacgggactggagtgggttggcagt gtccgctatggcgagagcacc tattacaacccgaccctcaaaagtcgactcaccatatccatagacacgtccaggagccagttatccctgagactgagttctgtcaccgccgccgacacggcagtttactactgt	50	66	56	44
+JY8QFUQ01ADGL2	IGA1	ggattcgactttggtagttattgg atgagttgggtccgccaggctccagggaagggactggagtgggtggccagc ataaagcgagatgcaagtgagaag taccatgtggaatctgtgcagagacgattcaccatcttcagagacaacgtcaggaactcactgtatttgcagatgaacagcctgagagacgaggacacggctgtgtattactgt	57	40	68	48
+JY8QFUQ01ADMJX	IGG1	ggtgcctccatcaggagttattat tggagttggatccggcagcccccaggaaagggactggagtggattggttat attaattatgttgggggcacc gattacaacccctccctcaagagtcgagtctccatgtcagcagccacgtccaagaaccaggtcttcctgcagctgacctctgtgaccgctgcggacaccgcctattatttctgt	45	57	55	53
+JY8QFUQ01ADN3R	IGA1	ggattctcactcagcaccaatggaatgggt gtgggttggatccgccagcccccgggagaggccccagactggctcgctctc atttattgggatgatgataag cgataccggccatccctagagagtagactcaccatcaccaaggacatctccacaaaccaggtggtccttagaatgaccgacatgggccctgcagacacagccacatatttctgt	54	63	55	44
+JY8QFUQ01ADNKP	IGA1	ggattcagatttagcagctatgcc atgagctgggtccgccagactccagaaaaggggcttgaatgggtctcaggc atcaatgataacggtcgaagcata aactacgcgggctccgtgaagggccggttcaccatctccagagacaattccaagagcacgttgtatctgcagatggatagcctgagccccgaggactcgggcatatattattgt	56	51	60	46
+JY8QFUQ01ADOO5	IGA1	ggtggccccatcaatagtagtgactactat tggacttggatccggcagcccgccgggaggggactggaatgggtcgggcgt gtcttcatgaatggccttacc gactacaatccatccttcggcagccgtctcaccatgtccattgacatgtcgaagaaccaattctccctgaagttgacctctgtgaccggcgctgacacggccctttattactgt	44	62	57	53
+JY8QFUQ01ADRD7	IGA1	ggtgactcccacttc tggagctggatccggcagcccccgggaaagggcctggagtggattggttat gtctataacagtgggaccacc aactacaacccctccctcaggagtcgagtcaccatgtctatagacacgtccaagaagcagatctctctgaggttgaactctgtgaccgctgcggacacggccgtgtattactgt	45	57	55	44
+JY8QFUQ01ADTQJ	IGG2	ggattcacctctcctagatactgg atgaattgggtccgccaggcttccgggaaggggctggagtgggtggccaac ataaagcaagacggaagtgaggaa aactttgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaattcaatgtctctacaaatgaacagcctgagagtcgaggacacggctgtatattattgc	58	47	63	45
+JY8QFUQ01ADV0A	IGA1	ggtggctccatcatcagagacagtgcctac tggggctggatccgccagcccccagggaaggggctggagtggcttgggagc atctattatagtgggagtacc tactacaatccctccctcaagagtcgagtcaccatatccgtagacacgtccaagaagcagttctccctgaagctgagctctgtgaccgccgcagacacggctgtatattactgt	49	61	60	46
+JY8QFUQ01ADWZ0	IGA1	ggattcagtttcagtagctttggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatg atctggtatgatggaactaataaa tattatgcagactccgtgaagggccgattcaccatctcgagagacaattccaagaacacactgtttctgctcatggacagcctgacagccgacgacacggctgtctattactgt	53	50	59	51
+JY8QFUQ01ADZFS	IGG1	ggatttacttttaacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccaac ataaagcaacatggaggtgaaacg tactatgcggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	58	49	61	45
+JY8QFUQ01AE2LT	IGA1	ggattcacgttcaatgactatgcc atgagctgggtccgccaggcgccagataaggggctggagtgggtctcgact gtgagtagtaggggtgataccaca cactacgcagacttcgtgaagggccggctcaccatctccagagacaattccaggaacacactgtatctgcaaatgaacagcctgacagccgaggacacggccatatattactgt	56	55	60	42
+JY8QFUQ01AE3XC	IGG1	ggtgactccatcagtactaataattactac tgggcctggatccgccagccccagggagggggctggagtggattgggaat atctattatagcgggaccacc tactacaatccgtccctcaagagtcgagtcaccatgtccgtagacacgtccaagaaccacttctccctgaggttgagttctgtgaccgccgcagacacggctctctattactgc	50	62	54	49
+JY8QFUQ01AE4GX	IGA2	ggagtcactttcactaacgtgtgg atgagttgggtccggcaggctccagggaaggggccggagtgggttggccgt attaaaagggagactgagggggggacaata gactacgctgcacccgtgacagcaagattcaccatgtcaaaagatgattcaaaaaacacactatatctgcaaatgaacaacctgaaaatggaggacacagccgtgtattactgt	67	44	65	43
+JY8QFUQ01AE6UZ	IGA2	ggattcatcttcagtgactatggc atgcactgggtccgccaggctccaggcgaggggctggattgggtggcattt atacgatatgatggaaatgagata cactatccagactccgtgaggggccgattcaccatctccagagacaattccaagaacaccctatatctagaaatgaacaatgtgagacctgaggacacggctgtgtattactgt	58	48	57	50
+JY8QFUQ01AEDZX	IGG1	ggatttacctttagctcctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtcgcaatt attagtggtagtgatggtcgcaca tactacgccgactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaataaacagcctgagagccgaggacacggccgtatattactgt	52	55	59	47
+JY8QFUQ01AEE83	IGA2	ggattcagtttcactggttttacc gtgatctgggtccgccaggctccaaggaaggggctggaatggatctcatcc gtcactactaatggtctcacg tactacgcagactcagtagagggccgattcaacatctccagggacaacgccaacaatttagtgtttctgcaaatgaacagcctgagagtcgaggacactggtgtatattattgt	53	49	54	54
+JY8QFUQ01AEF8J	IGA1	ggattcaccttcagtagttatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcatatgatggaagtgataaa tactatgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtttctgcaaatgaacagcctgagaagtgaagacacggctgactattactgt	58	47	59	49
+JY8QFUQ01AEH4G	IGG1	ggcttcagtttgagtacttatacc atgaactgggtccgccaggctccaggaaggggctggagtgggtttcactc attagtaagactagtaatgtcata tactacgcggactctgtgaagggccggttcaccatctccagagacaatgccgagaattcactgtttctgcaaatggacagcctgagtgccgaggacacgggtgtatattactgt	52	47	59	54
+JY8QFUQ01AEM2N	IGA1	ggtgactccatcagtagttacttc tggagttggatccggcagcccccagggaagggactggagtggattggatat gtctattacagtggaagtacc aagtataatccttccctcgaaagtcgagtcaccatatcattagacacgcccaacaaccagttctccctgagcctgacctatgtcaccgctgcggacacggccatatactactgt	53	57	50	50
+JY8QFUQ01AEMXL	IGA2	ggattcacctttggcacctctgac atggcctgggtccgccaggttccaggggaggggctggagtgggtctcacac attgatatcagaggtgccaca cagtataaagactccgtgaagggccggttcaccatctccagagacaattccaagagcactctatatctgcaaatgaacaccttgcgagccgaggacacggccgtatattactgt	52	56	57	45
+JY8QFUQ01AENJP	IGG1	ggattcaccttcaacaactatgcc atgagttgggtccgccaggctccagggaaggggctggaatgggtctcaact attactagtggtggtggtagtaca ttgtacgcagactccgtgaagggccggttcaccatctccagagacaatttcaaggacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	54	51	60	48
+JY8QFUQ01AEQU4	IGG1	ggtggctccatcaacagtagaaattattat tggggctggatccgccagccccccagggaagggttggagtggattggaaat atctattatagtgggaacacc tactacaatccgtccctcaagagtcgagtcaccgtatccgtagacaggtctaagaaccagttgtccctgaagctgacctctctgaccgccgcagacacggccgtatattactgt	55	56	55	50
+JY8QFUQ01AEU6X	IGA2	gaattcagtttcactgaccaccac atgagctggatccgccgggctccagggaaggggctggagtgggtgtcatac attagtcctacaggtagtgccata ttttacgcagactctgtgaaggcccgtttcaccatctctagggacaacgccaagaatttactatatctacaaatgaacagcctgagacccgaggacacggccatctattactgt	56	55	52	50
+JY8QFUQ01AEVWH	IGG1	ggaatcaccttgagtccctattgg atgacctgggtccgccaggctcccgggaaggggctggagtgggtggccaac ataaaccaagatggaggtgagaga aattatgtggcctctgtgaggggccggttcaccatctccagagacaacgccaggaattcactgtatctgcaaatgaacagcctgagagtcgacgacacggctgtatattattgt	54	49	65	45
+JY8QFUQ01AEX25	IGA2	ggattcaccttcagtgactactac atgaactggatccgccaggctccagggaaggggctggagtggatttcaaac atcaatagtagtgggaggaccata tattacgcagactctgtgaagggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	61	52	56	44
+JY8QFUQ01AEYEY	IGA1	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	62	45
+JY8QFUQ01AEYN1	IGA2	ggattcacctttagtaaccattgg atgaactgggtccgccaggctccagggaaggggctggagtgggtggccaac ataatgccagatggaggtgagaaa ttctatgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	55	47	65	46
+JY8QFUQ01AEYTS	IGG3	ggattcctttttagaacctattgg atgagttgggtctgccaggctccagggaaagggctggagtgggtggcccac ataaaccaagatggacgtgaggca tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	58	44	61	50
+JY8QFUQ01AF30Y	IGA2	gggttcaccgtcagtagcaagttc atgagctgggtccgccagggtccagggaaggggctggagtgggtctcagtt acttatcctgatggtactaca cattatagagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	53	50	59	48
+JY8QFUQ01AF3QZ	IGG1	ggattcacgtttagtagatttgtc atccattgggtccgccagactccaggcaaggcgctggagtgggtggcagtt atttggtatgatggaactaacaaa tactatacagaatccgtgaagggccgattcaccatctccagagacaattccaagaacatgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtttactactgt	59	47	55	52
+JY8QFUQ01AF3TS	IGA2	ggattcacgtttagtaacagttgg atgggctgggcccgccaggctccagggaaggggctggagtgggtggccagc acaaaccaagatgcaagtgagaaa aagtatgtggactctgtgaggggccgattcaccatctcaagagacaacgccaagaactcactgtatttacaaatgaacagcctaagagccgaggacacggctttatatttctgt	61	46	63	43
+JY8QFUQ01AF4Q3	IGA1	ggattcagcctcgccacttatagt atgagttgggtccgccaggctccaggaaaggggctggagtgggtctcaggt attagtgatcatggtattgacata tactatgcagactccgtgaggggccggtttaccatctccagagacatttccaagaacacggtgtatctacaaatgaacagcctgggagtcgaggacacggccgtatattactgt	53	47	61	52
+JY8QFUQ01AF4Z9	IGG4	ggattcagctttagcgattttgcc atgagttgggtccgccaacctccaggaaaggggctggagtgggtcgcaagt gttgacagaggtggcactaca tactatgcaggctccatgaagggccggctcgccgtctctagagacgatgtcgacaagacagtgagtctgcagatgaacaatctgacagtcgaggacacggccacatatcactgt	52	50	64	44
+JY8QFUQ01AF664	IGA1	ggtggctccataagaagttactat tggagttggatacggcactccgccgggaagggactggagtggatcgggcgc atatatgacagtggtagtaca aactacaatccctccctcaagagtcgagtcagcatgtcagtggacacgtccaagaaccaggtctccctgaagttgatctctgtgaccgccgcggacacggccatgtattattgt	52	51	60	47
+JY8QFUQ01AF6U3	IGG2	ggattcaacctcaatacctttggc atgaactgggtccgccaggcgccagggaagggactggagtgggtctcacac gtcaatcggggtagtactcacata tactacgcaggctcagtgaggggccggttcaccatctccagagacgacgccgggaactcagtctatctgcaaatgaatagcctgagagccgaggacacgggtttattattgt	52	53	62	44
+JY8QFUQ01AF7Y6	IGA2	ggtttcacctttagtaacgattgg atggactgggtccgccaggctccagggaaggggctggagtgggtggccaat ataaagggagatggaagtgagaaa actatgtagactctgcgaagggccgattcatcatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattactgt	59	43	65	45
+JY8QFUQ01AF8I8	IGG1	ggattcactttcagtaatgtttgg atgagttgggtccgtcaggctccagggaaggggctggaatgggttggccgt attaaaagcacaattgatggtgggacaaca tcctacgctgcccccgtgaaagacagattcatcatctcacgagaggactcagaaaacaccttgtctctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgt	61	49	59	50
+JY8QFUQ01AF8ND	IGG2	ggtggctccatcagcagcggttattactac tggagctggatccggcagcccgccggggagggactggagtgggttgggcgt atctctgccagtggggacacc aactacaacccctccctcaagagtcgagtcaccatatcagtgaacacgtccaagaaccagttctccttgaggctgacctctgtgaccgccgcagacacggccgtgtattactgt	45	64	63	44
+JY8QFUQ01AF8SZ	IGA1	ggattcactgtcaataacaactac atgggttgggtccgccaggctccagggaaggggctggagtgggtctcgact atttattacggtggcaccaca tattacgcagactccgcgaagggccgattcaccatctccagagacacctccaggaacacactttttcttcagatgaacagcctgagaagcgacgacacggctctatattattgt	54	55	53	48
+JY8QFUQ01AF9LD	IGA1	ggattctcctttgatatatattgg atgagatgggtccgcctggctccagggaaggggctggagtgtgtggccgac ataaagcaagatggaagtgagaag tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtttctgcaaatgaacagcctgagagtcgaggacacgggtgtgtatttctgt	55	42	65	51
+JY8QFUQ01AFBN6	IGG4	ggtggctccgtcagcagtggtagttactac tggagctggatccggcagcccccagggaagggactggagtggattgggtat atctattacagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgt	50	59	61	46
+JY8QFUQ01AFCKU	IGA1	ggattcacctttaacctctatgtc atgcactggttccgccaggctccagggaaggggctagagtgggtctcaact attcgtgccaggggtgataggaca cactacgcagactccgtgaagggccgcttcaccatctccagagacaattccaagaacacgctgtttttgcaaatgtacagcctgagagtcgaggacacggccatatattactgt	53	56	55	49
+JY8QFUQ01AFCRV	IGG1	ggattcacgtttagtagttttgtc atccattgggtccgccagactccaggcaaggcgctggagtgggtggcagtt atttggtatgatggaactaacaaa tactatacagaatccgtgaagggccgattcaccatctccagagacaattccaagaacatgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtttactactgt	58	47	55	53
+JY8QFUQ01AFDCM	IGA2	ggtgactccatcagtaatactgattactac tgggtctggatccgccagaccccagggaagggactggagtggattgggagt atcgatttcagtgggagcacc tactacaacccgtccctcaagagtcgagtcaccatatccatagacacgtccgagaaccggttctccctgaggttgacctctatgaccgccgcagacacggccgtctattactgt	51	61	56	48
+JY8QFUQ01AFE1S	IGA1	ggattctcctttgatatatattgg atgagatgggtccgcctggctccagggaagggctggagtgtgtggccgac ataaagcaagatggaagtgagaag tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtttctgcaaatgaacagcctgagagtcgaggacacgggtgtgtatttctgt	55	42	64	51
+JY8QFUQ01AFE74	IGA1	ggattcacctctggaaagtatgcc atgcactgggtccggcaagctccagggaaggacctggagtgggtctcaggc ttgggtttggataatggtaggata gactacgcggactctgtgaagggccgattcaccatctccaaagacaacgccaagaattccctgtatctgcaaatgaacagcctgagagttgaggacacggccatgtattactgt	55	49	62	47
+JY8QFUQ01AFES7	IGA2	ggattcactttcagtgacgcctgg atgagctgggtccgccagattccagggaaggggctggagtgggttggccgt ataaaaaacaaagctatgggtgagacaaca gacttcgctgcacccgtgagaggcagattcagtatctcaagagatgattcaaaaaatacactgtatctgcacatgagtggcctgaaaaccgaggacacagccgtctattattgt	63	46	62	48
+JY8QFUQ01AFGYG	IGA1	ggattcacgttcaacatttatggt ctacactgggtccgccaggctccaggcaaggggctagagtgggtggcacac atatcatatgatggaaataagaaa tactacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgacagctgaagacacggctatttattactgt	64	51	51	47
+JY8QFUQ01AFJBJ	IGG1	ggatacagctttaccaattactgg atcggctgggtgcgccaggtgcccggaaaaggcctggagtggatggggagc atctatcctcgtgactctgacacc agatacagcccgtccttccaaggccaggtcaccttctcagccgacaagtccatcagtaccgcctaccttcagtggagcagtctagcgacctcggacaccgccatgtattactgt	47	65	56	45
+JY8QFUQ01AFKEB	IGA1	ggagacacattccccagccatgac atcaactgggtgcgacaggccactggagaagggcttgagtggatgggacgg atgaaccctaagactggtgacaca agctttgcacagaagttccacgatagagtcaccatgatcagtgacacctccataagtacagtgtacatggagctgagtagcctgagatctgaagacacggccatttactattgt	62	50	58	43
+JY8QFUQ01AFSUH	IGA1	ggattcaggtttagcatctattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaagtgagaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagcagcctgagagccgaggacacggctgtgtattactgt	58	45	66	44
+JY8QFUQ01AFUZV	IGG2	ggattcgtctttactaatcattgg atgagttgggtccgccaggccacagggaaggggccggagtgggtggccaac atatccccagacggaaatacgaaa tattttggggactctgtgaggggccgattcagcgtctccagagacaacggcaagcagtcatcgtatctggaaatgaataccctgacagtcgatgacacggctgtatacttctgt	54	48	63	48
+JY8QFUQ01AFVJM	IGG1	ggattctccttcagcaattatgcc atccactgggtccgccaggctccaggcaaggggctggagtgggtggcgacc atttcatatgatattaataaaaaa tattatgcagagtccgtgaggggccgattcaccctctccagagacaattccaagaacactctcgatctgctcatggatacccttcggttcgacgacacggctgtctattattgt	52	55	51	55
+JY8QFUQ01AFVUY	IGA1	ggatacatctttaccgactattgg atcggctgggtgcgccagacggccgggaaaggcctggagtggatgggaatc atctatcctggtgactctgacacc agttatggcccgtccttccaaggccaggtcaccatttcagccgaccagtccatcaccaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatatattactgt	46	65	57	45
+JY8QFUQ01AFZBJ	IGA2	ggattccagttagcaactatgcc atgagctgggtccgtcaggctcctgggaaggggctggagtgggtctcaact attagtaaagacggtgtttacacc tactaccccgactccgcgaagggccgggtcaccatctccagagacaattccaagaatacaatttatttgcaaatgaacagcctgacagccgaggacacggccagatattactgt	57	54	55	46
+JY8QFUQ01AG0D6	IGA1	ggattcaccttcaatctattcggg atgctctgggtccgccaacttccggggaagggactggtgtgggtctcacat attaatactgatggtactaaaata gatcacgcggactccgtgaagggccgattcaccacctccagagacaacgccaagaacaccctctatctgcaaatgaacagtctgagagccgaggacacggccgtatatttctgt	56	56	53	48
+JY8QFUQ01AG2OG	IGA1	ggatttagtatcagtaattatggt attcactgggtccgccaggctccagggaggggactggaacttgtttcagct attaccaacaatgcgcatagtgta gtctatgtagactctgtgaagggcagattcatcatctccagagactattccaagaacacgttgtatcttcaaatgggcagactgagaccagaagacacggctgtgtactactgt	58	44	54	57
+JY8QFUQ01AG5LX	IGA2	ggattcaacgtcagtggatactgg atgcactgggtccgccaagtgccagggaaggggctggtatgggtctctagg ctttcggatgatgaaattactata acttacgcggactttgtggagggccgattcaccatctccagagacaacgccaggaacgaggtctatctgcaaatgaatgatttgagagtcgacgatacggctgtatacttttgt	53	43	63	54
+JY8QFUQ01AG60V	IGG2	ggattcaccttcagtagttatagc atgcactgggtccgccaggctccagggaagggactggagtgggtctcctcc attagtagtaatagtgcctacaca gaccacgcagactcagtgaagggccgattcaccatctccagagacaacgacagaggtcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	54	58	44
+JY8QFUQ01AG93B	IGA2	ggatcacctttggcacctctgac atggcctgggtccgccaggttccaggggaggggctggagtgggtctcacac attgatatcagaggtgccaca cagtataaagactccgtgaagggccggttcaccatctccagagacaattccaagagcactctatatctgcaaatgaacaccttgcgagccgaggacacggccgtatattactgt	52	56	57	44
+JY8QFUQ01AG9DV	IGG2	ggacgctccttgagaagctttggc atgcactgggtccgccaggctccaggcaagggactggagtgggtggcactt acttcgtatgacggaaataggaaa tattatgcagactccgtgaagggccgattcaccatctccagagacaactccaagaatacgttatttctgcaaatggacagtctgagagctgaggacacggctctttattactgt	55	49	59	50
+JY8QFUQ01AGDKF	IGA1	gaattcacctttagcagttttgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaagc attggtactagtgttgttaacaca tggtacgcagactcagtgaagggccggttcgccatttccagagacaattccaagagcacgctgtatttgcaaatgaatagcctgagagtcgaggacacggccgtatattactgt	52	47	62	52
+JY8QFUQ01AGDVH	IGG2	ggattcaccttaagtgatcactac atggactgggtccgccaggctccagggaaggggctggagtgggttggccgt actaaaaacaaagctaacggttacactaca cactacgccgcgtctgtgagaggcagattcattctttcaagagacgattcaaagaactcagtgtatctgcaaatgaacagcctgaaaatcgaggacacggccgtctattactgt	63	51	57	48
+JY8QFUQ01AGDVR	IGA1	ggattcaccttcaatattttttct atgcactgggtccgccaggctccaggcaagggactagagtgggtgtcactt gtttcatatgatggatctaagaaa aagtacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtatctgcaaatgaacagcctgagacctgaggacacggctgtgtattactgt	58	49	53	53
+JY8QFUQ01AGGIL	IGA2	ggattcacatttagcaacttttgg atgagctgggtccgccagactccagggaaggggctggagtgggtggccaaa ataaacccagacggaagtgagaaa tactatgtggactctgtgaagggccgattcaccacctccagagacaactctagaaactcgctgtgtctgcaaatggacagcctgagagccgaggacacggctgtgtattactgt	58	48	63	44
+JY8QFUQ01AGHV3	IGG1	ggtgactccatcagtagtgattctcactac tggagttggatccggcagcccgccgggaagggactggagtggattgggcgt gtctacgccagtgggaccacc aattacagccctccctcaagagtcgagtcaccatttcagtggacacgtccaggaatcaattctccctgaagttgaattctgtgaccgccgctgacacggccgtttatttctgt	45	59	59	52
+JY8QFUQ01AGKNE	IGA2	ggattcacctttagtagttactgg atgcactgggtccgccaaactccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	57	50	62	44
+JY8QFUQ01AGKQB	IGA2	ggattcacctttagtaaccattgg atgaactgggtccgccaggctccagggaaggggctggagtgggtggccaac ataatgccagatggaggtgagaaa ttctatgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	55	47	65	46
+JY8QFUQ01AGMKR	IGA1	ggtgtctccatcagtagtaattactgg tggatttgggtccgccagtccccaggggaggggctggagtggattggagaa gtctatcatactgggaccacc tattacaacccgtccctgaagagtcgagtcaccctgtcagtagacaagtccaggaatcagttctccctggagatgacttctgtgaccgccgcggacacggccgtgtatttctgt	45	54	62	52
+JY8QFUQ01AGQWQ	IGA2	ggattcaccttcagtgactacagc atgaactgggtccgccaggctccagggcaggggctggagtgggtctca tatagtcgcggaagaaccaca tactacgcagactctgtgcagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgacagccgaggacacggctgtttattactgt	54	56	55	42
+JY8QFUQ01AGRBK	IGA1	ggattcaccttcagctcccattgg atgagctgggtccgccagactccagggaagggctggagtgggtggccaac ataaaggaagatggaagtgtgaag tattatgtggactctgtgaggggccgattcaccatctccagagacaacgccaagaattcattgtatctgcagatgaacagcctgagaggcgaggacacggctgtctattactgt	55	46	65	46
+JY8QFUQ01AGS4P	IGG1	ggattcaccttcagtacctatgct atgtactggatccgccaggctccaggcaaggggccagagtgggtgtcagtg atatcacatgatggaaataaggaa gaatacgcagactccgtgaagggccgattcaccatttccagagacaactccaagaaaatgttgtacctgcaaatgaacaaccagcgacctgatgacacggctgtttattattgt	63	49	53	48
+JY8QFUQ01AGSEB	IGA2	ggattcacctttagcagctatgcc atgggctgggtccgccaggctccagggaaggggctggaatgggtctcaact attagtgggagtggtcggagcaca tactacgcagactccgtgaagggccggtacaccatctccagagacaattccaagaatacgatgtctgtgcaaatgagcagcctgagagtcgaggacacggccatatattattgt	54	50	64	45
+JY8QFUQ01AGTKI	IGG3	ggattcacgtttggcagccacgcc atgagctgggtccgccaggctccagggaaggggctggagtacgtctcaatt gttactggtagcggacgcagcaca tactacgcagagtctgtgaagggccggttcaccgtctccagagacaattccaaggacaccctgtatctgcaaatggacagcctgagagccgaggacacggccgtgtattattgt	49	56	65	43
+JY8QFUQ01AGWXH	IGA1	ggattcagttttgcagattatggc atgggctgggtccgccaacttccagggaaggggctggaatgggtcggtggt gttaattggaatgggggcagcgca ggttatgcagtctctgtggagggccgattcatcatctccagagacaacggcaagaagtccctgtatttgcaaatgaacagtctgagagtcgaggacacggccgtgtattactgt	48	41	72	52
+JY8QFUQ01AGXB8	IGA2	ggattcgacttcagtagatatatc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagttttgatagtaattacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcgctgtttctgcaaatgaacagcctgagagccgatgacacggccgtgtattactgt	57	49	55	52
+JY8QFUQ01AGXOC	IGA1	ggattcaccgtcagtggcaagtac atgagctgggtccgccaggctccagggcagggactggagtgggtctcagtt atctatagtactggtagtaca tactacgcagattccgtgaaagggcggttcaccatctccagagacagttccaacaacactctatatcttcaaatttacggcctgagagctgacgacacggctacttactactgt	53	53	54	50
+JY8QFUQ01AGZC5	IGG1	ggattcacctttagtagttctgcc atgaactgggtccgccaggctccagggaagggactggagtggatttcatac attagtgatagtggtagtcgcatt tactatgcagactctgtgaggggccgattcaccatctccagagacgacgccaagaacgtgctgtatctgcaaatgaacggactgcgagacgaagacacggctctttattactgt	53	48	59	53
+JY8QFUQ01AH0X0	IGA1	gatgactccgtcagcagtggtcgttactac tggagttgggtccggcagcccccagggaagggactggagtggattggtcat ttctatcacattgggggcact aagtacaacccctccctcgcgagtcgagtcaccatatcagtagacacgtccaagagccagttctccctgatgctgaactctgtgaccgctgcggacacggccgtatatttctgt	45	60	60	51
+JY8QFUQ01AH32A	IGA1	ggattcatctttagtaattatgcc atgagttgggtccgccaggccccagggagggggctggagtgggtctcaact atcagtgccaatggagacaacaca tactacgcggactccgtgaagggccgattcaccatctccagagacaattccaagagcacagtgtatatgcaaatgaacagcctgaaagccgaggagacggccgtctatcattgt	58	52	59	44
+JY8QFUQ01AH38B	IGA1	ggtggccccatcagaggcggtggtttctac tggacctggctccggcagtccgccgggaagggcctggagtggatcggacgt atttatgacagtggcagt gactacaatccttctctcaagagtcgagtcaccatgtcagtagacacgtccaagagccagttctccctgaggctgagttctgtggccgccgcagacacggccgtttacttctgt	40	59	65	49
+JY8QFUQ01AH5A1	IGA1	ggtggctccatcatcagagacagtgcctac tggggctggatccgccagccccagggaaggggctggagtggcttgggagc atctattatagtgggagtacc tactacaatccctccctcaagagtcgagtcaccatatccgtagacacgtccaagaagcagttctccctgaagctgagctctgtgaccgccgcagacacggctgtatattactgt	49	60	60	46
+JY8QFUQ01AH5X7	IGA1	ggggacagtgtctctaccaacagagctgct tggaactggatcaggcagtccccatcgagaggccttgagtggctgggaagg acatactacaggtccaagtggtataat gattatgcagtgtctgtgaaaagtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagttgaattctgtgactcccgaggacacggctgtgtattactgt	60	53	58	51
+JY8QFUQ01AH715	IGG2	ggattcattttagcaattatgcc atgaactgggtccgccaggctccagggaaggggccggagtgggtctcagct tttagtggtggtggcactaagacc tactacgcagactccgtgaagggccggttcttcatctccagagacaattccaagaacactctacatctgcatatgagcagcctgagggccgaggacacggccacatattactgt	51	54	59	48
+JY8QFUQ01AHAA1	IGA1	ggattcagcttcagttcctatagc atgagctgggtccgccaggctccggggaaggggctggagtgggtctcatat attagtagtagtggtaggaccatc tactacgctgactccgtgaagggccgattcaccatgtccagagacaatgccaagaattcactgtatctacaaatgaacagcctgagagccgaggacacggccgtctattactgt	53	51	60	49
+JY8QFUQ01AHB8A	IGA1	ggattcaccttcagtatctacacc atgaagtgggtccgccaggctccagggaagggactggagtgggtctcatcc atcactagccgtggtgcttacata cactacgcagcctcagtgaggggccgattcaccatctccagagacaacgccagggactcactgtatttgcaaatgaacagcctgagtgccgaggacacggctgtttattactgt	51	58	57	47
+JY8QFUQ01AHBK2	IGA1	ggtgggtccttcagtacttactac tggacatggatccgccagcacccagagaagggactggagtggattggggaa atcaatcacagtggaagcccc aactacagcccgtccctcaagagtcgagtcctcatatcgatagacacgtccaagaatcaggtctccctcaacctcttctctgtgaccgccgcggacacgggtgtgtattattgt	51	59	54	46
+JY8QFUQ01AHEWI	IGG1	ggattcactttcagtgacgcctgg atgagctgggtccgccaggctccagggaaagggctggagtgggttggccgt attccaagcaaagctgatggtgggacaaca gactacgctgcgcccgttaaaggcagattcaccatctcaagagaggattcgaaaaatatgctgtatctgcaattgaacagcctgaaaaccgaggacacagccgtgtatttctgt	58	50	64	47
+JY8QFUQ01AHHJ6	IGA1	ggattctccttcagaagttactct ttccactgggtccgccaggctccaggcaaggggctagagtgggtggctgtt atttcacatgatggcattactaac tattatgcagactccgtgcagggccgattcatcatctccagagacaattccaagaacacgctgtttctgcacatgaacagcctgagagttgaggacacggctgtttatttttgt	49	51	53	60
+JY8QFUQ01AHIDS	IGA2	ggattcaccttcagtagatatagt atgaactgggtccgccaggctccaggaaaggggctggagtgggttgcatac attagaagtagcagtagtgtcata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	60	47	58	48
+JY8QFUQ01AHK2I	IGG2	ggattcattgtcaatagcaactac atgagttgggtccgccaggctccagggaaggggctggactgcgtctcagtt atttatcccggtggtagcaca tactatgcagactccgtgaagggccgattcaccatctccagagacatctccaagaacacactgtatcttcaaatgaacagcctgagagccgaggacacggctgtatattactgt	55	53	53	49
+JY8QFUQ01AHMI8	IGA1	ggattcacctttagtagttattgg atgacctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatgggaatgataaa tactatgtcgactctgtgaggggccggttcaccatctccagagacaacgccaagagctcactgtttctgcaagtgaacagcctgagagccgacgacacggctgtttattactgt	54	47	64	48
+JY8QFUQ01AHN93	IGG1	ggatcaccctttggttattatggc atgagctgggtccgccaagctccggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	52	61	51
+JY8QFUQ01AHRBA	IGA1	gatgggtcgttcatgggttacctc tggaattggatccgccagcccccagggaaggggctggagtggattggggaa atcagtcctagcggcgtcagt aagtacaatacgtccctcaagagtcgcgttgttatgagaatggacacgtcgaagaagcaattctccctggagatcaactctgtgaccgccgcggacacggctacttattattgt	49	49	63	49
+JY8QFUQ01AHSTY	IGG1	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagct gtcagtggtggtgggggcgccaca aactacgcggagtccgtgaagggccggttcaccatctccagagacaattccaggggacggtgttcttacaaatgaacagcctgagagtcgaagacacagccttatattattgt	51	48	66	47
+JY8QFUQ01AHTOX	IGG1	tgtgactccatcagtagtactcattactat tggggctggatccggcagcccccagggaggggactggagtgggttgggagt atccactacactgggagcacc tactacaactggtccctcaagcatcgagtctctatatcggtggacacatcgagtaaccagttctccctgaggttgaggtctgtgaccgccgctgacacggctgtatactactgt	46	57	61	52
+JY8QFUQ01AHX1B	IGG1	ggattcacctttaccacctatgcc atgagctgggtccgccaggctccagggaaggggctggaatgggtctcaact attagtggtagtggtggcaggaca tactacgcagactccgtgaagggccggttctccatctccagagacaattccaagaacacactatatctgcaaatgaacagcctgagagtcgaggacacggccgtatattactgt	55	54	58	46
+JY8QFUQ01AHY6K	IGA2	ggatacaccttcactaattatgct ctgcaatgggtgcgccgggcccccggacaaacttttgagtggctgggatgg atcaactctgccaatggcaacaca aaatattctcagaagtttcagggcagagtcgccattaccagggacacatccgcgaggacaacttacatggaattgagcagtctgacatctgaagacacggcgacatattattgt	60	52	53	48
+JY8QFUQ01AHY6R	IGA1	aaattcacctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtcacaggt attagtggtggtggtgaaaacaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagagcatgttgtatctgcaaatgaacagcctgagagccgaagacacggccgtattttactgt	57	50	60	46
+JY8QFUQ01AHYWT	IGG1	gggttcaccatcagtcactactcc atggcctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgaggggcgggcttatcgactccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	51	63	45
+JY8QFUQ01AI3Y4	IGA2	ggattcacgttcagtagttatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatc atctggtatgatggaagtaatcaa tattatgcagactccgtgaagggccgattcaccgtctccagagacaattccaagaacacggtgtatctacaaatgaacagcctgagagccgaggacacggctgtctattattgt	56	47	61	49
+JY8QFUQ01AI4NA	IGA1	ggattcacctttagcaattttgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcagtt gtgagtggtagtggcgatagaaca gactacgcagactccgtgaagggccggttcactatctccagagacaattccaagagtacactattcctgcaaatgcacagcctgagagtcgaggacacggccgtatattactgt	52	51	62	48
+JY8QFUQ01AIAC1	IGA1	ggattcacctttggcagctatatc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagct attagtggtaggggtgttgacaca tactactcagactccgtgaggggccggttcaccatctccagagacaacgccaagaacacgatgtatctgcaaatgaacaccctgagagacgaggacacggccgtctatttctgc	51	54	63	45
+JY8QFUQ01AIAF1	IGA1	ggctacaccttcaccgactactat atacactgggtgcgacaggcccctggacaagggcttgagtggatgggatgg atcaaccctgacggtggtagcaca aagtatgcacagaaatttcagggcagggtcgccgtgaccagggacacgtcaattagcacagcctacattgaggtgaccagactgacatctgacgacacggccgtgtattattgt	56	53	61	43
+JY8QFUQ01AIE5T	IGA1	ggtggctccaccaataataactac tggacttggatccggcagcccccagggaagggaatggagtgggttgggtat gtcaattatgctgggaccacc aactacaacccctccctcaagagtcgagtcactatttcagtggactcgtccaagaaccagttctccctgagggtgaactctgtgaccgctgcggacacggccgtgtattactgt	49	57	57	47
+JY8QFUQ01AIN7Q	IGA1	ggattcaacttcaattactttagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtgatggtacttacata tactacgcagactcagtgaagggccgattcgccatctccagagacaacgccaaagactcactgtatctacaaatgaacatcctgagagccgaggacgcggctgtttattactgt	57	51	54	51
+JY8QFUQ01AITB3	IGA2	ggtggctccatcagcagtagtaactgg tggagttgggtccgccagcccccagggaaggggctggagtggattggacaa atccatcatgtgggggcacc aattacaacccgtccctcgagagtcgagtcactatatcagtagacaagtccaagaaccacctctccctgaccctgaactctgtgaccgccgcggacacggccgtttatcactgt	49	62	59	42
+JY8QFUQ01AITV3	IGA1	ggattcacctttggtgattatgct atgagttggttccgccaggctccagggaaggggctggagtgggtaggtttc attggaggcagagctcatggtggggcaaca gaatacgccgcgtctgtgaaaggcagattcatcatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattattgt	57	45	65	52
+JY8QFUQ01AJ3EX	IGA2	ggattcaccctcagtagctataac atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtattagtagtggtaccata tactatgcagactctgtgaagggccgattcaccatctccagggacaatgccgagaactcactgtatctgcaaatgagcagcctgagagccgacgacacggctgtgtattactgt	55	50	58	50
+JY8QFUQ01AJ3KH	IGA1	ggatacattttcaccggctactat ttacactgggtgcgccaggccgctggacaagggcttgagtggatgggatac atggaccctcatagtggtgacaca agctttgcaaagaaatttcagggcagggtaaccttgaccagtgacacgtccatcagtacagcctacatggaaatgagcgggctgacgtctgaggacacggccatcttttactgt	54	50	60	49
+JY8QFUQ01AJ891	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccggggaggggcgtggagtgggtctctgt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	52
+JY8QFUQ01AJCMG	IGA2	gggttctccttcagcgactacttc atgagttgggtccgccaggctccagggaagggactggagtgggttgcatac attagtagtagtggtactactaaa tactacgcagactctgtgaagggccgattcaccatctccagggacaacggcaagaattcattgtttctgcaaatggacagcctgagagtcgacgacacggccatgtatttctgt	52	49	59	53
+JY8QFUQ01AJEE9	IGA2	gggttcaccgtcagtagcaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaatt acttatcctgatggtattaca tattatggagactccgtgaagggccgattcaccatctccagagacaattccaacaacacgctgtttctgcaaatgagcagcctgagagccgaggacacggccgtttattattgt	51	50	58	51
+JY8QFUQ01AJEL4	IGA1	ggattcacctttagcaactatgcc atgagttgggtccgccaggctcaagggaaggggctggactgggtctcagat attagtaatagtggtggtgacaca ttctacgcaggctccgtgaagggccgcttcaccatctccagagacaattccaggaacactctatatctgcaaatggacagcctgagagccgaggacacggccgtgtattactgt	53	52	60	48
+JY8QFUQ01AJF1Y	IGG1	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgaaaccaca taccacgcagaatccgtgcagggccggttcaccatctccagagacaactccaagaacaatctgtatctgcaaatgaacagtctgagagccgaggacacggccatttattactgt	56	53	59	45
+JY8QFUQ01AJGDO	IGG1	ggatacgtctttccctcctactgg atcgcctgggtgcgccagatgcccggtaaaggcctggagtggctgggaacc atctatcccggcgactctgacacc acatacagcccgtcattccaaggccaggtcaccatgtcagtcgacacgtccgtcagcaccgcctacttgcagtggagcagcctgaaggcctcggacagcgccatttactattgt	43	70	56	44
+JY8QFUQ01AJJ06	IGA1	ggattcccctttaaggactactcc atgaactggatccgccaggctccagggaagggactggagtggatttcatac atgagcagcactggtgagaccata tattacgcggactttgtgaagggccgattcaccatctccagggacaccgccaagaatctgttgtttctgcaaatgaattacctgcgagacgaggacacggccatgtattactgt	55	52	56	50
+JY8QFUQ01AJOAH	IGA1	ggattcacctttagtaataattgg atgagttgggtccgccaggctccagggaaggggctggagtgggtggccaac atcaagcaagatggaagtgagaaa gtctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaacgcactgtttctgcaaatgaacagcctgagagtcgaggacacggctgtgtactactgt	58	45	65	45
+JY8QFUQ01AJQ24	IGA1	ggatttaccttcagtctctataga atgaactgggtccgccaggctccagggaagggactggagtgggtctcatcc attactagtaccagtagttacatt tattatgcagacccagtgaagggccgattcaccatctccagagacaacgccaagaactcattatatctccatatgaacagcctgagagtcgaggacacggctatatattattgt	60	50	49	54
+JY8QFUQ01AJRGU	IGG4	ggaggcaccttcagcagctatgtc atcagctggctgcgacaggcccctggacaagggcttgagtggatgggacat gtcattcctatgtttggtgtatct aacctcgcgcagaggttccagggcagagtcacaataaccgcggacacatccacgaccacagcctacatggaggtgaccaggctgagatctgaagacacggccgtctattattgt	51	56	61	45
+JY8QFUQ01AJRNU	IGG3	ggtggctccatcagcagtggtagttactac tggagctggatccggcagcccgccgggaagggactggagtggattgggcgt atctataccagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgt	50	62	61	43
+JY8QFUQ01AJTUX	IGA1	ggattcaccttcagcaaccataac atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatgt attggtagtagtagtagtgac aaatgaacagcctgagagtcgaagacacggctgtgtattactgt	37	28	43	32
+JY8QFUQ01AJUSF	IGA1	ggattcacttttaggggctactgg atgcactgggtccgtcaggttccaggtaaggcgccggagtggctcgcacgt ctgaatactgatggagatagtaca agttatgcggactccgtgaagggccgcttcaccatctccagagacaacgccaggagcacattgttcctgcaaatgagcagtctgagagtcgaagacacggccatttattactgt	51	51	62	49
+JY8QFUQ01AJVOK	IGA1	ggattcaccttcagcagctatggc atgcactggttccgccaggctccaggcaaggggctggagtgggtggcagct atctcatatgatggaattgacaaa tattatgcagactccgtgaagggccgattcaccatctccagagacaatgccaaaaacacgctgtatctgcaattgaacagcctgagaagtgaagacactgctgattactactgt	59	51	55	48
+JY8QFUQ01AJWQ7	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccgggggaggggctggagtgggtctctgt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	52
+JY8QFUQ01AJWSY	IGA2	ggattcacctttagccactatgcc gtgacctgggtccgccaggctccagggaagggtctggagtgggtctcaact attagtggtagtgatggtagcacg tactacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	51	55	61	46
+JY8QFUQ01AJYIB	IGA1	gggttcatctttagtagacattgg atggcctgggtccgccaggctccagggaagaggctggagtgggtggccaac ataaaacaagatggaagtctgaga tactttgtggactctgtgaagggccgattcaccatctccagagacaacgccgagagctcactgtttctgcaaatggacagcctgagaggcgaggacacggctgtgtattactgt	53	46	67	47
+JY8QFUQ01AJYWV	IGA1	ggattcacctttagcaactatgcc atgaactgggtccgccaggttccaggggaggggctggagtgggtctcagcc attagtggcagtggtggtagcaca ttctacacagacgccttgcagggccgattcaccatctccagagacaattccaagaacacgttatatttgcaaatgaaaagcctgagagccggggacacggccgtgtattactgt	53	52	61	47
+JY8QFUQ01AJZDU	IGA2	ggattcaccgtcagtgggaagtat atgagttgggtccgccaggctccaggcaaggggctggagtgggtctcagtc ttatttagtactggcactgca tactacgcagactccgtgaaaggccggttcaccatctccagagacaattccaacaacaccctatatcttcagatgaacaacatcagacctgaagacgcggccacttattattgt	55	54	52	49
+JY8QFUQ01AK0SS	IGA1	ggattcaacttcataggttatggc atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagtt atatcgtatgatggcaagaacatc ttttatgcagactccgtgaggggccgatccatcatttccagagacgattctaagagaacactgtttctgcaaatggacagcctgagagctgaggacacggctgtctattattgt	53	45	61	54
+JY8QFUQ01AK1KM	IGG2	ggattcagttttagtacacatggc atgaactgggtccgccaggctccagggaagggccggaatgggtctcattc gttaatagtggaagtagttacatc tactacgcagactcagtgaggggccgattcaccatctccagagacgacgccaggaattcactgtatctgcaaatgcaccgcctgcgagtcgaggacacggctctctactattgt	52	53	58	49
+JY8QFUQ01AK5T8	IGA2	gatgactccgtcagcagtggtcgttactac tggagttgggtccggcagcccccagggaagggactggagtggattggtcat ttctatcacattgggggcact aagtacaacccctccctcgcgagtcgagtcaccatatcagtagacacgtccaagagccagttctccctgatgctgaactctgtgaccgctgcggacacggccgtatatttctgt	45	60	60	51
+JY8QFUQ01AK7F3	IGA1	ggcttcaccttcagtgactactac atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtggaagtggaactaccata tcctacggagactctgtgaagggccgattcaccatctccagggacaacgccaagaactcagtgtatctccagatgaacagcctgagagccgaggacacggccgtatattactgt	55	54	59	45
+JY8QFUQ01AKA7I	IGA2	ggattcatcttcagcaactactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attactggtgatgggagtaaccca atctacgcggaccccgtgaagggtcgattcaccatctccagagacaacgccaagaacacactatatctgcaaatgaacagtctgagagtcgaggacacggctgtgtattactgt	55	53	59	46
+JY8QFUQ01AKBIM	IGA1	ggattcagtttcagtgactatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtagttctagtagtacccta tattatgcagactctgtgaagggccgattcaccgtctccagagacaatgacaagagttctctgtatctgcaaatgaccggcctgagagccgaagacacggcgacttattactgt	54	47	58	54
+JY8QFUQ01AKC4T	IGG2	ggattcacgttcagtaattacgac atgcactgggtccgccaacctagaggaagaggtctggagtgggtctcagct attggcactggtggtgacaca tactatccagactccgtgaagggccgattcaccatctccagagaaaatgccaagaactccttatatcttcagatgaacagcctgagagccggggacacggctgtgtattactgt	55	51	56	48
+JY8QFUQ01AKFJR	IGA1	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtgtcacgt agtaatacgggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	67	43
+JY8QFUQ01AKG3P	IGA1	ggtgtctcaatcacgagtggaagtcactac tggaattggattcggcagcccgccgggaagggaccggagtggattgggcgt ttctataccagtgggagcacc aactacaacccctccctcaagagtcgagtcaccgtatcagcagacacgtccaagaaccggctctccctgaagctgagatctttgaccgccgcagacacggctgtttattactgt	51	61	59	45
+JY8QFUQ01AKHC5	IGA2	gggttcatctttagtagacattgg atggcctgggtccgccaggctccagggaagaggctggagtgggtggccaac ataaaacaagatggaagtctgaga tactttgtggactctgtgaagggccgattcaccatctccagagacaacgccgagagctcactgtttctgcaaatggacagcctgagaggcgaggacacggctgtgtattactgt	53	46	67	47
+JY8QFUQ01AKHCX	IGA2	ggattcaccgtcagtaccaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagta atttatcctgatggtactaca cactatggagcctccgtgaggggccggttcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	51	53	59	47
+JY8QFUQ01AKI3P	IGA1	ggtgtttccgtcagtaacactattttctat tggggctgggtccgccagtccccagggaagggactggagtggattggcagt gtagattatagtgggagcgct tcctacagccctgccctcaagagtcgagtcatcatatccatagacacgtccaagaaccagttctccatagctctgagttctgtgaccgccgcagacacggctgtctattattgt	46	55	58	57
+JY8QFUQ01AKJVX	IGA2	ggtggctccatcagtagttactac tggagctggatccggcagcccccaggaaagggactggagtggattgggtat atcttttacactgggaccacc aactacaacccctccctcaagagtcgagtcaccatgtcaatagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtctattactgt	50	61	53	46
+JY8QFUQ01AKKV6	IGA1	ggattccagtttagcaactatgcc atgagctgggtccgtcaggctcctgggaaggggctggagtgggtctcaact attagtaaagacggtgtttacacc tactaccccgactccgcgaagggccgggtcaccatctccagagacaattccaagaatacaatttatttgcaaatgaacagcctgacagccgaggacacggccagatattactgt	57	54	55	47
+JY8QFUQ01AKM0W	IGA2	ggattcaccttcagtggctttgct ttgcactggctccgccaggctccagacaaggggctagagtgggtgggattt acatcatttgatgggagtaacaga gactacgcagactccgtgaagggccgattcacgatctccagagacaattccaagaacacactgtatctgcaaatgaacagcctgagacctgacgacacggctgtatattactgt	56	52	56	49
+JY8QFUQ01AKNSQ	IGA2	ggattcacctttagtggctattgg atgagttgggtccgccaggctccggggaagggtctggagtgggtggccaac atagagaaagatggaagtgacata aagtatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaattcactgtctctgcaaatgaacagcctgagagccgacgacacggctatttattactgt	57	45	63	48
+JY8QFUQ01AKOZJ	IGG1	ggatacagtttaccagttactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatgggtatc atctatcctgctgactctgatacc agatacagcccgtccttccaaggccaggtcagcatctcagccgacaagtccatcgacaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgt	47	63	58	44
+JY8QFUQ01AKQ1X	IGG2	ggattcaccttcaggagttatatc atgaactgggtccgccaggctccagggaaggggctggagtggatttcatac attagtagtagtggtattatcata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattattgt	58	45	56	54
+JY8QFUQ01AKROJ	IGA1	ggatttacatttagtgattataat atgaattgggtccgccgggctccagggaaggggctggaatatgtcgcaacc attacaactgggagtggtcaaatc tactacagtgactcagtgaggggccgcttcaccatctctagagacgacgccaagaattcactttatctgcagatgaacaacctgagaggcgaggacacggctgtctatttttgt	57	45	57	54
+JY8QFUQ01AKUKJ	IGA1	ggagtcaaattcagaaacgcctgg atgaattgggtccgccaggctccagggaaggggctggagtgggttggccgt attaagagcaaagctgatggtgggacaaca gactacgccacacccgtgagaggcagattcaccatctcaagagatgattcaaaaaacacgttttatctgcaaatgaatagcctaaaaaccgaagacacagccgtctattactgt	69	48	59	43
+JY8QFUQ01AKVLH	IGA1	ggattcacctttggcacctctgac atggcctgggtccgccaggttccaggggaggggctggagtgggtctcacac attgatatcagaggtgccaca cagtataaagactccgtgaagggccggttcaccatctccagagacaattccaagagcactctatatctgcaaatgaacaccttgcgagccgaggacacggccgtatattactgt	52	56	57	45
+JY8QFUQ01AKY8Y	IGA2	ggattcaccttcggaacctatgcc atgacgtgggtccgcctgactcctgggaaagggctggagtgggtttcatgg attagtgatatcggtgacaca cgctatgcagattctgtgaagggccgattcaccatctccagagacaatgccaagaattcactgtttctgcaaatggacagtctcagagccgacgacacggctatatattattgt	52	49	56	53
+JY8QFUQ01AKZ0I	IGG1	ggtggctccatcaacagtagaattattat tggggctggatccgccagcccccagggaagggtttggagtggattggaaat atctattatagtgggacacc tactacaatccgtccctcaagagtcgagtcaccgtatccgtagacaggtctaagaaccagttgtccctgaagctgacctctctgaccgccgcagacacggccgtatattactgt	53	55	55	51
+JY8QFUQ01AKZW4	IGA1	ggtgggtccttcagtggttacacc tggaactggatccgccagcccccagggaaggggctggagtggattggggaa atcaatcatagtggcaggacc aactacaacccgtccctcaagagtcgagtcaccatatcaatagacacgaccaacaaccagttctccctgaagttgacctctgtgaccgccgcggacacggctgtatatttctgt	52	59	56	43
+JY8QFUQ01AL1GZ	IGA1	ggattcaccttcagtggctctgct atgcactgggtccgccaggtttccgggaaagggctggagtgggttggccgt attagaagcaaagcttacaattccgcgaca gcatatgctgcgtcggtgaaaggcaggttcaccatctccagagatgattcaaagaacacggcgtatttggaaatgaacagtttgaagagggaggacacggccgtgtattactgt	55	46	67	51
+JY8QFUQ01AL1N5	IGG2	ggattcacgtttggcagccacgcc atgagctgggtccgccaggctccagggaaggggctggagtacgtctcaatt gttactggtagcggacgcagcaca tactacgcagagtctgtgaagggccggttcaccgtctccagagacaattccaaggacaccctgtatctgcaaatggacagcctgagacccgaggacacggccgtgtattattgt	49	57	64	43
+JY8QFUQ01AL2CW	IGG3	ggattcacctttggtgattatgct atgagctggttccgccaggctccagggaaggggctggagtgggtaggtttc attagaagcaaagcttatggtgggacaaca gaatacgccgcgtctgtgaaaggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgt	61	47	61	50
+JY8QFUQ01AL2IL	IGA1	aaattcacttttagtaactattgg atgaattgggtccgccaggctccagcgaagggactggagtgggtggccagt ataaagcaggatgggggggagaca tattatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagaagtcactgtatctgcaaatgaacagcctgggagtcgaagacacggctgtttattactgt	59	43	63	48
+JY8QFUQ01AL7F1	IGG2	ggattcagttttagtacacatggc atgaactgggtccgccaggctccagggaaggggccggaatgggtctcattc gttaatagtggaagtagttacatc tactacgcagactcagtgaggggccgattcaccatctccagagacgacgccaggaattcactgtatctgcaaatgcaccgcctgcgagtcgaggacacggctctctactattgt	52	53	59	49
+JY8QFUQ01AL8VS	IGA1	gggtacagcttgcgaggctctgtt ttgcactgggtccgccaggcttccgggaaaggactggagtgggttggccgt gtcggaaggcagggcgcgaca acatacgctgcgtcggtgaaaggcaggttcctcatctccagagatgatccagcgaacacggcttatctggaaatgaacagcctgaaaaccgaggacacggccgtctattactgt	47	52	69	42
+JY8QFUQ01AL9MI	IGA1	ggattcagctttaatgccttctat atgggttgggtccgccaggctccaggaaaggggctggagtggatttcgtac attaactctggtggtagtgacaca tattacgcagactctgtgaagggccgattcaccatctccagggacaacgcctgggacacaatgtacttggaaatgaacagcctgagagccgaagacacggccgtctactattgt	53	49	60	51
+JY8QFUQ01AL9ZT	IGA1	ggattcacgttcgacaactatgcc atgagctgggtccgccaggcaccaggaaaggggctggagtgggtctccagt attagtggtaatggagaaattgta caccacgcagacgccgtgaagggccggttcaccatctccagagacaactccaagaacacgctgtttttgcaaatgaatggagtgagagacgacgacacggccatttactactgt	58	51	61	43
+JY8QFUQ01ALDY2	IGA1	ggtgactccatcactcctaactcc tggagctggatccggcagcccccagggaagggactggagtggattggttat atctattacagtggaatcacc aagcacaacccctccctcaagagtcgagtcgccatttcagtagacacgtccaagaaccaattttccctgaggctgagttctgtgaccgctgcggacacggccgtttatttctgt	48	60	52	50
+JY8QFUQ01ALFPF	IGG1	ggtgactccatcaccagtggtaattattat tggagttggatccggcagcccgccgagaagggactggagtggattgggcgt atctccatcggtgggatcacc aactacaatccctccctcaagagtcgagtcaccatactattagacacgtccagcaaccggttctccctgaagctcagctctgtgaccgccgcagacacggccgtgtattactgt	49	62	56	49
+JY8QFUQ01ALJ94	IGG1	ggtttcagcttaagtgactattgg atgaactgggtccgccaggctccagggaaggggctcgagtgggtggccatc ataaagaaagatggaagtgaagaa ctctatttggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactcactgtatctggaaatgaacagcctgagccccgaggacacggctgtatatttctgt	57	47	62	47
+JY8QFUQ01ALJS1	IGG2	ggattcaccttcagtagttatagc atgcactgggtccgccaggctccagggaagggactggagtgggtctcctcc attagtagtaatggtgctaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaaatgaacagcctgagagccgaggacacggccctatattactgt	56	56	54	47
+JY8QFUQ01ALKNG	IGA2	ggattcacatttagcaacttttgg atgagctgggtccgccagactccagggaaggggctggagtgggtggccaaa ataaacccagtcggaagtgagaaa tactatgtggactctgtgaagggccgattcaccacctccagagacaactctagaaactcgctgtgtctgcaaatggacagcctgagagccgaggacacggctgtgtattactgt	57	48	63	45
+JY8QFUQ01ALMSJ	IGG2	ggattcattgtcaatagcactac atgagttgggtccgccaggctccagggaaggggctggactgcgtctcagtt atttatcccggtggtagcaca tactatgcagactccgtgaagggccgattcaccatctccagagacatctccaagaacacactgtatcttcaaatgaacagcctgagagccgaggacacggctgtatattactgt	54	53	53	49
+JY8QFUQ01ALN7I	IGA2	ggtggctccgtcagcagtggtagttatttc tggagctggatccggcagcccccagggcaggggctggaatggatcggttat gtctataacaatgggaacacc aattacaacccttccctcaagagtcgagtcaccatttctatagacacgtccgagaatcacgtctccctgaagctggcctctgtgaccgctgcggacacggccgtgtactactgt	47	60	59	50
+JY8QFUQ01ALPR0	IGG1	ggattcagcattagcgactatgcc atggcctgggtccgccaggctccagggaaggggccggagtgggtctcaagt gttactaatggttttggcaca tactacgcagactctgtgaagggccggttcaccgcctccagagacaattccaagaacgcattgttcttggaaatgaacatcctcagagccgaggacacggccgtatattattgt	50	52	60	48
+JY8QFUQ01ALW0Z	IGA1	ggattcacctttagtgactattgg atgagctgggtccgccaggctccagggaaggggctagagtgggtggccaac ataaatagagatggaagtgagcaa cactatgtggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgtatttgcaaatgaacagtctgagagccgaggacacggctgtctattactgt	60	46	63	44
+JY8QFUQ01ALZYF	IGG1	ggtggctccatgaggaattattac tggagctggatccggcagtccccagggaagggactggagttgatagggact gtctattacactgggcgcacg gagtacaacccctccctcaagagtcgactcaccttatcactagacacgtccaagaaccagttctccctaaagctgggctctgtgaccgctgcggactcggccatttattactgt	48	58	56	48
+JY8QFUQ01AM056	IGA1	ggattcacctttagcaatgctgcc atgacgtgggtccgccaggctccagggaaggggctagagtgggtctcaggt attagtattagtggtgatagaaca tattacgcagactccgtgaagggccggttcaccatctctagagacaattccaagaataccgtgtatctgcaaatgaacagcctgagagccgaggacacggccatatattattgt	57	47	59	50
+JY8QFUQ01AM0T6	IGA2	gggttcaccgtcagtagcaagtac atgacctgggtccgccaggctccggggaagggactggagtctgtctcggtt ttttatagcggtgatcaaaca tactacgcagactccgtgaggggccgattcaccatctccatagacaattccaagaacacactgtatcttcaaatgaacggcctgcgagccgaggacacggccgtgtattattgt	51	54	57	48
+JY8QFUQ01AM4ZR	IGG1	ggacgctccttgagaagctttggc atgcactgggtccgccaggctccaggcaagggactggagtgggtggcactt acttcgtatgacggaaataggaaa tattatgcagactccgtgaagggccgattcaccatctccagagacaactccaagaatacgttatttctgcaaatggacagtctgagagctgaggacacggctctttattactgt	55	49	59	50
+JY8QFUQ01AM701	IGA1	ggatacaccttcaccaggcactat atgcactgggtgcgacaggcccctggacaaggacttgagtacatgggagta atcaaccctagtggtggcgacaca agctacgcacagaggttccggggcagagtcgccgtgaccagagacacgtccacgagcacagtctatatggacttgagcagcctgagacctgaggacacggccatgtattattgt	56	56	62	39
+JY8QFUQ01AMBSZ	IGG1	ggattcacctttagcagctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaact tttggtggtagtggtggttctaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctatatcttcaaatgagcagcctgagagccgaggacacggccatatacttctgt	50	54	60	49
+JY8QFUQ01AMDQC	IGA2	ggattcaactttaacagctttgcc atgagctgggtccgccaggttccagggatggggctggagtgggtctcagcc attagtggtagtggcgggagcaca ttctacgcagactccgtgaagggccggttcaccatctccagagacaactccaacaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccttatattattgt	51	54	61	47
+JY8QFUQ01AMI66	IGA1	ggtggctccctcagtacttactac tggaactgggtccggcagcccgccgggaagggactggagtggattgggcgt aaatatcccagtggggacacc aactataatccctccctcaaaagtcgagtcaccatgtcactagacacgtccaagaaccagttctccctgaggctgacctctgtgaccgccgcggacacggccgtgtattactgt	47	63	57	43
+JY8QFUQ01AMIC0	IGA1	ggtggctccatcagcagtagtaactgg tggacttgggtccgccagcccccagggaaggggctggagtggattggggaa atctatcatggtggaaacacc tactacaacccgtccctcaagagtcgagtcaccatatcactagacaagtccaagaaccaattctctctgaacctgaactctgtgaccgccgcggacacggccatatattactgt	55	59	55	44
+JY8QFUQ01AMK5G	IGA2	gggttcaccttcagtaactcctgg atgcactgggtccgccaagctccagggaaggggccggagtgggtctcacgt attaatagtgatgggagtaataca atctacgcggactccgtgaagggccgactcaccatctccagagacaacgccaaaaacacggtgtatctgcaattgaacagtctgagagccgaggacacggctgtgtactactgt	55	54	61	43
+JY8QFUQ01AMLKN	IGA1	gcattcaccttcagtagttatgct atgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagtt atatcaaatgatggaaattataac gactatgcagactccgtgaaggggcgattcaccatttccagagacaactccaagaacacgctatttctacaaatgaatagcctgagagttgaggacacggctgtctataactgt	61	48	54	50
+JY8QFUQ01AMPZY	IGA1	ggagacaccttcagtagccaagcc atcagctgggtgcgacaggcccctggacaaggacttgagtggatgggcggg atcatccctatttttgatatgacg aggtacccacagaggttcgagggcagaatcacgattaccgcggacacgtccacgaccacactttacatggaactgagcagcctgaggtctgaggacacggccgtgtatttttgt	52	54	63	44
+JY8QFUQ01AMTHS	IGG2	ggtggctccatcagcagtgataatttctac tggggctggatccgccagcccccagggaagggactgcagtggattgggact ttctattatagagggagtatc tattacaacccgtccctcaagagtcgagtcaccatatccgtggacacatccaagaaccagttctccctgaggctgacctctgtgaccgccgcagacacggctgtctattattgt	49	59	56	52
+JY8QFUQ01AMUT4	IGG2	ggattcacctttaccacctccgcc atggcctgggtccgccaggttccagggaaggggctggagtgggtctcaact attagccctagtggtgagagaacc tactacgcagagtccgtgaggggccgcttcaccatctccagagacaattccgagaacacgttgtatctacaactgaacaacctgagagtcgaggacacggccatatattactgt	52	59	57	45
+JY8QFUQ01AMX59	IGG1	ggattcattttcaacagctatgcc atgcactgggtccgccaggctccaggcaagggcctggagtgggtggcagtt atatggtttgatggaagtaaaaa tattacgcagactcagtgaagggccgatccaccgtctccagagacaactccaagaacacgttgtatctgcaaatgaacagcctgagagccggggacacggccgtgtattattgt	56	49	60	47
+JY8QFUQ01AMXZ6	IGA2	gggttcaccgtcagtagcaagtac atgacctgggtccgccaggctccggggaagggactggagtctgtctctgtt ttttatagcggtgatcaaaca tactacgcagactccgtgaggggccgattcaccatctccatagacaattccaagaacacactgtatcttcaaatgaacggcctgcgagccgaggacacggccgtgtattattgt	51	54	56	49
+JY8QFUQ01AMZ6W	IGG1	ggtaactccatcacagattattac tggagctggctccggcagtctccagggaagggactggagtggattggaaat gtcttttacagtgggagagcc aactacaacccctccctcaagagtcgagtcaccatatcagtagccacgtccaggaaccagttctccctgaagctcaggtctgtgaccactgcggacacggccatatattattgt	53	56	53	48
+JY8QFUQ01AN3IA	IGA1	ggattcaccttcagtcgttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatac attagtaggagtagtactgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacggcaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtatttctgt	57	50	59	47
+JY8QFUQ01AN5X2	IGA2	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaagggctggtgtgggtgtcacgt agtaatacggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	65	43
+JY8QFUQ01AN6Q8	IGG2	ggattctctttcagtaatgcctgg atgaattgggtccgccaggctccagggaaggggctggaatgggttggccat attaaaagggaaattgatggtgggataaca aactacgctgcacccgtgaagggcagattctccatcgcaagagatgattcaaagaatatgatgtatttgcaaatgaacagcctgaacaccgaggacacaggcgtgtattactgt	64	41	63	51
+JY8QFUQ01AN8DC	IGA1	ggattcacgtttagcaactatgcc atgagctgggtccgccaggctccagggaaggggccggagtgggtctcagct attactggtcttgatggtagaaca ttctacgcagactccgtgaagggccgtttctccatctccagagacaattccaagaacacgttgtatttgggaatgaacagcctgagagccgaggacacggccgtatattattgt	51	50	61	51
+JY8QFUQ01AN937	IGA2	cgtgtctccatttccattaatgattactac tggggctggatccgccagcccccaggaaagccgctggagtggattgggact gtccattcccttgggtacaat tacaacaacccgtccctcaagagtcgactcaccatttccgcagacacgtccaggaatcagatctccctgaaactgacgtctgtgaccgccgcagacacggctgtctatttctgt	48	67	49	52
+JY8QFUQ01AND2L	IGA1	ggtggctccgtcagcagtaggggttactac tggaactggatccgccagttcccagggaagggcctggagtggattgggaac atcttttacagtgggggcacc tacgacaacccgtccctcaggagtcgaatttctatatcattagacacgtctaagaaccaattctccctgaagttgacctctgtgaccgccgcggacacggccgtgtattactgt	48	57	60	51
+JY8QFUQ01ANGEF	IGA1	ggtggttcgatcgtcagttactac tggagttggatccggcagtccgccgggaagggactggagtggattgggcgc atctactccaatggagatacg aactacaatccctccctcaagggtcgagtcaccatgtcagtagacccttccaacaaccagttctccctgaaattgacttctgtgaccgccgcggacacggccatatattactgt	48	58	55	49
+JY8QFUQ01ANI1H	IGA2	ggattcagcctcattgactttaga atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attgatagtgttggtcaaaacata tactacagagactcagtgcggggccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctcagagtcgaggacacggctatatattactgt	59	49	57	48
+JY8QFUQ01ANJ9X	IGA1	ggattcaccttcagtagatactgg atgcactgggtccgccaagctccagggaaggggccggtgtgggtctcacgt actaatgaagatggcacccacata aattacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgtatttgcaaatgaacagtctgagagccgaggacacggctgtctattactgt	58	54	58	43
+JY8QFUQ01ANKJV	IGA2	ggatacacctttatcacctactgg atcgcctgggtgcgccaaatgcccgggaaaggcctggagttgatgggagtc atctatcctggtgactctgagacc agatacagcccgtccttccaaggccacatcaccctctcagtcgacaagtccatcgataccgcctacctggagtggagcagcctgaaggcctcggacaccgccatgtacttctgt	47	67	54	45
+JY8QFUQ01ANLMX	IGA1	ggattcacctttggtgactttgct atgagctggtttcgccaggctccagggaaggggctggagtggctaggtttc attagaagcaaaatttatggtgggacacca gaatacgccgcgtctgtgaaaggcagatgtcccatctcaagagatgattccaaaaacatcgcctatctgcaaataaacggcctgaaaaccgaggacacagccatgtatttctgt	60	48	58	53
+JY8QFUQ01ANO71	IGA1	ggattcgccttcagttggtattgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtttctgcaaatgaacagtctcagagtcgaggacacggctgtttattactgt	53	50	63	47
+JY8QFUQ01ANOOW	IGG2	ggtggctccatcaccacttggcattac tggggctggatccgccagcccccaggggagggtctggaatggattggaaat gtctatcataatggcaatatc gcctatagcccgtcgcagaggagtcgaatcaccatatcagtagacacgtccaggaaccagttctccctgaagatgacctctgtgaccgccgcggacacggctgtctattactgt	49	59	58	47
+JY8QFUQ01ANR0Z	IGA1	ggttacacctttactacctatggc gtcacctgggtgcgacaggcccctggacaagggcctgagtgggtgggatgg atcagcgcttacaatggtaataca aactctgcacagaagtttcaggacagagtcaccctgaccacagacacatccacgaacacagcctacatggaactgaggaacttgagatctgacgacacagccgtatattattgt	60	55	54	44
+JY8QFUQ01ANSMV	IGG1	gaattcatccttgacagttatgcc atgagttgggtccgccaggccccagggaaggggctggagtgggtctcggct attagtggaagtggtgcaaccaca tactacgcagactccgtgaagggccggttcgccatctccagagacaattccaagaacacgctatatctacaaatgaacaacctaggggccgaggacacggccgtttattactgt	54	54	60	45
+JY8QFUQ01ANV52	IGG2	ggattcatcttcagtagctatgcc atgaattgggtccgccagactccagggaaggggctggagtgggtctcagcc attagtggtagtggtggtaacaca tactacgcagactccgtgaagggccggttcaccgtctccagagacaattccaacaacacgctgtatctgcaattggacagcctgcgagccgaggacacggccgtatattactgt	51	54	61	47
+JY8QFUQ01ANVJX	IGA2	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagctacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgttttgcaaatgaacagtctgagaggcgaggacacggctgtctattactgt	55	52	62	43
+JY8QFUQ01ANXAZ	IGA1	ggatacagcttcactaactacaat atccattgggtgcgccaggcccccggacaagggcttgagtgggtgggatgg atcaacgctggcaatggcaataca agatattcacagaagttgcagggcagagtcaccatttccagggacacatccgcgagcattgccaacatggagttgagcagcctgagatatgaagacacggctgtatattattgt	60	48	60	45
+JY8QFUQ01ANXRG	IGA1	ggattcaccttcagtagctactgg atgcactgggtccgccaaggtccaggggaggggctaatgtgggtctcacga atcaatactgatgggagtaacaca atgtacgcggactccgtaaagggccggttcaccatttccagagacaatgccaagaatacggtgtttctgcaaatgaacagtctgaaagccgacgacacggctgtctattattgt	57	49	59	48
+JY8QFUQ01AO0HA	IGA2	ggattcacctttactaattattgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctcagagtcgaggacacggctatatattactgt	59	50	58	46
+JY8QFUQ01AO14S	IGA2	ggattcaccttcaggagctattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaggtgacaaa ttctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	58	48	64	43
+JY8QFUQ01AO38F	IGA1	ggtggctccatcaacagtggtagttatcac tgggcctggatccgccagcccccagggaaggggctggagtggattgggagc gtctcctatggtgggaacacc tactacaacccgtccctcatgagtcgagtcgacatattcgtcgacacgtccaagagtcagttgtccctgaaggtgagctctgtgaccgccgcggacacggctgtgtattactgt	43	59	66	48
+JY8QFUQ01AO5H2	IGA1	ggattcaagtttcatgaatatgcc atgatctgggtccgccaggctccaggcaagggtccggaatgggtctcgtct attagtagtactagtaaatacatc tattatgcacagtcagtggagggccgattcaccatctccagagacgacgccgagaacgcactgttcctccagatgagcagcctgagtgtcgacgacacggctatctattactgc	53	54	55	51
+JY8QFUQ01AO7UP	IGA2	gagttcacctttagtagtttctgg atgcactgggtccgccaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggagggccgattcaccatctccagagacaacaccaagaacaggctatatctgcaaatgaacagtctgagagccgaggacacggctatttattactgt	56	49	61	47
+JY8QFUQ01AO8B3	IGG1	ggattcacctttggttattatggc atgactgggtccgccaactccgggggagggggctgagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	59	52
+JY8QFUQ01AO8X8	IGA2	ggattctccttcgaggggtctgtc gtgacctgggtccgacaggctccagggaaggggctggagtgggtctcaggt atctacggtggtgatggtacatca ttttacgcagacttcgcgaagggccgattcaccgtctccagagacaattccaaggacacggtctatctgcagatgaacggcctgagagtcgaagactcggcccgttattattgt	44	51	67	51
+JY8QFUQ01AOCIF	IGG2	ggattcaccttcagtgccacctgg atgcactgggtccgccaagctccagggcaggggctggtgtgggtctctcat attaatggtgatgggagtagcaca agttacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacggtgtatttgcaaatgaacagtctgagagccgaggacacggctgtatactactgt	52	53	63	45
+JY8QFUQ01AODPS	IGA1	cgtgggtctttcactggttatcgc tggagctggatccgccaggccccagggaagggactggagtgggtgggggac atcaactttaaaggaagcacc aattacaacccgtccctgaagagtcgactcaccatattagcagacttgtccaggaatcggttctctctagacctaagtggtgtgaccgccgcggacacggctatgtattattgt	48	52	61	49
+JY8QFUQ01AODUI	IGG1	ggatacgactttaacaactactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatgggaatc atctttcctggtgactctgatatc agatatagtccgtcgttccaaggccaggtcaccatctcagtcgacaagtccatcggcaccgcctacctgcaatggagcggcctgaaggcctcggacaccgccacttattattgt	48	59	58	48
+JY8QFUQ01AOFCE	IGA1	ggattcaccttcaatacctattct atgcactgggtccgccaggctccaggcaaggggctagagtgggtgtcagtt atttcatatgatggaagtaagaaa tactacgcggactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtatctgcaaatgaacagcctgagacctgaggacacggctgtttattactgt	58	50	54	51
+JY8QFUQ01AOFPE	IGG2	ggattcagcctcacttcctatggc atgaactgggtccgccaggctccagggagggggctggagtgggtctcacac gttaatatgggtagtactcacata tactacgtaggctccgtgaggggccgattcaccatctccagagacgacgccaagaactcagtgtatctgcagatgaacaacttgagagccgaggacacggctctatattactgt	52	54	60	47
+JY8QFUQ01AOGGT	IGA1	ggattcacctttagtaactattac atgagttgggtccgccaggctccagggaaggggctggagtacgtggccagc ataaaacaagatgaaggtcagaca tactatgcgggctctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatcttcaaatgaacagcctgagagtcgaggacacggctgtgtatcactgt	60	50	58	45
+JY8QFUQ01AOGS5	IGA1	ggatacaccttcatcagttatgat atcaattgggtgcgacaggccactggacaaggcttgagtggatgggatgg atgaaccctaacagcggtaacaca gggtttgcacagaggttccagggcagagtaaccatgaccaggaacatctccataaacacggcctacatggagctgaccaacctgacatctgatgacacggccgtatattattgt	62	49	56	45
+JY8QFUQ01AOJXD	IGA1	gggggcaccatgagtagtttctac tggagctgggttcggcagtccccagggaggggactggagtggattggattt gtttcttacagtgggcccacc aactacagcccctccctcaagagtcgagtcaacttatcactggacgcggccaacaaacagttctctttgcagctgcgttctgtgaccgctgcggacacggccatttattactgt	42	56	60	52
+JY8QFUQ01AOLHE	IGA1	cgtgggtctttcactggttatcgc tggagctggatccgccaggccccagggaagggactggagtgggtggggac atcaactttaaaggaagcacc aattacaacccgtccctgaagagtcgactcaccatattagcagacttgtccaggaatcggttctctctagacctaagtggtgtgaccgccgcggacacggctatgtattattgt	48	52	60	49
+JY8QFUQ01AOMW2	IGA1	ggattcacgtttggttcgtattgg atgagttgggtccgccaggctccagggaaggggctggagtgggtggccaac attcacgaagaaggaagtgaaaag aattatgtggactctgtgaagggccggttcgtcatctccagagacaacgccaagaattccctctatctgcaaatgaacagcctgagagtcgaggacacggccatatattattgt	56	43	65	49
+JY8QFUQ01AOQZO	IGA1	ggtggccccatcggcagtggtgcctactac tggacctggatccggcagcccgccgggaagggattggagtggctcgggcgt gtttatagtggtgggatcatc aattacagtccctccctcaagagtcgaatcaccatgtcgatagacacgtccaagaaccagttctccctgaagttgacctctgtgaccgccgcagacacggccttatattactgt	45	61	61	49
+JY8QFUQ01AOR4M	IGA2	ggattcaacttcagaacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcacgatggaagtgacaag tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactcattgtttttgcaaatggacagcctgagagccgaggacacggctgtgtactactgt	55	48	66	44
+JY8QFUQ01AOY3W	IGA2	ggattcaccttcagttcttatgc atgaactggtccgcctgtccaggcaaggggctggaatggctttcattt attggtaatactggtagtgtcata tactacgcagactctgtgaaggggcgattcaccatctccagagacaatgccaagaactcaatgtctctacaaatgagcagcctgagagccgaggacacggctctatattattgt	54	48	51	56
+JY8QFUQ01AP05X	IGA1	ggattcaccttcaggagctattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaggtgacaaa ttctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	58	48	64	43
+JY8QFUQ01AP0TZ	IGA1	ggcttcatctttgatgattatgcc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggt attagttggaatagcgctaccata gaatatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctggaaatcaacagtctgagacctgaagacacggccttatactactgc	55	53	56	49
+JY8QFUQ01AP21C	IGA1	ggttacccctttaatacctatggt atcacctgggtgcgacaggcccctggacacggccttgagtggatggggtgg atcagcgttcacgatggcaacaca aactatgcacagaatctccagggcagagtcaccctgaccacagacacatctacgagcacagcctacatggaactgaggggtctcagatctgacgacacggccgtttattattgt	54	58	56	45
+JY8QFUQ01AP263	IGA1	ggattcacctttaccaactatgcc atgacctgggtccgccaggctccagggaaggggctggaatgggtctcaact attagtaatcgtggtactggagtg tactacgcagactccgtgaagggccgcttcaccatctccagagacaattccaagaacacggtgtatctgcaaatgaacagcctgagagccgaggacacggccctttattactgt	54	56	56	47
+JY8QFUQ01AP2Y1	IGA1	ggattcacctttggcctctatgcc atgaactgggtccgccagactccagggaaggggctggagtggctcgcaact attagtggtagtggaagtagatca ttttacgcagactccctgaagggccggttcaccatctccagagacaattccaagggcacggtatacctggaaatgaccaccctgagagccgaggacacggccgtatattactgt	52	55	60	46
+JY8QFUQ01AP3M5	IGG1	ggattcacctttaccacctccgcc atggcctgggtccgccaggttccagggaaggggctggagtgggtctcatcc ataagtagtggtagtacttacata tatcacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaagacactttacctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	55	57	56	45
+JY8QFUQ01AP4KF	IGG2	ggattcaactttaataattatgcc atgcactggtccggcaagctccagggaagggcctggagtgggtctcaagt attagttggaataatggtaacaca gactatgcgggctctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagaactgaggacacggccttatattactgt	60	48	54	50
+JY8QFUQ01AP6HU	IGA1	gaattaacgtttgatatatatgcc atgacttgggtccgccaggctccagggaaggggctggaatgggtctcaact attactggtagtggtgataatgcc tactacgcagacttcgtgaagggccgattcgccatctccagagacaattccaagaacatgttgtatttgcaaatgaacaacctgcgaggcgaggacacggccgtttattactgt	56	46	57	54
+JY8QFUQ01AP72B	IGG2	ggattcgtctttactaatcattgg atgagttgggtccgccaggccacagggaaggggccggagtgggtggccaac atatccccagacggaatacgaaa tattttggggactctgtgaggggccgattcagcgtctccagagacaacggcaagcagtcatcgtatctggaaatgaataccctgacagtcgatgacacggctgtatacttctgt	53	48	63	48
+JY8QFUQ01AP9Y7	IGG2	ggatacactttcaccagttattat atacactgggtgcgacaggcccctggacaggggcttgagtggatgggagtt gtcaaccctggtgctgaatacaca ctctacgcacagaagttccagggcagactcaccttgaccagggacacgtccacgagcacagtctacatggagttgagtagcctgagatctgaggacacggccctgtattactgt	53	54	59	47
+JY8QFUQ01APECD	IGA1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtagtagttacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagcagcctgagagccgaggacacggctgtgtattactgt	57	51	58	47
+JY8QFUQ01APENB	IGA1	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgataccaca taccacgcagactccgtgcagggccgattcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagtcgaggacacggccgtttattactgt	53	54	59	47
+JY8QFUQ01APGRW	IGG2	gaattcaccgttagcagtcattgg atgaattgggtccgccaggctccagggaaggggctggaatgggtggccaac ataaaacaagatgcaagtgagaaa aactatgtggactctgtgaagggccgattcaccatctcccgagacaacgccaagaattcactgtatctgcaaatgaacagcctgagactcgaggacacggctgtgtatttctgt	62	47	59	45
+JY8QFUQ01APICN	IGG1	ggattcaacctcaatacctttggc atgaactgggtccgccaggcgccagggaagggactggagtgggtctcacac gtcaatcggggtagtactcacata tactacgcaggctcagtgaggggccggttcaccatctccagagacgacgccgggaactcagtctatctgcaaatgaatagcctgagagccgaggacacgggtttatattattgt	53	53	62	45
+JY8QFUQ01APJMN	IGG2	ggattcagcctcacttcctatggc atgaactgggtccgccaggctccagggagggggctggagtgggtctcacac gttaatatgggtagtactcacata tactacgtaggctccgtgaggggccgattcaccatctccagagacgacgccaagaactcagtgtatctgcagatgaacaacctgagagccgaggacacggctctatattactgt	52	55	60	46
+JY8QFUQ01APK7S	IGA1	ggtgggtccctcagggttaccc tggacctggatccgccacaccgcagagaagggactggagtggattggtcaa atcaatagtgatggaaggaca acctacaactcggccctcatgggtcgagtcaccatttcaacagacacatccaagaatcagttctcgctgactgtggtttctgttgtcgccgcggacacggcaatgtattattgt	50	53	57	48
+JY8QFUQ01APLRK	IGG2	ggacgctccttgagaagctttggc atgcactgggtccgccaggctccaggcaagggactggagtgggtggcactt acttcgtatgacggaataggaaa tattatgcagactccgtgaagggccgattcaccatctccagagacaactccaagaatacgttatttctgcaaatggacagtctgagagctgaggacacggctctttattactgt	54	49	59	50
+JY8QFUQ01APM60	IGA1	gggttcaccgtcagtagcaactac atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagtt atttatagcggtggtaccaca ttctacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgcatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgt	52	54	60	44
+JY8QFUQ01APOZ1	IGG1	ggattcgagtttagtgcttattgg atgacttgggtccgccaggctccaggaaaggggctggagtgggtggccagt attaagaaagatggacatgagaag aattatttggactccgtcaaggagcgattcaccatatccagagacaacgccagggactcggtgtctttgcaaatgaacagcctgcgagtcgaggacacggctgtgtatttctgt	54	41	67	51
+JY8QFUQ01APYPD	IGG2	ggattcaccttcagtacatactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcccgt atcaatcctgatgggcgaatcaca aactacgcggactccgtgaatggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggattcggctgtgtactactgt	53	57	58	45
+JY8QFUQ01AQ0K4	IGG1	ggattcaccttgggttattatggc atggactggtccgccaactccgggggagggggctgagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	51
+JY8QFUQ01AQ18D	IGA1	ggattccctttcagcaacacctac atgagctgggtccgccaggctccagggaaggggctggagtgggttggccgt attaaaagcaaaactgatggtgggacaata gaatacgctgcacccgtgaaaggcagattaaccatatcaagagacgattcaaaaaacacgctgtatctgcatatgagcagcctgaagatcgaggacacagccgtgtattactgt	66	49	60	44
+JY8QFUQ01AQ576	IGA1	ggattcagatttagtaactactgg atgagttgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaggtgagaag tattatgtgggctctgtgaagggccgattcaccatctccagagacaacgccaagaactcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattattgt	59	41	67	46
+JY8QFUQ01AQ8YC	IGA1	ggattcaccttcagtgactattac atgagttggtaccgccaggctccaggtcaggggctggagtggctttcatat ataagtcaaactggcaaaaccaca tacttcgcagactctgtgaagggccgattcaccatctccagggacaatgccaagacatcagtgtttctgcaaatgaacagcctgagagttgacgacacggccgtgtatttttgt	56	51	53	53
+JY8QFUQ01AQAEH	IGA2	gggttcacctttgcccactttgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtggtggtgatgattccaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatggacagcctgagagccgaggacacggccgtatatcactgt	49	58	60	46
+JY8QFUQ01AQAXR	IGA1	ggattcaccttcagtcactatggt atacactgggtccgccaggctccaggcaaggggctagattgggtggcattt atatcatatgatggaagtaatgag ttttacgcagactccgtgaggggccgattcaccatctccagagacaactccaagaacatgatgtatctgcaaatgaacatcctgagacgtgaggacacggctctttattactgt	57	48	54	54
+JY8QFUQ01AQMNE	IGG2	ggattcaccgtcagtagcagcttc atgacttggtccgccagctccaggaaaggactggagtgggtctcagtg ctttatgtcggtggtaacaca tactacgcagactccgtgaagggccgattcaccacctccagagacaattccgagaacactctgtatcttcaaatgaacaacctgagacctgaggactcggctgtgtattattgt	52	53	52	50
+JY8QFUQ01AQOEM	IGA2	ggattcaccttcagtgactatagc atgaactgggtccgccagactccagggaagggggtggagtggatttcatac atcggccgtggtggtgatgggata tactacgcagactctgtgaagggccgaatcaccatctccagagacaatgccaagaactcactttttctgcaaatgaacaccctgagagacgacgacacggctgtgtattactgt	56	50	59	48
+JY8QFUQ01AQS9S	IGA2	gagttcaccttagtagtttctgg atgcactgggtccgccaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggagggccgattcaccatctccagagacaacaccaagaacaggctatatctgcaaatgaacagtctgagagccgaggacacggctatttattactgt	56	49	61	46
+JY8QFUQ01AQUPN	IGA1	ggattcaccttcaatacctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtggtagtacttacata aagtacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	59	52	56	46
+JY8QFUQ01AQWBS	IGA1	ggtgactccatttccagtactagttattac tggggctgggtccgccagccccagggaaggggctggagtggattgggggt atctattctagtgggaccacc tactacaacccgtccctcaagagtcgagtcaccatatccgtagacacgtccaacaactacttctccctgaagctgagttctgtgaccgccgcagacacggctgtgtattactgt	46	60	57	52
+JY8QFUQ01AQXAS	IGA1	ggtggccccatgggcagtagtttatacttc tggaattgggtccgacagcccgccgggaagagactggagtggatcggacgt gtttatgatgatgggagtacc cgctacaatccctccctcaggggtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaggttgagttttgtgaccgccgcagacacggcccgttattactgt	45	56	64	51
+JY8QFUQ01AQXWF	IGG2	ggtgagtccttcactaattactac tggagctggatccgccagtccccaggaaagggtctggagtggcttggggag gtccatcatagtggacgcacc gactacaacccgtccctcaagagtcgaatcaccatgtcgttagacacgtccgaaaatcagttctccctgaagttgacttctttgaccgccgcggacacggcagtatattattgt	49	57	54	50
+JY8QFUQ01AQZ7D	IGG1	ggattcacctttagtagtttctgg atgcactgggtccgccaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacaccaagaacaggctatatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	56	49	61	47
+JY8QFUQ01AR4F8	IGA1	ggattcacctttggtgattatagt atgagttggttccgccaggctccagggaaggggctggagtgggtcggtttc attagaagcaaagctgatgatgggacaaca gaatacgccgcgtctgtgaaaggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaatagcctgaaaaccggggacacagccgtgtattactgt	61	45	62	51
+JY8QFUQ01AR4XZ	IGA1	ggattcctcttcagtagctttaac atgaactgggtccgccacgttccagggaagggtctggagtgggtttcatac attaatagtagaggtactaacata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaggaattcactgtatctgcaaatgaacagcctgagagccgacgacacggccgtatactactgt	59	51	52	51
+JY8QFUQ01AR7NH	IGG2	ggtggctccatcagtactggttattactac tggagctggatccggcagtccgccgggaagggactggaatggattgggcgc atgtctgccagaggggacagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	47	62	61	46
+JY8QFUQ01AR8K0	IGA2	gaattcacctttagcagttttgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaagc attggtactagtgttgttaacaca tggtacgcagactcagtgaagggccggttcgccatttccagagacaattccaagagcacgctgtatttgcaaatgaatagcctgagagtcgaggacacggccgtatattactgt	52	47	62	52
+JY8QFUQ01AR8UJ	IGG1	ggattcactttcagtgacgcctgg atgagctgggtccgccaggctccagggaaagggctggagtgggttggccgt attccaagcaaagctgatggtgggacaaca gactacgctgcgcccgttaaaggcagattcaccatctcaagagaggattcaaaaatatgctgtatctgcaattgaacagcctgaaaaccgaggacacagccgtgtatttctgt	58	50	63	47
+JY8QFUQ01AR91V	IGA1	ggtgcctccatcactagtggtaactac tggagttggttccggcagcccgccgggaagacactggaatgggttgggcgt atctatacaactgggagcacc tattacaacccctctctcaaaagccgagtcaccgtttcagtcgacgagtcccagaatcagctcttcctggacctgacttctgtgaccgccgcggacacggccgtctacttctgt	44	65	55	49
+JY8QFUQ01ARJHI	IGA1	ggattcagcatcagtagttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtgcaagtactacttccata cattatgcagactcagtgaagggccgattcaccatctccagagacgacgccaagagttccctgtatttgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	56	51	57	49
+JY8QFUQ01ARLMX	IGA1	ggtggcctcatcagtaattactat tggacctggatccggcagcccccaggaaagggactggagtggattgggaac atctattacagtgggagcgcc acctacaacccctccctcaagagtcgagtcaccatatcaatagactcgtccaagaaccagttctccctgaggctgaccgctgtgaccgctgcggacacggccgtgtattactgt	50	61	55	44
+JY8QFUQ01AROW2	IGA1	ggattcaccttcagtaactatagc atgagctgggtccgccaggctccagggaaggggccggagtgggtctcagct attactggtcttgatggtagaaca ttctacgcagactccgtgaagggccgtttctccatctccagagacaattccaagaacacgttgtatttgggaatgaacagcctgagagccgaggacacggccgtatattattgt	52	50	60	51
+JY8QFUQ01ARPRY	IGG2	ggattcaccttcagtgactatcac atgtactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcatatgatggaagtaataaa tactatgtagactccgtgaagggccgattcaccatctccagagacaattccaagaatgcgctgtttctgcagatgaacagcctgagagctgacgacacggctgtgtattactgt	56	47	58	52
+JY8QFUQ01ARWZ0	IGA2	ggattcacgtttagagactattgg atgagttgggtccgccaggctcctgggagggggctggagtgggtggccaac ataaagcaagatgcaagtgaggaa tactatgtggactctgtgaagggccggttcaccatctccagagacaacgccaagagctcactgcatttgcaaatgaacagcctgagagccgaggacacggctatgtattactgt	56	45	67	45
+JY8QFUQ01ARYWV	IGA1	ggattcacctttagcggctatgcc atggcttgggtccgccaggctccagggaaggggctggagtgggtctcaact agtactactgatggagctggccca tactacgcagactccgtgaggggccggttcaccgtcttcagagacaattccaagaacactctgtatctacaaatggacaccctgagagccgacgacacggccatgtattactgt	49	58	60	46
+JY8QFUQ01AS13P	IGA1	ggatttaccttcagtggctatggc atgcactgggtccgccaggctccaggcaagggcctggagtgggtgacagtt gtttcatatgatggaagtattaag aattatgcagactccgtgaagggccgattcaccatctccagagacgattccaagaatacgctgtatctgcaaatgagcagcctgggacctgaagacacggctatatattactgt	55	47	59	52
+JY8QFUQ01AS1T0	IGA1	ggattcatctttgatgattttggc atgaattgggtccgccaagctccagggaaggggctggagtgggtcgctggt atcagttggaatggtggcaaagca ggtcacgcagactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccgtgtatcactgt	52	49	65	47
+JY8QFUQ01AS22B	IGG1	gggttgaccgtcagtgccgaccac atgtactgggtccgccaggctccagggaaggggctggagtgggtctcagtt ctttatggcggtggcaccttg gactacgcagactccgtgaagggccgattcaccatctccagagacaattcgaggaacactgtgtatcttcagatggagagactgagccccgaggacacggccgtctactactgt	44	56	66	44
+JY8QFUQ01AS24X	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggcgtgggtctcacgt attaaaagtgatggcagtggcaca aactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagagcacgctgtttctgcaaatgaacagtctgagagccgaggacacggctgtatattactgt	54	54	62	43
+JY8QFUQ01AS28D	IGA1	gaagacatgtttaagagtttcgga ttgacgtgggtccgtcaggctccagggaaggggctggagtgggtcgcagga ataaacaattacaatggtgcaact ttctatgctggccccgtaaagggccgcttcaccgtctctcgagataaagaaaagaccattttttatctacaaatggacaacgtgagggtcgacgacacgggcgtttatttctgt	56	43	61	53
+JY8QFUQ01AS5EL	IGA2	ggtggctccatcagtagtttctac tggagctggatccggcagcccgccgggaagggactggagtggattgggcgt atctataccagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgt	46	61	60	43
+JY8QFUQ01AS6B9	IGA1	gggttcaccttcagtaactcctgg atgcactgggtccgccaagctccagggaaggggccggagtgggtctcacgt attaatagtgatgggagtaataca atctacgcggactccgtgaagggccgactcaccatctccagagacaacgccaaaaacacggtgtatctgcaattgaacagtctgagagccgaggacacggctgtgtactactgt	55	54	61	43
+JY8QFUQ01AS9TS	IGA1	ggattcacctttaggagctatgcc atgagttgggtccgccaggctccagggaaggggctagagtgggtctcgtct atcagtggcagtggtgataagaca aagtatgcagattcagtgaggggccggttcaccatctccagagacaattacgacaacacattatatctgcgaatggagggcctgagagccgaggacacggccacatattactgt	55	47	65	46
+JY8QFUQ01ASBBA	IGA1	ggattcatcttcagtgactactac atgacctggatccgccaggctccagggaaggggctggagtgggtttcatac attcgtagtaatgggagtcccata tacaacgcagactctgggaggggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaatagtctgagagtcgaggacacggccgtgtattactgt	55	51	59	48
+JY8QFUQ01ASGTL	IGA1	ggattcacctttagtgattatgcc ttgagctgggtccgccagactcccgggaaggggctggagtggatctcagaa atcactggtgatggcggtaacaaa tactatgcagactccgtgagggaccggttcaccatctccagagacaactccaagaatattttgtatctgcagatgagcagcctgagagccgaagacacggccatgtattactgt	55	50	59	49
+JY8QFUQ01ASIFV	IGG2	ggattcacctttaccacctatgcc atgagctgggtccgccaggctccagggaaggggctggaatgggtctcaact attagtggtagtggtggcaggaca tactacgcagactccgtgaagggccggttctccatctccagagacaattccaagaacacactatatctgcaaatgaacagcctgagagtcgaggacacggccgtatattactgt	55	54	58	46
+JY8QFUQ01ASKXZ	IGA1	ggattcaccttcagtacctattcc atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagtt atatcatatgatggaaaaaaag tattatggagactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtacctgcaaatggacagcctgaggcctgaagacacggctgtatattactgt	59	49	56	47
+JY8QFUQ01ASLW8	IGA1	ggaggcaccttcgacagttatgtt atcagctgggtgcgacaggcccctggacaagggcttgagtggatgggcggg atcatccctatctttggttcggca aagtatgcacagaagttccagggcagagtcaggattaccgcggacgaatccacgagcacggcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgt	49	51	69	44
+JY8QFUQ01ASMJE	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccggggaggggctgggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	61	52
+JY8QFUQ01ASMT6	IGA2	ggtggctccatcagcagtgatagttactac tggggctggatccgccagtccccagggaaggggctggagtggattgggaat atctattatcgtgggagcacc tattacaacccatccctcgagagtcggctcaccatgtcggtagacacgtccaggaacctcttctccctgaggctgagctctgtgaccgccgcagacacggctgtatattactgt	45	59	62	50
+JY8QFUQ01ASO1O	IGA1	ggattcaccgtcagtaactaccac atgaggtgggtccgccaggctccagggaaggggctggagtgggtctcagtt atttacagcggtggtagtaca tattacatagactccgtgaagggccgattcaccatctcgagagacgattccgagaacacagtgtatcttcaaatgaagagcctgagagctgaggacacggctgtatattactgt	55	46	61	48
+JY8QFUQ01ASOW0	IGA1	ggattcatcttcagcaactactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attactggtgatgggagtaaccca atctacgcggaccccgtgaagggtcgattcaccatctccagagacaacgccaagaacacactatatctgcaaatgaacagtctgagagtcgaggacacggctgtgtattactgt	55	53	59	46
+JY8QFUQ01ASS6V	IGG1	ggattcacctttagtagttttgcc atgacctgggtccgtcaggctccagggaaggggctggagtgggtctcaact attcattataatggtgataacaca tactacgcagactccgtgaggggccgattcaccatctccagagacgattccaagaccacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	54	53	56	50
+JY8QFUQ01ASSCV	IGA2	ggattcacctttagtaaccattgg atgaactgggtccgccaggctccagggaaggggctggagtgggtggccaac ataatgccagatggaggtgagaaa ttctatgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	55	47	65	46
+JY8QFUQ01ASTYN	IGG1	agtgcctccatgatcagttactat tggacctggattcggcagcccccagggaagggactgagtggattggggac atctattcctttggaggcacc agatacaacccgtcccttggcagtcgagtctccatatcactggacacgtccaataatgagttctccctgcaactgaactctgtgaccgctgcggacacggccttatatcactgt	47	59	52	51
+JY8QFUQ01ASUCZ	IGA1	ggatttaggtttgatgattttggc atgagctgggtccgccaagttccagggaagggcctggaatgggtctctggt agtgactggagtggtggaagaaca ggttatggtgactctgtgaagggacgattcatcatctccagagacaacgccaagaactccctatatctacaaatgaacgatctgcgagccgatgacacggccgtctattattgt	53	42	64	54
+JY8QFUQ01ASUXV	IGG2	ggtggctccgtcaacagtggtattttctac tggagctggatccggcagcccgccgggaagggactggagtggatagggcgt atctatgccagtgggagcacc aactacaacccctccctcaagagtcgaatcaccatatcagcagacacatccaagaatcagttctccctgaggctgagttctgtgaccgccgcagacacaggcgtttattattgt	51	59	59	47
+JY8QFUQ01ASVJP	IGA1	ggattcgtctttggcgactatgcg atgagctgggtccggcaggctccagggagggggctggagtgggtctcaagt attagtggtagtggtgtcagcaca tactacgtgggctccgtgaagggccgcttcaccatctccagagacaattccaagaatgtgttgtatctgcaaatgaacggcctgagagtcgaggacacggccacatatcactgt	47	48	69	49
+JY8QFUQ01ASZ0M	IGA1	ggtgactccattagtggttactat tggacgtggatccgacagcgcccagggatgagcctggagtggattggacaa gtccattacactgggagcacc aagtacagccctccctcaagagtcgagtcaccatttctgttgacatgtccaagaaccaattcaccctcatcttgacctctgtggccgctgcggacacggccgtctattactgt	47	59	53	50
+JY8QFUQ01AT4NT	IGG1	ggattcacctttaccaactacgcc atgagctgggttcgccaggttccagggaaggggctggagtgggtctcactt attagtgttcgtggcgatgacacc ttctatgcagactccgtgaagggccggttcaccatctccagagacaactccaagaacacgctgtatctgcaaatggacatcctgaaacccgaggacacggccgtttattttgc	49	57	56	50
+JY8QFUQ01AT5TS	IGA1	ggaaaaaccctcactgaagtatcc atgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggagga tttgatcctgaagatggtgaaata atctacgcacagaagttccagggcagaatcaccgtgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	63	48	61	41
+JY8QFUQ01AT8HH	IGA2	ggtggctccttttctaatcatggttaccac tgtagttggctccgccagttcccagggaaggacctggagtggattgcctac atctattacactgggagcacc gagtataacccgtccctcaggagtcgagttgccatatcagtggacacgtctgggaaccagtgttccctggagttgaactctgtgagtgccgcggacacggccgtctattactgt	43	57	60	56
+JY8QFUQ01ATA76	IGG3	ggattcacctttggtgattatgct atgagctggttccgccaggctccagggaaggggctggagtgggtaggtttc attagaagcaaagcttatggtgggacaaca gaatacgccgcgtctgtgaaaggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgt	61	47	61	50
+JY8QFUQ01ATDOT	IGG3	ggattcagcttcagtgactactac atgagttgggtccgccaggctccagggaagggactggagtgggtttcatgc atcactactagtggtaccaca ttctacacggactctgtgaggggccgattcaccatgtccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgt	52	53	59	46
+JY8QFUQ01ATIZV	IGA2	ggattcaccgtcagtggcaagtac atgagctgggtccgccaggctccagggcagggactggagtgggtctcagtt atctatagtactggtagtaca tactacgcagattccgtgaaagggcggttcaccatctccagagacagttccaacaacactctatatcttcaaatttacggcctgagagctgacgacacggctacttactactgt	53	53	54	50
+JY8QFUQ01ATJ6D	IGA1	ggattcaccttcagtgactactac atgaactggatccgccaggctccagggaaggggctggagtggatttcaaac atcaatagtagtgggaggaccata tattacgcagactctgtgaagggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	61	52	56	44
+JY8QFUQ01ATK2N	IGA1	gaattctccgtcagtgacagtcac atgagttgggtccgccaggctccagggaaggggctggagtgggtctcagtt atttatagcggtggtagtgca tattatgcagactccgtgaggggccgattcaccatcgccagagacaaatctaagaacgtgttgtatcttcaaatgaacagtctgagacctgaggacacggctgtgtactactgt	51	45	62	52
+JY8QFUQ01ATP88	IGG1	ggtgagtccttcactaattactac tggagctggatccgccagtccccaggaaagggtctggagtggcttggggag gtccatcatagtggacgcacc gactacaacccgtccctcaagagtcgaatcaccatgtcgttagacacgtccgaaaatcagttctccctgaagttgacttctttgaccgccgcggacacggcagtatattattgt	49	57	54	50
+JY8QFUQ01ATQIC	IGA1	ggattcactttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	53	63	46
+JY8QFUQ01ATVSF	IGG2	ggattcaccttcagtacatactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcccgt atcaatcctgatgggcgaatcaca actacgcggactccgtgaatggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggactcggctgtgtactactgt	52	58	58	44
+JY8QFUQ01ATWCJ	IGA1	ggattcaccttcagtgcctttact atgcactgggtccgccaggctccaggcgagggactagagtgggtggcagct atatcatatgatggcagtaaaaa tactatgcggactttgtgaagggccgattcaccatctccagagacaatcccaagagtacactgtatctacaaatgaacggcctgggaggtgatgacacggctttgtattactgt	55	48	57	52
+JY8QFUQ01ATX94	IGG2	ggattcaccttaagtgatcactac atggactgggtccgccaggctccagggaaggggctggagtggttggccgt actaaaaacaaagctaacggttacactaca cactacgccgcgtctgtgagaggcagattcattctttcaagagacgattcaaagaactcagtgtatctgcaaatgaacagcctgaaaatcgaggacacggccgtctattactgt	63	51	56	48
+JY8QFUQ01AU02Q	IGA1	ggtggctccatcagcgacactagttatcac tgggcctggatgcgccagcccccagggaagggcctggagtggattgctaat gttcattatactggcagcgcc cactacaacccgtccctcaagagtcgagtcaccatactagtagacacgtcccagaatcagttctccctgatgctgagttctgtgaccgccacagacacggctgtgtattactgt	48	64	55	49
+JY8QFUQ01AU76E	IGA2	ggattcaccttcagttcttatgcc atgaactgggtccgcctggttccaggcaaggggctggaatggctttcattt attggtaatactggtagtgtcata tactacgcagactctgtgaaggggcgattcaccatctccagagacaatgccaagaactcaatgtctctacaaatgagcagcctgagagccgaggacacggctctatattattgt	54	49	53	57
+JY8QFUQ01AUADL	IGA1	ggattcctcttcagtagttatgct atacactgggtccgccaggctccaggcaaggggcttgagtgggtggcggtt gtttcatatgatggaaataataaa ttttacgcagactctgtgaagggtcgattcagcctctccagagacaactccaagagcacggttgatctgcaaatggacaacttgagatccgaagacacggctgtatattattgt	55	44	57	57
+JY8QFUQ01AUD41	IGA1	ggattcaccttcagttcttatgcc atgaactgggtccgcctggttccaggcaaggggctggaatggctttcattt attggtaatactggtagtgtcata tactacgcagactctgtgaaggggcgattcaccatctccagagacaatgccaagaactcaatgtctctacaaatgagcagcctgagagccgaggacacggctctatattattgt	54	49	53	57
+JY8QFUQ01AUF6C	IGA1	ggattcacgtttagagactattgg atgagttgggtccgccaggctccggggaagggactggagtgggtctcaacc attagtcctagtagtcagtacata tactatgcagactctgtggagggccgattcaccatctccagagtcgacgcccggagttcagtgtttctgcaaatgaacagcctgagagacgacgacacggctgtgtattactgt	50	48	63	52
+JY8QFUQ01AUH73	IGA1	ggattcacctttgatgattatgtc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt attagttggggaagtgctcatata cactatgcggactctgtgaaggaccggttcaccatctccagagacaacgccatgaactccctttatttgcaaatggacagtctgagagctgacgactcggccttgtattactgt	50	49	58	56
+JY8QFUQ01AUI48	IGA1	ggattcaccttcagtgactactac atgaactggatccgccaggctccagggaaggggctggagtggctttcatac attagtggtagtggaactaccata tcctacgcagactctgtgaagggccgattcaccatctccagggacaacgccaggaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattattgt	55	54	57	47
+JY8QFUQ01AUJ6M	IGG2	acattcacgtttagtcggtattgg atgagctggtccgccaggctccagggaagggcctggagtgggtggccaac ataaaggaagacggaagtgagaga tattatgtggactctgtgaagggccgattcaccatctccagagacaatgccaagaactctctgtatctgcaattgaacagcttgagagccgaggacacggctgtgtattactgt	56	44	64	48
+JY8QFUQ01AURES	IGA1	ggatacatattcaccgccttttat atacactgggtgcgacaggcccctggacaagggcttgagtggatgggatcc atcaatcccaacagtggtgtcaca acctacgaagagaagtttcgggcagggtcaccatgaccagggacacgtccatcactacagcctacatggaactgacaagccttacatcagacgacacggccgtatattactgt	59	57	52	44
+JY8QFUQ01AUU0J	IGA2	agattcacctttaggacatattgg atgagttgggtccgccaagctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagata cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtttctccaaatgaacagcttgagagtcgatgacacggctgtgtattactgt	61	44	61	47
+JY8QFUQ01AUUPD	IGG1	ggattcagcttcagtgactactac atgagttgggtccgccaggctccagggaagggactggagtgggtttcatgc atcactactagtggtaccaca ttctacacggactctgtgaggggccgattcaccatgtccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgt	52	53	59	46
+JY8QFUQ01AUVXR	IGA2	ggattcagcttcagagactatggc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcatac attggtaggattattagtgacata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagggacgacgacacggctgtctatttctgt	54	50	60	49
+JY8QFUQ01AUYQV	IGA1	ggattcagcgtcaacaacaactac atgaactgggtccgcctggctccagggaagggtctggagtgggtctcagtt atttatagaggtggtaataca ttctacacagactccgtgaagggccggttcaccatctccagagacatttccaagaacactttgtatcttcaaatgaacagtctgacaactgaggacacggctgtgtactattgt	57	48	52	53
+JY8QFUQ01AV09F	IGA1	ggtgcttccatgacgagtactaatttctac tggagttgggtccgccaacgctcagggaagggcctagagtggcttggatac atctatcacagtgggggcacc tattacaacccgtctctcaagagtcgacttgccctgtcattagacgcgtctaataatgttttctccctgaaattggcctctgtaaccgccgcggacacggccgtatattactgt	47	57	54	58
+JY8QFUQ01AV2V7	IGA2	ggactcacgttcagtgaccactac atggactgggtccgccagactccagggaggggactggagtgggttggccgt attagagacaaagctcgcaggtacaccaca gaatacgccgcgtctgtgaaaggcagattcaccattttaggagatgatttaaagaattcactgtatctacaaatgaacaacctgagaaccgacgactcggccgtgtattactgt	62	51	59	47
+JY8QFUQ01AV3HD	IGA1	ggattcacctttagtagatattgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attaatgaagatgggaggaccaca acctacgcggactccgtgaatggccgattcctcatctccagagacaacgccaagaatacgttgtatctgcagatgagcagtctgagagtcgaggacacggccatgtattattgt	54	48	62	49
+JY8QFUQ01AV3VG	IGG1	ggattcagtcctaccgattttgg atcggctgggttcgccagctgcccggcaaaggcctggagtggatgggcctc atttatcctggtgactctgagacc agattcaacccgtccttccaaggccaggtcaccatctcagccaacaagtccataaataccgcctacctacagtggagcagcctgaaggcctcggacactgccgtgtattactgt	46	64	54	48
+JY8QFUQ01AV7LU	IGG2	ggattcgcctttagccgttatgcc atgacttgggtccgccagactccagggagggggctggagtgggtctcaggt ctcagtggtagtggtgatagcaca tactactcaaactccgtgaagggccggttcatcatcttcagagacaattccaagaacacgctgtatctgcaaataaacgccctgagagacgaagacacggccgtttactactgt	52	53	59	49
+JY8QFUQ01AV8RW	IGA1	ggattcatctttgatgattttggc atgagatgggtccgccaagttccagggaaggggctacagtgggtctctggt attaattggaatggtggtaaaaca ggttatgcagactctgtgaggggccgattcatcatctccagagacaacgccaagaacgccctgtatctgcaaatgaacagtctcagagccgaggacacggccttatattactgt	55	44	60	54
+JY8QFUQ01AVA0Q	IGA1	ggattctcacttagcactagtgggatgggt gtgggctggatccgtcagcccccaggaaaggccctggaatggcttacactc atttattgggatgatgataag cgctacagcccatctctgaagagcaggctcgccatcaccaaggacacctccaaaaatcaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattattgt	57	57	54	48
+JY8QFUQ01AVB4I	IGG2	ggattcagttttagtacctattgg atgagctgggtccgccaggctccagggaaggggctggaatgggtggccacc ataaacgaggatggaagtgacaga acctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaaaaattcattgtatctacaaatgaatagcctgagaaccgacgacacggctcgatattactgt	61	47	59	46
+JY8QFUQ01AVBM5	IGA1	gaaatcaccttcagcgaccactac atgagctggatccgccaggctccaggaaaggggctggaatggatttcatat attagcaccagtggtaatatgatc tattacgcagactctgtgaagggccgattcaccgtctccagggacaacgccaagaggtcgatgtatttgcagatgaacagtctgagagccgaggacacggccgtctatttctgt	57	51	57	48
+JY8QFUQ01AVDHQ	IGA1	ggattcaactttgataaatatgac atgcactgggtccgacaagctccagggaagggcctggagtgggtctcaggt attaagtggaatggcggtcgcgtc ggctatgcagactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagacctgaggacacggccttctattactgt	55	51	59	48
+JY8QFUQ01AVEUZ	IGA2	ggattcaccttcagcagctttagt atgaactgggtccgccaggctccagggaagggactggagtggctttcatac attagtaatactggtagtaacaaa tactacgcagactctgtgaagggccgattcaccatctccagagacgatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattactgt	59	49	55	50
+JY8QFUQ01AVHAA	IGG1	ggattcaacttcaattattatagc atgagttgggtccgccaggctccgggaaagggactggagtgggtttcatac attagtactagtagtagttacatg tattacacggactccgtgaagggccgcttcaccgtctccagagacaacgccaagaaatctctgtatctggaaatgaacagcctaagggacgaggacacggctgtctacttttgt	57	46	56	54
+JY8QFUQ01AVLE1	IGA2	ggattctccgtcagtaattactgg atgcactgggtccgccaggctccaggggaggggctggagtgggtctcacgt attaatgaagatggtagtcggaca gactacgcggactccgtgaagggccgattcaccatttacagagacagcgccaagaacacactgtatctgcaaatgaacagtctgagagtcgaagacacggctgtctattattgt	55	48	63	47
+JY8QFUQ01AVMZN	IGG1	gggttcaccatcagtacgtactcc atgggctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgagggggcggcttatcatctccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	49	64	46
+JY8QFUQ01AVNE7	IGA2	ggattcaccttcagttactcctgg atgcactgggtccgccaagttccaggaaaggggccggtgtgggtctcacga atcaaaagtgatgggagtacccca agttacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagtcgaggacacggctgtttattactgt	55	54	59	45
+JY8QFUQ01AVOVU	IGA2	caactttaccggctactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgatacc agatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccgtgtattactgt	44	65	58	41
+JY8QFUQ01AVPMG	IGA2	ggtggcgccatcagcagtaatagttactac tgggactggatccgccagcccccagggaaggggctggagtggattgggagt atgttttatactggggtcacc ttctacaacccgtccctcaagagtcgagttaacatttccgtggacacgtccaagagccagttctccctgaggctgagctctgtgaccgccgcagacacggctgtgtatcactgt	45	58	63	50
+JY8QFUQ01AVQ0D	IGA1	ggatacaccttcaccagctactat ttgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaata atcgaccctagtggtggtgccaca agctacgcacagcagttccagggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	54	57	62	40
+JY8QFUQ01AVQBY	IGG1	ggattcaccttcagtcgctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtagtcatagtatttacata tactatgcagactcagtggagggccgattcaccgtctccagagacaacgccgagaactcgctgtatctgcacatgaacaccctcagagccgacgacacggctatatattactgt	55	55	54	49
+JY8QFUQ01AVT39	IGA2	ggattcacttttagtgactattgg atgagttgggtccgccaggctccagggaagggactggagtgggtggccacc acaaacgaggacgagactaagaaa tactctgcggactctgtgaggggccgattcaccatctccagagacaacgccaagaactcactgtacttgcagatgagcagcctgagagccgacgacgcggccgtctattattgt	54	52	64	43
+JY8QFUQ01AVZKB	IGA1	ggattcaccctcagtgactacagt atgagttgggtccgccaggctccagggaaggggctggagtgggtctcatac atcagccgaagtggaagtaatgtg gaaactgcggactctgtgaggggccgattcaccgcctccagggacaccgccaataattcactgtttctgcggatgaatagcctgacagtcgaggacacggccctctattactgt	49	54	64	46
+JY8QFUQ01AW02O	IGA1	ggattcatcttcagtaactataga atgaactgggtccgtcaggctccagggaaggggctcgagtgggtctcgtcc atcaccagttccagtagttacatc tactatgcagactcggtgacgggccgattcaccatctccagagacaactccaaggggtcactctatctgcacatgaacgaccttagggccgaagacacggctgtctattactgt	52	57	54	50
+JY8QFUQ01AW9GE	IGG4	ggtggctcactcagaagtagtagtcaccat tggggctggattcgtcagtcccccgggaaggggctggagtggcttgggact gtcgactttcgtgggaccacc cactacaacccgtccctcatgggtcgactcacgatatccgtcgacgcgcccaagagtcaaatgtccctgcacttgagctctgtgaccgccgcagacacggctttttacttctgt	40	65	61	50
+JY8QFUQ01AWGJ4	IGA2	ggatacagcttcactaactacaat atccattgggtgcgccaggcccccggacaagggcttgagtgggtgggatgg atcaacgctggcaatggcaataca agatattcacagaaattgcagggcagagtcaccatttccagggacacatccgcgagcattgccaacatggagttgagcagcctgagatatgaagacacggctgtatattattgt	61	48	59	45
+JY8QFUQ01AWIJ1	IGA1	ggggccaccatgagtagtttctac tggagctgggttcggcagtccccagggaggggactggagtggattggattt gtttcttacagtgggcccacc aactacagcccctccctcaagagtcgagtcaacttatcactggacgcggccaacaaacagttctctttgcagctgcgttctgtgaccgctgcggacacggccatttattactgt	42	57	59	52
+JY8QFUQ01AWLNY	IGA2	ggggacagtgtctctagcaacagtgccact tggaactggatcaggcagtccccaacgggaggccttgagtggctgggaagg acatcctacaggtccaaatggtatagt gattatgcggtgtctgtgaaaagtcgaataaccatcaacccagacacatccaagaaccagttctccctgcaattgaactccgttagtcccgaggacacggctgtgtattactgt	59	55	59	49
+JY8QFUQ01AWOLO	IGG1	ggatacacgtttatgaattactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtacctctgagacc agatacagcccgtcctttcaaggccaggtcaccatttcagccgacaagtccaccagcaccgccttcgtgcagtggagcagcctgaaggcccggacaccgccatatattactgt	48	61	59	44
+JY8QFUQ01AWOO7	IGA2	ggattcacattcggtagttttatg atgaactgggtccgccaggctccagggaagggactggagtgggtcgcatcg attagccctactagtactttcata gactacgcagactcagtgaggggccggttcaccatctccagagataacgccgagaacttactgtatctgcaaatgaacggcctgagagtcgaagacacggctgtctattactgt	53	50	59	51
+JY8QFUQ01AWPED	IGG1	ggatttacttttaacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccaac ataaagcaacatggaggtgagacg tactatgcggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	57	49	62	45
+JY8QFUQ01AWSX6	IGG4	ggtttcaccttcaggagctctggc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagcagtagtactactaccaaa tactgcgcagactctgtgaagggccgattcaccatctccagagacaatgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgt	54	52	59	48
+JY8QFUQ01AX0TL	IGG2	ggtggctccatcagtactggttattactac tggagctggatccggcagtccgccgggaagggactgaatggattgggcgc atgtctgccagagggggcagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	46	62	61	46
+JY8QFUQ01AX3JG	IGA1	ggattcatctttagtagctatgcc atgggctgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtgccagtggtaagagcaca tactacgcagactccgtgaagggccggttcagcatctccagagacaattccaagaacacgatgtctgtgcaaatgagcagcctgagagccgaagacacggccatatattactgt	55	51	62	45
+JY8QFUQ01AX7BT	IGA1	ggggactccattagtggttactat tggacgtggatccggcagaccccagggaagggactggagtggattggaaat gtccattacactgggagtacc aagtacagcccctccctcaagagtcgagtcaccatgtcagttgacatgtccaggaaccagttcaccctcaaattgacctctgtagccgctgcggacacggccgtctattactgt	50	56	57	47
+JY8QFUQ01AX7OK	IGA2	ggtttcacctttagtaacgattgg atggactgggtccgccaggctccagggaaggggctggagtgggtggccaat ataaagggagatggaagtgagaaa aactatgtagactctgcgaagggccgattcatcatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattactgt	60	43	65	45
+JY8QFUQ01AXASL	IGA1	ggattcagcttcagtacctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt actaatacggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacggtgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattattgt	51	53	65	43
+JY8QFUQ01AXCGR	IGA2	ggattcacctttggtagctattgg atggcctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaagtggtaca tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaattcactgtttctgcaaatggacagcctgagagtcgaggacacggctctgtattactgt	52	47	66	48
+JY8QFUQ01AXE56	IGG1	ggattcgactttaaggaatatgcc atacactgggtccggcaagttccaggaaagggcctggagtgggtcgcgggc atcaactggaatcggggcaaagca ttgtatgggactctgtgaggggccgattcaccatctccagagacaacgcccagaactccgtgtctctgcaaatgaacagtctgaggcctgacgacacggccttgtatatctgt	52	52	63	45
+JY8QFUQ01AXNWU	IGA1	ggattcccctttagcaactatgac atgaattgggtccgccaggctccagggaaggggctggagtgggtctccggt attagtggtagtggcggtagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctggatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	53	53	63	44
+JY8QFUQ01AXTRO	IGG2	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgaaaccaca taccacgcagaatccgtgaggggccggttcaccatctccagagacaactccaagaacaatctgtatctgcaaatgaacagtctgagagccgaggacacggccatttattactgt	56	52	60	45
+JY8QFUQ01AXVCI	IGG1	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtgtcagat attagtgggagtggtgttagtaca cactacgcggactccgtgcagggccggttcaccatctccagagacaattcgaagaacacgctgtatctgcaaatgaacagcctgagtgccgaggacacggccgtatattactgt	51	52	64	46
+JY8QFUQ01AXXC6	IGG1	ggattcaccttcagtgtccatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac cttagtagtggtagtgataccata tactacgcagactctgtgaggggccggttcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagtggcctgagagacgaggacacggctgtttattactgt	52	50	61	50
+JY8QFUQ01AY7GI	IGA1	ggattcagttttgcagattatggc atgggctgggtccgccaacttccagggaaggggctggaatgggtcggtggt gttaattggaatggggcagcgca ggttatgcagtctctgtggagggccgattcatcatctccagagacaacggcaagaagtccctgtatttgcaaatgaacagtctgagagtcgaggacacggccgtgtattactgt	48	41	71	52
+JY8QFUQ01AY8MO	IGA1	agtgggtccttcagtggttacctc tggacctggatccgccagtcccccgggaaggggctggagtggattggagaa attaattatagtgggagaacc aactacaacccgacccttgagagtcaagtcaccatttctgtagacacgtccaagaaccaattctccctgaagcttacctctgtgaccgccgcggacacggctgtctattactgt	50	57	54	49
+JY8QFUQ01AY94E	IGA2	ggtgactccatcagcagtagttcttactac tggggctggatccgccagcccccagggaaggggctggagtggattgggagt atctttcatagagggagcacc tactccaacccgtccctcaagagtcgagtcaccatatccgtagacacgtccaagaaccttttctccctgaatctgagctctgtgaccgccacagacacggctgtttattactgt	48	62	55	51
+JY8QFUQ01AYCCC	IGA1	ggatacaccttcagcaactactat agacactgggtgcgacaggcccctggacaagggcttgagtggatgggaatg atcaaccctagtagtgattacaaa tattacgcacagaaatttcagggcagagtcaccatgaccagggacacgtccacgagcacagtcttcatggagctgagtagcctgagatctgacgacacggccgtgtattattgt	61	50	57	45
+JY8QFUQ01AYFQ1	IGA2	ggatacagttttaacagttatgcc atgacttgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtggcactggtggtaaccaa tactacgcagactccgtgaggggccggctcaccatctccagagacaattccaagaacacactatttctgcagatgagcagcctgagagccgaggacacggccgtttattactgt	53	53	60	47
+JY8QFUQ01AYG87	IGG1	ggattcaccttcagtacctatgct atgtactgggtccgccaggctccaggcaaggggccagagtgggtgtcagtg atatcacatgatggaaataaggaa gaatacgcagactccgtgaagggccgattcaccatttccagagacaactccaagaaaatgttgtacctgcaaatgaacaaccagcgacctgatgacacggctgttattattgt	62	49	54	47
+JY8QFUQ01AYHQQ	IGA1	ggattcactttcagtaacgtctgg atgcactgggtccgccaggctccagggaaggggctggagtgggttggccgt attagaagcaaaactgctggtggggcaaca gaatacgctgcgcccgtgagaggcatattctccatctcaagagatgattcaaagaacacgttgtatctgcaaatgaacagcctgaagaccgaggacacagccgtgtattactgt	58	49	65	47
+JY8QFUQ01AYHQY	IGA2	ggattcagcttagttactattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	58	45	66	43
+JY8QFUQ01AYINE	IGG2	ggattcacctttcatgattatacc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt attagttggaatagtggtaacata gactatgcggcctctgtgaggggccgattcaccgtctccagagacaacgccaataactccctgtctcttcagatgaatggtctgagatctgaggacacggccctctattactgt	50	52	57	54
+JY8QFUQ01AYL0X	IGG2	ggattcaccttcagtagttactgg atgcactgggtctcacga attaatactgatgggagtgccaca agttacgcggactccgtgaggggccgattcaccatctccagagacaacgccaagaacacgctatatcttcaaatgaacagtctgagagtcgaagacacggctgtctattactgt	50	44	44	42
+JY8QFUQ01AYR4C	IGA2	ggattcaccttcagcagctatgcc atgagctgggtccgccaggctccagggaagggcctggagtgggtctcagct attagtggtattggtgggagtaca ttctacgcagactccgtgaagggccggttcaccatcaccagagacaattccaacaacacgctgtttctgcaaatgaatagcctgagagccgaggacacggccatatattactgt	52	54	60	47
+JY8QFUQ01AYTLP	IGG1	ggattcgtctttactaatcattgg atgagttgggtccgccaggccacagggaaggggccggagtgggtggccaac atatccccagacggaatacgaaa tattttggggactctgtgaggggccgattcagcgtctccagagacaacggcaagcagtcatcgtatctggaaatgaataccctgacagtcgatgacacggctgtatacttctgt	53	48	63	48
+JY8QFUQ01AYXP4	IGG2	ggtgggtccatcagcagtactagttactac tggagctggatccggcagcccgccgggaagggactggagtggatggggcgt atctataccagtgggatcacc aactacaacccctccctcgagagtcgagtcaccttttcagtggacacgtccaagaaccagttctccctgaagctgaagtctgtaacccccgcagacacggccgtttattactgt	49	62	59	46
+JY8QFUQ01AYY7V	IGA2	ggactcagtttcactaacgcctgg atgagctgggtccgccaggctccggggaagggactggagtctgtctctgtt ttttatagcggtgatcaaaca tactacgcagactccgtgaggggccgattcaccatctccatagacaattccaagaacacactgtatcttcaaatgaacggcctgcgagccgaggacacggccgtgtattattgt	50	54	56	50
+JY8QFUQ01AZ2OV	IGA1	ggattcaactttgcagattatggc ttgggctgggtccgccaacttccagggaaggggctggaatgggtcggtggt gttaattggaatgggggcagcgca ggttatgcagtctctgtggagggccgattcatcatctccagagacaatggcaagaagtccctatatttgcaaatgaacagtctgagagtcgaggacacggccgtgtattactgt	49	41	70	53
+JY8QFUQ01AZ3Q8	IGA2	ggtggctccatcaccacttactac atcagctggctccggcagcccccagggaagggactggagtggattgggtgt atctcttatggtggggacact acctacaactcctccctcaagagtcgagtcaccatatcaggacaagggtccacgcgccagttctccctgaggctgagctccgtgaccgttgcggacacggccgtgtattactgt	42	63	59	46
+JY8QFUQ01AZ72P	IGA1	ggatacaccttcaccagctactat atgcactggatacgacaggcccctggacaaggcttgagtggatgggaata atcaaccctagtggtggtaccaca aggtacgcacagaagttccagggcagagtcttcatgaccagagacacgtccacgagcacagtccacatggaggtgaacggcgtaagatctgacgacacggccgtgtattactgt	60	54	58	40
+JY8QFUQ01AZ89E	IGA2	ggtggctccatcaacagtggtagttactac tggagttggattcggcagcccgccgggaagggactggagtggattgggcgt atctataccagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcaatggacacgtccaagaaccagttctccctgaagctgaactctgtgaccgccgcagacacggccgtctattattgt	52	60	58	46
+JY8QFUQ01AZAYV	IGA2	ggcttcagattccgtgactactac atgacgtgggtccgccaggctccagggaagggtcttgagtggctttcctcc atcagcagcggtagtaataccatc cactactcagactcggtgaggggccgcttcaccatctccagggacaacaccaggaactcagtggatctgcaaatgaatagtctgagagccgaagacacggccgtctattattgt	51	58	57	47
+JY8QFUQ01AZCLU	IGG2	ggattcacctttagaagctatgcc atgagctgggtccgccaggttccagggaaggggctggagtgggtctcagct attagtggtaatggtgctaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaaatgaacagcctgagagccgaggacacggccctatattactgt	55	53	58	47
+JY8QFUQ01AZEES	IGA1	ggattcaccttcagtgaccactac atagactgggtccgccaggctccaggaaaggggctggagtgggttggccgt actcgaaataaagctaacggttacagtaca gagtatgccgcgtctgtgaaaggcagattcaccgtctcaagagatgactcagagaacttagtgcatctgcaaatgaacagcctgaaaagcgaggacacggccctgtattactgt	62	51	61	45
+JY8QFUQ01AZK7Y	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccggggaaggggctggtgtgggtctcacgt atgaatagtgatggcagtgacata aggtacgcggactccgtgaggggccgattcaccatctccagagacaacaccaagaacacgctgtatctacaaatgaacagtctgagagccgaggacacggctgtgtattactgt	54	51	64	44
+JY8QFUQ01AZQ2B	IGA1	ggtggctccatcgccacttatcattgg tggaattgggtccgccagacccccgggaagggactggagtggattggggaa gtctattatagtcgacagact aattacaacccgtccctccagagtcgcgttgacatttccattgacagtcccaacggtcagttcaccctatatctgagagatgtgaccgtcgcggacacggccgtttattattgc	47	56	57	53
+JY8QFUQ01AZRH6	IGG2	ggattcaccttcagtagttatagc atgcactgggtccgccaggctccagggaagggactggagtgggtctcctcc attagtagtaatagtgcctacaca gaccacgcagactcagtgaagggccgattcaccatctccagagacaacgacaagaggtcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	57	54	58	44
+JY8QFUQ01AZRKU	IGA2	ggattcattttggtgactattgg atgagctgggtccgccaggttccagggaagggcctggagtgggtggccact acaaacgaggacgaaagtgacaag cggtatgtggactctgtgaagggccgcttcaccatctccagagacaacgccaagaactcactgtatttgcaaatgaacagcctgagaggccaggacgcggccgtgtattactgt	53	48	67	44
+JY8QFUQ01AZTNG	IGG1	ggattcacctttggtgattatgct atgagctggttccgccaggctccagggaaggggctggagtgggtaggtttc attagaagcaaagcttatggtgggacaaca gaatacgccgcgtctgtgaaaggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgt	61	47	61	50
+JY8QFUQ01AZU0Q	IGG2	gggttcaccatcagtcactactcc atgggctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgagggggcggcttatcatctccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	50	63	46
+JY8QFUQ01AZUTN	IGA2	ggattcacctttagcacctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagtt attagtggtagtggtggcagcaca ttctactcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacactggatctgcaaatgaatagcctgagaggcgaagacacggccgcatattactgt	53	53	61	46
+JY8QFUQ01AZZ31	IGA1	ggtggctccgtcagcagtggtagttatttc tggagctggatccggcagcccccagggcaggggctggaatggatcggttat gtctataacaatgggaacacc aattacaacccttccctcaagagtcgagtcaccatttctatagacacgtccgagaatcacgtctccctgaagctggcctctgtgaccgctgcggacacggccgtgtactactgt	47	60	59	50
+JY8QFUQ01B00R6	IGA1	ggattcaccttcagtgaccactac atgagctgggtccgccaggctccggggaagggtctggaatggatctcatat atcagtacaagtggtaatatggtt tattacgcggactctgtgaagggccgattcaccgtctccagggacaacaccaagagctcactgtatctgcaaatgaacggcctcagagtcgaggacacggccgtctattactgt	53	53	58	49
+JY8QFUQ01B02KX	IGG2	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaagggctggagtgggtttcatac attagtagtagtagtagtaccata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	49	56	49
+JY8QFUQ01B03TR	IGA1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtagtagcagtagcaccata aaatacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtctattactgt	60	50	56	47
+JY8QFUQ01B07O4	IGA1	ggattcacctttggtagctattgg atggcctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaagtggtaca tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaattcactgtttctgcaaatggacagcctgagagtcgaggacacggctctgtattactgt	52	47	66	48
+JY8QFUQ01B08DF	IGA2	ggtgcctccatcaacagtggtagttactac tggagttgggttcggcagcccgccgggaagggactggagtggattgggcgt atctacaccagtgggagcacc aactacaacccctccctcaagagtcgagtcgccatatcaatggacacgtccaagaaccagttctccctgaagctgaactctgtgaccgccgcagacacggccgtctatttttgt	49	62	59	46
+JY8QFUQ01B09U4	IGG1	ggattcacctttaacagccatgcc atgagttgggtccgccaggctccagggagggggctggagtgggtcgcagat tctggtggcagtggtcgtaccaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccgagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtttattactgc	49	57	64	43
+JY8QFUQ01B0B79	IGG2	ggattcaccctcagttcctatgtc atacactgggtccgccaggctccaggcaaggggctggagtgggtggcagtc attggatttaatggacgcagcgag tattatgcagactccgtgaagggccgattcaccatctccagagacaattctctgcaaatgaacaatctgagagtcgaggacacggctgtctattactgt	48	48	55	47
+JY8QFUQ01B0BDK	IGA1	ggattcactttcagtgactactac atgaattgggtccgccaggctccagggaagggcctggagtggctttcatac attactgcaagtggtgccatcata cactatgcagactctgtgaagggccgattcatcatctccagggacaacgccaagaactcactgtctctgcagatgaacagcctgagagccgacgacacggccgtctattattgt	53	56	54	50
+JY8QFUQ01B0DOB	IGA2	ggattcaccttcaggacccatagc atgaactgggtccgccaggctccagggaaggggctggagtggatttcattc attagtagtagtagtggtaccata ttttatgcagactctgtgaagggccggttcaccatctccagagacaatgccaagaactcactttatctgcaaatgaacagcctgagagacgaggatgcggctgtgtattactgt	55	47	58	53
+JY8QFUQ01B0E0W	IGG1	ggattcaccttcaggagttatatc atgaactgggtccgccaggctccagggaagggctggagtggatttcatac attagtagtagtggtattatcata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattattgt	58	45	55	54
+JY8QFUQ01B0E54	IGA1	ggattcaccttcaggaatcatgct atgcactgggtccgccaggcaccaggcaagggactagagtgggtggcacgc atctcacatgatggtgttagcgag atgtatacagaccccgtgaggggccgattctccatctccagagacaattccaaaagtattctatctctgcaaattaatggcctgagaagtgacgacacggctgtgtattattgt	55	50	57	51
+JY8QFUQ01B0F0W	IGA1	ggattcacctttgatgattttggc atgagttgggtccgccaagttccagggaaggggctggagtgggtcgctggt atcagttggaatggaggcaaaaca ggtcacgcagactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccgtgtatcactgt	53	49	65	46
+JY8QFUQ01B0GQK	IGA1	ggattcaccttcagtgactactac atgaactggatccgccaggctccagggaaggggctggagtgggtttcatac attagtggcagtgctactaccata tcctacgcagactctgtgaagggccgattcaccatctccagggacaacgccaaaaactcactttatctgcaaatggacagcctgagagccgaggacacggccatatattactgt	57	56	53	47
+JY8QFUQ01B0JWX	IGA1	ggtggccccaccatcgatgatggtgatttg tggacctggatccggcagcccgccggcaagggactggaatggatcggttat gtctatgatgggcggggcacc aactccaacccctccctccggagtcgcgttaccctgtcacaagacacctcaaacaatcagttcttcttgaggttgaagtctgtgaccgcctcagacacggccgtctattactgt	44	64	59	49
+JY8QFUQ01B0K72	IGA1	ggtgtctccatcagtagttcctac tggagttggatccggcagcccccagggaagggcctggagtggattggttat gtctattatactgggggcacc gactccaacccctccctcaagagtcgtgtcaccctgtcaatggacacgtccaagaaccagttctccttggaactgagctctgtgaccgctgcggacacggccgtctattactgt	41	61	57	51
+JY8QFUQ01B0M6T	IGA1	ggatatactttcaccgaccattat gtttactggatgcgacaggcccctggacaaggccttgagtggatgggatgg attaaccctcaaagtggtggcaca aactatgcactgaaatttcagggcagggtcaccatgaccacagacacgtccaccagcacagtgtacatggatctgagtggactgaattctgacgacacgggcgtgtattactgt	57	50	57	49
+JY8QFUQ01B0MEN	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	61	45
+JY8QFUQ01B0SLO	IGA1	ggatacagctttgccaccttctgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatgggaatg atctttcctggtgactccgatacc agatacagcccgtccttccaaggccaggtcaccttctcagccgacaagtccatcaacaccgcctacctgcagttgaacagcctgacggcctcagacaccgccgtttattactgt	45	67	55	46
+JY8QFUQ01B0YFD	IGG1	ggtgactccatcagtactaataattactac tgggcctggatccgccagcccccagggaggggctggagtggattgggaat atctattatagcgggaccacc tactacaatccgtccctcaagagtcgagtcaccatgtccgtagacacgtccaagaaccacttctccctgaggttgagttctgtgaccgccgcagacacggctctctattactgc	50	63	53	49
+JY8QFUQ01B0Z32	IGA2	ggattcaccttcagtagatactgg atgcactgggtccgccaagctccagggaaggggccggtgtgggtctcacgt actaatgaagatggcacccacata aattacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgtatttgcaaatgaacagtctgagagccgaggacacggctgtctattactgt	58	54	58	43
+JY8QFUQ01B0ZM2	IGG2	ggattcaccttcaacaactatgcc atgagttgggtccgccaggctccagggaaggggctggaatgggtctcaact attactagtggtggtggtagtaca ttgtacgcagactccgtgaagggccggttcaccatctccagagacaatttcaaggacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	54	51	60	48
+JY8QFUQ01B11DU	IGG1	ggatacagttttaccagttactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatgggtatc atctatcctgctgactctgatacc agatacagcccgtccttccaaggccaggtcagcatctcagccgacaagtccatcgacaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgt	47	63	58	45
+JY8QFUQ01B14S8	IGG1	ggattctccttcagcaattatgcc atccactgggtccgccaggctccaggcaagggctggagtgggtggcgacc atttcatatgatattaataaaaga tattatgcagagtccgtgaggggccgattcaccctctccagagacaattccaagaacactctcgatctgctcatggatacccttcggttcgacgacacggctgtctattattgt	51	55	51	55
+JY8QFUQ01B1B92	IGA1	ggattcacctttagtaactatgac atgggctgggtccgccaggctccagggaagggactggagtgggtctcaagt attacgactggtggtgagagaact tactatgcagactccgtgaagggccgattcaccatcgccagagacaactcccagagcacgatgtttctgcaaatgaacagcctgagggccgacgacgcggccatctactactgt	53	54	62	44
+JY8QFUQ01B1CH3	IGG2	ggattcacctttaccaactacgcc atgagctgggttcgccaggttccagggaaggggctggagtgggtctcactt attagtgttcgtggcgatgacacc ttctatgcagactccgtgaagggccggttcaccatctccagagacaactccaagaacacgctgtatctgcaaatggacatcctgaaacccgaggacacggccgtttatttttgc	49	57	56	51
+JY8QFUQ01B1HDC	IGG3	ggtgactccatcaccagtactaattattac tggggctgggtccgccagcccccagggaagggtctggagtggattggaagt gtctattatcgggggacccag tacctcaacccgtctctccacaatcgagtcaccatatccattggcacgtccaagacccaattctccatgagactgacctctgtgaccgccgcagacacggctgtatatttctgt	48	64	53	51
+JY8QFUQ01B1HSY	IGA1	ggatttaccttcagtaagttctg atgcattgggtccgccaagctccagggaagggctgacttgggtctcacgt ataatcctgatgggactatcacg aactacacggactccgtgaggggccgattcatcacttccagagacaacgccaagaacacagtatatctgcagatgaacagtctgcgagtcgaggacacaggtgtatattactgt	56	50	55	49
+JY8QFUQ01B1L81	IGA1	ggtgtctccatcagtagttcctac tggagttggatccggcagcccccagggaagggcctggagtggattggttat gtctattatactgggggcacc gactccaacccctccctcaagagtcgtgtcaccctgtcaatggacacgtccaagaaccagttctccttggaactgagctctgtgaccgctgcggacacggccgtctattactgt	41	61	57	51
+JY8QFUQ01B1N7G	IGA1	ggattcgcctctggtgattatgct atgagttggttccgccaggctccgggaaaggggctggagtgggtggggttc atcagaagcagagcttacactgggacacca gaatacgccgcgtctgtgaaaggcagattcaccatctccagagatgcttccaaaagtattggctatctgcaaatgaacaatctgaggatcgaggacacagccgtctattattgc	55	49	64	51
+JY8QFUQ01B1RUY	IGG1	ggaggcgccttcagcacctttcat atcacctgggtgcgacaggcccctggacaagggcttgtctggctggggaat atcattcctatttttggaacagtc gactacgcacgggggttccagggcagagtcacgattaccgcggacgaatccaccaacacagcctacatggagttgagcagcctgacatctgaggactcagccgtctatttctgc	47	60	59	47
+JY8QFUQ01B1TCN	IGA1	gggttcagcgtcagtaataacttc atgacctgggtccgccaggttccagggaaggggctggagtgggtctcagtt atttatagcaatggtgaaaca atctacgcagactccgtgaagggccgattcactatgtccagagacaattccaagaacacactgtttcttcaaatgaacagcctgagaggcgaggacacggccgtgtaccactgt	56	49	58	47
+JY8QFUQ01B1UHR	IGA1	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt actaatacgggggggactagcaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacggtgtatctgcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	51	54	66	42
+JY8QFUQ01B1UYR	IGG3	ggtttcatcttcagtcacttcagc atgaactgggtccgccaggctccaggaaagggcctggagtggatcgccgac atcagtagttcaagtgcatacatc acctatgcagattcagtcaggggccgattcgtcgtctccagggacgacgccaaggactccctgtacttgcaaatggacaacctgggagtcgacgatacggccacctattattgt	50	58	57	48
+JY8QFUQ01B1W4F	IGG1	acattcccctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcatcc atgggtagtagtagtatttacata tattacgcagactcagtgaagggccgattcaccatctccagagacgacgccaagagttcactgtatctgcaaatgaacagcctgagagccgaggacacggctatatattactgt	56	52	56	49
+JY8QFUQ01B1X3U	IGA1	ggattcaccttcagaaactatgcc atgcattgggtccgccaggctccaggcaaggggctggagtgggtggcactt atatggtttgatggaagaaatgaa tattatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaatacggtgtatctgcaaatggacagcctgagagccgaggacacggctttgtattactgt	57	46	60	50
+JY8QFUQ01B1Y16	IGA1	ggattcacttttagaagttatgcc atgagttgggtccgccaggctccagggaaggggctagagtgggtctcatct atcagtggtaatggtgataagaca aagtacgcagactccgtgaagggccggttcaccatctccagggacaattttaagaatacgttgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattattgt	57	43	61	52
+JY8QFUQ01B20H0	IGG3	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtcgcatcc attagtagtagtagtggttacata tactacgcagactcagtgaagggccgattcaccgtctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	51	60	46
+JY8QFUQ01B27X3	IGA1	ggattcaccttcagtcgttatagc atgaactgggtccgccaggctccagggaagggctggagtgggtctcatac attagtaggactactactgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatatttctgt	58	53	54	47
+JY8QFUQ01B2ARX	IGA1	ggattcaccttcagtacctatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatg atttggtatgatggaagccttaca tattatgaagactccgtgaagggccgattcaccatctccagagacaactccaagaacacgctgtttctgcaaatgaatagcctgagagtcgaggacacggctctgtattactgt	54	50	59	50
+JY8QFUQ01B2D9Z	IGG1	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtgtcagat attagtgggagtggtgttagcaca cactacgcggactccgtgcagggccggttcaccatctccagagacaattcgaagaacacgctgtatctgcaaatgaacagcctgagtgccgaggacacggccgtatattactgt	51	53	64	45
+JY8QFUQ01B2ERL	IGA1	ggattcaccttcagtaggtattgg atgtattgggtccgccaagctccaggcaaggggctggtgtgggtctcacgc attaaaagtgatgggacgagtgca acctacgcggactccgtgaagggccgattcaccacctccagagacaacgccaaggaaacgatgtatctgcacatgaacagcctgagagtcgacgacacggcgacatatttttgt	55	52	62	44
+JY8QFUQ01B2GU8	IGA1	ggtgtctccatcagtagtttctac tggagttggatgaggcagcccccagggaggggactggagtggattggatat gtccatggcagtgggagcacc aactccaacccctccctcaagagtcgagtcaccatgtcagtggacacgtccaagaaccaattctccctgaagctgggctctgtgaccgctgcggacacggccgtgtattactgt	45	57	62	46
+JY8QFUQ01B2JOM	IGA2	ggattcaccttagcagccatccc atgagctgggtccgccaggctccgggaaaagggctggagtggatctcagct ttcgttcgtagtggtaacaca tactacgtagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	53	56	56	44
+JY8QFUQ01B2LDP	IGA2	ggattcacctttagtaattattgg atgcactgggtccgccaggtttcagggagggggctggagtgcgtggccacc ataaacgaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactctctgtttttgcagatgaacagcctgagagccgaggacacggctgtctactactgt	53	48	64	48
+JY8QFUQ01B2NHE	IGA2	gggttcaccgtcagtagcaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaatt acttatcctgatggtactaca tattatggagactccgtgaagggccgattcaccatctccagagacaattccaagaacacactggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	54	50	57	49
+JY8QFUQ01B2PNO	IGA1	ggattcacgtttagaaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaagt attagtgataatggtgacagcata ttccacgcagactccgtgaagggccggttcaccatcaccagagacaactctaagaacatcctgtatctgcacatgaacagcctgagagccgaggactcggccgtatattactgt	56	52	59	46
+JY8QFUQ01B325I	IGG4	ggtggctcactcagaagtagtagtcaccat tggggctggattcgtcagccccccgggaaggggctggagtggcttgggact gtcgactttcgtgggaccacc cactacaacccgtccctcatgggtcgactcacgatatccgtcgacgcgcccaagagtcaaatgtccctgcacttgagctctgtgaccgccgcagacacggctttttacttctgt	40	66	61	49
+JY8QFUQ01B3AX2	IGA1	ggattcacttttagcggctatggc atgagctgggtccgccaggctgcagggaaggggctggaatgggtctcattt attagtggtaagagcggcaacata tactatgcagaccccgtgaagggccggttcaccatctccagagacaactccaagaataggctcttcctgcagatgaacagcctgagagtcgaggacacggccaaatattactgt	55	50	62	46
+JY8QFUQ01B3AYN	IGA2	ggattcaccttcagtagatactgg atgcactgggtccgccaggctccagggaaggggctggagtgggtcgcacgt actaatgaagatgggagtactaaa aactacgcggactccgtgaagggccgattcaccatcttcagagacaacaccaagaacacactatatctgcaaatgaacagtctgagagacgaggacacggctgtgtattattgt	62	48	60	43
+JY8QFUQ01B3G3T	IGG2	ggactcaccttcagtcgcctctgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt atagatagtgatgggaataacata atctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaaacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtatattactgt	55	53	60	44
+JY8QFUQ01B3HMA	IGG2	ggtggctccatcagtactggttattactac tggagctggatccggcagtccgccgggaagggactgaatggattgggcgc atgtctgccagaggggacagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	47	62	60	46
+JY8QFUQ01B3IOP	IGA1	ggcttcatcttcagtgaccactat atggactgggtccgccaggctccagggaaggggctggagtgggttggccgt actagagttgcatctaacacttacgccaca gaatacgccgcgtctttcaaaggcagattcgtcatctcaagagacaattcaaggaactcattgtttctccaaatgaacagcctgaaaaccgacgacacggccatgtattattgt	58	55	54	52
+JY8QFUQ01B3JLF	IGG3	ggtgactccatcaccagtactaattattac tggggctgggtccgccagtccccagggaagggtctggagtggattggaagt gtctattatggggggacccag tacctcaacccgtctctccacaatcgagtcaccatatccattggcacgtccaagacccaattctccatgagactgacctctgtgaccgccgcagacacggctgtatatttctgt	48	62	54	52
+JY8QFUQ01B3L4U	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccgggggaggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	61	52
+JY8QFUQ01B3OBX	IGG1	ggattcactttcactaacgcgtgg atgagttgggtccgccaggctccagggaaggggctggagtgggttgcccgt gttaaaactaagactgacgatggggcaaca gactacgctgcacccgtgaaaggcagattccttatctcaagagatgattcaaacaacatactgtatctgcaaatgaacagcctgagaaccgaggacacagccatgtactactgt	62	51	60	46
+JY8QFUQ01B3P0G	IGG2	ggattcacctttaccacctccgcc atggcctgggtccgccaggtccagggaaggggctggagtgggtctcaact attagacctagtagtgagagaacc tactacgcagagtccgtgaggggccgcttcaccatctccagagacaattccgagaacacgttgtatctacaactgaacaacctgagagtcgaggacacggccatatattactgt	54	58	56	44
+JY8QFUQ01B3S4F	IGA2	ggattcactttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	53	63	46
+JY8QFUQ01B3TI8	IGA1	ggattcacctttagtaattattgg atgcactgggtccgccaggtttcagggagggggctggagtgcgtggccacc ataaacgaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactctctgtttttgcagatgaacagcctgagagccgaggacacggctgtctactactgt	53	48	64	48
+JY8QFUQ01B3TT1	IGA1	ggatacatcttcaatgacttctac atatattgggtgcgacaggcccctggacaagggcttgagtggatgggatgg ttcaaccctaatagtcgtgtcaca gactatgcagagaaatttcagggcagggtcaccatgaccggggacccgtcccgcagcacagtccacctgaaactgacccgcctgaagtcggacgacacggccgtctattactgc	53	58	58	44
+JY8QFUQ01B3XMD	IGA2	ggattcacctttagtaggtattgg atgagctgggtccgccagtctccagggaagggactggagtggctggcccac ataggaggagatggaagtgaggct ggttatgtggactctgtgaggggccgattcttcatctccagagacaacgccaagagctccctctatctgcagatgaacagcctgagccccgaggacacgggtgtgtattattgt	47	47	70	49
+JY8QFUQ01B4CN9	IGG1	ggtgactccatcaccagtggtagttattat tggagttggatccggcagcccgccgagaagggactggagtggattgggcgt atctccatcggtgggagcacc aactacaatccctccctcaagagtcgagtcaccatagtattagacacgatcaacaaccggttctccctgcagctcaggtctgtgaccgccgcagacacggccgtatattactgt	50	60	58	48
+JY8QFUQ01B4F4Q	IGA1	ggatttacctttagccgctacgcc atgagctgggtccgccaggctccggggaaggggctggagtgggtctcaggc attattgatgttaattctttcaca tactacgcagactctgttcggggccggttcaccgtgtccagagacgattccaagaacacggtatatctgcaaatgaacagtttgagacccgacgacacggccgtttattattgt	47	52	59	55
+JY8QFUQ01B4FE6	IGA2	ggattcagatttagtaactactgg atgagttgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaggtgagaag tattatgtgggctctgtgaagggccgattcaccatctccagagacaacgccaagaactcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattattgt	59	41	67	46
+JY8QFUQ01B4FME	IGG4	ggattcacatttagtaactactgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagaaagatggaagtgagaag tactatgtggactctgtgaagggccgattcaccatctccagagacgacgccaagaatacattgtatctgcaaatgaacagcctgagggccgaagacacggctgtatatttctgt	61	43	64	45
+JY8QFUQ01B4L0R	IGA1	ggattcctcttcagtagctttaac atgaactgggtccgccacgttccagggaagggtctggagtgggtttcatac attaatagtagaggtactaacata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaggaattcactgtatctgcaaatgaacagcctgagagtcgacgacacggccgtatactactgt	59	50	52	52
+JY8QFUQ01B4VTT	IGG2	acattcacgtttagtcggtattgg atgagctgggtccgccaggctccagggaagggcctggagtgggtggccaac ataaaggaagacggaagtgagaga tattatgtggactctgtgaagggccgattcaccatctccagagacaatgccaagaactctctgtatctgcaattgaacagcttgagagccgaggacacggctgtgtattactgt	56	44	65	48
+JY8QFUQ01B4X7N	IGG2	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtagtagtagtagtaccata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	49	57	49
+JY8QFUQ01B4XPK	IGG1	gggttctcactcagcactggtggagtgggt gtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactc atttattgggatgatgataag cgctacagcccatctctgaagagcagactcaccatcaccaaggacacgtccaagaaccaggtggtcctcacaatgaccaacatggaccctgtggacacagccacatattactgt	54	60	58	44
+JY8QFUQ01B4Y1N	IGA1	ggggacagtgtctctagcagcagtgttgtt tggaactggatcaggcagtccccattgagaggccttgagtggctgggaagg acattctacaggtccaggtggtataat gattattcattatctctgaaaagtcgaataaccatcaacccagacgcatccaagaaccagttgtccctgcagctgaagtctgtgactcccgaggacacggctgtatattactgt	57	50	59	56
+JY8QFUQ01B50HH	IGG2	ggattcacgtttagcaggtatgcc atgaactgggtccgccaggctccagagaaggggctggagtgggtctccgct gttagtgatactggtggtacaaca gagtacgccgactccgtgaaggggcggttcaccgtctccagagacaattccaagaatacggtgtatctgcaaatgaacagcctgagagtcgaggacacggccgtatattactgt	52	49	66	46
+JY8QFUQ01B53SB	IGG1	gggttcaccatcagtcactactcc atggcctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgaggggcggcttatcgatctccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	51	62	46
+JY8QFUQ01B569F	IGA1	ggattcatcttcagcaactactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attactggtgatgggagtaaccca atctacgcggaccccgtgaagggtcgattcaccatctccagagacaacgccaagaacacactatatctgcaaatgaacagtctgagagtcgaggacacggctgtgtattactgt	55	53	59	46
+JY8QFUQ01B56F9	IGA2	ggattcagcctcattgactttaga atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attgatagtgttggtcaaaacata tactacagagactcagtgcggggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	51	59	47
+JY8QFUQ01B56VC	IGA1	ggagtcaaattcagaaacgcctgg atgaattgggtccgccaggctccagggaaggggctggagtgggttggccgt attaagagcaaagctgatggtgggacaaca gactacgccacacccgtgagaggcagattcaccatctcaagagatgattcaaaaacacgttttatctgcaaatgaatagcctaaaaaccgaagacacagccgtctattactgt	68	48	59	43
+JY8QFUQ01B58W5	IGA1	ggattcagcatcagtagttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtgctagtactacttccata cactatgcagactcagtgaagggccgattcaccatctccagagacgacgccaagagttccctgtatttgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	55	52	57	49
+JY8QFUQ01B5F34	IGA1	ggatttcccttcaccagttactgg atgcagtgggtccgccaagctccagggaaggggctggtctgggtctcactt agtaatagtgatgggagcactact acctacgcggacgccgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtatcttcaaatgaatcatctgagagtcgaggacaccgctgtatatttctgt	53	55	56	49
+JY8QFUQ01B5GFJ	IGA1	ggatttacctttacaaattattgg atgagctgggtccgccaggctccagggagggggctggagtgggtggccagc gtaaaacaagatggaggtgagaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	46	66	45
+JY8QFUQ01B5QDY	IGA2	aaattcacttttagtaactattgg atgaattgggtccgccaggctccagcgaagggactggagtgggtggccagt ataaagcaggatgggggggagaca tattatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagaagtcactgtatctgcaaatgaacagcctgggagtcgaagacacggctgtttattactgt	59	43	63	48
+JY8QFUQ01B5SAT	IGA1	ggattcaccttcagtagctatagc atgaactgggtccgccaggctccagggaagggctggagtgggtctcatcc attagtagtagtagtagttacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	58	51	56	47
+JY8QFUQ01B5VR4	IGA2	cggaaaaccctcactgaagtatcc atgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggagga tttgatcctgaagatggtgaaata atctacgcacagaagttccagggcagaatcaccgtgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	62	49	61	41
+JY8QFUQ01B5XE3	IGG1	ggtgcctccataataggggtaattattac tggaactggatccggcagcccgccgggaagggcctggaatggattggccga atctatacaagtgggagcacc atctacaacccctccctcgggggtcgagtcaccatgactgtagacccgtccgagaatcagttcttcctgagactgagttctgtgaccgccgcagacacggccgtttatttttgt	47	58	60	50
+JY8QFUQ01B5XEH	IGA2	ggattcactttcagtagctactgg atgc aca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	40	41	33	31
+JY8QFUQ01B641M	IGA2	ggattcacgttcagtggctatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt gtatcatatgatggaagtaataaa tactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctctctctgcaaatgaacagcctgagagctgaggacacggctgtatattactgt	56	49	60	48
+JY8QFUQ01B64QD	IGA1	ggtgggtccttcagtggttactac tggagttggatccgccagccccagggaaggggctggagtggattggggaa atcaattatagaggaagtacc aactacaatccgtccctcaaaagtcgagtcaccgtgtcttcagacacgtccaagaatcagttctccctggagttgatctctgtgaccgccgcggacacggccatatattattgt	50	51	58	50
+JY8QFUQ01B6832	IGG1	ggtggctccatgaggaattattac tggagctggatccggcagtccccagggaagggactggagttgatagggact gtctattacactgggcgcacg gagtacaacccctccctcaagagtcgactcaccttatcactagacacgtccaagaaccagttctccctaaagctggctctgtgaccgctgcggactcggccatttattactgt	48	58	55	48
+JY8QFUQ01B68YS	IGA2	ggattcaccttcgataactatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcaaaggatggaagtattgaa tactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacaatttatctgcaaatgaacattgtgagggttgaggacacggctatgtattactgt	60	44	58	51
+JY8QFUQ01B6BDJ	IGA2	ggattcacctttagcaactttgcc atgacctgggtccgccaggctccagggaggggactggagtgggtctcaact attagtggtagtgatggtagcaca tacttcgcagactccgtgaagggccgattcaccatctccagggacaatttcaagaacacgctgtatctgcaaatggacagcctgagagccgaggacacggccgtatattactgt	52	53	60	48
+JY8QFUQ01B6CFI	IGA2	ggattcaggtttgatgattatgcc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt atcagctggggtggtgctagtatc ctctatgcggactccgtgaagggccgattcaccatctccagagacaatgccaggaactccctctacttgcaaatggacagtctgagacctgatgacacggccttctattactgt	47	53	61	52
+JY8QFUQ01B6DDX	IGA2	ggattcatttttggtgactattgg atgagctgggtccgccaggttccagggaagggcctggagtgggtggccact acaaacgaggacgaaagtgacaag cggtatgtggactctgtgaagggccgcttcaccatctccagagacaacgccaagaactcactgtatttgcaaatgaacagcctgagaggccaggacgcggccgtgtattactgt	53	48	67	45
+JY8QFUQ01B6G3Q	IGA1	ggtgcctccatcagtaatgataattatttc tgggcctgggtccgccagtccccagggaagggtctgcagtggattggcagt atgtattatagtgggggcacc ttttacgacccgtccctcaagggtcgaatcaagttgtccgttgacgtgtcgaagagccacttcctcctgaacctgacctctgcgaccgccgcagacacggctgtctattactgt	42	59	59	56
+JY8QFUQ01B6LHF	IGA1	ggatttgtcttcagtggcactaat atgaattggctccgccaggctccagggaaggggctggagtggatttcacac attagtcacaatagtgaaaccata ttctatgcagactctgtgaggggccgagtcaccatctccagagacaatgccaggaactcactgtatctgcacatgagcagcctgagagccgaggacacggcagtatattactgt	57	50	57	49
+JY8QFUQ01B6LVM	IGA1	ggattcatcttcagtagttatagt ttgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attgatatgagtagttcttacatc tattatggagactcagtgaggggccgatttaccatctccagagacaacgccgagagctcactgtatctgcagatgagcagcctgagagccgaggacacggctttatattattgt	51	45	60	57
+JY8QFUQ01B6UYE	IGA2	agattcacctttaggacatattgg atgagttgggtccgccaagctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagata cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtttctccaaatgaacagcttgagagtcgatgacacggctgtgtattactgt	61	44	61	47
+JY8QFUQ01B70J3	IGA1	cggaaaaccctcactgaagtatcc atgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggagga tttgatcctgaagatggtgaaata atctacgcacagaagttccagggcagaatcaccgtgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	62	49	61	41
+JY8QFUQ01B71ED	IGA1	gggttcagttttagcaattatgcc atgcactgggtccgtcaagctccagggaagggcctgcaatgggtctcacgt attaattggaacagtggaaacata gcctatgcggcctctgtgaggggccgattcaccgtctccagagacgacgccgagcactccctgtatttacaaatgaatggtctgacaactgaagacacggccttatactattgt	53	52	56	52
+JY8QFUQ01B757D	IGA2	ggtggcccgatcaaaagtcctgattaccat tggacgtggatccggcaggccgccgggaaggggctggagtgggtcgggcgt gtctatatgactggctatgtc gagaacaatccatccctctccgggcgtctctccatgtcgattgacacggcgaagaatcagttttctatgacattgacttctgtgaccgccgcagacacggccctttatttttgt	42	56	63	55
+JY8QFUQ01B791I	IGA1	ggatacaccttcaccagtttcagt atccattgggtgcgccaggcccccggacaaaggcttgagtggatgggatgg atcaacggtggcaatggtaacaca aaatattcacagaagttccaggacagactcaccattactagagacacatccgcgagcacagcctacatggacctgagcagcctgagatctgaagacacggctgtctattactgt	61	55	54	43
+JY8QFUQ01B7921	IGA1	ggattcaccttcaggaactattgg atgcactgggtccgccaagctccagggaaggggctggagtgggtctcacgt atcaatggcgacggaagtagcaca agctacgcggactccgtgaagggccgattcaccatctccagagacaacgccgagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacagccgtatatttttgt	56	54	62	41
+JY8QFUQ01B7B1B	IGA1	ggattcacctttagtacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaacaagatggaagtgacaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	59	47	62	45
+JY8QFUQ01B7DZ7	IGA2	ggattcaccttcagtacctatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatg atttggtatgatggaagccttaca tattatgaagactccgtgaagggccgattcaccatctccagagacaactccaagaacacgctgtttctgcaaatgaatagcctgagagtcgaggacacggctctgtattactgt	54	50	59	50
+JY8QFUQ01B7GYB	IGA1	ggatacactgtcataaatgcctgg atgagttgggtccgccaggctccagggaaggggctggagtgggttggccgt attaaaggtgatggtgtgacaaca gaatacgctgcatccgtgaaaggcagattcaccatcacaagagatgactcaaggaacacgttgtatctacaaatgaacagcctgaaaaccgaggacacagccatatattattgc	65	44	60	44
+JY8QFUQ01B7L1I	IGA1	ggattcaccttcagtaactatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtgctaggtacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtctctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	57	53	57	46
+JY8QFUQ01B7Q12	IGG2	ggattcaccttcagtagctatgct atgcactgggtccgccagactccaggcaagggactagagtgggtggcagtt atatcatatgatggaagtgactac gactacgcaggctccgtgaagggccgattcaccatctccagagacagttccaagaacatgctgtatctgcaaatgaacagcctgagacctgaggacacggctgtgtatcactgt	56	52	58	47
+JY8QFUQ01B7TWW	IGG1	ggtttcaccttcaggagctctggc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagcagtagtactactaccaaa tactgcgcagactctgtgaagggccgattcaccatctccagagacaatgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	54	53	59	47
+JY8QFUQ01B7VBT	IGG2	ggtggctccatcagtaattactac tggagctggatccggcagtccgccgggaagggactgaatggattgggcgc atgtctgccagagggggcagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	46	61	59	43
+JY8QFUQ01B7XXQ	IGA2	ggattcagttttggtgattattct atgatctggttccgccaggcaccggggaaggggctggagtgcgtaggtttc attagaagcagagcatatggtgggacaaca caatacgccgcgtctgtgaaagacagattcaccatctcaagagatgatcccaaaggcatcgcctatttgcaaatgagcagtctgaaagtcgacgacacaggcgtgtatttttgt	58	44	62	55
+JY8QFUQ01B81W4	IGA2	ggtggctccatcagcagtagtaactgg tggagttgggtccgccagcccccagggaaggggctggagtggattggacaa atccatcatggtgggggcacc aattacaacccgtccctcgagagtcgagtcactatatcagtagacaagtccaagaaccacctctccctgaccctgaactctgtgaccgccgcggacacggccgtttatcactgt	49	62	60	42
+JY8QFUQ01B84I1	IGA2	ggtggctccatcaacagtggtagttatcac tgggcctggatccgccagtccccagggaaggggctggagtggattgggagc gtctcctatggtgggaacacc tactacaacccgtccctcatgagtcgagtcgacatattcgtcgacacgtccaagagtcagttgtccctgaaggtgagctctgtgaccgccgcggacacggctgtgtattactgt	43	58	66	49
+JY8QFUQ01B8ABJ	IGA2	ggctacaccttcaccgactactat atacactgggtgcgacaggcccctggacaagggcttgagtggatgggatgg atcaaccctgacggtggtagcaca aagtatgcacagaaatttcagggcagggtcgccgtgaccagggacacgtcaattagcacagcctacattgaggtgaccagactgacatctgacgacacggccgtgtattattgt	56	53	61	43
+JY8QFUQ01B8AC6	IGA1	ggattcaccttcatcagttatggc atgagttgggtccgccagtttccagggaaggggctggagtgggtctcatct attagtgattatggtaataccgca ttctacgcagactccgtgaagggccggttcaccatctccagagacaattccaacaacacgctgtttctgcaaatgagcagcctgagagccgaggacacggccgtttattattgt	50	51	57	55
+JY8QFUQ01B8DLI	IGA2	ggattcgactttggtagttattgg atgagttgggtccgccaggctccagggaagggactggagtgggtggccagc ataaagcgagatgcaagtgagaag taccatgtggaatctgtgcagagacgattcaccatcttcagagacaacgtcaggaactcactgtatttgcagatgaacagcctgagagacgaggacacggctgtgtattactgt	57	40	68	48
+JY8QFUQ01B8DVS	IGG4	ggactcatgtttagcagctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcaagt gtcagtagtagtactggtttcaca tactacacagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagccgaagacacggccgtatattattgc	54	54	59	46
+JY8QFUQ01B8JYP	IGA1	ggattcaccctcagtgactactac atgagttggttccgccaggctccagggaagggctggagtggctttcatac attgcaggaagtggaaccaca tattacgcagattctgtgaagggccgattcaccatctccagggacaatgccgagcactcggtatacctgcaaatgaacagcctgagagtcgaagacacggccgtgtattactgt	54	52	57	46
+JY8QFUQ01B8T6Y	IGA1	ggattcacctttgatgactatggc atgcactgggtccggcaaggtccagggaagggcctggagtgggtctcaagt attagttggaacagtggtaagata gactatgcggacgctgtgaagggccgattcatcacatccagagacaatgccaagaactccatctatttgcaaatgaacagtctgagagatgacgacacggccttctacttctgt	57	46	60	50
+JY8QFUQ01B8WF3	IGA2	ggattcaccttcagtgaccactac atggactgggtccgccaggctccagggaaggggctggagtgggttggccgt agtagagacaaaattaacagttacagtaca gaatatgccgcgtctgcgaagggcagattcaccatctcaagagatgaatcaaagaatttactgtatctgcaaatgaacagcctgagaagcgaggacacggccgtatattactgt	65	47	61	46
+JY8QFUQ01B8YQQ	IGA1	ggattcaccttcaggaactatgct atgcactgggtccgccaggctcctggcaaggggctagaatgggtggctttt atatcatatgatggaagtagtcaa tactacgcagactccgtgaagggccgattcaccatctccagagacaactccaagaacacactttatctgcaaatgaacagcctgagaggtgacgacacggctgtgttttactgt	57	51	54	51
+JY8QFUQ01B90UJ	IGG1	ggattcacctttggttattatggc atgactgggtccgccaactccgggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	52
+JY8QFUQ01B93WH	IGG2	ggtgggtccatcagcagtactagttactac tggagctggatccggcagcccgccgggaagggactggagtggatggggcgt atctataccagtgggatcacc aactacaacccctccctcgagagtcgagtcaccttttcagtggacacgtccaagaaccagttctccctgaagctgaagtctgtgaccccgcagacacggccgtttattactgt	48	61	60	46
+JY8QFUQ01B978H	IGA1	ggattcacgttcacacctcctgga tggcactgggtccgccaaggtccaggggaggggctaatgtgggtctcacga atcaatactgatgggagtaacaca atgtacgcggactccgtaaagggccggttcaccatttccagagacaatgccaagaatacggtgtttctgcaaatgaacagtctgaaagccgacgacacggctgtctattattgt	56	51	59	47
+JY8QFUQ01B9C4B	IGA2	ggattcaccgtcagtgatagttac atgagctgggtccgccaggctccagggaaggggctggagtgggtctcgatt atttataggggaggtaccaca tattatgccgactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctatatcttcaaatgaacaccctgagaggtgaggacacggctctatattactgt	55	49	57	49
+JY8QFUQ01B9DAH	IGG1	ggtgcctccatcacatttggcagttactac tggaattggatccggcagcccgccgggaagggactggagtgggtaggacgt atctatgcaagtgggaccacc cattccaacccctctctcgagactcgagtcatcatgtcactagacacgtccaacaaccagatctccctgaagctgacctctgtgaccgccgcggacacggccgtgtattactgt	48	66	56	46
+JY8QFUQ01B9L1U	IGG2	gggttctcactcaccactactggagtgggt gtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcagtc attttttgggatgatgatgag cgccacagcccatctctgaggagaaggctcaccatcaccaaggacatctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgt	53	60	57	46
+JY8QFUQ01B9LAE	IGA2	ggattcacctttagtagtttctgg atgcactgggtccgcaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggagggccgattcaccatctccagagacaacaccaagaacaggctatatctgcaaatgaacagtctgagagccgaggacacggctatttattactgt	56	48	61	47
+JY8QFUQ01B9LAR	IGG2	ggattcacctttggttattatggc atgagctgggtccgccaagctccgggggaggggctggagtgggtctctgt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	52
+JY8QFUQ01B9NGM	IGA2	ggattcactttcagtaacgtctgg atgcactgggtccgccaggctccagggaaggggctggagtgggttggccgt attagaagcaaaactgctggtggggcaaca gaatacgctgcgcccgtgagaggcatattctccatctcaagagatgattcaaagaacacgttgtatctgcaaatgaacagcctgaagaccgaggacacagccgtgtattactgt	58	49	65	47
+JY8QFUQ01B9QXU	IGG1	ggtgggtccttcagtggttacttc tggaactggatccgccagcccccagggaaggggccggagtggattggagaa gtcagtcatgatggaagtacc aacttcaatccgtccctcaagagtcgagtctccatgtcagttgacacgatcaagaagcaggtcttcctgaaactgagctctgtgactgccgggacacggctatatattattgt	49	50	60	50
+JY8QFUQ01B9RA3	IGA2	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtgtcacgt agtaatacggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	66	43
+JY8QFUQ01B9S8H	IGG1	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccagggaagggactggagtgggtgtcagat attagtgggagtggtgttagcaca cactacgcggactccgtgcagggccggttcaccatctccagagacaattcgaagaacacgctgtatctgcaaatgaacagcctgagtgccgaggacacggccgtatattactgt	52	53	63	45
+JY8QFUQ01B9TMK	IGG1	ggtggctccatgaggagtggaattaattcc tggacatggatccggcagcccgccgggaagggactggagtggattgggcgt atctatatcaatggagacacc aactacaatccctccctcaagagtcgggccagcatatcaatggacacgtccaagaaccagttctccctgcacttgacctctgtgaccgccgcagattcggccgtctattattgc	51	60	58	47
+JY8QFUQ01B9UZ4	IGA1	ggttacacctttactacctatggc atcagctgggtgcgacaggcccctggacaagggcctgagtgggtgggatgg atcagcgcttacaatggaaataca aactctgcacagaagttccaggacagagtcaccctgaccacagacacatccacgagcacagcctacatggagctgaggaacctgagatctgacgacacggccgtgtattactgt	58	57	58	40
+JY8QFUQ01B9XU2	IGA1	ggtgactccatcagcagtactagttactac tggggctggatccgccagcccccagggagggggctggagtggattggaagc atctattatagtgggagcacc tcctacaacccgtccctcaagagtcgaatcaccatgtccatagacatgtccaagaaccaattctccctgaggctgagctctgtgaccgccgcagacacggctgtttatttctgt	49	61	57	49
+JY8QFUQ01BAB5T	IGA2	ggattcaccttcagtgaccactac atggactgggtccgccaggctccagggaaggggctggagtgggttggccgt agtagagacaaagttaacagttacagcaca gaatacgccgcgtctgcgaagggcagattcaccatctcaagagatgaatcaaagaactcactgtatctgcaaatgaacagcctgaaaagcgaggacacggccgtgtattactgt	64	51	62	42
+JY8QFUQ01BACNA	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtttgggtctcacgt gttaatggtgatggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	53	54	60	45
+JY8QFUQ01BAGKP	IGG2	ggtgactccatcagtagtactcattactat tggggctggatccggcagcccccagggaggggactggagtgggttgggagt atccactacactgggagcacc tactacaactggtccctcaagcatcgagtctctatatcggtggacacatcgagtaaccagttctccctgaggttgaggtctgtgaccgccgctgacacggctgtatactactgt	46	57	62	51
+JY8QFUQ01BAGOW	IGA2	ggggacagtgtctctagcaacagtgccact tggaactggatcaggcagtccccaacgggaggccttgagtggctgggaagg acatactacaggtccaaatgggatact gattatgcggcgtctgtgaaaagtcgaataaccctcaccccagacacatccaagaaccagttctccctgcaattgaactccgttagtcccgaggacacggctgtgtattattgt	58	57	59	48
+JY8QFUQ01BAKGF	IGA1	ggtggctccgtcagcagtggtaattactac tggaactggatccgccaacccccagggaagggactggagtggattggatat atctactatgctggggccacc aacgtcgccccctccctcaagaaccgagtcaccataacgagagacacgtccaagaaccaattttccctgaggttgacttctgtgaccgctgcggacacggccgtatattactgt	52	62	56	46
+JY8QFUQ01BAR1C	IGG1	ggattcacctttgatgattttggc atgcactgggtccggcaagttccagggaagggcccggagtgggtcgcaggt attagttggaatggtggacatatg gactatgcggactctgtgaagggccgattcaccgtgtcccgagacaacgccgagaattccctgtatctgcaaatgaacagtctgacacctgaagacacggccctgtattactgt	49	49	64	51
+JY8QFUQ01BB73D	IGA2	gggttcaccatcactcactactcc atggcctgggtccgccaggctccggggaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgagggggcgcctcatcatctccagagacgaatccaagagtgagctgtatcttcggatgacgaaagtgaaagccgaagacgcggccgtatattactgt	47	57	63	43
+JY8QFUQ01BB93X	IGG1	ggatacaccttcaccgactactat atgcactgggtgcgacaggccccaggacaagggcttgagtggatgggatgg atcaaccctaaaagtggcggcaca aattatgcacggaagtttcaggctgggtcaccatgaccagggacacatccatcaacactgtctacatggagttgagcaggttgaaatctgacgacacggccatttattactgt	59	51	57	45
+JY8QFUQ01BB9AK	IGA2	gggggctccattagtggttactat tggacgtggatccggcagcccccagggaagggactggagtggattggaaat gtccattacactgggagtacc aagtacagcccctccctcaagagtcgagtcaccatgtcagttgacatgtccaggaaccagttcaccctcaaattgacctctgtagccgctgcggacacggccgtctattactgt	48	57	58	47
+JY8QFUQ01BBDL1	IGA1	ggattcaccttcagtgactatgcc atgagctgggtccgccaggctccagcgaaggggctggaatgggtctcagcg attagcagtagtggtgatagaaca tactacgcagactccgtgaagggccgattcaccatctccagagacagttccaggggactctgtatttgcaaatgaaccgcctgagcgccgaggacacggccctatatttctgt	50	55	61	46
+JY8QFUQ01BBLQU	IGA1	ggattcaccttcagtgaccactac atgagttggatccgccaggctccagggaaggggctggagtggatttcatat attagtactagtggtaatatgatt tattacgcagactctgtgaagggccgattcaccgtctccagggacaacgccaagaactcactgtatctgcagatgaacagcctgagagccgaggacacggccgtctatttctgt	54	50	57	52
+JY8QFUQ01BBQG8	IGG1	ggtggctccatcattaatcactac tggagttggatccggcagcccgccgggaagggactggagtggattgggcgt agtcataccagtggaagcacc aggtacaacccctccctcaagagtcgagtcaccgtgtcagcagacacgtccaagaaccagttctccctgaagcttagctctgtgaccgccgcggacacggccgtgtattactgt	47	61	60	42
+JY8QFUQ01BBSRC	IGA1	ggtgactctctgagtagtagcagtttctac tggggctgggtccgccaggccccagggaagggactggagtgggttgggact gtttattatagtgggagcgcc cactacaatccgtccctcaagagtcgagtcgccatatccgtggacacggcccaaaaccaggtctccctgactttgaactctgtgaccgccgcagacgccgctgtctatttctgt	41	60	64	51
+JY8QFUQ01BBTVQ	IGG1	ggattcacctttggttattatggc atgactggtccgccaactccgggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	59	52
+JY8QFUQ01BBVFC	IGA1	ggattcacctttactagttacagt ttcaactgggtccgccaggctccagggaaggcgctggagtggatttcatac atcactatcaatggtaatgacaag ttctacgcaggctctgtgaagggccgattcgccgtctccagagacgatgccaagaattctctgtatctgcaaatgagcagcctgagagccgaagacacgggtgtttattactgt	53	50	56	54
+JY8QFUQ01BBZEX	IGA1	ggattcacctttagtgactattgg atgaggtggttccgccagcctccaggaagggggctggagtgggtggccagc ataaaagaagatggaagtgagaaa ggttatgtggactctgtgaagggccgcttcaccatcgccagagacaacgcccagaaatcactgtttttgcagatgaacagcctgagaggcgaggacacggctgtgtatttctgt	54	43	69	47
+JY8QFUQ01BC153	IGA1	ggattcaccttagtaggtttgg atgacctgggtccgccagggtccagggaaggggctggagtgggtggccaac ataaagcaagttggaaatgagaga tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcattgtatctgcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	57	44	64	46
+JY8QFUQ01BCH7Y	IGG2	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtgtcagat attagtgggagtggtgttagcaca cactacgcggactccgtgcagggccggttcaccatctccagagacaattcgaagaacacgctgtatctgcaaatgaacagcctgagtgccgaggacacggccgtatattactgt	51	53	64	45
+JY8QFUQ01BCMPS	IGA2	ggtgtctccatcagtagtttctac tggagttggatgaggcagcccccagggaggggactggagtggattggatat gtccatggcagtgggagcacc aactccaacccctccctcaagagtcgagtcaccatgtcagtggacacgtccaagaaccaattctccctgaagctgggctctgtgaccgctgcggacacggccgtgtattactgt	45	57	62	46
+JY8QFUQ01BCV43	IGA2	ggattcatcttcagcaactactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attactggtgatgggagtaaccca atctacgcggaccccgtgaagggtcgattcaccatctccagagacaacgccaagaacacactatatctgcaaatgaacagtctgagagtcgaggacacggctgtgtattactgt	55	53	59	46
+JY8QFUQ01BD04C	IGA1	ggattcacctttagcaactttgcc atgagctgggtccgccaggctccagggaagggactggagtgggtctcgact attagtcctagtggtggtaccaca tattacgcagactccgtgaagggccggttcaccatctccagagacagttccaagaacacgctgtatctgcaaatgaacatcctgagagccgaggacacggccacatattactgt	53	56	57	47
+JY8QFUQ01BDGDZ	IGA2	ggtggctccatcagcagtagtagttactac tggggctggatccgccagcccccagggaaggggctggagtggattgggagt atccaatatagtgggagcacc tattacaatccgtccctcaagagtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgacctctgtggccgccgcagacacggctgtgtattactgt	49	59	61	47
+JY8QFUQ01BDIEE	IGA2	ggtgggtccttcagtggttactac tggagttggatccgccagcccccagggaaggggctggagtggattggggaa atcaatcatagtggaagcacc aactacaactcgtccctcaagagtcgagccaccatctcagtagacacgtccaagaagcagttgtccctgaacgtgagctctgtgaccgccgcggacacggctgtgtattactgt	49	55	62	44
+JY8QFUQ01BDNIC	IGA1	ggatacatcttcacgaaccactgg atcggctgggtgcgccagatgccgggtagaggcctggagtggatggggatc atctatcctggtgactccgattcc agatacggcccgtccgcccaaggccaggtcaccttctcagtcgacaagtccatcgccaccgcctaccttcagtggagtagcctgaaggcctcggataccgccacgtactactgc	43	68	60	42
+JY8QFUQ01BDPXU	IGA1	aatggctccatcagcggaagtgtttactac tgggcctggatccgccagcccccagagaagggtctggagtacattgggagc atcttttatagtgggagcact tacttcaatccgtccctcaagagtcgagtcaccctatccgtagacacgtccaggaaccagttctccctgaggctgaagtctgtgaccgccgcagacacggctgtttattattgt	48	59	56	53
+JY8QFUQ01BDTL8	IGG2	ggattcagtttagtacacatggc atgaactgggtccgccaggctccagggaagggccggaatgggtctcattc gttaatagtggaagtagttacatc tactacgcagactcagtgaggggccgattcaccatctccagagacgacgccaggaattcactgtatctgcaaatgcaccgcctgcgagtcgaggacacggctctctactattgt	52	53	58	48
+JY8QFUQ01BE0DI	IGA1	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggcgtgggtctcacgt attaaaagtgatggcagtggcaca aactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagagcacgctgtttctgcaaatgaacagtctgagagccgaggacacggctgtatattactgt	54	54	62	43
+JY8QFUQ01BE108	IGA2	gggctcagcgtcagtaactaccgc atgggctgggtccgccaggctccagggaaggggctggagtgggtctcagtt atttatagagatgatagtaca gatcatgtagattccgtgaagggccgattcaccgtttcccgagacaattccaagaacacattgtaccttcagatgaacagtgtgacagccgaggacacggccgtttattattgt	52	47	61	50
+JY8QFUQ01BE4D2	IGA1	ggattcaactttggcatctatacc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcagct attcgtgatcatgatagcaca tactacgcagactccgtgcagggccggttttcatctcgagagacaatttcaataatacattgtatctgcaaatggatggcctgcgagccgacgacacggccgtctattactgt	48	52	57	52
+JY8QFUQ01BE5D4	IGA2	ggattcacctttggcacctctgac atggcctgggtccgccaggttccaggggaggggctggagtgggtctcacac attgatatcagaggtgccaca cagtataaagactccgtgaagggccggttcaccatctccagagacaattccaagaacacactggatctgcaaatgaatagcctgagaggcgaagacacggccgcatattactgt	55	54	59	42
+JY8QFUQ01BE8AK	IGG1	ggatttacttttagcaactattgg atgacctgggttcgccaggctccagggaaggggctggagtgggtggccaac ataaaacaacatggaggtgaaacg tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcactgcatctgcaaatgaacagcctgagagccgaggacacggctgtctattattgt	57	49	61	46
+JY8QFUQ01BEABE	IGA2	ggattcacctttagtgactattgg atgaggtggttccgccagcctccaggaagggggctggagtgggtggccagc ataaaagaagatggaagtgagaaa ggttatgtggactctgtgaagggccgcttcaccatcgccagagacaacgcccagaaatcactgtttttgcagatgaacagcctgagaggcgaggacacggctgtgtatttctgt	54	43	69	47
+JY8QFUQ01BEJQP	IGA1	tctgtccccataagcagtggtggttactat tggaactggatccggcagcccgccgggaaggggctggagtggatcggacgt gttgacagtaatgggttcgtc aggtacaacagttccctcaagagtcgactttctatgtcggtggacatgtccaagagtcaggtctccctgaggttgaggtctgtgatcgccgcggacacggccgtatactattgt	43	50	69	54
+JY8QFUQ01BEQ83	IGG3	ggattcacctctcctagatactgg atgaattgggtccgccaggcttccgggaaggggctggagtgggtggccaac ataaagcaagacggaagtgaggaa aactttgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaattcaatgtctctacaaatgaacagcctgagagtcgaggacacggctgtatattattgc	58	47	63	45
+JY8QFUQ01BERKI	IGA2	ggtttccccttcagtgaccacttc atggactgggtccgccaggctccagggaagggcctggagtgggttggtcgt atcagaaagaaaaccaccggttacaccaca gaatatgccgcgtctgttaaaggcagattcatcatttcaagagatgattcagagaactcactgcatctgcaaatgaatggcctgaaaatcgaggacacggccgtgtattactgt	59	52	58	50
+JY8QFUQ01BESQ8	IGA2	ggattcacctttagcagccatccc atgagctgggtccgccaggctccgggaaaagggctggagtggatctcagct ttcgttcgtagtggtaacaca tactacgtagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	53	56	56	45
+JY8QFUQ01BETLC	IGA2	ggattcaccttcagcaaccataac atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatgt attggtagtagtagtagtgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaagacacggctgtgtattactgt	60	50	57	46
+JY8QFUQ01BEUNL	IGA2	ggattcaccttcagtagctactgg atgcattgggtccgccaagctccagggaaggggctggagtgggtctcacgt attcatagtgatgggactaccaca tactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaggaacacgttgtatctgcaattgaacagtctgagagccgaggacacggctgtgtattattgt	52	52	61	48
+JY8QFUQ01BF8CL	IGG1	ggtggctccatcagcagtggtcgttactac tggagctggatccggcagcccgccgggaagggactggaatggattgggcgt atttataccagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagctctccctgaagttgagttctgtgaccgccgcagacacggccgtatattactgt	51	61	59	45
+JY8QFUQ01BF9YK	IGA1	ggaggctccattagtaattactac tggagttggatccggcagcccccagggaagggactggagtggattgggtat atctattacagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaatcagttcttcctgaagctgacctctgtgaccgctgcggacacggccgtgtattactgt	52	55	55	48
+JY8QFUQ01BFB0Q	IGA1	ggattcagctttagcaactttgcc atgacttgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtactttagcacc cattatgccgactccgtgaagggccgcttcaccatctccagagacaatttcaggagcaccttatatctgcagatgaacaacctgagagccgacgacacggccatatattactgt	51	54	56	51
+JY8QFUQ01BFHSP	IGG1	ggtacctccatcagcacttactat tggagttggttccggcagcccgccgagaagggactggagtggattgggcgt atctctgtctttgaaaactct aactacaacccctccctcgagagtcgcatcaccatgtcaatggacacgtccaagaaccagttctccctgacggtgaactctgtgaccgccgcggacacggccgtgtatttttgt	45	61	53	51
+JY8QFUQ01BFI4C	IGA2	ggattcacctttggtagctattgg atggcctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaagtggtaca tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaattcactgttctgcaaatggacagcctgagagtcgaggacacggctctgtattactgt	52	47	66	47
+JY8QFUQ01BFROD	IGG1	ggtgtctccattagtagtgatacttaccac tggggctggatccgccagcccccagggaaggaaccggagtggatcggcaag atctctaacagtgggagcacc ttctacagtccgtctttccagagtcgagtcactgtatcgatggaagcgcccaagaaccacatctccctgaaactgaggtctgtgaccgccgcagacacggctgtttattattgt	50	59	58	49
+JY8QFUQ01BFWP5	IGA2	ggatttacctttacaaattattgg atgagctgggtccgccaggctccagggagggggctggagtgggtggccagc gtaaaacaagatggaggtgagaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	46	66	45
+JY8QFUQ01BFXYS	IGG2	gggtttacctttagcaactttgcc atggcttgggtccgccaggctccaagaaaggggctggagtgggtctcagct attgctcgtggcggtgacaca cactaccgagactccgtgaagggccgattcaccatctccagagacaattctaagaacacactgattctgcagatgagcagcctaagagccgaggacacggccttatattactgt	51	55	57	47
+JY8QFUQ01BFYFA	IGA1	ggattcaccttcagtagctatgcc atgcattgggtccgccaggctccaggcaaggggccggagtgggtggcagtt atatcatatgatggaagtcataaa gactatgcagcctccgtgaagggccgattcaccatctccagagacaattccaagagtacgttgtatctgcaaatgaacagcctgagacctgaggacacggctttatattcctgt	55	51	57	50
+JY8QFUQ01BFZOR	IGA1	ggattcacttttaggagtcatatg atgagttgggtccgccagactccagggaaggggctggaatgggtctcaagt attcgagccagtggtgataggaca cactatgcagactccgtgaggggccgcttcaccatctccagagacaactccaagaacacgatgtatttgcaaatgcacagcctgagagtcgacgacacggccgtatactactgt	56	51	60	46
+JY8QFUQ01BG2F7	IGA1	ggattcaccttcactacctcctgg atgcactgggtccgccaagctccagggaaggggctaatgtgggtcgcacgt attaataaggatggcagtagtaca agttatgaggactccgtgaagggccgattcaccatctccagagacaacgccaagaccacactgtacttggaaatggacagtctgagagtcgaggacacggctatgtattattgt	57	50	59	47
+JY8QFUQ01BG5T6	IGA2	ggattcagctttagaacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcacgatggaagtgacaaa tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactcactgtttttgcaaatgaacagcctgagagccgaggacacggctgtgtactactgt	56	48	65	44
+JY8QFUQ01BG66X	IGA1	ggattcagctttagcaactttgcc atgacttgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtacttttagcacc cattatgccgactccgtgaagggccgcttcaccatctccagagacaatttcaggagcaccttatatctgcagatgaacaacctgagagccgacgacacggccatatattactgt	51	54	56	52
+JY8QFUQ01BG922	IGG3	ggattcaccttcagtacatactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcccgt atcaatcctgatgggcgaatcaca aactacgcggactccgtgaatggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggactcggctgtgtactactgt	53	58	58	44
+JY8QFUQ01BGDEX	IGG1	ggattcgtctttactaatcattgg atgagttgggtccgccaggccacagggaaggggccggagtgggtggccaac atatccccagacggaaatacgaaa tattttggggactctgtgaggggccgattcagcgtctccagagacaacggcaagcagtcatcgtatctggaaatgaataccctgacagtcgatgacacggctgtatacttctgt	54	48	63	48
+JY8QFUQ01BGEYK	IGA1	gggttctccttcagcgactacttc atgagttgggtccgccaggctccagggaagggactggagtgggttgcatac attagtagtagtggtactactaaa tactacgcagactctgtgaagggccgattcaccatctccagggacaacggcaagaattcattgtttctgcaaatggacagcctgagagtcgacgacacggccatgtatttctgt	52	49	59	53
+JY8QFUQ01BGFCA	IGA1	ggattcacctttagtaattattgg atgcactgggtccgccaggtttcaggggaggggctggagtgcgtggccacc ataaacgaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactctctgtttttgcagatgaacagcctgagagccgaggacacggctgtctactactgt	53	48	64	48
+JY8QFUQ01BGGO2	IGA2	ggattcaccctcaacagcaatggc atgcactgggtccgccagactccagacaaggggctggagtgggtggcagtg atttcatatgatggaaatgataaa tactatggagatgcagtgacgggccgattcaccatctccagagacacttccaagaacacagtatatctggagatgtacagcctgagacctgaggacacggctgtgtattactgt	60	48	59	46
+JY8QFUQ01BGI0O	IGG1	ggattcacgtttagcaggtatgcc atgaactgggtccgccaggctccagagaaggggctggagtgggtctccgct gttagtgatactggtggtacaaca gagtacgccgactccgtgaaggggcggttcaccgtctccagagacaattccaagaatacggtgtatctgcaaatgaacagcctgagagtcgaggacacggccgtatattactgt	52	49	66	46
+JY8QFUQ01BGMBI	IGA2	ggattcacccttcgcagatatggc atggcgtgggtccgccaggctccggggaaggggctggagtgggtctcatct tctaacagtagtgatgaatccaca tactatgcagactccgtgaagggccgcttcaccatttccagagaccattccaagaacacggtgtttttgcaaatgtacagcctgagagccgaagacacggccctctattactgt	50	56	58	49
+JY8QFUQ01BGNSE	IGA1	gttgacgccataagcgacctcggttatttc tgggcctgggtccgccagcccgccgcgaagggactggagtggatcggacat gcccttggtgatggatatacc gaatacaaccccgccctagagagtcgaatcaccgtgtcagtggacaagtccaagaaccagttttccctgacgttggagtccgtgaccgccgcagacacggccacttatttctgt	46	63	61	46
+JY8QFUQ01BGR80	IGA1	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	61	45
+JY8QFUQ01BGUIW	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtttgggtctcacgt gttaatggtgatgggggtaggaca acctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	54	54	60	45
+JY8QFUQ01BGVCA	IGA1	ggattcacctttagtagttactgg atgcactgggtccgccaaactccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	57	50	62	44
+JY8QFUQ01BGY6V	IGA1	ggtgcctccgtcagcagtggtagtttctac tggacctggattcgtcagcacccagggaagggcctggagtggattgggtac atctattacagtgggagcgcc tactacaacccgtccctcaagagtcgagttgccatatcaatagacacgtctaagaaccagttctccctgaacttgagttctgtgactgtcgcggacacggccgtttattactgt	47	56	58	55
+JY8QFUQ01BH03V	IGA1	gatgggtcctgcagaaactgcttc tggagttggatccgccagtccccagggaaggggctggagtggattggggag gtcaatgatagaggaggcatc gactacaacccgtccctcaagagtcgagtcaccatatcattagacacgtccaacaaccaagtctccctgaggttgagctctgtgaccgccgcggacacggctgtgtattactgt	49	54	63	44
+JY8QFUQ01BH0GH	IGA1	ggattcacattcggtagttttatg atgaactgggtccgccaggctccagggaagggactggagtgggtcgcatcg attagccctactagtactttcata gactacgcagactcagtgaggggccggttcaccatctccagagataacgccgagaacttactgtatctgcaaatgaacggcctgagagtcgaagacacggctgtctattactgt	53	50	59	51
+JY8QFUQ01BH1QX	IGA2	ggattcaccttcagtaggtattgg atgtattgggtccgccaagctccaggcaaggggctggtgtgggtctcacgc attaaaagtgatgggacgagtgca acctacgcggactccgtgaagggccgattcaccacctccagagacaacgccaaggaaacgatgtatctgcacatgaacagcctgagagtcgacgacacggcgacatatttttgt	55	52	62	44
+JY8QFUQ01BH2A1	IGA1	ggatacacattcaccgacaactat atgcactgggtgcggcaggcccctggacaggggcttgagtggatgggatgg atcgaacctaacagtggagacaca aactatgcacaaaagtttcagggcagggtcaccatgacgagggacacgtccatcgccacagcctacatggagttgagcaggctgagagctgacgacacggccgtgtactactgt	58	53	65	37
+JY8QFUQ01BH7NG	IGA1	ggattcaccgtcagagataactac gtgacctgggtccgccaggctccagggaaggggctggagtgggtctcaatt atttatatcagtggtagcaca tactacgcagactccgtgaagggccgattcaccatctccagagacaattcgaagaacacggtgtatcttcagatgaacagtctgagagctgaggacacggctgtgtattactgt	55	48	59	48
+JY8QFUQ01BHCZE	IGA1	ggattcagcttcaatagttatact ttgagttgggtccgccaggctccagggaaggggctggagtgggtctcagct atcagtggaacaggtgaaacaacc ttctacgcggactccgtgaggggccggttcaccgtctccagagacaatttcaagaatactctgtacttgcaattgagcgacctgagagccgaagacacggccgtctattactgt	51	51	61	50
+JY8QFUQ01BHGDW	IGA1	ggattccccatcagtggctttaga atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attgatagttttagtcagaacata tactacagagactcagtgaggggccgattcaccatctccagagacaacgccaggaactcattgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	50	59	48
+JY8QFUQ01BHITL	IGA2	ggtttcacgtttgacaactatgcc atgacttgggtccgccagactccagggaaggggctgcagtggctctcaact attactgcttatgggactctcaca tactacgctgcctccgtgaagggccggttcaccctctccagggacaactccaacaacacggtgtatctgcaaatggacagtctgagagccgaagacacggccgtattttactgt	49	60	54	50
+JY8QFUQ01BHN1C	IGA1	ggtgtctccatcagtagttcctac tggagttggatccggcagcccccagggaagggcctggagtggattggttat gtctattatactgggggcacc gactccaaccctccctcaagagtcgtgtcaccctgtcaatggacacgtccaagaaccagttctccttggaactgagctctgtgaccgctgcggacacggccgtctattactgt	41	60	57	51
+JY8QFUQ01BI347	IGG2	ggtgtctccgtcaccagcagtcactgg tggacctgggtccgccagcccccagggaagggactggagtggattggagaa atctattattatggcatcacc aatttcaacccgtccctcaagagtcgaatcagcatgtcagtggacgagtccaagaaccagttctccctgagactgacttctgttaccgccgcggacacggccgtttattattgt	48	59	56	50
+JY8QFUQ01BIGLC	IGG1	ggattcaccttcaggagttatatc atgaactgggtccgccaggctccaggaaggggctggagtggatttcatac attagtagtagtggtattatcata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattattgt	58	45	55	54
+JY8QFUQ01BIHI6	IGG2	ggattcaccttcagtagttataac atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcatatgatggaagaaataaa tactatgcagactccgtgaagggccgactcaccatctccagagacaattccaagaacatgttgtatctgcaaatgaacagcctgagacctgaggacacggctgtgtattactgt	61	47	56	49
+JY8QFUQ01BIM6Q	IGA1	ggatacagctttaccagctactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgattcc agatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgt	46	65	59	43
+JY8QFUQ01BISS5	IGA1	gggttcgttttgagaaatacgcc atgagttgggtccgccaggctcccggaaaggggctggagtgggtctcggct attggtgttgatgatgttggcaca tactacgcagcctccgtgaagggtcggttcaccatatccagagacgattccagggagattctctatctacaaatgagtaacctgagagtcgacgatacggccgtctattactgt	47	47	64	54
+JY8QFUQ01BIVV0	IGA2	ggattcacctttagcacttttgcc gtgacctgggtccgccaggctccagggaagggtctggaatgggtctcaact attagcggtagtgatggtagcaag tactacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacaccctatatctgcaaatgaccagcctgagagccgaggacacggccgtatatttctgc	51	57	58	47
+JY8QFUQ01BIWEF	IGG2	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtgtcagat attagtgggagtggtgttagcaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaaatgaacagcctgagagccgaggacacggccctatattactgt	54	53	60	46
+JY8QFUQ01BJ4VI	IGA1	ggattcacgtttagtaacagttgg atgggctgggcccgccaggctccagggaaggggctggagtgggtggccagc acaaaccaagatgcaagtgagaaa aagtatgtggactctgtgaggggccgattcaccatctcaagagacaacgccaagaactcactgtatttacaaatgaacagcctaagagccgaggacacggctttatatttctgt	61	46	63	43
+JY8QFUQ01BJN3B	IGA1	gacttaacggtcagtgacaattac atgagttgggtccgccaggctccagggaaggggctggagtgggtctcaatt atttatagcggaggtcgcaca tactacgcagagtccgtgaagggccgattcgccgtctccagagacggttcccagaacacactgtatcttcaaatgaacagcctgaggaccgaagacacggccgtgtatttttgt	52	50	61	47
+JY8QFUQ01BJPU6	IGA2	ggattcagcttaagtgactactac atgacctgggtccgccaggccccagggaagggactggagtggctcgcctac attagtcgaactgatgattccgta tattccgcagagtctgtggtgggccgattcaccgtctccagggacaacgtccaaaactcactgtttttgcagatgattggcctgagagacgaggacacggccgtatattactgt	49	53	60	51
+JY8QFUQ01BJT4G	IGG1	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgaaaccaca taccacgcagaatccgtgcagggccggttcaccatctccagagacaactccaagaacaatctgtatctgcaaatgaacagtctgagagccgaggacacggccatttattactgt	56	53	59	45
+JY8QFUQ01BJUHM	IGA1	ggattcaccttcagtgactactac atgaactggatccgccaggctccagggaaggggctggagtggatttcatac attagtgggagtgcgactaccata tcctacgcagactttgcgaagggccgattcaccatctccagggacaacgccaagaactcggtgtatctgcaaatgaacagcctgagagccgaggacacggccacgtattattgt	56	54	58	45
+JY8QFUQ01BJURD	IGA1	ggtgcctccatcaacagtggtagttactac tggagttgggttcggcagcccgccgggaagggactggagtggattgggcgt atctacaccagtgggagcacc aactacaacccctccctcaagagtcgagtcgccatatcaatggacacgtccaagaaccagttctccctgaagctgaactctgtgaccgccgcagacacggccgtctatttttgt	49	62	59	46
+JY8QFUQ01BJV9I	IGA1	ggattcaccttcagtagatactgg atgcactgggtccgccaggctccagggaaggggctggagtgggtcgcacgt actaatgaagatgggagtataaaa agctacgcggactccgtgaagggccgattcaccatcttcagagacaacaccaagaacacactatatctgcaaatgaacagcctgacagccgaggacacggccagatattactgt	63	52	59	39
+JY8QFUQ01BJVZ3	IGG1	ggattcacctttggttattatggc atggactgggtccgccaactccgggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	61	52
+JY8QFUQ01BJWBZ	IGA2	ggattcaacttcaattactttagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtgatggtacttacata tactacgcagactcagtgaagggccgattcgccatctccagagacaacgccaaagactcactgtatctacaaatgaacatcctgagagccgaggacgcggctgtttattactgt	57	51	54	51
+JY8QFUQ01BJYH6	IGA1	ggattcatctttagtaattatgcc atgagttgggtccgccaggccccagggaggggctggagtgggtctcaact atcagtgccaatggagacaacaca tactacgcggactccgtgaagggccgattcaccatctccagagacaattccaagagcacagtgtatatgcaaatgaacagcctgaaagccgaggagacggccgtctatcattgt	58	52	58	44
+JY8QFUQ01BKBQY	IGA1	ggatatgactttatcaactactgg atcggctgggtgcgccagatgcccgggagaggcctggaatggatgggaatc atctttcctgatgactctgatgcc agatatagtccgtccttccagggccacgtcaccatctcagccgacaagtccacaagcaccgcctacctggagtggagcagcctgaaggcctcggacaccgccatctactactgt	48	63	57	45
+JY8QFUQ01BKF2J	IGA1	ggattcattttagaaaattttgcc atgagttggctccgccaggcaccagggaaggggctggaatgggtctcgact atcagcagcagtggtgacacggca tattactcagactccgtgaggggccgcttttccatctccagagacaactccaagagcactctgttcttgcagatgaacagcctgagtgccgaagacacggccatttactactgt	52	54	57	50
+JY8QFUQ01BKJ53	IGA1	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtgtcacgt agtaatacggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	66	43
+JY8QFUQ01BKRE0	IGA1	ggatacaccttcaccagttactat atgcactgggtccgacaggcccctggacaagggcttgagtggatgggaatg atcaaccctagtggcggaagcaca atctacgcacagaacttccagggcagagttgccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgt	56	56	61	40
+JY8QFUQ01BKUNY	IGA1	atgggctccatcagcggaagtgtttactac tgggcctggatccgccagcccccagagaagggtctggagtacattggaagc atcttttatagtgggagcact tacttcaatccgtccctcaagagtcgagtcaccctatccgtagacacgtccaggaaccagttctccctgaggctgaagtctgtgaccgccgcagacacggctgtttattattgt	48	59	56	53
+JY8QFUQ01BKXS7	IGA1	ggattcaactttggcatctatacc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcagct attcgtgatcatgatagcaca tactacgcagactccgtgcagggccggtttttcatctcgagagacaatttcaataatacattgtatctgcaaatggatggcctgcgagccgacgacacggccgtctattactgt	48	52	57	53
+JY8QFUQ01BL6V1	IGA2	ggattcagtttcactggttttacc gtgatctgggtccgccaggctccaaggaaggggctggaatggatctcatcc gtcactactaatggtctcacg tactacgcagactcagtagagggccgattcaacatctccagggacaacgccaacaatttagtgtttctgcaaatgaacaccctgagacttgaggacacggctgtgtattactgt	52	52	53	53
+JY8QFUQ01BLAI9	IGA1	ggattcacctttagcaactttgcc atgacctgggtccgccaggctccagggaagggactggagtgggtctcaact attagtggtggtgatgatagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatatcactgt	55	55	58	45
+JY8QFUQ01BLEDM	IGG2	ggattcaccttcagtggttactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacga attgatagttctgcgaatctcatc aaatacgcggactccgtggagggccgattcaccgtctccagagacaacgccaagaacacggtgtatctgcaaatgaacagtctgagagccgacgacacggctgtttactactgt	51	54	61	47
+JY8QFUQ01BLGCA	IGG1	ggtggctccatcagtacttattac tggaactggatccggcagcccccagggaagggactggagtggattgggtat atccataacagtgggagtagc aactacaacccctccctcaagagtcgagtcaacatatctgtagacgcgtccaagaaccagttctccctgaagctgacctctgtgaccgctgcggacacggccgtttattactgt	51	57	55	47
+JY8QFUQ01BLGYX	IGA1	ggatacacctttatcacctactgg atcgcctgggtgcgccaaatgcccgggaaaggcctggagttgatgggagtc atctatcctggtgactctgagacc agatacagcccgtccttccaaggccacatcaccctctcagtcgacaagtccatcgataccgcctacctggagtggagcagcctgaaggcctcggacaccgccatgtacttctgt	47	67	54	45
+JY8QFUQ01BLTJO	IGA1	ggattccccttcagcacctatccc atgagctgggtccgccaggctccagggaggggactggagtgggtcgcaact ataagtggtggaggttatagtata tatgacgcagactccgtgaagggcaggttcaccatctccagagacaactccaagaccaccttgtttctggaaatgaaaagtctgagagtcgatgatacggccgtctattactgt	53	51	60	49
+JY8QFUQ01BLX8G	IGA2	ggatacaccttcaccagctactat ttgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaata atcgaccctagtggtggtgccaca agctacgcacagcagttccagggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	54	57	62	40
+JY8QFUQ01BM58O	IGA1	ggattcatcttcagtgaccactac atgagctgggtccgccaggctccggggaagggtctggagtggatctcatac atcagtacaagtggtaatatggtt tattacgcggactctgtgaagggccgattcaccgtctccagggacaacgccaagaactcactgtatctgcaaatgaacggcctcagagtcgaggacacggccgtctattactgt	52	53	59	49
+JY8QFUQ01BM6Z0	IGA2	ggattcacctttagcggctatgcc atggcttgggtccgccaggctccagggaaggggctggagtgggtctcaact agtactactgatggagctggccca tactacgcagactccgtgaggggccggttcaccgtcttcagagacaattccaagaacactctgtatctacaaatggacaccctgagagccgacgacacggccatgtattactgt	49	58	60	46
+JY8QFUQ01BM80W	IGA1	ggattcacctttagccactttgcc gtgacctgggtccgccaggctccagggaagggtctggaatgggtctcaact attagcggtagtgatggtagcaag tactacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacaccctatatctgcaaatgaccagcctgagagccgaggacacggccgtatatttctgc	51	58	58	46
+JY8QFUQ01BM96X	IGA1	ggattcacctttgatgagcatgcc atgcactgggtccggcaagttccggggaagggcctggagtgggtctctggt gttacttggaatagtggtgtcata gactatgcggactctgtgaagggccgattcaccatctccagagacaacgccaggaattccctgtatctacaaatgaacagtctgagaactgatgacacggccttctatttctgt	49	49	60	55
+JY8QFUQ01BMLGO	IGA2	ggattcacattcagcaattatgcc atgggctgggtccgccaggctccagggaaggggctggagtgggtcgctgct attgatggcagtggtgaaagaact cactatgcagactccgaacagggccgcgtcaacatctctagagacaattccaagaacatgatatatgtgcaattgagcagcctgagagccgaggacacggccatgtattactgt	56	49	63	45
+JY8QFUQ01BMOB5	IGA2	ggattcaccttcagtaactatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtagtagtgctaggtacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	59	53	54	47
+JY8QFUQ01BMQ8K	IGA2	ggattcacctttagtagttattgg atgacctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatgggaatgataaa tactatgtcgactctgtgaggggccggttcaccatctccagagacaacgccaagagctcactgtttctgcaagtgaacagcctgagagccgacgacacggctgtttattactgt	54	47	64	48
+JY8QFUQ01BN0IG	IGA2	ggaaaaaccctcactgaagtatcc atgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggagga tttgatcctgaagatggtgaaata atctacgcacagaagttccagggcagaatcaccgtgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	63	48	61	41
+JY8QFUQ01BN1A6	IGG1	ggattcagcctcacttcctatggc atgaactgggtccgccaggctccagggagggggctggagtgggtctcacac gttaatatgggtagtactcacata tactacgtaggctccgtgaggggccgattcaccatctccagagacgacgccaagaactcagtgtatctgcagatgaacaacttgagagccgaggacacggctctatattactgt	52	54	60	47
+JY8QFUQ01BN76B	IGA1	ggatttaccttcagtaattatgac atgaattgggtccgccaggctccagggaaggggctggagtgggtctcatcc atcaccagtagtggtagttatgtc taccattcagactcaacgaagggccgattcaccatctccagagacaacgcccagaattcactatttctgcaaatgaacaacctgagacccgaggacacggctatatattactgt	59	53	50	51
+JY8QFUQ01BNHM6	IGA1	ggattcatctttgatgatttggc atgagatgggtccgccaagttccagggaaggggctacagtgggtctctggt attaattggaatggtggtaaaaca ggttatgcagactctgtgaggggccgattcatcatctccagagacaacgccaagaacgccctgtatctgcaaatgaacagtctcagagccgaggacacggccttatattactgt	55	44	60	53
+JY8QFUQ01BNNYX	IGA1	gggttctcactcaacactgttggaatgggt gtgggctgggtccgtcagcccccaggaaaggccctggagtggcttgcactt gtttattgggatgatgataag cgctacagctcatctctgaagagcagactcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgactaacatggaccctatggacacagccacatattactgt	56	57	54	49
+JY8QFUQ01BNQ6N	IGG2	ggattcacctttggttattatggc atgagttgggtccgccaggctccagggaaggggctggactgcgtctcagtt atttatcccggtggtagcaca tactatgcagactccgtgaagggccgattcaccatctccagagacatctccaagaacacactgtatcttcaaatgaacagcctgagagccgaggacacggctgtatattactgt	51	52	55	52
+JY8QFUQ01BNS72	IGA2	ggtggctccatcagcatcaatacttacttc tggagttggatccggcagcccccagggaagggactggagtggattgggtat atctctcacagtgggagtgcc aactacaacccctccctcgagagtcgagtcaccatcttaagagacacgtccaagaaccagttctctctgaggctgagggctgtaaccgcggcggacacggccgtgtatttctgt	48	59	61	48
+JY8QFUQ01BNVKG	IGG2	gatgggtcctgtagagagtgcttc tggagttggatccgccagtccccagggaagggtctggagtggattggggac gtcaattatagacgaggcgtc gactacaacccgtccctcaagagtcgagtgaccatatcattggacacgtccaacaaacaagtctccctgagtctgagttctgtcaccgccgcggacacggccatgtattattgt	48	53	61	48
+JY8QFUQ01BNXKI	IGG1	ggattcacctttggttattatggc atggactggtccgccaactccgggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	52
+JY8QFUQ01BNYDH	IGA1	ggtgctccatcagcagtggtagtttctac tggagctggatccggcagcccgccgggaagggactggagtggatggggcgt gtctatgccagtggaaccacc aagttcaacccctccctcaagagtcgagtcactttatcagtagacacgtccaagaaccagttctccctgaaactgacctctgtgaccgctgcggacacggccgtgtattactgt	46	61	61	47
+JY8QFUQ01BO1TD	IGG1	ggattcatttttagcaattatgcc atgaactgggtccgccaggctccagggaaggggccggagtgggtctcagct tttagtggtggtggcactaagacc tactacgcagactccgtgaagggccggttcttcatctccagagacaattccaagaacactctacatctgcatatgagcagcctgagggccgaggacacggccacatattactgt	51	54	59	49
+JY8QFUQ01BO2JV	IGG1	ggagacaactttagcagatactgg atcggctgggtccgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgacacc agatacagtccgtccttccaaggccaggtcaccatctcagccgacaagtccaccagtaccgtctacctgcagtggagcagtctgaaggtctcggacaccgccacgtattactgt	49	62	59	43
+JY8QFUQ01BO2V4	IGA1	ggattcacatttagtcactatacc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagcc attaatcaagatgccattaccaca cactacccagactccgtgaagggccgcttcaccgtctccagagacaattccaagaacacactctatctgcaaatgagcagcctgagagccgacgacacggccgtatattattgt	58	60	50	45
+JY8QFUQ01BO4ET	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtttgggtctcacgt gttaatagtgatgggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	54	54	60	45
+JY8QFUQ01BO7P5	IGA1	ggcggccccatcagtggtggtggttac tggagttggatccggcagcccgccgggaagggactggagtggatcggacat atttataatagtgggaacatc aactacagtccctccctcaagagtcgggttttcatgtcagtagacacctctaagaagcagttttccctgaggttgaactctgtgaccgccgcggacacggccgtgtattattgt	46	51	64	52
+JY8QFUQ01BO8WN	IGG1	ggtgcctccataaataggggtaattattac tggaactggatccggcagcccgccgggaagggcctggaatggattggccga atctatacaagtgggagcacc atctacaacccctccctcgggggtcgagtcaccatgactgtagacccgtccgagaatcagttcttcctgagactgagttctgtgaccgccgcagacacggccgtttatttttgt	48	58	60	50
+JY8QFUQ01BOBY3	IGA1	ggtgactccgtcagcagtgataactgg tggagttgggtccgccagaccccagggaaggggctggagtggattggagaa atctatcatggtgggaccacc aactacaatccgtccctcaagggtcgagtcaccttatcggtcgacaagtccaagaaccaattctctctgagaatgacctcttttaccgccgcagacacggccgtgtattactgt	51	56	59	47
+JY8QFUQ01BOMV5	IGA1	ggattcacctttagtagtttctgg atgcactgggtccgccaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggagggccgattcaccatctccagagacaacaccaagaacaggctatatctgcaaatgaacagtctgagagccgaggacacggctatttattactgt	56	49	61	47
+JY8QFUQ01BP3RA	IGA1	ggtgggtccttcagtggttactac tggagctggatccgccagcccccaggggaggggctgcagtggattggaaga gtcaatcatagtggaagcacc agctacaacccgtccctcaagagtcgagtcaccatgtcactagacacgtccaagacccacttttccctgaagctgacctctgtgaccgccgcggacacggctgtgtattactgt	46	61	59	44
+JY8QFUQ01BP55P	IGG1	ggatttacttttacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccaac ataaaacaacatggaggtgaaacg tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	58	48	60	46
+JY8QFUQ01BPG8K	IGG2	ggtggctccatcagtaattactac tggagctggatccggcagtccgccgggaagggactggaatggattgggcgc atgtctgccagagggggcagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	46	61	60	43
+JY8QFUQ01BPT7N	IGA2	ggattcacctttaggagttattgg atcagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaacccagatggaagtgagaaa tactatgtggactctgtgaggggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatggacagcctgagagccgaggacacggctgtgtattactgt	56	48	65	44
+JY8QFUQ01BQ0GT	IGA1	ggattcagctctgagaattatgcc atgcactgggtccggcagcctccagggaagggcctagagtgggtctcacac atcagttggaatggcgaaggcatc gactacgcggactcagtgaagggccgattcaccgtctccagagacaacggcaagaattccctgtatttgcaaatgaacagtctgacaactgacgacacggccttgtattactgt	55	54	59	45
+JY8QFUQ01BQ3I3	IGA1	ggattcatcttcagtgactatggc atgcactgggtccgccaggctccaggcgaggggctggattgggtggcattt atacgatatgatggaaatgagata cactatccagactccgtgaggggccgattcaccatctccagagacaattccaagaacaccctatatctagaaatgaacaatgtgagacctgaggacacggctgtgtattactgt	58	48	57	50
+JY8QFUQ01BQ9G8	IGG2	ggattcacctttagcggctatgcc atgagctgggtccgccaggctccagggaaggggctggactgggtctcatct attagttataatggtggtagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctccaaatgaacagcctgagagccgaggacacggccgtatattactgt	53	55	58	47
+JY8QFUQ01BQAON	IGA1	gatttcaacgtcggtgactttgac atgcactgggtccgccagactccagacaaggggctggagtgggtggcactt ttttggtatgacggaaagaggaaa tattatgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacaccctgtatctgcaaatggacagcctgagagccgacgacacggctacctacttttgt	55	52	58	48
+JY8QFUQ01BQCNP	IGG1	ggtggctccgtcagcagtggaaattcctac tggacttggatccgccagccccccgagaagggactggagtggcttgcatat attcgaaacactgggacaacc aactacaacccctccctcaagagtagactcaccatgtctctggacatgtctaggaatcagttctccctgaggctgaacgatgtgaccgctgcggacacggccatatattactgt	53	62	54	47
+JY8QFUQ01BQERB	IGA1	ggattcacctttaagaactatgcc ttaaactgggtccgccaggctccagggaaggggctgaagtgggtctccgga atcagtgctactggtgaaagcaca cactacgcagactccgtaattggccggttcaccatctccagagacgattccaagaatacgttatatctgcaaatgaacagcctgagagccgaggacacggccgtatatttctgt	57	54	55	47
+JY8QFUQ01BQLNQ	IGG2	ggatacacgtttatgaattactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtacctctgagacc agatacagcccgtcctttcaaggccaggtcaccatttcagccgacaagtccaccagcaccgccttcgtgcagtggagcagcctgaaggccccggacaccgccatatattactgt	48	62	59	44
+JY8QFUQ01BQMY8	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacat attaatattgatgggagtaccaca gactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	56	53	59	45
+JY8QFUQ01BQQG5	IGA1	ggattcaaattcaataattatgca atgcactgggtccgccagtctccaagagcggggctgcaatgggtggcggct atatcgactgacggcaataaagaa tatcatgcagactccgtgaagggccggctcaccctctccagagacaattcgaggagtacgctgtctctgcaattgcgcaacctgacagctgacgactcggctctgtattattgt	54	54	56	49
+JY8QFUQ01BR1YM	IGA2	ggattcacctttagaaactattgg atgagttgggtccgccaggctccagggaaggggctggagtgggtggccaac ataatgacagatggaggtgacaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	59	46	63	45
+JY8QFUQ01BR9Q4	IGA2	ggattcacctttagcagcttttcc atggggtgggtccgccaggctccagggcggggactggagtgggtctcagcc attgacggtcttactggtggtaca tattacgcggactccgtgaggggccgattcaccatctccagagacgattccaagaacacactgtatctgcaaatgaatagcctgagagccgaggacacagccatatatcactgt	49	55	61	48
+JY8QFUQ01BRBL7	IGA2	ggggactccattagtggttactat tggacgtggatccggcagaccccagggaagggactggagtggattggaaat gtccattacactgggagtacc aagtacagcccctccctcaagagtcgagtcaccatgtcagttgacatgtccaggaaccagttcaccctcaaattgacctctgtagccgctgcggacacggccgtctattactgt	50	56	57	47
+JY8QFUQ01BREFM	IGG1	ggattcacttttgatgactctgcc atgcactgggtgcggcaagctccagggaagggcccggagtgggtcgcaggt attagtggaaatagtggaaatata ggatatgcggactcagtgaagggccgatgcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	59	43	64	47
+JY8QFUQ01BRF2O	IGA1	gggttcacctttgcccactttgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtggtggtgatgattccaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatggacagcctgagagccgaggacacggccgtatatcactgt	49	58	60	46
+JY8QFUQ01BRIHD	IGA1	ggattcagctttagttactattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	58	45	66	44
+JY8QFUQ01BRQMG	IGA1	ggggacagtgtctctagcaacagtgccact tggaactggatcaggcagtccccaacgggaggccttgagtggctgggaagg acatcctacaggtccaaatggtatagt gattatgcggtgtctgtgaaaagtcgaataaccatcaacccagacacatccaagaaccagttctccctgcaattgaactccgttagtcccgaggacacggctgtgtattactgt	59	55	59	49
+JY8QFUQ01BRZIH	IGA2	ggattcatgttcggtagttatagt ctgaattgggtccgccaggctccagggaaggggctggagtggatttcatat attagtagcagtagtcaaacgatt tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgcgagacgacgacacggccatttactacttt	58	48	54	53
+JY8QFUQ01BS2Q3	IGA2	ggattcaccttcaattcctatacc atgatgtgggtccgccaggctccggggaagggactggagtgggtctcaacc attagtcctagtagtcagtacata tactatgcagactctgtggagggccgattcaccatctccagagtcgacgcccggagttcagtgtttctgcaaatgaacagcctgagagacgacgacacggctgtgtattactgt	50	53	58	52
+JY8QFUQ01BS2WD	IGA1	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt actaatacgggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacggtgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattattgt	51	52	66	44
+JY8QFUQ01BSD92	IGG2	ggtgcctccatcagcagtggtagttac tgggactggatccggcagcccgccgggaagggactggagtggattgggcgt atccataccagtgggggcacc aactacaccccctccctcaagagtcgactcaccatatcagtagacgcgtccaagaaccaggtctccctgaggctgagctctgtgaccgccgcagacacggccgtgtattactgt	45	65	63	40
+JY8QFUQ01BSDSX	IGG1	ggattcacctttagaagctatgcc atgagctgggtccgccaggttccagggaaggggctggagtgggtctcagct attagtggtaatggtgctaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaaatgaacagcctgagagccgaggacacggccctatattactgt	55	53	58	47
+JY8QFUQ01BSGWN	IGA2	ggattcgccttcagtagttccagc atgaactgggtccgccagggtccagggaaggggctggagtggatttcacac attaggggtagtagtagtaccacc cactacgcagactctgtgaagggccggttcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtctattactgt	55	53	60	45
+JY8QFUQ01BSOH5	IGG2	ggattcacctttggttattatggc atgagctgggtccgccaagctccggggaggggcgtggagtgggtctctgt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	60	52
+JY8QFUQ01BSRSP	IGA1	ggtggctccatgagtagttactac tggaactggattcggcagcccccagggaagggactggagtggattgggtat atctattacactgggatcacc aactacaatccctccctcaagagtcgagtcaccatgtcaatagacacgtccaggaagcagttctccctgaccctgacctctgtgaccgctgcggacacggccgtctatttctgt	48	59	54	49
+JY8QFUQ01BSZDV	IGG1	acattcgcctttagcaactatgcc atgagctgggtccgccaggctccgagggaagggctggagtgggtgtcagat attagtgggagtggtgttagcaca cactacgcggactccgtgcagggccggttcaccatctccagagacaattcgaagaacacgctgtatctgcaaatgaacagcctgagtgccgaggacacggccgtatattactgt	51	53	64	45
+JY8QFUQ01BT5A6	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccggggaggggctgggagtgggagtctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	50	50	62	51
+JY8QFUQ01BT5S9	IGA1	ggtgactccatttccagtactagttattac tggggctgggtccgccagcccccagggaaggggctggagtggattgggggt atctattctagtgggaccacc tactacaacccgtccctcaagagtcgagtcaccatatccgtagacacgtccaacaactacttctccctgaagctgagttctgtgaccgccgcagacacggctgtgtattactgt	46	61	57	52
+JY8QFUQ01BTAHR	IGG1	ggattcacctttagtacctatggc atgctctgggtccgccatgttgcaggcaaggggctggagtgggtggcaact atatcagctgatggacgaaataaa tactatgcagattccgtgatgggccgattcgccctctccagagacaaatccaagaacacggattatctgcaaatgaacagcctgagaactgacgacacggctgtatattactgt	58	49	56	50
+JY8QFUQ01BTCL3	IGA2	ggattcaagtttgatgattccggc atgagctgggtccgccaagctccagggaaggggctggagtgggtctctggt attaattggaatggtggtaagaca ggttatggagactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatttgcaaatgaacagtctgagagccgaggacacggccttgtattactgt	53	44	65	51
+JY8QFUQ01BTIAT	IGG3	ggattcacctttcatgattatacc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaagt attagttggaatagtggtaacata gactatgcggcctctgtgaggggccgattcaccgtctccagagacaacgccaataactccctgtctcttcagatgaatggtctgagatctgaggacacggccctctattactgt	50	52	57	54
+JY8QFUQ01BTOR9	IGA2	tggagtcaattcagaaacgcctgg atgaattgggtccgccaggctccagggaaggggctggagtgggttggccgt attaagagcaaagctgatggtgggacaaca gactacgccacacccgtgagaggcagattcaccatctcaagagatgattcaaaaaacacgttttatctgcaaatgaatagcctaaaaaccgaagacacagccgtctattactgt	68	48	59	44
+JY8QFUQ01BU31Q	IGG1	ggattcacttttgatgactctgcc atgcactgggtgcggcaagctccagggaagggcccggagtgggtcgcaggt attagtggaaatagtggaaatata ggatatgcggactcagtgaagggccgatgcaccatctccagagacaacgccaagaagtccctgtttctgcaaattaaaagtctgagagttgaggacacggccttatattattgt	57	43	63	50
+JY8QFUQ01BU3DY	IGA2	ggattcaccttcactgactactac atgacctggatccgccaggctccagggaaggggctggagtgggtttcacac attagtagtggtggtagaaccatt gcctacgcagactctgtgaagggccgattcaccatctccagggacaacgccaagaactcagtgtttctgcaaatgaacagcctgagagccgaggacacggccgtgtattattgt	53	54	59	47
+JY8QFUQ01BU5NL	IGA1	ggcttcaccgtcaataacaactac atgggctgggtccgccaggctccagggaaggggctggagtgggtctcgatt atttattacggtggaaccaca tattacgctgactccgtgaagggccgattcaccatctctagagacacctccaagaacacgttatttcttcaaatgaataccctaagaggtgaggacacggctgtgtactactgt	54	52	54	50
+JY8QFUQ01BUAPX	IGA1	ggattcagcttcaacagctacagc atgaactgggtccgccaggctccagggaagggactggaatggatctcatca attagtaccgctggcaccaccata ggctacgcagactctgtgaagggccgattcactatttccagagacaacgccaagaactcagtatctctgcagatggacagcctgagagacgaggacacggcggtatattattgt	59	54	57	43
+JY8QFUQ01BUG1S	IGA1	ggatacaccttcaccgtctactat ctattctgggtgcgacgggcccctggacaagggcttgagtggatgggatgg atcaaccctaagagtggtgacaca cactatgcaccgaaattccagggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggaactgaataggctgagatctgacgacacggccgtgtattactgt	55	56	59	43
+JY8QFUQ01BUJ4F	IGA2	ggcttcaccgtcaataacaactac atgggctgggtccgccaggctccagggaaggggctggagtgggtctcgatt atttattacggtggaaccaca tattacgctgactccgtgaagggccgattcaccatctctagagacacctccaagaacacgttatttcttcaaatgaataccctaagaggtgaggacacggctgtgtactactgt	54	52	54	50
+JY8QFUQ01BUOZE	IGA1	ggattcaccttcaaaagtatggc atgaactggctccgccaggctccagggaaggggctggagtgggtcgcaacc attcgcagtagtggtacttccata cactatgccgactccgtgaagggccgattcactatcaccagagacaacgccaacaactcactgtatctgcaattgaacagcctgggagtcgaggactcggctgtgtatttctgt	52	56	57	47
+JY8QFUQ01BV8FF	IGA2	ggaatcaccttcagtgactccgac atgcactgggtccgccaagctccaggagaaggtctggagtgggtcgcagct attggaactgctggtgataca tactatgcagactccgtgaagggccgattctccattaccagagagaatgccaagaactccttgtttcttcaaatgaacagcctgagagccgacgacacggctatttattactgt	54	53	54	49
+JY8QFUQ01BVBOA	IGA1	ggattcaccgtcaatagttatcac atgagttgggttcgccaggctccagggaaggggccggagtgggtctcaatt atttatccggatggtgacgca ttctacgcagactccgtgaagggccgattcaccttctccagagacatttccaagaacacggtgtatctccaaattaacagagtgacaactgaggacacggctatgtactactgt	54	50	55	51
+JY8QFUQ01BVHS5	IGA1	ggattcaccttcagtgactacagc atgaactgggtccgccaggctccagggcaggggctggagtgggtctca tatagtcgcggaagaaccaca tactacgcagactctgtgcagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgacagccgaggacacggctgtttattactgt	54	56	55	42
+JY8QFUQ01BVMIC	IGA1	ggatacaattttaactacgactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatg gtctatgttggtgactctgatgct agatacagcccgtcctccgaaggccaggtcaccatctcagccgacaaggccatcagtaccgcctacctgcagtggagtagcctgaaggcctcggacaccgccatgtattactgt	47	57	64	45
+JY8QFUQ01BVRVR	IGG2	ggattcattgtcaatagcaactac atgagttgggtccgccaggctccagggaaggggctggactgcgtctcagtt atttatcccggtggtagcaca tactatgcagactccgtgaagggccgattcaccatctccagagacatctccaagaacacactgtatcttcaaatgaacagcctgagagccgaggacacggctgtatattactgt	55	53	53	49
+JY8QFUQ01BWBZS	IGA1	ggattcaccttcagtgaccactac atagactgggtccgccaggctccaggaaaggggctggagtggttggccgt actcgaaataaagctaacggttacagtaca gagtatgccgcgtctgtgaaaggcagattcaccgtctcaagagatgactcagagaacttagtgcatctgcaaatgaacagcctgaaaagcgaggacacggccctgtattactgt	62	51	60	45
+JY8QFUQ01BWD62	IGA1	ggtgggtccttcagtacttactac tggacatggatccgccagcacccagagaagggactggagtggattggggaa atcaatcacagtggaagcccc aactacagcccgtccctcaatagtcgagtcatcatatcgatagacacgtccaagaaccaggtctccctgaagctcttctctgtgaccgccgcggacacgggtgtgtactattgt	52	58	55	45
+JY8QFUQ01BWIHJ	IGG1	ggatttacttttaacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccaac ataaaacaacatggaggtgaaaag tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	60	47	60	46
+JY8QFUQ01BX0QN	IGA1	ggattcaccttcagtagctatact atgaactgggtccgccaggctccagggaaggggctggagtacgtctcatcc attagtagcaatggtgcttacata tactacgcagactcaatggagggccgattcaccatctccagagacaacgccaggaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	57	54	54	48
+JY8QFUQ01BX1DY	IGG1	ggattcaccttcagaaaatatgct atgcactgggtccgccaggctccaggcaaggggctggaatgggtggcgatt atatcctatgatggaagaagtcca tactacgcagactccgtgaggggccgattcaccatctccagagacaattccaggagtactctggatctgcagatgaacagcctgagacctgaggacacggctgtatattcctgt	55	52	59	47
+JY8QFUQ01BX1X7	IGA1	ggatatgactttagcagattttgg atcgcctgggtgcgccagatgcccgggaaaggcctggagtggattggaatc atctatcctagtgactctgatacg agatacagtcccaccttccaaggccaggtcattatctcagccgacaagtccctcagtaccgcctacctactttttagcagtctgagggcctcggacaccgccatgtatttttgt	47	57	53	56
+JY8QFUQ01BX764	IGA1	ggatacatcttcaccggctactat ttgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatac atcgacccttacactggtgacaca aattatgcacagaggtttcagggcagggtctccatgaccagggacacgtccatcagtacagcctacatggaactgaacaggctgatgtctgacgacacggccatgttttactgt	53	54	58	48
+JY8QFUQ01BXBPF	IGG3	ggattcaccttcagtcgctatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtagtcatagtatttacata tactatgcagactcagtggagggccgattcaccgtctccagagacaacgccgagaactcgctgtatctgcacatgaacaccctcagagccgacgacacggctatatattactgt	55	55	54	49
+JY8QFUQ01BXDPP	IGA1	ggattcaccttcagttcttatagt gtaaactgggtccgccaggctccagggaagggcctagagtttgtctcatac attgatagtagtggttctaccata tactacgcagactctgtgaagggccgattcaccatctctagagacaatgcccagaactcactgtttctgcaaatgaacaacctgcgagtcgacgacacggccgtatattactgt	55	53	49	56
+JY8QFUQ01BXEXG	IGG1	gatggctccatcagcactagtaattactac tggggctgggtccgccagcccccagggaaggggctggagtggattggaagt atatattatagtgggagcacc gactacagctcgtccctcaggagtcgcgtcaccatatccagagacacgtccaagaaccacttctccctgaaggtgacctctgtgaccgccgcagacacggctatatattactgt	52	60	58	46
+JY8QFUQ01BXNFF	IGA2	ggatacagctttgccaccttctgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatgggaatg atctttcctggtgactccgatacc agatacagcccgtccttccaaggccaggtcaccttctcagccgacaagtccatcaacaccgcctacctgcagttgaacagcctgacggcctcagacaccgccgtttattactgt	45	67	55	46
+JY8QFUQ01BXTDZ	IGA1	cgtgcctccatcaatatttcctac tggagctggatccggcagcccccagggaggggactggagtggattggatat atctatgatagtgggagtacc aactacaacccctccctcaagagtcgagtcaccatatctatagacacgtccaagaaccagttctccctgaggctgaactctgtgaccgctgcggacacggccgtgtattactgt	50	59	53	48
+JY8QFUQ01BXZRW	IGG1	ggattcacctccatctcctatggc atgcactgggtccgccagattccaggaaaggggctggagtcggttgcatac attagtgatagtaatagcagcata tactatgcagactctgtgaagggccgattcaccatctcccgagacaaagacaagaagtcagtatatctgcaaatgagcagcctgagagacgaggacacggctatttattactgt	61	49	54	49
+JY8QFUQ01BY0E2	IGA1	ggatacatctttaccgactattgg atcggctgggtgcgccagacggccgggaaaggcctggagtggatggggatc atctatcctggtgactctgacacc agttatggcccgtccttccaaggccaggtcaccatttcagccgaccagtccatcaccaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatatattactgt	45	65	58	45
+JY8QFUQ01BY2NW	IGA2	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtgtcacgt agtaatacgggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	67	43
+JY8QFUQ01BY2RR	IGA2	ggattcacttttaatgaacatggc atgcagtgggtccggcaagctccagggaagggcctggagtgggtcgcaggt atcagcggtaatggtgatgtcata ggatatgcggactctgtgaagggccgagtcaccgtctccagagacaacgccaaagactctctatatttgcagatggacagtctgagagttaatgacacggccttatattattgt	54	43	64	52
+JY8QFUQ01BY3HN	IGA2	ggattcaccttcagtgcctttact atgcactgggtccgccaggctccaggcgagggactagagtgggtggcagct atatcatatgatggcagtaaaaaa tactatgcggactttgtgaagggccgattcaccatctccagagacaatcccaagagtacactgtatctacaaatgaacggcctgggaggtgatgacacggctttgtattactgt	56	48	57	52
+JY8QFUQ01BYDVO	IGA1	ggcttcagattccgtgactactac atgacgtgggtccgccaggctccagggaagggtcttgagtggctttcctcc atcagcagcggtagtaataccatc cactactcagactcggtgaggggccgcttcaccatctccagggacaacaccaggaactcagtggatctgcaaatgaatagtctgagagccgaagacacggccgtctattattgt	51	58	57	47
+JY8QFUQ01BYFAI	IGG1	gctttcagtttgagtacttatacc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcactc attagtaagactagtaatgtcata tactacgcggactctgtgaagggccggttcaccatctccagagacaatgccgagaattcactgtttctgcaaatggacagcctgagtgccgaggacacgggtgtatattactgt	52	47	59	55
+JY8QFUQ01BYGMF	IGA1	ggattccccttcagcacctatccc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcatac attagtaagactactaatgacata tactatgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtatttctgt	57	56	54	46
+JY8QFUQ01BYOYM	IGA1	ggattcatcttcagtaattatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggctgtt ctgtggttcaatggaaatacgaag tattatgcagactccgtgaagggccgcttcaccatctccagagacacatccacgaacacgctgtttttgcaaatggacagcctgagagccgaggacacggctgtctattattgt	50	50	61	52
+JY8QFUQ01BYP0E	IGA1	ggattcaccttcagcaaccataac atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatgt attggtagtagtagtagtgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaagacacggctgtgtattactgt	60	50	57	46
+JY8QFUQ01BYRXT	IGG1	ggtttcatcttcagtcacttcagc atgaactgggtccgccaggctccaggaaagggcctggagtggatcgccgac atcagtagttcaagtgcatacatc acctatgcagattcagtcaggggccgattcgtcgtctccagggacgacgccaaggactccctgtacttgcaaatggacaacctgggagtcgacgatacggccacctattattgt	50	58	57	48
+JY8QFUQ01BYXJU	IGG1	ggattcacctttggttattatggc atgagctgggtccgccaagctccgggggaggggcgtgagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	61	52
+JY8QFUQ01BZEWU	IGA1	gattttaccttcagtaagttctgg atgcattgggtccgccaagctccagggaaggggctgacttgggtctcacgt attaatcctgatgggactatcacg aactacacggactccgtgaggggccgattcatcacttccagagacaacgccaagaacacagtatatctgcagatgaacagtctgcgagtcgaggacacaggtgtatattactgt	56	50	56	51
+JY8QFUQ01C0J5I	IGG3	ggattcaccttcagtgtccatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac cttagtagtggtagtgataccata tactacgcagactctgtgaggggccggttcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagtggcctgagagacgaggacacggctgtttattactgt	52	50	61	50
+JY8QFUQ01C0LHV	IGA1	ggattcacctttcgcagctatgcc atgagctgggtccgccaggctccaggaagggggctagagtgggtctcatct atcagtggtagtggtgataaaaca aagtacgcagactccgtgaagggccggttcaccatctccagagacaacgccaggaacactttttatctgcaaatggacagcctcagagccgaggacacggccgtctattactgt	53	55	60	45
+JY8QFUQ01C0T0E	IGA2	ggattcacctttagcaactatgcc atgaactgggtccgccaggttccaggggaggggctggagtgggtctcagcc attagtggcagtggtggtagcaca ttctacacagacgccttgcagggccgattcaccatctccagagacaattccaagaacacgttatatttgcaaatgaaaagcctgagagccggggacacggccgtgtattactgt	53	52	61	47
+JY8QFUQ01C0V8V	IGG1	ggattcatgttcagcagttattgg atgagctgggtccgccaggatccagggaagggctggagtgggtggccaat ataaacgaagaaggaagtgagaaa tattatgtggactctgggaagggccgattcaggatctccagagacaacgccaagaattccgtgtatctgcaaatggacagcctgagagccgaggacacggctgtgtattactgt	59	39	69	45
+JY8QFUQ01C0YWV	IGG1	ggattcactttcactaacgcgtgg atgagttgggtccgccaggctccagggaaggggctggagtgggttgcccgt gttaaaactaagactgacgatggggcaaca gactacgctgcacccgtgaaaggcagattccttatctcaagagatgattcaaacaacatactgtatctgcaaatgaacagcctgagaaccgaggacacagccatgtactactgt	62	51	60	46
+JY8QFUQ01C13EL	IGA1	ggatacaccttcatcagttatgat atcaattgggtgcgacaggccactggacaagggcttgagtggatgggatgg atgaaccctaacagcggtaacaca gggtttgcacagaggttccagggcagagtaaccatgaccaggaacatctccataaacacggcctacatggagctgaccaacctgacatctgatgacacggccgtatattattgt	62	49	57	45
+JY8QFUQ01C160X	IGG1	ggtggctccatcaggagtggtagttactac tggagctggatccggcagcccgccgggaagggactggagtggattgggcgt atatatagcagtgggagcatc gcacgcaacccctccctcaagagccgagtcaccatatcaattgacacgtccaagaaccaggtctccctgaaactgggctctgtgaccgccgcagacacggccgtctattattgt	49	60	64	43
+JY8QFUQ01C17HE	IGG2	ggattcagcctcacttcctatggc atgaactgggtccgccaggctccagggaggggcgtggagtgggtctcacac gttaatatgggtagtactcacata tactacgtaggctccgtgaggggccgattcaccatctccagagacgacgccaagaactcagtgtatctgcagatgaacaacttgagagccgaggacacggctctatattactgt	52	54	60	47
+JY8QFUQ01C185F	IGA1	gggttcgtgttcggtaacttcttt atgaattggttccgccagcctccgggaaaggggctggagtgggttggccgc atcaaaaccaaagttgatggtgagacaaca gactacgctgcagccgtgaaagacagattcatcatttcaagagatgattcaaaaaatacgatgtatctgcaaatgaacgacctgaagaccgaggacacggccgtatattattgt	64	44	59	52
+JY8QFUQ01C1QUY	IGA2	gggttcagtttcattgactatggc atacactgggtccgccaggctccaggcaaggggctggagtggatggcaatt atatggtatgatgggaaaaataaa tattatgaagagtccgtgaaggaccgattcaccgtctccagagacaattccaagaacacggtgtatttggaagtgaatagtctgagagtcgacgacacggctgtgtattactgt	60	38	62	53
+JY8QFUQ01C1UWI	IGA1	ggattcaccttcagtgactactac atgaactggatccgccaggctccagggaaggggctggagtggctttcatac attagtggtagtggaactaccata tactacgcagactccgtgaagggccgcttcaccatctccagagacaattccaagaacacactgtatttacaaatgtacagcctgagagtcgaggacacggccgtatattactgt	59	53	52	49
+JY8QFUQ01C1WLX	IGA2	ggatacaccttcaccagttatgat atcaactgggtgcgacaggccgctggacaagggcttgagtggatgggatgg gtgaaccctaatagtggtgccaca ggctatgcacagaagttccagggcagagtcaccatgagcagggacacctccgaaagtacagcctacgtggagctgagcagcctgggatctgaggacacggccgtgtatttctgt	53	50	68	42
+JY8QFUQ01C24ZT	IGA1	ggattcacctttgatgattatgcc atgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggt attacttggaacagtggtaggata ggctatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgcgacctgaggacacggccttgtattattgt	51	50	61	51
+JY8QFUQ01C2553	IGG2	ggattcaccttcaccaactacgcc atgacctgggtccgccaggctccagggaaggggctggagtggatctcgact gttgtgggtggcggtggtaacaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattcccagaacacgctgtatttgcaaatgtacaatttgggagccgaggacacggccctatattactgt	50	57	60	46
+JY8QFUQ01C26ES	IGG1	ggtgtcgccaccagtagttactac tggagctggatccggcagtccgccggggcgggactagagtggattgggcgc atctataccggtcacaccacc atttacaaccctccctcaagggtcgagtcaccatgtcacttgacatgtccaagaaccagatctccctgaggctgacctctgtgaccgccgcagatacggccgtgtattactgt	44	64	56	45
+JY8QFUQ01C28D8	IGA1	ggataccccttcgacagttatgat atcagctgggtgcgacaggccactggacaagggcttgagtggatgggatgg atgaaccctaacagtgggaataca gcctatgcacagaagttccagggccgagtcacgatgaccagggacacctccacaagcacagcctacatggaggtgagcagcctcagatctgaggacacggccgtctattactgt	57	54	63	39
+JY8QFUQ01C2A2E	IGA2	ggaatcaccttcagtgactccgac atgcactgggtccgccaagctccaggagaaggtctggagtgggtcgcagct attggaactgctggtgataca tactatgcagactccgtgaagggccgattctccattaccagagagaatgccaagaactccttgtttcttcaaatgaacagcctgagagccggggacacggctgtttattattgt	52	51	57	50
+JY8QFUQ01C2JVO	IGA1	ggatacaactttgccacctattgg atcggctgggtgcgccacatgcccgggaaaggcctggaatggatggggatg atctttgctggtgactctgacacc agatacagtccgtccttccgaggccaggtcaccatgtcagccgacaagtccatcaacaccgcctacctgcagtggagcagcctgatggcctcggacaccgccatatattactgt	47	63	58	45
+JY8QFUQ01C2XG5	IGA2	ggattcacctttagtagatattcc atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcactt atatcatacgatggaagtagaaga atctacgcagactccgtgaagggccgattcaccatctccagagacacttccaagaacacggtgtatctgcaaatgagtagcctgagacctgaggacacggctgtgtattactgt	57	50	58	48
+JY8QFUQ01C2XX8	IGA1	ggattcagatttagcagctatggc atgagctgggtccgccaggctccaaaaaaggggctggagtgggtctcagga attagtgcgaatggtggtagtata aattatgcagactccgtgaagggccgattcatcatctccagagacaattccaagaacacattgtttctgcaaatgaatagcctgagagccgaagacacggccgtatattactgt	61	43	59	50
+JY8QFUQ01C33GJ	IGA2	agttcagccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtttgggtctcacgt gttaatggtgatgggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	53	54	61	45
+JY8QFUQ01C39LJ	IGA1	ggattcaccttcagtagctacggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt gtctcatttgatggaattcttgaa cactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtatatctccaaatgagtagcctgagacctgaggacacggctgtctattactgt	52	53	58	50
+JY8QFUQ01C3FR9	IGA1	ggtggctccgtcagcagtaggggttactac tggaactggatccgccagttcccagggaagggcctggagtggattgggaac atcttttacagtgggggcacc tacgacaacccgtccctcaggagtcgaatttctatatcattagacacgtctaagaaccaattctccctgaagttgacctctatgaccgccgcggacacggccgtgtattactgt	49	57	59	51
+JY8QFUQ01C3HIA	IGA1	ggattcaacttcaggacctattct atgcactggctccgccaggctccaggcaagggactagagtgggtatcagtt atttcatatgatggaactaagaag aattatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtatctacaaatggacagcctgagacctgaggacacggctgtgtattactgt	61	49	53	50
+JY8QFUQ01C3HRU	IGA1	ggattcaactttgatgattacggc atgcactgggtccggcaacgcccagggatgggcctggagtgggtcgcaggt attagttataataatggccacaaa gaatatgcggactctgtgaggggccgattcaccatctctagagacaacgccaggaagtccctgtatctgcagatggacagtctgagagttgaggacacggccttgtattattgt	53	45	64	51
+JY8QFUQ01C3JTT	IGG1	ggattccttttagaacctattgg atgagttggtccgccaggctccagggaaagggctggagtgggtggcccac ataaaccaagatggacgtgaggca tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	58	45	60	48
+JY8QFUQ01C3KAU	IGA2	ggattcaccttcagtatctatgcc atgacctgggtccgccaggctccagggaaggggctggagtggatttcattt atcactgataggggtagtacccaa tactacgcagactctgtgaagggccgattcaccgtctccagggaccaagccaagaactcactgtatctacaaatgaacaacctgggagtcgaggacacggctgtgtattattgt	54	52	57	50
+JY8QFUQ01C4D0M	IGG1	ggattcaccgtcagtagcagcttc atgacttgggtccgccaggctccaggaaagggactggagtgggtctcagtg ctttatgtcggtggtaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtatttgcaactgaacagcctgagagccgaggacacggctgtgtattactgt	52	52	59	47
+JY8QFUQ01C50HS	IGA1	ggtggcccgatcaaaagtcctgattaccat tggacgtggatccggcaggccgccgggaaggggctggagtgggtcgggcgt gtctatatgactggctatgtc gagaacaatccatccctctccgggcgtctctccatgtcgattgacacggcgaagaatcagttttctatgacattgacttctgtgaccgccgcagacacggccctttatttttgt	42	56	63	55
+JY8QFUQ01C5CP6	IGA2	ggattcacctttagtacctattgg atgagctgggtccgccaggctccagggaaagggctggagtgggtggccaac ataaagcatgatgcaagtgagaaa tactatgtggactctgtaaaaggccgattcaccatctccagagacaacgccaagaactcattgtatttacaaatgaacaacctgagagccgaggacacggctgtgtattactgt	63	46	57	47
+JY8QFUQ01C5MCI	IGG1	ggatcacctttggttattgatggc atgagctgggtccgccaagctccggggagggggctggagtgggtctctggt attaatcggaatggtgatagcaca ggttatgcagactctgtgcaggaccgattcaccatctccagagacaacgccaagaactccctgtatctcgaaatgttcagtctgacagccgaggacacggccttatatcactgt	49	51	62	51
+JY8QFUQ01C6DDZ	IGA1	ggattctcctttagcaactatgcc ctggcctgggtccgccaggctccagggaaggggctggagtgggtctcaatt gttagtggaagtggtactggcaca ggccacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	50	56	63	44
+JY8QFUQ01C6GOS	IGG2	ggtggctccatcaacagtagaaattattat tggggctggatccgccagcccccagggaagggtttggagtggattggaaat atctattatagtgggaacacc tactacaatccgtccctcaagagtcgagtcaccgtatccgtagacaggtctaagaaccagttgtccctgaagctgacctctctgaccgccgcagacacggccgtatattactgt	55	55	55	51
+JY8QFUQ01C71OC	IGA2	ggattcaccttcatcagttatggc atgagttgggtccgccaggttccagggaaggggctggagtgggtctcatct attagtgattatggtaataccgca ttctacgcagactccgtgaagggccggttcaccatctccagagacaattccaacaacacgctgtttctgcaaatgagcagcctgagagccgaggacacggccgtttattattgt	50	51	58	54
+JY8QFUQ01C73TY	IGA1	ggtggcgccatcagcagtaatagttactac tgggactggatccgccagcccccagggaaggggctggagtggattgggagt atgttttatactggggtcacc ttctacaacccgtccctcaagagtcgagttaacatttccgtggacacgtccaagagccagttctccctgaggctgagctctgtgaccgccgcagacacggctgtgtatcactgt	45	58	63	50
+JY8QFUQ01C7540	IGA1	ggattcatcttcagcaaccttgcg atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcacac atatcatatgatggaaataagaaa tactacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgacagctgaagacacggctatttattactgt	63	53	52	45
+JY8QFUQ01C7QU9	IGA1	ggattcaccttcagtacctatggc atgcactgggtccgccaggctccaggcagggggctggagtgggtggcaatt atatggcatgatggaaccaataaa tactatgcagactccgtgaagggccgattcaccgtctccagagacaattccaagaacacagtgtatctgcaaatgaatagcctgagagccgaggacacggctgtgtattattgt	57	49	60	47
+JY8QFUQ01C7ZZV	IGA2	ggattcacctttagcaatgctgcc atgacgtgggtccgccaggctccagggaaggggctagagtgggtctcaggt attagtattagtggtgatagaaca tattacgcagactccgtgaagggccggttcaccatctctagagacaattccaagaataccgtgtatctgcaaatgaacagcctgagagccgaggacacggccatatattattgt	57	47	59	50
+JY8QFUQ01C819B	IGA1	ggattcacctttagcaactttgcc atgacctgggtccgccaggctccagggaggggactggagtgggtctcaact attagtggtagtgatggtagcaca tacttcgcagactccgtgaagggccgattcaccatctccagggacaatttcaagaacacgctgtatctgcaaatggacagcctgagagccgaggacacggccgtatattactgt	52	53	60	48
+JY8QFUQ01C847F	IGG1	ggattcaccttcagtgactactac atgatctggatccgccaggctccagggaaggggctggagtgggtttcatac attactagtcgtggtactatcatg tacgcagactctgtgaagggccgattcaccatctccagggacaacgccaagaactcactgtctctgcaaatgaacagcctgagagccgaggacacggccatttattactgt	53	54	54	49
+JY8QFUQ01C8AA1	IGA1	ggatacaactttgacaccgattgg atcgcctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctgctgactctgatacc agatacagtccgtccttccaaggccaagtcaccatctcagccgacaagtccatcaacaccgcctacctgcagtggagcggcctgaaggcctcggacaccgccatctattattgt	49	65	55	44
+JY8QFUQ01C8ASE	IGA1	ggattcgccttcaaaagttttaac atgaattgggtccgccaggcttcagggaaggggccggagtggattgcatac attaatggaagagggactaacatc tactatgcagactctgtgaagggccggttcaccatctccagagacaacgcccagaacgcagtgcatctgcagatggaccgcctgagagtcgaggacacggccctatattactgt	57	51	60	45
+JY8QFUQ01C8FEX	IGG1	ggattcaccttcaatagccatggc atgcactgggtccgccaggcgccaggcaaggggctggagtgggtggctgct attcggtttgatggaagtaataaa tactatgcagactccgtgaagggacgattcaccatctccagagacaattccaagaacacgttgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtactactgt	56	50	61	46
+JY8QFUQ01C8GT7	IGA1	ggattcaccttcagttcttatagt gtaaactgggtccgccaggctccagggaagggcctagagtttgtctcatac attgatagtagtggttctaccata tactacgcagactctgtgaagggccgattcaccatctctagagacaatgcccagaactcactgtttctgcaaatgaacaacctgcgagtcgacgacacggccgtatattactgt	55	53	49	56
+JY8QFUQ01C8YUG	IGG2	ggtgcctccatcaggagttattat tggagttggatccggcagcccccaggaaagggactggagtggattggttat attaattatgttggggacacc gattacaacccctccctcaagagtcgagtctccatgtcagcagccacgtccaagaaccaggtcttcctgcagctgacctctgtgaccgctgcggacaccgcctattatttctgt	46	57	54	53
+JY8QFUQ01C9KPR	IGA1	ggattcagcttcggcaattacgcc atgcactgggtccgccaggctccaggcaagggcctagagtgggtggctgtc ataaataaggctgggaagactaaa cattatatagactccgtgaagggccgattcaacgtctccagagacaactccgaaaaacactctatttggagatgaataacgtgggagttgaggacacggctgtatattattgt	60	45	59	48
+JY8QFUQ01C9RTB	IGA1	ggtgactccatcagcagtaatagtttctac tggggctggatccgccagcccccagggaaggggctggagtggattgggaat atctattatagtgggagcacc tactacaacccgtccctcgagagccgagtcaccatatccgtagatacatccaggaaccagttctccctgaagctgaggtttgtgaccgccgcagacacggctgtgtattactgt	50	57	60	49
+JY8QFUQ01C9UFU	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	62	45
+JY8QFUQ01CA1G6	IGA1	ggtggctccatcagtagttactac tggagctggatccggcagcccccaggaaagggactggagtggattgggtat atcttttacactgggaccacc aactacaacccctccctcaagagtcgagtcaccatgtcaatagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtctattactgt	50	61	53	46
+JY8QFUQ01CA2ZN	IGG2	ggattcacctttagcatctatgcc atgagctgggtccgccaggctccagggaaggggctggaatgggtctcgact attagtggtagtggaaatagtaca taccatgcagactccatgaagggccggttcaccctctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	56	53	58	46
+JY8QFUQ01CA830	IGG1	gacttcacctttaatagctatgcc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcggct attggtgccagtggctacagcaca tactacgcagactccgtcaagggccgcttcaccatctccagagaccattctaacagcacgctgcatctgcaaatgaacagcctgagagccgaagacacggccgtttattactgt	49	62	57	45
+JY8QFUQ01CABXM	IGG2	ggattcacctttaccaactacgcc atgagctgggttcgccaggttccagggaaggggctggagtgggtctcactt attagtgttcgtggcgatgacacc ttctatgcagactccgtgaagggccggttcaccatctccagagacaactccaagaacacgctgtatctgcaaatggacatcctgaaacccgaggacacggccgtttattttgc	49	57	56	50
+JY8QFUQ01CAI7Q	IGA1	ggtgcctccatgagcagtagtgcatactac tggggctgggtccgccagacccccgggaaggggccggagtggattgggagt gtctactatggtgggagcacc tactacaacccgtccctcaagagtcgggcctccatttctgtcgacacgtccaggaacgagttctccctgaggctgaactctgtgaccgccacagacacggctatgtattactgc	43	63	65	45
+JY8QFUQ01CAN9N	IGA2	gggttcaccttcagtgactactac atgggctggatccgccaggctccagggaaggggctggagtggattgcgtac attagtggtagtggtgataccata tactacgcagactctgtgaagggccgattcaccatctccagggtcaacgccaagaactcactgtctctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgt	51	53	62	47
+JY8QFUQ01CAR29	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaagggctggtgtgggtctcacgt gttaatggtgatggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	60	45
+JY8QFUQ01CB275	IGG1	gggttctcactcagcactggtggagtgggt gtgggctggatccgtcagccccaggaaaggccctggagtggcttgcactc atttattgggatgatgataag cgctacagcccatctctgaagagcagactcaccatcaccaaggacacgtccaagaaccaggtggtcctcacaatgaccaacatggaccctgtggacacagccacatattactgt	54	59	58	44
+JY8QFUQ01CB2DX	IGG2	gggttcaccttcagtggctctgct atgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgt attagaagcaaagctaacagttacgcgaca gcatatgctgcgtcggtgaaaggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgt	56	52	65	46
+JY8QFUQ01CBC07	IGA1	ggtggttctactcgcactaaccattgg tggaattgggtccgccagccccccgacaagggactggagtggattggagaa gtctataagagtggacagacc aactacaacccgtcactccagagtcgcgttgacctcttcattgacaactccaggaatcagatctccctaaatatgagagatgtgaccgccgcggacacggccgtctattactgc	54	59	55	45
+JY8QFUQ01CBLRN	IGG3	ggattcacctttaacaactacgcc atgtcctgggtccgccaggctccagggaaggggcttgagtgggtctcagct ataactgatagcggtctttacaca tactacgcagactccgtgaggggccggttcaccgtctccagagacacttccaagaacacgctgtttctgcaaatggacagcctgagagccgaggacacggccgtatatttctgt	49	59	57	48
+JY8QFUQ01CBORW	IGG2	ggattcagttttagttcttatggc atgaactgggtccgccaggctccatggggggggctggagtgggtctcattc attaacagtgttagtagttacaaa tactatgtggacccagtgaggggccgattcaccatctccagagacaacgccaagaacgcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtttactactgt	53	47	60	53
+JY8QFUQ01CBST2	IGA1	ggattcaacttcggtgactactac atgaactggatccgccaggctccagggaaggggctggagtgggtttcattc attagtagtcctggtatcaggagt ttctacgcagactctgtgaagggccgattcactatttccagggacaacgccaagaactcattgtatctgcaaatgaacagcctgagagtcgaggacacggccatatattactgt	55	48	57	53
+JY8QFUQ01CBUHR	IGA1	aatgtacccatcagtcgtggaggttactac tggaattggatccggcaggccgccgggaaggggctggagtggcttggacgt gttgacagtaatggattcgtc aggtacaattcttccctcaaaagtcgcctttctatgtcactagacacgtccaagaatcagatctccctgatattgaggtctgtgatcgccgcagacacggccgtatatttctgt	49	51	59	57
+JY8QFUQ01CC9VV	IGA2	ggattcacctttagtaattactgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtttctgcaaatgaacagtctcagagtcgaggacacggctgtttattactgt	56	50	60	47
+JY8QFUQ01CCN00	IGA1	ggcttcacgttcagtagttatggc atgcaatgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atttggtatgatggaagtaataaa tattatgcagactccgtgaagggccgattcgacatctccagagacaattccaagaacacactatatctgcaaatgaacaacctgagagccgaggacacggctatgtaccattgt	60	45	59	49
+JY8QFUQ01CCO0W	IGG1	ggattcagtttcagtagctatgca atgcattgggtccgccaggctccaggcaaggggctagagtgggtgacagtt atatcagctgatgcaactaccagt cactacgcagactccgtgaagggccgattcacccactccagagacaattccaagaacacgctgtctctgcaaatggacagcctgagacctgaagacacggctgtatattactgt	57	55	55	46
+JY8QFUQ01CCV7N	IGG1	ggaatcacttttcccagctatgtc atgagttgggtccgccaggcccagggaaggggctggagtgggtcgcaagc attagtgccaggggcgacagttca tactacgcagactccgtgaagggccgattcaccatctccagggacaatcccaggaccacattgtatctggaaatgaacagtctgagagtcgaagacacggccacatattattgt	54	53	61	44
+JY8QFUQ01CCYR6	IGA1	ggatacagcttcactaatcacatt atccattgggtgcgccaggcccccggacaagggcttgagtgggtggggtcg atcaacgctggcaatggcaataca agatattcacagaagttgcagggcagagtcaccatttccagggacacatccgcgagcatcgccaacatggagttgagcagcctgagatatgaagacacggctgtatattattgt	58	50	60	45
+JY8QFUQ01CCYZD	IGA2	ggtggctccatcagtggtactccttactac tggggctggatccgccagcccccaggtaagggctggagtggattgggcat gtatatcacagagggaccacc tactacaacccgtccctcaagagtcgagtcgccatatccgtagacacgtccgagaaccggttctccctgcagttgaactctgtgaccgccgcagacacggctgtatattactgt	46	64	58	47
+JY8QFUQ01CCZ8L	IGA1	ggattcacgtttagagactattgg atgagttgggtccgccaggctcctgggaggggctggagtgggtggccaac ataaagcaagatgcaagtgaggaa tactatgtggactctgtgaagggccggttcaccatctccagagacaacgccaagagctcactgcatttgcaaatgaacagcctgagagccgaggacacggctatgtattactgt	56	45	66	45
+JY8QFUQ01CD8PO	IGG2	gggttctcactcagcactggtggagtgggt gtgggctggatccgtcagccccaggaaaggccctggagtggcttgcactc atttattgggatgatgataag cgctacagcccatctctgaagagcagactcaccatcaccaaggacacgtccaagaaccaggtggtcctcacaatgaccaacatggaccctgtggacacagccacatattactgt	54	59	58	44
+JY8QFUQ01CDA18	IGA1	ggtggctccgtcagtagtggttcttactac tggagctggacccggcagcccgccgggaagggactggagtggattgggcgt gtccacagcggtggcagttcc gactacaacccgtccctcacgggtcgagccaccatcttagtggactcctccaagaatcagttctccctgaggctgacctctgtgacggccgcagacgcggccgagtatttctgt	37	65	68	46
+JY8QFUQ01CDA2Z	IGA1	ggattcacctttagtagtttctgg atgcactgggtccgccaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggagggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgt	55	51	59	48
+JY8QFUQ01CDCEV	IGG2	ggattcaccgtcagtagcagcttc atgacttgggtccgccagctccaggaaagggactggagtgggtctcagtg ctttatgtcggtggtaacaca tactacgcagactccgtgaagggccgattcaccacctccagagacaattccgagaacactctgtatcttcaaatgaacaacctgagacctgaggactcggctgtgtattattgt	52	53	54	50
+JY8QFUQ01CDHKA	IGG2	ggactcatgtttagcagctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcaagt gtcagtagtagtactggtttcaca tactacacagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagccgaagacacggccgtatattattgc	54	54	59	46
+JY8QFUQ01CDYHQ	IGG1	ggattcaccgtcagtagcagcttc atgacttgggtccgccaggctccaggaaagggactggagtgggtctcagtg ctttatgtcggtggtaacaca tactacgcagactccgtgaagggccgattcaccacctccagagacaattccgagaacactctgtatcttcaaatgaacaacctgagacctgaggactcggctgtgtattattgt	52	53	55	50
+JY8QFUQ01CE2OJ	IGA1	ggtgggtccttaagtgactcctac tgggcctggatccgccagcccccagggaagggcctggagtacattggggag atcagtcatgatggtagaacc atgttcaattggtccctcaagagtcgactcaccatctcagtagacacgtccaagaatcaattctccctgagattgacctctgtgaccgccgcggacacggctgtttattactgc	47	58	56	49
+JY8QFUQ01CE4MI	IGG3	gggttcaccttcagtggctctgct atgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgt attagaagcaaagctaacagttacgcgaca gcatatgctgcgtcggtgaaaggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgt	56	52	65	46
+JY8QFUQ01CEBF1	IGA1	ggattcaccttcagttactcctgg atgcactgggtccgccaagttccaggaaaggggccggtgtgggtctcacaa attaaaagtgatgggagtacccca agttacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagtcgaggacacggctgtttattactgt	56	53	58	46
+JY8QFUQ01CEEUJ	IGA2	ggattctcctttagtgcatatggc atacactgggtccgccagactccaggcaaggggctggagtgggtggctgtt atgtattttgatggagttagaaca ttttatgcagactccgtgaagggccgattcaccctctccaaagactattccaagaacacggtgcatctgcaaatgaacagcctgcgagccgaggacacggctgtatattactgt	52	49	58	54
+JY8QFUQ01CEH7I	IGG1	ggattcaccttcagtgactatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtgacagtt attttatatgatggaagtagaaaa tactatgcagactccgtgaagggccgattcgccatctccagagacgtttcgaggaacacgttgtatctgcagatgaatagcctgagacctgaggacacggctgtatactactgc	54	47	62	50
+JY8QFUQ01CF2KP	IGG1	ggattcagtcctaccgatttttgg atcggctgggttcgccagctgcccggcaaaggcctggagtggatgggcctc atttatcctggtgactctgagacc agattcaacccgtccttccaaggccaggtcaccatctcagccaacaagtccataaataccgcctacctacagtggagcagcctgaaggcctcggacactgccgtgtattactgt	46	64	54	49
+JY8QFUQ01CF6ST	IGA2	ggattcaccgttagtaggtattgg atgagctgggtccgccagtctccagggaagggactggagtggctggcccac ataggaggagatggaagtgaggct ggttatgtggactctgtgaggggccgattcttcatctccagagacaacgccaagagctccctctatctgcagatgaacagcctgagccccgaggacacgggtgtgtattattgt	47	47	71	48
+JY8QFUQ01CF885	IGA2	ggattcagcttcggcaattacgcc atgcactgggtccgccaggctccaggcaagggcctagagtgggtggctgtc ataaataaggctgggaagactaaa cattatatagactccgtgaagggccgattcaacgtctccagagacaactccgaaaaacactctatttggagatgaataacgtgggagttgaggacacggctgtatattattgt	60	45	59	48
+JY8QFUQ01CGAYM	IGA1	ggattcacgtttaaaacacatgcc atgagctgggtccgccaggctccaggaaaggggctggagtgggtctcaaat atcagtggcagtggtggcacaaca aattacgcggagtccgtgaagggccggttcaccatctccagagacaatgacaagaatatcctgtatctacaaatgaacaccctgagagtcgaggacacggccatatattactgt	62	50	58	43
+JY8QFUQ01CGPNS	IGG2	ggtgtcgccaccagtagtggcacttactac tggagctggatccggcagtccgccggggcgggactagagtggattgggcgc atctataccggtcacaccacc atttacaacccctccctcaagggtcgagtcaccatgtcacttgacatgtccaagaaccagatctccctgaggctgacctctgtgaccgccgcagatacggccgtgtattactgt	45	67	58	46
+JY8QFUQ01CGQAI	IGA1	ggtttcacgtttgacaactatgcc atgacttgggtccgccagactccagggaaggggctgcagtggctctcaact attactgcttatgggactctcaca tactacgctgcctccgtgaagggccggttcaccctctccagggacaactccaacaacacggtgtatctgcaaatggacagtctgagagccgaagacacggccgtattttactgt	49	60	54	50
+JY8QFUQ01CGQES	IGG1	ggattcactttcagtagttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatca attactagaagttctagttatatg tcctacgcagactcagtgaagggccgattcaccatctccagagacaatgccgagaattcactgtatctgcaaatggacagcctgagagccgaggacacggctgtgtattactgt	55	48	58	52
+JY8QFUQ01CH326	IGA2	ggatacagctttaccagctactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgattcc agatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgt	46	65	59	43
+JY8QFUQ01CH338	IGA1	ggattcatttcagtacttatcct atgcactgggtccgccaggctccagggaagggactggaatatgtttcagct attagtcgtaatggggataacgca tattatgcagactctgtgaagggcagattcaccatgtccagagacaattccaagagcacactgtatcttcagatgggcagcctgagagctgaggacatggctgtgtattactgt	55	44	57	56
+JY8QFUQ01CHBJS	IGA1	ggattcacctttactagttacagt ttcaattgggtccgccaggctccagggaaggggctggagtgggtctcaact atcaatactagtggtagtagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacgaggtgtatctgcaaatgaacagcctgagagccgaggacacggccatatattactgt	58	51	56	48
+JY8QFUQ01CHFYS	IGA2	ggattcattttagaaaattttgcc atgagttggctccgccaggcaccagggaaggggctggaatgggtctcgact atcagcagcagtggtgacacggca tattactcagactccgtgaggggccgcttttccatctccagagacaactccaagagcactctgttcttgcagatgaacagcctgagtgccgaagacacggccatttactactgt	52	54	57	50
+JY8QFUQ01CHKDD	IGA2	ggattcacctttagcaactatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtcgcaact attatttatagtggcgatagtaca tactacgcagattccgtgaggggccggttcaccatctccagagacaattccaagaacactctgcatctgcatatgaacagcctgagagccgaggacacggccgtatattactgt	54	53	58	48
+JY8QFUQ01CHVJ1	IGG2	ggattccttttagaacctattgg atgagttgggtccgccaggctccagggaaagggctggagtgggtggcccac ataaaccaagatggacgtgaggca tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	58	45	61	48
+JY8QFUQ01CI12B	IGA1	caactttaccggctactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgatacc agatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccgtgtattactgt	44	65	58	41
+JY8QFUQ01CIMAM	IGA1	gggttcaccgtcagtagcaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaatt acttatcctgatggtactaca tattatggagactccgtgaagggccgattcaccatctccagagacaattccaagaacacactggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	54	50	57	49
+JY8QFUQ01CIOY1	IGA1	ggattcaccttcaggacccatagc atgaactgggtccgccaggctccagggaaggggctggagtggatttcattc attagtagtagtagtggtaccata ttttatgcagactctgtgaagggccggttcaccatctccagagacaatgccaagaactcactttatctgcaaatgaacagcctgagagacgaggatgcggctgtgtattactgt	55	47	58	53
+JY8QFUQ01CIQUI	IGG4	ggattcacctttagaagctatgcc atgagctgggtccgccaggttccagggaaggggctggagtgggtctcagct attagtggtaatggtgctaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaaatgaacagcctgagagccgaggacacggccctatattactgt	55	53	58	47
+JY8QFUQ01CJ5TF	IGG3	ggattcatcttcttgaaatatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaggt atatggtttgatggaagtaataca tactatgcggactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtatttgcaactgaacagcctgagagccgaggacacggctgtgtattactgt	54	46	63	50
+JY8QFUQ01CJ990	IGA1	ggattcaccttcagtcgttatagc atgaactgggtccgccaggctccagggaagggctggagtgggtctcatac attagtaggagtagtactgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacggcaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtatttctgt	57	50	58	47
+JY8QFUQ01CJG1W	IGA1	ggattcacctttggcctctatgcc atgaactgggtccgccagactccagggaaggggccggagtggctcgcaact atcagtggtagtggaagtaggtca ttctacgcagactccctcaggggccgtttcaccatctccagagacaattccaagggcacggtgtacctggacatgaccaccctgggagccgacgactcggccgtgtattactgt	45	61	62	45
+JY8QFUQ01CJV6U	IGA2	ggattccagtttagcaactatgcc atgagctgggtccgtcaggctcctgggaaggggctggagtgggtctcaact attagtaaagacggtgtttacacc tactaccccgactccgcgaagggccgggtcaccatctccagagacaattccaagaatacaatttatttgcaaatgaacagcctgacagccgaggacacggccagatattactgt	57	54	55	47
+JY8QFUQ01CJYGN	IGG2	ggattcacatttagtattcattgg atgatctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaccaagatggaggtgacatg gcctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactctctgtatctgcaaatgaacagcctgagagccgaggacacggctatatattactgt	57	48	61	47
+JY8QFUQ01CK280	IGA1	ggtggctccatgagcagtggtaattactgc tggggctggggccgccagcccccaggaaaggggctggagtggattggaagt atgtgttatggtgggagcacc tactacagcttgtcccccaagggtcgagtcaccatatccatagactcgtcgaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgt	45	55	68	48
+JY8QFUQ01CKFL6	IGA1	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagccacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagttgtatttgcaaatgaacagtctgagaggcgaggacacggctgtctattattgt	56	51	62	44
+JY8QFUQ01CKI1Y	IGA2	ggatacaccttcaccggctactct atacactgggtgcgacaggcccctggacaagggcttgagtggatgggatgg atcaaccctaacagtggtggcaca aactatgcacagaaatttcagggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgacatctgacgacacggccgtgtattactgt	56	57	60	40
+JY8QFUQ01CKO1P	IGA1	ggattcaccttcaatatcaagtgg atgagttgggtccgccaggctccgggaaggggctggagtgggttggccgc atcaagagcacctctgatggtgggacaaca gactccattgcacacgtcaaagacagattcatcatctcaagagatgattcaagaaatacactgtacttacaaatgaacaacctgagagtcgaggatacaggcgtctattattgt	64	47	58	49
+JY8QFUQ01CKPJN	IGA1	ggattcaggtttgatgattatgcc atgcactgggtccggcaagctccagggaagggcctggagtggatctcaggt attagctggaatagtggtagtata gggtatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	54	47	64	48
+JY8QFUQ01CKX6X	IGA2	gggttcaccgtcagtagcaagtac atgacctgggtccgccaggctccggggaagggactggagtctgtctctgtt tttatagcggtgatcaaaca tactacgcagactccgtgaggggccgattcaccatctccatagacaattccaagaacacactgtatcttcaaatgaacggcctgcgagccgaggacacggccgtgtattattgt	51	54	56	48
+JY8QFUQ01CL7VE	IGA1	ggtgggtccttcagtacttactac tggacatggatccgccagcacccagagaaggactggagtggattggggaa atcaatcacagtggaagcccc aactacagcccgtccctcaagagtcgagtcctcatatcgatagacacgtccaagaatcaggtctccctcaacctcttctctgtgaccgccgcggacacgggtgtgtattattgt	51	59	53	46
+JY8QFUQ01CLEAH	IGA2	ggattcaccttcactacctcctgg atgcactgggtccgccaagctccagggaaggggctaatgtgggtcgcacgt attaataaggatggcagtagtaca agttatgaggactccgtgaagggccgattcaccatctccagagacaacgccaagaccacactgtacttggaaatggacagtctgagagtcgaggacacggctatgtattattgt	57	50	59	47
+JY8QFUQ01CLIT1	IGA1	gggggctccattagtggttactat tggacgtggatccggcagaccccagggaagggactggagtggattggaaat gtccattacactgggagtacc aagtacagcccctccctcaagagtcgagtcaccatgtcagttgacatgtccaggaaccagttcaccctcaaattgacctctgtagccgctgcggacacggccgtctattactgt	49	56	58	47
+JY8QFUQ01CLMWX	IGG4	ggattaacctttgatcaatatgcc atgtattgggtccggcaagctccagggaagggcctggagtgggtctccggt atcactgggaatagtggttccata ggctatgcggactctgtgaggggccgattcaccatctccagagacaacgccaagaagtcactatatttggaaatgaatagtctgagtgttgaggacacggccttgtatttctgt	51	44	62	56
+JY8QFUQ01CLR99	IGA1	ggattcacctttagcagccatccc atgagctgggtccgccaggctccgggaaaagggctggagtggatctcagct ttcgttcgtagtggtaacaca tactacgtagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	53	56	56	45
+JY8QFUQ01CLXOH	IGA2	ggattcaccttcagtgactaccac atgggctggatccgccaggctccagggaaggggctggagtgcgtttcatac attagcactagtggtcgtgacata tacaacgcagactctgtgaagggccgattcaccatctccagggacaacgcccagaagtcactgtatctgcaaatgaacagcctgagagccgaggacacagccgtgtatttctgt	54	56	58	45
+JY8QFUQ01CM33P	IGA2	ggtggctccatcatcagagacagtgcctac tggggctggatccgccagcccccagggaaggggctggagtggcttgggagc atctattatagtgggagtacc tactacaatccctccctcaagagtcgagtcaccatatccgtagacacgtccaagaagcagttctccctgaagctgagctctgtgaccgccgcagacacggctgtatattactgt	49	61	60	46
+JY8QFUQ01CM5UQ	IGA1	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccggggaaggggctggtgtgggtctcacgt atgaatagtgatggcagtgacata aggtacgcggactccgtgaggggccgattcaccatctccagagacaacaccaagaacacgctgtatctacaaatgaacagtctgagagccgaggacacggctgtgtattactgt	54	51	64	44
+JY8QFUQ01CN7M5	IGG1	ggattcattgtcaatagcaactac atgagttgggtccgccaggctccagggaaggggctggagtggatttcatac attagtagtagtggtattatcata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattattgt	59	44	56	54
+JY8QFUQ01CNEDF	IGG2	ggagacaactttagcagatactgg atcggctgggtccgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgacacc agatacagtccgtccttccaaggccaggtcaccatctcagccgacaagtccaccagtaccgcctacctgcagtggagcagtctgaaggtctcggacaccgccacgtattactgt	49	63	59	42
+JY8QFUQ01CNH24	IGA2	ggatacagtttcaccaactactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatgggtatc atctatcctggtgactctgatacc cggtacaacccgtccttccaaggccaggtcaccttctccgtcgacaagtccatcaacaccgcctacctgcagtgggacagcctgaagacctcggacaccgccaagtattactgt	48	66	55	44
+JY8QFUQ01CNLWR	IGG2	ggattcaacctcaatacctttggc atgaactgggtccgccaggcgccagggaagggactggagtgggtctcacac gtcaatgggggtagtactcacata tactacgcaggctcagtgaggggccggttcaccatctccagagacgacgccgggaactcagtctatctgcaaatgaatagcctgagagccgaggacacgggtttatattattgt	53	52	63	45
+JY8QFUQ01CNYY7	IGG1	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagct gtcagtggtggtggggcgccaca aactacgcggagtccgtgaagggccggttcaccatctccagagacaattccagggggacggtgttcttacaaatgaacagcctgagagtcgaagacacagccttatattattgt	51	48	66	47
+JY8QFUQ01CO06K	IGA2	ggtggctccatcaacagtggtagttatcac tgggcctggatccgccagcccccagggaaggggctggagtggattgggagc gtctcctatggtgggaacacc tactacaacccgtccctcatgagtcgagtcgacatattcgtcgacacgtccaagagtcagttgtccctgaaggtgagctctgtgaccgccgcggacacggctgtgtattactgt	43	59	66	48
+JY8QFUQ01CO7ZE	IGA2	ggtgggtccttcagtacttactac tggacatggatccgccagcacccagagaagggactggagtggattggggaa atcaatcacagtggaagcccc aactacagcccgtccctcaatagtcgagtcatcatatcgatagacacgtccaagaaccaggtctccctgaagctcttctctgtgaccgccgcggacacgggtgtgtactattgt	52	58	55	45
+JY8QFUQ01COIZ4	IGA2	ggatacagctttaccgcctactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtgggtggcgatc atctatcctggtgactctgaaacc agatacagcccgtccttccaaggccaggtcaccatctcagccgacaagtccatcaccaccgcctacctgcattggaccagcctgaaggcctcggacaccgccatgtattactgt	46	69	56	42
+JY8QFUQ01COT7A	IGG1	ggattcctttttagaacctattgg atgagttgggtctgccaggctccagggaaagggctggagtgggtggcccac ataaaccaagatggacgtgaggca tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	58	44	61	50
+JY8QFUQ01COULV	IGG1	ggtggctccatcagtactggttattactac tggagctggatccggcagtccgccgggaagggactggaatggattgggcgc atgtctgccagaggggacagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	47	62	61	46
+JY8QFUQ01CP6A0	IGA2	ggattcaccttcagtggctctgct atgcactgggtccgccaggtttccgggaaagggctggagtgggttggccgt attagaagcaaagcttacaattccgcgaca gcatatgctgcgtcggtgaaaggcaggttcaccatctccagagatgattcaaagaacacggcgtatttggaaatgaacagtttgaagagggaggacacggccgtgtattactgt	55	46	67	51
+JY8QFUQ01CPEX7	IGG2	ggtgtctccgtcaccagcggtcactgg tggacctgggtccgccagcccccagggaagggactggagtggattggagaa atctattattatggcatcacc aatttcaacccgtccctcaagagtcgaatcagcatgtcagtggacgagtccaagaaccagttctccctgagactgacttctgttaccgccgcggacacggccgtttattattgt	47	59	57	50
+JY8QFUQ01CPKFW	IGA2	ggattcaccttaagtgacttctac atggactggctccgccaggctccagggaaggggctggagtgggttggtcgc agtagaaacaaagctaatggttacagtaca caattcgccgcatctgtgatgggcagattcaccatctcaagagatgactcaaagaatttactatatctacaaatgagcagcctgaaaaccgaggacacggccatttattactgt	64	49	55	51
+JY8QFUQ01CQ2DI	IGA2	cgattcacctttagcagctatgtc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcacgt attcatagtgatgggactaccaca tactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaggaacacgttgtatctgcaattgaacagtctgagagccgaggacacggctgtgtattattgt	52	53	60	48
+JY8QFUQ01CQFLG	IGA2	ggtggctccgtcagcagtaggggttactac tggaactggatccgccagttcccagggaagggcctggagtggattgggaac atcttttacagtgggggcacc tacgacaacccgtccctcaggagtcgaatttctatatcattagacacgtctaagaaccaattctccctgaagttgacctctatgaccgccgcggacacggccgtgtattactgt	49	57	59	51
+JY8QFUQ01CQHUH	IGA1	ggattcacctttactaattattgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctcagagtcgaggacacggctatatattactgt	59	50	58	46
+JY8QFUQ01CQKI9	IGA1	ggattcacctttggcaactatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcagct attagtggtagaggtgaccacaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaggaacacactgtttctgcaaatgaatagcctgggagtcgaggacacgaccgtatattactgt	53	54	60	46
+JY8QFUQ01CQOIV	IGA1	ggattcgactttgccagccacgcc atggcttgggtccgccggactccaaggaagggcctggagtgggtctcaggc ataagtagtagtggtggaaccacg tattacgcagacttcgtgaagggccgcgccactgtctccagagacaattccgagaacacagtgtctctggaactccacagcctgagagccgatgacacggccatatattattgt	50	57	62	44
+JY8QFUQ01CQRVK	IGA2	ggtggctccatcagcagtgttaactgg tggagttgggtccgccagcccccagggaaggggctggagtggattgggag atctctcacagtgggaacacc aactacagcccgtccctcaagggtcgagtcaccatatcaataaacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgt	50	59	61	42
+JY8QFUQ01CQSBL	IGG1	ggtggctccatcagtaattactac tggagctggatccggcagtccgccgggaagggactggaatggattgggcgc atgtctgccagagggggcagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	46	61	60	43
+JY8QFUQ01CQWKF	IGG1	ggattcaactcaatagttttggc atgcactgggtccgccaggctccgggcaagggactggagtgggtggcaaac atatggtatgatggaggtagtcaa cactatgcagacctcgtgaagggccgattcaccatctctagagacaattccaagaacatcttgttcctgcaaatgagcgacctgagagccgaggacacggctgtttattattgt	55	47	60	50
+JY8QFUQ01CR76J	IGG1	ggtgactccatcaccagtactaattattac tggggctgggtccgccagtccccagggaagggtctggagtggattggaagt gtctattatggggggacccag tacctcaacccgtctctccacaatcgagtcaccatatccattggcacgtccaagacccaattctccatgagactgacctctgtgaccgccgcagacacggctgtatatttctgt	48	62	54	52
+JY8QFUQ01CR7U0	IGA2	ggattcaactttggcatctatacc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcagct attcgtgatcatgatagcaca tactacgcagactccgtgcagggccggttttcatctcgagagacaatttcaataatacattgtatctgcaaatggatggcctgcgagccgacgacacggccgtctattactgt	48	52	57	52
+JY8QFUQ01CR8IO	IGA1	ggattcgccttcagtacatatatc atgaattgggtccgccaggctccagggaggggactggagtgggtcgcaact ataagtggtggaggttatagtata tatgacgcagactccgtgaagggcaggttcaccatctccagagacaactccaagaccaccttgtttctggaaatgaaaagtctgagagtcgatgatacggccgtctattactgt	56	45	60	52
+JY8QFUQ01CRBJ3	IGA2	ggtgaccccatcggcaacactgcttactcc tggggctggatccgccagcccccagggaaggggctggagtggatcgcgact gtacattatgctggcagcacc tactacaacccgtccctcaggagtcgagtcaccatctctgtggacacgtccaagaatcacttctccctgaagctgaattctgtgaccgcctcagacacggctgtatacttctgt	45	69	55	47
+JY8QFUQ01CRNW3	IGA1	gaattcagtttcactgaccaccac atgagctggatccgccgggctccagggaaggggctggagtgggtgtcatac attagtcctacaggtagtgccata ttttacgcagactctgtgaaggcccgtttcaccatctctagggacaacgccaagaatttactatatctacaaatgaacagcctgagacccgaggacacggccatctattactgt	56	55	52	50
+JY8QFUQ01CRPMT	IGA1	ggattcacctttagggggtactgg atgacctgggtccgccaggctccagggaaggggctggagtgggtggccacc ataaatcacgatggaagtcaaatt tactatatggaccttgtgaagggccggttcaccatctccagagacaacgccgagacctcactctatttgcaaatgaacaccctgagagccgaagacacggctgtctattactgt	54	53	60	46
+JY8QFUQ01CRXKV	IGA1	ggtggccccatcagcagtagtggcttcgcc tggacctggatccggcagaccgccgggaagggactggagtggatcggacgt gtttatggtagtgggaatacc aattacagtccttccctccagagtcgagtcaccatatcagtagagacgtccaagaatcagttctccctgaggttgacttctgtgaccgccgcagacacgggcctatattactgt	47	57	63	49
+JY8QFUQ01CRXS1	IGA1	ggattcaccgtcagtaacaactac atgacctgggtccgccaggctccagggaaggggctggagtgggtctcagtt ctttatggcggtggtgacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaacgccaagaatacactttttcttcaaatgacttccctgagagtcgaagatacggccatttattactgt	53	54	53	50
+JY8QFUQ01CS8O3	IGA2	ggattcacctttagcaactatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attacaagtggtggtagcaca tactacgcaaactccgtgaagggccggttcaccgtctccagagacagttccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	53	54	60	43
+JY8QFUQ01CSGBR	IGG1	ggatttacttttaacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccac ataaaacaacatggaggtgaaacg tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	58	48	60	46
+JY8QFUQ01CSVFI	IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggagtgggtctcagta atttatcctgatggtactaca cactatggagcctccgtgaggggccggttcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	51	53	58	48
+JY8QFUQ01CSWQD	IGA2	ggattcacctttagtgactattgg atgagctgggtccgccaggctccagggaaggggctagagtgggtggccaac ataaatagagatggaagtgagcaa cactatgtggactctgtgaagggccgattcaccatctccagagacgacgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacatggctatgtatttttgt	57	45	64	47
+JY8QFUQ01CT0HD	IGG2	ggattccttttagaacctattgg atgagttggtccgccaggctccagggaaagggctggagtgggtggcccac ataaaccaagatggacgtgaggca tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaattcagtatatctgcaaatgaacagtctgagagccgaggacaccgctatgtattattgt	58	45	60	48
+JY8QFUQ01CT3CN	IGA1	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagctacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgttttgcaaatgaacagtctgagaggcgaggacacggctgtctattactgt	55	52	62	43
+JY8QFUQ01CTI25	IGA1	ggattcaccttcagtagctataga atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attgatagtagtagtcacaacata tactacagagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	61	51	56	45
+JY8QFUQ01CTJ46	IGA2	ggattcatcttcgatagttatgct ctgcactgggtccgccaggctccaggcaaggggctagagtgggtggcactt gtttcatatgatggaaaatataag caatatgcagattctgtggagggccgattcaccatctccagagacaactccaagaacacaggatatctgcaaatgaacagcctgacatctgacgatacggctgtgtatttttgt	57	46	55	55
+JY8QFUQ01CU8BS	IGA1	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaagggctggtgtgggtgtcacgt agtaatacggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	65	43
+JY8QFUQ01CU8RS	IGG2	ggattcaccgtcaatagaaactac atgagctgggtccgccaggctccagggaagggactggagtgggtctcagtt atttccagcggtggttccaca tactacgcaaactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtatatcttcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	57	53	54	46
+JY8QFUQ01CVKGA	IGG2	ggattcaccttcagtacatactgg atgcactgggtccaccaagctccagggaaggggctggtgtgggtctcccgt atcaatcctgatgggcgaatcaca aactacgcggactccgtgaatggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggactcggctgtgtactactgt	54	58	57	44
+JY8QFUQ01CVRND	IGG1	ggattctccttcagcaattatgcc atccactgggtccgccaggctccaggcaaggggctggagtgggtggcgacc atttcatatgatttaatgaaaaga tattatgcagagtccgtgaggggccgattcaccctctccagagacaattccaagaacactctcgatctgctcatggatacccttcggttcgacgacacggctgtctattattgt	50	55	53	55
+JY8QFUQ01CVY8N	IGA1	ggcgggtccttcaaaggttactat tggagctggatccgccagcccccaggaaaggggctggagtggattggagaa atcgaccatagtggaaacacc aactacaacccgtccctcaagagtcgagtcaccgtgacagttgacacatccaagaaccaaatttccctgaatttgacctctgtgaccgccgcggacacggctatttattactgt	56	57	53	44
+JY8QFUQ01CW65U	IGG2	acattcacgtttagtcgatattgg atgagctgggtccgccaggctccagggaagggcctggagtgggtggccaac ataaaggaagacggaagtgagaga tattatgtggactctgtgaagggccgattcaccatctccagagacaatgccaagaactctctgtatctgcaattgaacagcttgagagccgaggacacggctgtgtattactgt	57	44	64	48
+JY8QFUQ01CWEVR	IGA1	ggattcaccttcagtaactatagt atgaactgggtccgccaggctccagggaagggcctggagtgggtctcatcc atcagtagtggtggtagtttcaaa caccacgcagactcagcgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattattgt	57	54	57	45
+JY8QFUQ01CWPJP	IGA1	ggtgcctccatcaccagtggtactttttac tgggcctggatccgccagcccccagggaaggggctggagtgggttggcaat atctattctagtggtgtcgcc tattacaacccgtccctcaagagtcgagtcaccatgtccgtcgacacgtccaagaatgagttttccctgacactgacctctgtgaccgccgcagacacggctgtatatttctgt	42	63	56	55
+JY8QFUQ01CWQZU	IGA2	ggattcactttcagtaactactgg atgtactgggtccgccaagctccagggaaggggctggagtgggtctcacgt attaatggtgatggaagtagtaca agttacgtggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaccctgtatctgcaaatgaacagtctgagagtcgacgacacggctgtttattactgt	56	48	59	50
+JY8QFUQ01CWYA5	IGG1	gggttcaccatcagtcactactcc atggcctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccaggcagactccgtgagggggcggcttatcatctccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	50	63	46
+JY8QFUQ01CXAGM	IGA1	ggattcacttttagcagtcatatg atgagttgggtccgccaggctccagggaagggactggaatgggtctcaagt attcgtgccagtggtgataggaca cactacgcagactccgtgaagggccgcttcaccatctccagagacaactccaagaacacgctgtatttgcaaatgtacagcctgagagtcgaggacacggccttatattactgt	55	51	58	49
+JY8QFUQ01CXD17	IGA1	ggattcattttcagtaactactgg atgcactgggtccgccaagctccagggaaggggctgctctgggtctcagtc attaatagtgacggcagtgaaatt cactacgcggactccgtgaggggccgattcaccatctcccgagacaacgccaagaacacgctgtatttgcaaatggacaatctcagaggcgacgacacggctctatattattgt	54	54	56	49
+JY8QFUQ01CXIGS	IGA2	gatttcaacgtcggtgactttgac atgcactgggtccgccagactccagacaaggggctggagtgggtggcactt ttttggtatgacggaaagaggaaa tattatgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacaccctgtatctgcaaatggacagcctgagagccgacgacacggctacctacttttgt	55	52	58	48
+JY8QFUQ01CXM4M	IGA2	ggggacagtgtctctagcaacagtgccact tggaactggatcaggcagtccccaacggaggccttgagtggctgggaagg acatcctacaggtccaaatggtatagt gattatgcggtgtctgtgaaaagtcgaataaccatcaacccagacacatccaagaaccagttctccctgcaattgaactccgttagtcccgaggacacggctgtgtattactgt	59	55	58	49
+JY8QFUQ01CY2HZ	IGA1	ggattcaccttcagtagctatggc atacactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatggtatgatggaagtgaaata tactatgcagactccgtgaagggccgcttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	49	61	47
+JY8QFUQ01CY3ZT	IGA2	ggattctccgtcagtaattactgg atgcactgggtccgccaggctccagggagggctggagtgggtctcacgt attaatgaagatggtagtcggaca gactacgcggactccgtgaagggccgattcaccatttacagagacagcgccaagaacacactgtatctgcaaatgaacagtctgagagtcgaagacacggctgtctattattgt	55	48	61	47
+JY8QFUQ01CYT8I	IGA2	ggattcaccttcagtcgttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatac attagtaggactactactgacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatatttctgt	58	53	55	47
+JY8QFUQ01CYTAI	IGG1	gggttcaccatcagtcactactcc atgggctgggtccgccaggctccgggaaaggggctggagtgggtctcatta atttatcccggcgggagcaca ttccacgcagactccgtgagggggcggcttatcatctccagagacgaatccaagagtgaactgtatcttcggatgaagaaagtgaaagtcgaagacacggccgtatattattgt	51	50	63	46
+JY8QFUQ01CYU3K	IGG3	ggattcatcttcagtagctatgcc atgaattgggtccgccagactccagggaaggggctggagtgggtctcagcc attagtggtagtggtggtaacaca tactacgcagactccgtgaagggccggttcaccgtctccagagacaattccaacaacacgctgtatctgcaattggacagcctgcgagccgaggacacggccgtatattactgt	51	54	61	47
+JY8QFUQ01CYX7E	IGA2	ggtgactccattggtagcagtgcctactac tggggctgggtccgccagccccccgggaaggggctggagtggattggaagt atctattatggtggcaacacc tactacaacccgtccctcaggagtcgagtcagcatttccgcagacacgtccaagaaccagttctccctgcatctctactccgtgaccgccgcagacacggctctgtattactgt	44	66	58	48
+JY8QFUQ01CZ1IL	IGA2	ggattcacctttagcaactatgcc atgagttgggtccgccaggctcaagggaaggggctggactgggtctcagat attagtaatagtggtggtgacaca ttctacgcaggctccgtgaagggccgcttcaccatctccagagacaattccaggaacactctatatctgcaaatggacagcctgagagccgaggacacggccgtgtattactgt	53	52	60	48
+JY8QFUQ01CZDE0	IGA1	ggattcacctttcgcagctacgcc atgagttgggtccgccaggctccaggaagggggctggagtgggtctcctca atcagtggcagtggtgataaaaca aaatatgcagactccgtgaagggccgattcaccatctccagagacaatgcgaggaacactttttatctgcatatgaacagcctcagagccgcggacacgggcgtctactattgt	53	54	60	46
+JY8QFUQ01CZH0L	IGA2	ggattcaccttcagcaagtatgcc atgagctgggtccgccaggctccaggggagggctgcagtgggtctcagca attagtggaaatggtgctgatata tactacgcagactccgtgaacggccggttcaccatctccagagacaattccaagaacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatactactgt	56	55	58	43
+JY8QFUQ01DABGE	IGG2	ggactcaccttcagtcgcctctgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt atagatagtgatgggaataacata atctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaaaacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtatattactgt	56	53	60	44
+JY8QFUQ01DARQJ	IGA2	ggcttcacgttcagtagttatggc atgcaatgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atttggtatgatggaagtaataaa tattatgcagactccgtgaagggccgattcgacatctccagagacaattccaagaacacactatatctgcaaatgaacaacctgagagccgaggacacggctatgtaccattgt	60	45	59	49
+JY8QFUQ01DDQ8A	IGG2	acattcacgtttagtcggtattgg atgagctgggtccgccaggctccaggggaagggcgggagtgggtggccaac ataaaggaagacggaagtgagaga tattatgtggactctgtgaagggccgattcaccatctccagagacaatgccaagaactctctgtatctgcaattgaacagcttgagagccgaggacacggctgtgtattactgt	56	43	67	47
+JY8QFUQ01DECT5	IGG2	ggattccctttcagcgactatggc atgcactgggtccgccagactccagacaagggactagaaattgtggccatt atctggcatgacggaagtcagcaa ttctatgcagactccgtgctgggtcgattcaccgtctccagagacaattccgacaacactctccagttgcagctgagcaggttgacagccgaagacacggctatttattattgt	53	56	53	51
+JY8QFUQ01DEK3I	IGG3	ggattcaccttcagtagttatagc atgaactgggtccgcctggctccagggaaggggctggagtgggtctcggcc attagtattactagtagttccaca tattacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagacctcactgtttctgcaaatgaacagcctgagagccgaggacacggctctgtattactgt	53	54	56	50
+JY8QFUQ01DEX6Z	IGG1	ggtggctccatcagtactggttattactac tggagctggatccggcagtccgccgggaagggactgaatggattgggcgc atgtctgccagaggggacagc aactacaacccctccctccagagtcgagtcaccatatccatagacacgtccaagaaccagttctccctgaggctgacctctgtgagcgccgcagacacggccgtgtatttttgt	47	62	60	46
+JY8QFUQ01DFG5Q	IGA1	gggggctccattagtggttactat tggacgtggatccggcagcccccagggaagggactggagtggattggaaat gtccattacactgggagtacc aagtacagcccctccctcaagagtcgagtcaccatgtcagttgacatgtccaggaaccagttcaccctcaaattgacctctgtagccgctgcggacacggccgtctattactgt	48	57	58	47
+JY8QFUQ01DFJK6	IGG2	ggattcaccttcagtgtccatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac cttagtagtggtagtgataccata tactacgcagactctgtgaggggccggttcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagtggcctgagagacgaggacacggctgtttattactgt	52	50	61	50
+JY8QFUQ01DFMQ1	IGA1	ggattcacctttagcaactatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attacaagtggtggtagcaca tactacgcaaactccgtgaagggccggttcaccgtctccagagacagttccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	53	54	60	43
+JY8QFUQ01DFNKY	IGA1	ggattaaccctcagtgaccactac atggactgggtccgccaggctccagggaaggggctggagtgggttggccgt actagaaacaaagctaacagttacaccaca gaatacgccgcgtctgtgaagggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgt	65	54	58	42
+JY8QFUQ01DFY56	IGA1	ggattcaccttcaaaaagtatggc atgaactggctccgccaggctccagggaaggggctggagtgggtcgcaacc attcgcagtagtggtacttccata cactatgccgactccgtgaagggccgattcactatcaccagagacaacgccaacaactcactgtatctgcaattgaacagcctgggagtcgaggactcggctgtgtatttctgt	53	56	57	47
+JY8QFUQ01DG3GX	IGA2	ggattcaccttcagtcagtactgg atgtactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attaatggtgatggaagtagcaca agctatgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaccctgtatctgcaaatgaacagtctgagagtcgacgacacggctgtatattattgt	55	50	60	48
+JY8QFUQ01DG853	IGA1	ggattcacctttagcaactatgcc atgagttgggtccgccaggctcaagggaaggggctggactgggtctcagat attagtaatagtggtggtgacaca ttctacgcaggctccgtgaagggccgcttcaccatctccagagacaattccaggaacactctatatctgcaaatggacagcctgagagccgaggacacggccgtgtattactgt	53	52	60	48
+JY8QFUQ01DGFLY	IGA2	ggaggctccttcggcagctacact atcacctgggtgcgacaggcccctggacaagggcttgagtggatgggaagg atcacccctatccttggttcaaca agctactcacagaagttccagggcagagtcacgattaccgcggacacattcacgggcacagcctacatggagctgagcagcctgacatctgaagacacggccgtatattactgt	53	60	59	41
+JY8QFUQ01DGFY7	IGA1	ggattcaccttcagtacctactgg atgcactgggtccgccaagttccagggaaggggctggtgtgggtctcacgt gttgatagtgatgggactagcaca gtctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacgctatatctgcaaatgaacagtctgaaagccgaggacacggctgtatattactgt	54	53	60	46
+JY8QFUQ01DH08T	IGA1	gggttcaccgtcagtagcaagttc atgagctgggtccgccagggtccagggaaggggctggagtgggtctcagtt acttatcctgatggtactaca cattatagagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	53	50	59	48
+JY8QFUQ01DH0MW	IGA2	ggattcaccttcagtcgctactgg atgcactgggtccgccaagctccagggaagggcctggtgtgggtctcacgt attaaaagtgatgggattagcaca acgtacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacggtgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtactactgt	54	54	62	43
+JY8QFUQ01DHC55	IGG1	ggattcacctttaccacctccgcc atggcctgggtccgccaggttccagggaaggggctggagtgggtctcaact attagacctagtggtgagagaacc tactacgcagagtccgtgaggggccgcttcaccatctccagagacaattccgagaacacgttgtatctacaactgaacaacctgagagtcgaggacacggccatatattactgt	53	58	57	45
+JY8QFUQ01DHH0D	IGG3	ggattcaccttaagtgatcactac atggactgggtccgccaggctccagggaaggggctggagtgggttggccgt actaaaaacaaagctaacggttacactaca cactacgccgcgtctgtgagaggcagattcattctttcaagagacgattcaaagaactcagtgtatctgcaaatgaacagcctgaaaatcgaggacacggccgtctattactgt	63	51	57	48
+JY8QFUQ01DHJ30	IGA2	ggattcactttcaataacgcctgg atgagctgggtccgccaggctccagggaaggggctggagtgggttggccgt attaaaagcaaaactgatggtgggacaaca gagtacgctgcacccgtgaaaggcagatttaccatctcaagagatgattcaaaaaacacgctttatctgcaaatgaacagcctgaaaatcgaggacacagccgtgtattactgt	66	47	60	46
+JY8QFUQ01DI98R	IGA2	ggattcgtctttggcgactatgcg atgagctgggtccggcaggctccagggagggggctggagtgggtctcaagt attagtggtagtggtgtcagcaca tactacgtgggctccgtgaagggccgcttcaccatctccagagacaattccaagaatgtgttgtatctgcaaatgaacggcctgagagtcgaggacacggccacatatcactgt	47	48	69	49
+JY8QFUQ01DIWKI	IGG3	ggattcacctttagaagctatgcc atgagctgggtccgccaggttccagggaaggggctggagtgggtctcagct attagtggtaatggtgctaacaca tactacgcagactccgtgaagggccgattcaccatctccagagacaatttcaagaacacgctgtctctgcaaatgaacagcctgagagccgaggacacggccctatattactgt	55	53	58	47
+JY8QFUQ01DJ168	IGG1	ggattcaccttcagtagttatagc atgcactgggtccgccaggctccagggaagggactggagtgggtctcctcc attagtagtaatagtgcctacaca gaccacgcagactcagtgaagggccgattcaccatctccagagacaacgacagaggtcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	54	58	44
+JY8QFUQ01DJCKC	IGA2	ggattcacctttcgcagatatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attaataatagtggtggtagcaca tactacgcagactccgtgcagggccggttcaccatctccagagacaattccaagaacacggtgtatctgcaactgagcagcctgagagccgaggacacggccatgtatttctgt	51	53	63	46
+JY8QFUQ01DJQ7I	IGA1	ggtttcacctttagtaacgattgg atggactgggtccgccaggctccagggaaggggctggagtgggtggccaat ataaagggagatggaagtgagaaa aactatgtagactctgcgaagggccgattcatcatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattactgt	60	43	65	45
+JY8QFUQ01DJU2K	IGA1	gggggcaccatgagtagtttctac tggagctgggttcggcagcccccagggaggggactggagtggattggattt gtttcttacagtgggcccacc aactacagcccctccctcaagagtcgagtcaacttatcactggacgcggccaacaaacagttctctttgcagctgcgttctgtgaccgctgcggacacggccatttattactgt	42	57	60	51
+JY8QFUQ01DKCDX	IGG3	ggatttacttttaacaactattgg atgacctgggttcgccaggctccagggaaggggctggaatgggtggccaac ataaaacaacatggaggtgaaacg tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccgagacctcagtgtatctgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	59	48	60	46
+JY8QFUQ01DKKJ0	IGA1	ggattcatatttactagatatgcc atgacctgggtccgccaggctccagggaagggtctggagtgggtcgcttct atcagtggtagtgggattagtaaa aagtacgcagacggcgtggagggccgattcaccatctccagagacagttccgagagaacactgtatctacaaatgaacagcctgagagtcgaggacacggccacatattattgt	57	46	62	48
+JY8QFUQ01DLA1D	IGA1	ggattcaccttcagtaactatagc atgaactgggtccgccaggctccagggaagggctggagtgggtctcatcc attagtagtagtgctaggtacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtctctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	57	53	56	46
+JY8QFUQ01DM6TL	IGA2	ggattcacctttagggggtactgg atgacctgggtccgccaggctccagggaaggggctggagtgggtggccacc ataaatcacgatggaagtcaaatt tactatatggaccttgtgaagggccggttcaccatctccagagacaacgccgagacctcactctatttgcaaatgaacaccctgagagccgaagacacggctgtctattactgt	54	53	60	46
+JY8QFUQ01DN21P	IGA1	ggattcaccttcggcagttatagg atgagctgggtccgccaggctccagggaaggggctggagtggatttcatac attagtagtagtagtagtgccatc tattacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcagtgtatctgcaaatgaacagcctgagagacgaggacacggctatatattactgt	58	46	59	50
+JY8QFUQ01DNADY	IGG2	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagct gtcagtggtggtgggggcgccaca aactacgcggagtccgtgaagggccggttcaccatctccagagacaattccaggggcacggtgttcttacaaatgaacagcctgagagtcgaagacacagccttatattattgt	51	49	66	47
+JY8QFUQ01DO347	IGA2	ggattcacgtttaggacctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctccggt attggtggtagtggtcgaaccaca cactacgcagactccgtgcagggccggttcaccatctccagagacaattccaagaacacggtggatctgcaaatgaacagcctgagagccgaggacacggccatatattactgt	51	56	64	42
+JY8QFUQ01DP55Y	IGG1	ggtggctccgtcagcagtagtcattactac tggggctggatccgccagaccccaggaaaggggctggagtggcttgggaca atctattatagcggaagcgcc tacatcaacccgtccctcaagagtcgagtcaccatttccgttgacatatctaagaaccagttctccctgaggctgacctctgtgaccgccgcagacacggctgtctattactgt	48	62	57	49
+JY8QFUQ01DP8YH	IGG2	gaattcatccttgacagttatgcc atgagttgggtccgccaggccccagggaaggggctggagtgggtctcggct attagtggaagtggtgcaaccaca tactacgcagactccgtgaagggccggttcgccatctccagagacaattccaagaacacgctatatctacaaatgaacaacctaggggccgaggacacggccgtttattactgt	54	54	60	45
+JY8QFUQ01DPFIO	IGA1	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggcctcacgt gttaatggtgatgggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgcgacctgaggacacggccttgtattactgt	48	57	63	45
+JY8QFUQ01DQV12	IGG4	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgaaaccaca taccacgcagaatccgtgcagggccggttcaccatctccagagacaactccaagaacaatctgtatctgcaaatgaacagtctgagagccgaggacacggccatttattactgt	56	53	59	45
+JY8QFUQ01DQVYX	IGG2	ggattcaccttcgacagatacagt atgaactgggtccgccaggctccagggaggggactggagtggatttcatac ataagtactactactagtaacaga tactacgcagacgctgtgaagggccgattcaccatctccagagacaatgccaagaactcgctgtatttgcaaatggacagcctgagagacgaggacacggctgtatattattgt	62	48	56	47
+JY8QFUQ01DRFXI	IGG2	ggtgactccatcagtagtgattctcactac tggagttggatccggcagcccgccgggaagggactggagtggattgggcgt gtctacgccagtgggaccacc aattacagccctccctcaagagtcgagtcaccatttcagtggacacgtccaggaatcaattctccctgaagttgaattctgtgaccgccgctgacacggccgtttatttctgt	45	59	59	52
+JY8QFUQ01DSBEO	IGA2	ggattcagcttcaacagctacagc atgaactgggtccgccaggctccagggaagggactggaatggatctcatca attagtaccgctggcaccaccata ggctacgcagactctgtgaagggccgattcactatttccagagacaacgccaagaactcagtatctctgcagatggacagcctgagagacgaggacacggcggtatattactgt	59	55	57	42
+JY8QFUQ01DU1MH	IGA2	gggttcaccgtcagtagcaactac atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagtt atttatagcggtggtaccaca ttctacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgcatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgt	52	54	60	44
+JY8QFUQ01DUKA9	IGG1	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagct gtcagtggtggtgggggcgccaca aactacgcggagtccgtgaagggccggttcaccatctccagagacaattccaggggcacggtgttcttacaaatgaacagcctgagagtcgaagacacagccttatattattgt	51	49	66	47
+JY8QFUQ01DVTFY	IGA1	ggattcaccttcagtatctatgcc atgacctgggtccgccaggctccagggaaggggctggagtggatttcattt atcactgataggggtagtacccaa tactacgcagactctgtgaagggccgattcaccgtctccagggaccaagccaagaactcactgtatctacaaatgaacaacctgggagtcgaggacacggctgtgtattattgt	54	52	57	50
+JY8QFUQ01A0JN8	unmatched, IGA2	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagccacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagttgtatttgcaaatgaacagtctgagaggcgaggacacggctgtctattattgt	56	51	62	44
+JY8QFUQ01A0KG1	unmatched, IGA2	ggattcaactttaacagctttgcc atgagctgggtccgccaggttccagggatggggctggagtgggtctcagcc attagtggtagtggcgggagcaca ttctacgcagactccgtgaagggccggttcaccatctccagagacaactccaacaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccttatattattgt	51	54	61	47
+JY8QFUQ01A0XAA	unmatched, IGA2	gatgggtcctgcagaaactgcttc tggagttggatccgccagtccccagggaaggggctggagtggattggggag gtcaatgatagaggaggcatc gactacaacccgtccctcaagagtcgagtcaccatatcattagacacgtccaacaaccaagtctccctgaggttgagctctgtgaccgccgcggacacggctgtgtattactgt	49	54	63	44
+JY8QFUQ01A1201	unmatched, IGA2	ggattcaccttcagtacctactgg atgcactgggtccgccaagttccagggaaggggctggtgtgggtctcacgt gttgatagtgatgggactagcaca gtctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacgctatatctgcaaatgaacagtctgaaagccgaggacacggctgtatattactgt	54	53	60	46
+JY8QFUQ01A1J69	unmatched, IGA2	ggattcaacttcagaacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcacgatggaagtgacaag tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactcattgtttttgcaaatggacagcctgagagccgaggacacggctgtgtactactgt	55	48	66	44
+JY8QFUQ01A2Y02	unmatched, IGA2	ggtgaccccatcggcaacactgcttactcc tggggctggatccgccagcccccagggaaggggctggagtggatcgcgact gtacattatgctggcagcacc tactacaacccgtccctcaggagtcgagtcaccatctctgtggacacgtccaagaatgagttttccctgacactgacctctatgaccgccgcagacacggctgtatatttctgt	45	68	56	47
+JY8QFUQ01A2ZKE	unmatched, IGG2	ggattcagttttagtacacatggc atgaactgggtccgccaggctccagggaaggggccggaatgggtctcattc gttaatagtggaagtagttacatc tactacgcagactcagtgaggggccgattcaccatctccagagacgacgccaggaattcactgtatctgcaaatgcaccgcctgcgagtcgaggacacggctctctactattgt	52	53	59	49
+JY8QFUQ01A36OR	unmatched, IGA2	ggattcgccttcagtacatatatc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagttttagtagtgattacata tactacgcagactcagtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgacgacacggccgtgtattactgt	57	52	54	50
+JY8QFUQ01A3PZ4	unmatched, IGA2	ggattcaccttcagcaagtatgcc atgagctgggtccgccaggctccaggggaggggctgcagtgggtctcagca attagtggaaatggtgctgatata tactacgcagactccgtgaacggccggttcaccatctccagagacaattccaagaacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatactactgt	56	55	59	43
+JY8QFUQ01A3U1I	unmatched, IGA2	ggattcatcttcagtgactactac atgacctggatccgccaggctccagggaaggggctggagtgggtttcatac attcgtagtaatgggagtcccata tacaacgcagactctgggaggggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaatagtctgagagtcgaggacacggccgtgtattactgt	55	51	59	48
+JY8QFUQ01A4H9C	unmatched, IGA2	ggattcaccttcagtgactatagc atgaactgggtccgccagactccagggaagggggtggagtggatttcatac atcggccgtggtggtgatgggata tactacgcagactctgtgaagggccgaatcaccatctccagagacaatgccaagaactcactttttctgcaaatgaacaccctgagagacgacgacacggctgtgtattactgt	56	50	59	48
+JY8QFUQ01A55QU	unmatched, IGG1	ggtgcctccatcaggagttattat tggagttggatccggcagcccccaggaaagggactggagtggattggttat attaattatgttggggacacc gattacaacccctccctcaagagtcgagtctccatgtcagcagccacgtccaagaaccaggtcttcctgcagctgacctctgtgaccgctgcggacaccgcctattatttctgt	46	57	54	53
+JY8QFUQ01A56OJ	unmatched, IGA2	ggattcactttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	53	63	46
+JY8QFUQ01A5K3B	unmatched, IGA2	ggatacaccttcactagttttagt atacattgggtgcgccaggcccccggacagaggcttgagtggatgggatgg atcaacgcaggcaacggtcacaca aaatattcacagaagttccaggacagagtcaccattataagggacacatccgcgagcacagcctacatggacctgagcaccctgagatctgaagacacggctgtctattactgt	61	54	55	43
+JY8QFUQ01A6DSA	unmatched, IGA2	ggattcaccttcggaacctatgcc atgacgtgggtccgcctgactcctgggaaagggctggagtgggtttcatgg attagtgatatcggtgacaca cgctatgcagattctgtgaagggccgattcaccatctccagagacaatgccaagaattcactgtttctgcaaatggacagtctcagagccgacgacacggctatatattattgt	52	49	56	53
+JY8QFUQ01A6FSC	unmatched, IGG2	ggattcacctttagttatcactgg atgagttgggtccgccaggctccagggaaggggctggagtgggtggccctc ataaggcaagatggaagtgaggaa tactatgtggactctgtgaggggccgattcagcatctccagagacaacgccaagaattcagtgtacttggaaatgaacaacctgagagccgaggacacggctgtttattactgt	55	43	67	48
+JY8QFUQ01A6GAE	unmatched, IGA2	ggattcacgtttggcatctatgcc atgagttgggtccgccaggctccagggaggggcgtggagtgggtcgcaagc atgggtaatagtgctggcagtaca tactacgcaggctccgtgaagggtcgcttcaacatctccagagacaattccaagaaaaccctgtatcttcaaatggacagcctgagagtcgacgacacggccagatattactgt	53	51	63	46
+JY8QFUQ01A72DW	unmatched, IGG1	ggaatcaccttgagtccctattgg atgacctgggtccgccaggctcccgggaaggggctggagtgggtggccaac ataaaccaagatggaggtgagaga aattatgtggcctctgtgaggggccggttcaccatctccagagacaacgccaggaattcactgtatctgcaaatgaacagcctgagagtcgacgacacggctgtatattattgt	54	49	65	45
+JY8QFUQ01A75AZ	unmatched, IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	62	45
+JY8QFUQ01A7UAO	unmatched, IGG2	ggattcacctttaccacctccgcc atggcctgggtccgccaggttccagggaaggggctggagtgggtctcaact attagacctagtggtgagagaacc tactacgcagagtccgtgaggggccgcttcaccatctccagagacaattccgagaacacgttgtatctacaactgaacaacctgagagtcgaggacacggccatatattactgt	53	58	57	45
+JY8QFUQ01A9CSP	unmatched, IGA2	ggattcacttttaggggctactgg atgcactgggtccgtcaggttccaggtaaggcgccggagtggctcgcacgt ctgaatactgatggagatagtaca agttatgcggactccgtgaagggccgcttcaccatctccagagacaacgccaggagcacattgttcctgcaaatgagcagtctgagagtcgaagacacggccatttattactgt	51	51	62	49
+JY8QFUQ01A9KBS	unmatched, IGA2	ggtggctccatgagcagtggtaattactgc tggggctggggccgccagcccccaggaaaggggctggagtggattggaagt atgtgttatggtgggagcacc tactacagcttgtcccccaagggtcgagtcaccatatccatagactcgtcgaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgt	45	55	68	48
+JY8QFUQ01A9XMX	unmatched, IGA1	ggattcactttcaataacgcctgg atgagctgggtccgccaggctccagggaaggggctggagtgggttggccgt attaaaagcaaaactgatggtgggacaaca gagtacgctgcacccgtgaaaggcagatttaccatctcaagagatgattcaaaaaacacgctttatctgcaaatgaacagcctgaaaatcgaggacacagccgtgtattactgt	66	47	60	46
+JY8QFUQ01AAWJ6	unmatched, IGG4	ggtttcaccttcaggagctctggc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagcagtagtactactaccaaa tactgcgcagactctgtgaagggccgattcaccatctccagagacaatgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	54	53	59	47
+JY8QFUQ01AB8R5	unmatched, IGA2	ggattcattttcagtacttatcct atgcactgggtccgccaggctccagggaagggactggaatatgtttcagct attagtcgtaatggggataacgca tattatgcagactctgtgaagggcagattcaccatgtccagagacaattccaagagcacactgtatcttcagatgggcagcctgagagctgaggacatggctgtgtattactgt	55	44	57	57
+JY8QFUQ01ABJSU	unmatched, IGA2	ggattcacctttagtagttactgg atgcactgggtccgccaaactccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	57	50	62	44
+JY8QFUQ01ACF7S	unmatched, IGA2	ggattctcctttgatatatattgg atgagatgggtccgcctggctccagggaaggggctggagtgtgtggccgac ataaagcaagatggaagtgagaag tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtttctgcaaatgaacagcctgagagtcgaggacacgggtgtgtatttctgt	55	42	65	51
+JY8QFUQ01ACGK8	unmatched, IGA1	ggattcaccttcagtcagtactgg atgtactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attaatggtgatggaagtagcaca agctatgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaccctgtatctgcaaatgaacagtctgagagtcgacgacacggctgtatattattgt	55	50	60	48
+JY8QFUQ01ACMHQ	unmatched, IGA1	ggattcagcatcagtagttatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtctcatcc attagtgcaagtactacttccata cattatgcagactcagtgaagggccgattcaccatctccagagacgacgccaagagttccctgtatttgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	56	51	57	49
+JY8QFUQ01AD6VN	unmatched, IGA2	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgataccaca taccacgcagactccgtgcagggccgattcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagtcgaggacacggccgtttattactgt	53	54	59	47
+JY8QFUQ01ADNPS	unmatched, IGA2	ggattcacctttagtgactattgg atgagctgggtccgccaggctccagggaaggggctagagtgggtggccaac ataaatagagatggaagtgagcaa cactatgtggactctgtgaagggccgattcaccatctccagagacgacgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacatggctatgtatttttgt	57	45	64	47
+JY8QFUQ01ADX4W	unmatched, IGA2	ggattcaccttcagtagctatggc atacactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatggtatgatggaagtgaaata tactatgcagactccgtgaagggccgcttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	56	49	61	47
+JY8QFUQ01AEXEP	unmatched, IGA2	ggattcaccttcagcaagtatgcc atgagctgggtccgccaggctccaggggagggctgcagtgggtctcagca attagtggaaatggtgctgatata tactacgcagactccgtgaacggccggttcaccatctccagagacaattccaagaacacgctatatctgcaaatgaacagcctgagagccgaggacacggccgtatactactgt	56	55	58	43
+JY8QFUQ01AFU74	unmatched, IGA2	gggttcaccgtcagtagcaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaatt acttatcctgatggtactaca tattatggagactccgtgaagggccgattcaccatctccagagacaattccaagaacacactggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	54	50	57	49
+JY8QFUQ01AG0BX	unmatched, IGG2	ggattcacctttaccaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgatagaaca taccacgcagactccgtgcagggccggttcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagccgacgacgcgggcgtatattactgt	53	53	62	45
+JY8QFUQ01AGTXI	unmatched, IGA2	ggattcacctttagccactttgcc gtgacctgggtccgccaggctccagggaagggtctggaatgggtctcaact attagcggtagtgatggtagcaag tactacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacaccctatatctgcaaatgaccagcctgagagccgaggacacggccgtatatttctgc	51	58	58	46
+JY8QFUQ01AHQN6	unmatched, IGA2	cgtgtctccatttccattaatgattactac tggggctggatccgccagcccccaggaaagccgctggagtggattgggact gtccattcccttgggtacaat tacaacaacccgtccctcaagagtcgactcaccatttccgcagacacgtccaggaatcagatctccctgaaactgacgtctgtgaccgccgcagacacggctgtctatttctgt	48	67	49	52
+JY8QFUQ01AIE5M	unmatched, IGG2	ggattcacctttagcagctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagct attagtggtagtggtggtagcaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	52	53	63	45
+JY8QFUQ01AIYO5	unmatched, IGA1	ggattcacctttagtagttattgg atgacctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatgggaatgataaa tactatgtcgactctgtgaggggccggttcaccatctccagagacaacgccaagagctcactgtttctgcaagtgaacagcctgagagccgacgacacggctgtttattactgt	54	47	64	48
+JY8QFUQ01AJFOA	unmatched, IGA2	ggattctccgtcagtaattactgg atgcactgggtccgccaggctccaggggaggggctggagtgggtctcacgt attaatgaagatggtagtcggaca gactacgcggactccgtgaagggccgattcaccatttacagagacagcgccaagaacacactgtatctgcaaatgaacagtctgagagtcgaagacacggctgtctattattgt	55	48	63	47
+JY8QFUQ01AJTH3	unmatched, IGA2	ggtggctccatcagcagtgatagttactac tggggctggatccgccagtccccagggaaggggctggagtggattgggaat atctattatcgtgggagcacc tattacaacccatccctcgagagtcggctcaccatgtcggtagacacgtccaggaacctcttctccctgaggctgagctctgtgaccgccgcagacacggctgtatattactgt	45	59	62	50
+JY8QFUQ01AMBVG	unmatched, IGA1	ggattcagcctcgccacttatagt atgagttgggtccgccaggctccaggaaaggggctggagtgggtctcaggt attagtgatcatggtattgacata tactatgcagactccgtgaggggccggtttaccatctccagagacatttccaagaacacggtgtatctacaaatgaacagcctgggagtcgaggacacggccgtatattactgt	53	47	61	52
+JY8QFUQ01AMG29	unmatched, IGA1	ggattcaccttcagtgtccatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac cttagtagtggtagtgataccata tactacgcagactctgtgaggggccggttcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagtggcctgagagacgaggacacggctgtttattactgt	52	50	61	50
+JY8QFUQ01AMV93	unmatched, IGA2	ggattcacctttagtggctattgg atgagttgggtccgccaggctccggggaagggtctggagtgggtggccaac atagagaaagatggaagtgacata aagtatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaattcactgtctctgcaaatgaacagcctgagagccgacgacacggctatttattactgt	57	45	63	48
+JY8QFUQ01ANFJ6	unmatched, IGA2	ggtgtctccatcagtagtttctac tggagttggatgaggcagcccccagggaggggactggagtggattggatat gtccatggcagtgggagcacc aactccaacccctccctcaagagtcgagtcaccatgtcagtggacacgtccaagaaccaattctccctgaagctgggctctgtgaccgctgcggacacggccgtgtattactgt	45	57	62	46
+JY8QFUQ01ANN07	unmatched, IGG4	ggtgtcgccaccagtagttactac tggagctggatccggcagtccgccggggcgggactagagtggattgggcgc atctataccggtcacaccacc atttacaaccctccctcaagggtcgagtcaccatgtcacttgacatgtccaagaaccagatctccctgaggctgacctctgtgaccgccgcagatacggccgtgtattactgt	44	64	56	45
+JY8QFUQ01ANOBA	unmatched, IGG4	ggattcagctttagcgattttgcc atgagttgggtccgccaacctccaggaaaggggctggagtgggtcgcaagt gttgacagaggtggcactaca tactatgcaggctccatgaagggccggctcgccgtctctagagacgatgtcgacaagacagtgagtctgcagatgaacaatctgacagtcgaggacacggccacatatcactgt	52	50	64	44
+JY8QFUQ01ANT01	unmatched, IGA2	ggattcatcttcagtggctatggc atgcactgggtccgccaggtcccaggcaagggcctggagtgggtggcggtt attcggtatgatggaactaatgat gactatgcagactccgtgaagggccgattcaccatctccaaagacacctccaagaacactctctatctgcaaatgaacagcctgaggccgaggacacggctatatattattgt	53	52	58	49
+JY8QFUQ01ANU9C	unmatched, IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatgggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	62	45
+JY8QFUQ01AP4OP	unmatched, IGA2	ggatttactttcagtaggtctgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggc attagtggtggtggtcttagcaca tactacacagactccgtgaagggccggttcaccatctccagagacatttccaagaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggccacatattactgt	50	53	62	48
+JY8QFUQ01APLX8	unmatched, IGA2	ggattcacattcggtagttttatg atgaactgggtccgccaggctccagggaagggactggagtgggtcgcatcg attagccctactagtactttcata gactacgcagactcagtgaggggccggttcaccatctccagagataacgccgagaacttactgtatctgcaaatgaacggcctgagagtcgaagacacggctgtctattactgt	53	50	59	51
+JY8QFUQ01APOB5	unmatched, IGA2	ggattcaccgtcagtaccaagttc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagta atttatcctgatggtactaca cactatggagcctccgtgaggggccggttcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	51	53	59	47
+JY8QFUQ01APXHX	unmatched, IGG2	ggattcaccttcagtagttactgg atgcactgggtccgccaagttccagggaagggactggtgtgggtctcacga attaatactgatgggagtgccaca agttacgcggactccgtgaggggccgattcaccatctccagagacaacgccaagaacacgctatatcttcaaatgaacagtctgagagtcgaagacacggctgtctattactgt	56	51	58	48
+JY8QFUQ01AQ36T	unmatched, IGA2	ggattcagctttagttattattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagaga cactatgtggactctgtgatgggccggttcaccatctccagagacaacgccaagaggtcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	56	43	68	46
+JY8QFUQ01AQ6RF	unmatched, IGA2	ggattcaccttcaggaactatgct atgcactgggtccgccaggctcctggcaaggggctagaatgggtggctttt atatcatatgatggaagtagtcaa tactacgcagactccgtgaagggccgattcaccatctccagagacaactccaagaacacactttatctgcaaatgaacagcctgagaggtgacgacacggctgtgttttactgt	57	51	54	51
+JY8QFUQ01AQQ9J	unmatched, IGA2	ggattcacgtttaggacctatgcc atgacctgggtccgccaggctccagggaaggggctggagtgggtctccggt attggtggtagtggtcgaaccaca cactacgcagactccgtgcagggccggttcaccatctccagagacaattccaagaacacggtggatctgcaaatgaacagcctgagagccgaggacacggccatatattactgt	51	56	64	42
+JY8QFUQ01AR5SV	unmatched, IGG1	ggattcaccttcagtagttatagc atgcactgggtccgccaggctccagggaagggactggagtgggtctcctcc attagtagtaatagtgcctacaca gaccacgcagactcagtgaagggccgattcaccatctccagagacaacgacaagaggtcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	57	54	58	44
+JY8QFUQ01ARLVF	unmatched, IGA2	ggattcacctttagtaggtattgg atgagctgggtccgccagtctccagggaagggactggagtggctggcccac ataggaggagatggaagtgaggct ggttatgtggactctgtgaggggccgattcttcatctccagagacaacgccaagagctccctctatctgcagatgaacagcctgagccccgaggacacgggtgtgtattattgt	47	47	70	49
+JY8QFUQ01ARS0N	unmatched, IGA2	ggattcaccttcagtaggtactgg atgcactgggtccgccaagttccagggaaggggccggtgtgggtctcacgt attaatgaagacggcagctacaca gatcacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgtttttgcaaatgaacagtctgagaggcgaggacacggctgtctattactgt	55	52	62	44
+JY8QFUQ01AT43H	unmatched, IGA2	ggattctccgtcagtaattactgg atgcactgggtccgccaggctccagggagggctggagtgggtctcacgt attaatgaagatggtagtcggaca gactacgcggactccgtgaagggccgattcaccatttacagagacagcgccaagaacacactgtatctgcaaatgaacagtctgagagtcgaagacacggctgtctattattgt	55	48	61	47
+JY8QFUQ01AT8N2	unmatched, IGA2	ggattcacctttagtagtttctgg atgcactgggtccgccaagttccaggggagggactggtgtgggtcgcacgg actaatgagtatgggagtatcaca aactacgcggactccgtggagggccgattcaccatctccagagacaacaccaagaacaggctatatctgcaaatgaacagtctgagagccgaggacacggctatttattactgt	56	49	61	47
+JY8QFUQ01ATKPT	unmatched, IGG1	ggcttcagtttgagtacttatacc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcactc attagtaagactagtaatgtcata tactacgcggactctgtgaagggccggttcaccatctccagagacaatgccgagaattcactgtttctgcaaatggacagcctgagtgccgaggacacgggtgtatattactgt	52	47	60	54
+JY8QFUQ01AU2BA	unmatched, IGG1	ggattcatcttcttgaaatatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaggt atatggtttgatggaagtaataca tactatgcggactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtgtatttgcaactgaacagcctgagagccgaggacacggctgtgtattactgt	54	46	63	50
+JY8QFUQ01AUBMD	unmatched, IGA1	ggttacacctttaccagctatggt ctcagctgggtgcgacaggcccctggccaagggcttgagtggatgggatgg atcttcgtttttaacggtaacaca aaatatgcacagcacctccagggcagagtcaccatgaccacagacacatccacggacacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgt	54	57	58	44
+JY8QFUQ01AVBV0	unmatched, IGG1	ggtggctccatgaggaattattac tggagctggatccggcagtccccaggaagggactggagttgatagggact gtctattacactgggcgcacg gagtacaacccctccctcaagagtcgactcaccttatcactagacacgtccaagaaccagttctccctaaagctgggctctgtgaccgctgcggactcggccatttattactgt	48	58	55	48
+JY8QFUQ01AVKTX	unmatched, IGA1	ggattcacttttagcagccatatg atgagttgggtccgccaggctccagggaaggggctggaatgggtctcaact attcgtgccagtggtgataggaca cactatgcagactccgtgaggggccgcttcaccatctccagagacaattccaagaacacgctgcatttgcaaatgtacagcctgagagtcgaggacacggccgtatactactgt	53	53	60	47
+JY8QFUQ01AW6B3	unmatched, IGG2	ggattcacatttagtaattattgg atgatctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaccaagatggaggtgacatg gcctatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactctctgtatctgcaaatgaacagcctgagagccgaggacacggctatatattactgt	58	47	61	47
+JY8QFUQ01AWTQR	unmatched, IGA2	ggtggctccatcagcatcaatacttacttc tggagttggatccggcagcccccagggaagggactggagtggattgggtat atctctcacagtgggagtgcc aactacaacccctccctcgagagtcgagtcaccatcttaagagacacgtccaagaaccagttctctctgaggctgagggctgtaaccgcggcggacacggccgtgtatttctgt	48	59	61	48
+JY8QFUQ01AY4JM	unmatched, IGG1	ggattcaccgtcaatagaaactac atgagctgggtccgccaggctccagggaagggactggagtgggtctcagtt atttccagcggtggttccaca tactacgcaaactccgtgaagggccgattcaccatctccagagacaattccaagaacacggtatatcttcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	57	53	54	46
+JY8QFUQ01B0222	unmatched, IGA2	ggtgggtccttaagtgactcctac tgggcctggatccgccagcccccagggaagggcctggagtacattggggag atcagtcatgatggtagaacc atgttcaattggtccctcaagagtcgactcaccatctcagtagacacgtccaagaatcaattctccctgagattgacctctgtgaccgccgcggacacggctgtttattactgc	47	58	56	49
+JY8QFUQ01B19RC	unmatched, IGG1	ggattcacctacagcagctatgcc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagca attagtggtggtggtgctagtaca taccacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatttgcaaatgaacagcctgagagccgacgacacggccgtatattactgt	54	55	61	43
+JY8QFUQ01B1HC5	unmatched, IGA2	ggtggctccatcagcagtagtaactgg tggagttgggtccgccagcccccagggaaggggctggagtggattggacaa atccatcatggtgggggcacc aattacaacccgtccctcgagagtcgagtcactatatcagtagacaagtccaagaaccacctctccctgaccctgaactctgtgaccgccgcggacacggccgtttatcactgt	49	62	60	42
+JY8QFUQ01B1QV9	unmatched, IGA2	ggattcacgttcgacaactatgcc atgagctgggtccgccaggcaccaggaaaggggctggagtgggtctccagt attagtggtaatggagaaattgta caccacgcagacgccgtgaagggccggttcaccatctccagagacaactccaagaacacgctgtttttgcaaatgaatggagtgagagacgacgacacggccatttactactgt	58	51	61	43
+JY8QFUQ01B1S6W	unmatched, IGA1	ggtggctccatgagtagttactac tggaactggattcggcagcccccagggaagggactggagtggattgggtat atctattacactgggatcacc aactacaatccctccctcaagagtcgagtcaccatgtcaatagacacgtccaggaagcagttctccctgaccctgacctctgtgaccgctgcggacacggccgtctatttctgt	48	59	54	49
+JY8QFUQ01B2ACS	unmatched, IGA2	gggttcaccttcagtgactactac atgagctggatccgccaggctccagggaaggggctggagtggctttcatat attagtagtgctggtagtaccata tactacgcagactctgtgaggggccgattcaccatctccagggacaacaccaagaactcactgtatctgcaaatgaacagcctgagggccgaggacacggccgtgtattactgt	53	53	59	48
+JY8QFUQ01B2E25	unmatched, IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtttgggtctcacgt gttaatggtgatggggtaggaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggcaatatattactgt	53	54	60	45
+JY8QFUQ01B2GL4	unmatched, IGA2	ggtggctccatcaacagtggtagttatcac tgggcctggatccgccagtccccagggaaggggctggagtggattgggagc gtctcctatggtgggaacacc tactacaacccgtccctcatgagtcgagtcgacatattcgtcgacacgtccaagagtcagttgtccctgaaggtgagctctgtgaccgccgcggacacggctgtgtattactgt	43	58	66	49
+JY8QFUQ01B2XE6	unmatched, IGG2	ggtgtctccgtcaccagcggtcactgg tggacctgggtccgccagcccccagggaagggactggagtggattggagaa atctattattatggcatcacc aatttcaacccgtccctcaagagtcgaatcagcatgtcagtggacgagtccaagaaccagttctccctgagactgacttctgttaccgccgcggacacggccgtttattattgt	47	59	57	50
+JY8QFUQ01B2XKD	unmatched, IGA2	ggattctccgtcagtagttactgg atgcactgggtccgccaggctccaggggaggggctggagtgggtctcacgt attaatgaagatggtagtcggaca gactacgcggactccgtgaagggccgattcaccatttacagagacagcgccaagaacacactgtatctgcaaatgaacagtctgagagtcgaagacacggctgtctattattgt	54	48	64	47
+JY8QFUQ01B37IT	unmatched, IGG1	ggattcaccttcagtgaccatggc atgcactgggtccgccaggctccagggaagggtctgcagtgggtggcagtt gtttggcatactggagacaataaa tattatgcagagtccgtgaggggccgattcaccatctccagggacaattccaagaacacactgtatctgcaaatggacgacctgagaggcgaggacacggctatgtattattgt	54	48	63	48
+JY8QFUQ01B5KCJ	unmatched, IGA2	ggcttcagattccgtgactactac atgacgtgggtccgccaggctccagggaagggtcttgagtggctttcctcc atcagcagcggtagtaataccatc cactactcagactcggtgaggggccgcttcaccatctccagggacaacaccaggaactcagtggatctgcaaatgaatagtctgagagccgaagacacggccgtctattattgt	51	58	57	47
+JY8QFUQ01B5XDW	unmatched, IGA1	ggattcatcttcagcaaccttgcg atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcacac atatcatatgatggaaataagaaa tactacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgacagctgaagacacggctatttattactgt	63	53	52	45
+JY8QFUQ01B5ZV4	unmatched, IGG2	ggtggctccgtcaacagtggtaatttctac tggagctggatccggcagcccgccgggaagggactggagtggatagggcgt atctatgccagtgggagcacc aactacaacccctccctcaagagtcgaatcaccatatcagcagacacatccaagaatcagttctccctgaggctgagttctgtgaccgccgcagacacaggcgtttattattgt	52	59	59	46
+JY8QFUQ01B6IHX	unmatched, IGA1	ggattcaccttcagttcttatagt gtaaactgggtccgccaggctccagggaagggcctagagtttgtctcatac attgatagtagtggttctaccata tactacgcagactctgtgaagggccgattcaccatctctagagacaatgcccagaactcactgtttctgcaaatgaacaacctgcgagtcgacgacacggccgtatattactgt	55	53	49	56
+JY8QFUQ01B8YFN	unmatched, IGA1	ggattcacctttagtgactattgg atgaggtggttccgccagcctccaggaagggggctggagtgggtggccagc ataaaagaagatggaagtgagaaa ggttatgtggactctgtgaagggccgcttcaccatcgccagagacaacgcccagaaatcactgtttttgcagatgaacagcctgagaggcgaggacacggctgtgtatttctgt	54	43	69	47
+JY8QFUQ01B9KF0	unmatched, IGA2	ggtttcacgtttgacaactatgcc atgacttgggtccgccagactccagggaaggggctgcagtggctctcaact attactgcttatgggactctcaca tactacgctgcctccgtgaagggccggttcaccctctccagggacaactccaacaacacggtgtatctgcaaatggacagtctgagagccgaagacacggccgtattttactgt	49	60	54	50
+JY8QFUQ01BAG1V	unmatched, IGA2	ggatacaccttcactaattatgct ctgcaatgggtgcgccgggcccccggacaaacttttgagtggctgggatgg atcaactctgccaatggcaacaca aaatattctcagaagtttcagggcagagtcgccattaccagggacacatccgcgaggacaacttacatggaattgagcagtctgacatctgaagacacggcgacatattattgt	60	52	53	48
+JY8QFUQ01BANLS	unmatched, IGA2	gggctcagcgtcagtaactaccgc atgggctgggtccgccaggctccagggaaggggctggagtgggtctcagtt atttatagagatgatagtaca gatcatgtagattccgtgaagggccgattcaccgtttcccgagacaattccaagaacacattgtaccttcagatgaacagtgtgacagccgaggacacggccgtttattattgt	52	47	61	50
+JY8QFUQ01BAR2U	unmatched, IGG2	ggattcaccttcaccaactacgcc atgacctgggtccgccaggctccagggaaggggctggagtggatctcgact gttgtgggtggcggtggtaacaca tactacgcagactccgtgaagggccggttcaccatctccagagacaattcccagaacacgctgtatttgcaaatgtacaatttgggagccgaggacacggccctatattactgt	50	57	60	46
+JY8QFUQ01BBGFU	unmatched, IGA2	agattcacctttaggacatattgg atgagttgggtccgccaagctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagata cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaacacactgtttctccaaatgaacagcttgagagtcgatgacacggctgtgtattactgt	61	44	61	47
+JY8QFUQ01BCZ6T	unmatched, IGA2	gggttcaccgtcagtagcaagttc atgagctgggtccgccagggtccagggaaggggctggagtgggtctcagtt acttatcctgatggtactaca cattatagagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctggatcttcaaatgaacagcctgagagccgaggacacggccgtttattattgt	53	50	59	48
+JY8QFUQ01BDHSG	unmatched, IGA2	ggttacacctttaccagatatggt attagttgggtgcgacaggcccctggacaagggcttgagtggatgggatgg atcagcgtttccaatggtgacaca aactatgcacagaagctccagggcagagtcaccatgaccgcagacccatccacgagcacagcctacttggaactgaggagcctgacatctgacgacacggccgtatattactgt	56	54	59	44
+JY8QFUQ01BF6IL	unmatched, IGA2	ggattcacctttagtaaccattgg atgaactgggtccgccaggctccagggaaggggctggagtgggtggccaac ataatgccagatggaggtgagaaa ttctatgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtgtattactgt	55	47	65	46
+JY8QFUQ01BG2KZ	unmatched, IGA2	gggttcatctttagtagacattgg atggcctgggtccgccaggctccagggaagaggctggagtgggtggccaac ataaaacaagatggaagtctgaga tactttgtggactctgtgaagggccgattcaccatctccagagacaacgccgagagctcactgtttctgcaaatggacagcctgagaggcgaggacacggctgtgtattactgt	53	46	67	47
+JY8QFUQ01BG9LH	unmatched, IGA2	agattcacctttaatggttactgg atgagttgggtccgccaggctccaggaaaggggctggagtggctggccaac ataaagccggatggaaatgagaaa tgctatgcggactctgtgaagggccgattcaccatctccagagacaacgccaagagttcgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtatatttctgt	56	47	63	47
+JY8QFUQ01BGU0C	unmatched, IGA2	gggttcagcgtcagtaataacttc atgacctgggtccgccaggttccagggaaggggctggagtgggtctcagtt atttatagcaatggtgaaaca atctacgcagactccgtgaagggccgattcactatgtccagagacaattccaagaacacactgtttcttcaaatgaacagcctgagaggcgaggacacggccgtgtaccactgt	56	49	58	47
+JY8QFUQ01BHYPA	unmatched, IGA2	ggattcacctttagccactatgcc gtgacctgggtccgccaggctccagggaagggtctggagtgggtctcaact attagtggtagtgatggtagcacg tactacgcagactccgtgaggggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	51	55	61	46
+JY8QFUQ01BJC1Y	unmatched, IGA2	ggattcagctttagttactattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaggaagatggaagtgagaga cactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagagctcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtatattactgt	58	45	66	44
+JY8QFUQ01BKLR9	unmatched, IGA2	ggattcaacttccgatcttatgcc atgtactgggtccgccaggccccaggcaaggggctggactgggtggcagtt atttggcatgatggcagtaatcaa tactatgcagattccgtgaagggccgattcaccatctccagagacaattccaagaacacattgtttctgcaaatgaacagcctgagagtcgaggacacggctgtctattactgt	54	51	56	52
+JY8QFUQ01BLF36	unmatched, IGA1	ggattcgactttgccagccacgcc atggcttgggtccgccggactccaaggaagggcctggagtgggtctcaggc ataagtagtagtggtggaaccacg tattacgcagacttcgtgaagggccgcgccactgtctccagagacaattccgagaacacagtgtctctggaactccacagcctgagagccgatgacacggccatatattattgt	50	57	62	44
+JY8QFUQ01BLJYE	unmatched, IGA2	ggattcagcttaagtgactactac atgacctgggtccgccaggccccagggaagggactggagtggctcgcctac attagtcgaactgatgattccgta tattccgcagagtctgtggtgggccgattcaccgtctccagggacaacgtccaaaactcactgtttttgcagatgattggcctgagagacgaggacacggccgtatattactgt	49	53	60	51
+JY8QFUQ01BLLRQ	unmatched, IGA2	ggattcaccttcagtaactatagt atgaactgggtccgccaggctccagggaagggcctggagtgggtctcatcc atcagtagtggtggtagtttcaaa caccacgcagactcagcgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattattgt	57	54	57	45
+JY8QFUQ01BM2SX	unmatched, IGG1	ggattcaacttcaatagttttggc atgcactgggtccgccaggctccgggcaagggactggagtgggtggcaaac atatggtatgatggaggtagtcaa cactatgcagacctcgtgaagggccgattcaccatctctagagacaattccaagaacatcttgttcctgcaaatgagcgacctgagagccgaggacacggctgtttattattgt	55	47	60	51
+JY8QFUQ01BM631	unmatched, IGA2	gggttcaccttcagtgactactac atgggctggatccgccaggctccagggaaggggctggagtggattgcgtac attagtggtagtggtgataccata tactacgcagactctgtgaagggccgattcaccatctccagggtcaacgccaagaactcactgtctctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgt	51	53	62	47
+JY8QFUQ01BMPYC	unmatched, IGA2	ggattcaccttcagtaattactgg atgtactgggtccgccaagttccagggaaggggctggtgtgggtcgcccgt attaataacgatgggagtagcaaa acttacgcagactccgtgaggggccgattcaccatctccagagacaacgccaagaacacactgtttctgcaaatgaacagtctgagaggcgaggacacggcttcatattattgt	57	49	59	48
+JY8QFUQ01BMULR	unmatched, IGA1	ggattcatcttcagcaactactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attactggtgatgggagtaaccca atctacgcggaccccgtgaagggtcgattcaccatctccagagacaacgccaagaacacactatatctgcaaatgaacagtctgagagtcgaggacacggctgtgtattactgt	55	53	59	46
+JY8QFUQ01BNJBB	unmatched, IGA1	gggggctccattagtggttactat tggacgtggatccggcagaccccagggaagggactggagtggattggaaat gtccattacactgggagtacc aagtacagcccctccctcaagagtcgagtcaccatgtcagttgacatgtccaggaaccagttcaccctcaaattgacctctgtagccgctgcggacacggccgtctattactgt	49	56	58	47
+JY8QFUQ01BNJGF	unmatched, IGA2	ggatttaccttcagtaagttctgg atgcattgggtccgccaagctccagggaaggggctgacttgggtctcacgt attaatcctgatgggactatcacg aactacacggactccgtgaggggccgattcatcacttccagagacaacgccaagaacacagtatatctgcagatgaacagtctgcgagtcgaggacacaggtgtatattactgt	56	50	57	50
+JY8QFUQ01BP3M1	unmatched, IGA2	ggattcacctttagtagttactgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgt	56	50	63	44
+JY8QFUQ01BPT8C	unmatched, IGA2	ggtggcgccatcagcagtaatagttactac tgggactggatccgccagcccccagggaaggggctggagtggattgggagt atgttttatactggggtcacc ttctacaacccgtccctcaagagtcgagttaacatttccgtggacacgtccaagagccagttctccctgaggctgagctctgtgaccgccgcagacacggctgtgtatcactgt	45	58	63	50
+JY8QFUQ01BPXZS	unmatched, IGA2	ggtgtctccatgagcaatgagtcctattac tggacgtggatccggcagcccgtcgggaagggaccggagtggattgggcgc atctacaccagtgggagcacc aattataatccttccctcaagagtcgagtcaccatgtccttagacacgtccaagaggcagttctccctgaagttgacctctatgaccgccgcagacacggccacatatttctgt	50	61	57	48
+JY8QFUQ01BR9V1	unmatched, IGA2	ggattcaccttcagtgactactac atgaactggatccgccaggctccagggaaggggctggagtggctttcatac attagtggtagtggaactaccata tcctacgcagactctgtgaagggccgattcaccatctccagggacaacgccaggaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattattgt	55	54	57	47
+JY8QFUQ01BRGSI	unmatched, IGA2	ggattcaccctcagtagctataac atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtattagtagtggtaccata tactatgcagactctgtgaagggccgattcaccatctccagggacaatgccgagaactcactgtatctgcaaatgagcagcctgagagccgacgacacggctgtgtattactgt	55	50	58	50
+JY8QFUQ01BRNFF	unmatched, IGA1	ggtggctccatcagcagtgataattgg tggagttgggtccgccagcccccagggaagggactggaatggattggggaa atatatcatagtgggagcacc tactacaacccgtccctcaagagtcgagtcaccatatccctagacaagtccaagagtcaattcttcctggagctgaggtctgtgaccgccgcggacacggccgtatattattgt	52	53	61	47
+JY8QFUQ01BSGO4	unmatched, IGA1	agattcacctttagtaggttttgg atgacctgggtccgccagggtccagggaaggggctggagtgggtggccaac ataaagcaagttggaaatgagaga tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcattgtatctgcaaatgaacagcctgagagtcgacgacacggctgtgtattactgt	58	44	63	48
+JY8QFUQ01BT0O2	unmatched, IGA2	ggattcacctttagtaattactgg atgcactgggtccgccaagctccaggggagggactggtgtgggtctcacgg actaatgaagatgggagtatcaca aactacgcggactccgtggaggaccgattcaccatctccagagacaacgccaagaacaggctgtttctgcaaatgaacagtctcagagtcgaggacacggctgtttattactgt	56	50	60	47
+JY8QFUQ01BT4AX	unmatched, IGG1	ggattcaccttcagtgactatcac atgtactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcatatgatggaagtaataaa tactatgtagactccgtgaagggccgattcaccatctccagagacaattccaagaatgcgctgtttctgcagatgaacagcctgagagctgacgacacggctgtgtattactgt	56	47	58	52
+JY8QFUQ01BT86M	unmatched, IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccggggaaggggctggtgtgggtctcacgt atgaatagtgatggcagtgacata aggtacgcggactccgtgaggggccgattcaccatctccagagacaacaccaagaacacgctgtatctacaaatgaacagtctgagagccgaggacacggctgtgtattactgt	54	51	64	44
+JY8QFUQ01BTQAH	unmatched, IGA2	ggattctcctttagtgcatatggc atacactgggtccgccagactccaggcaaggggctggagtgggtggctgtt atgtattttgatggagttagaaca ttttatgcagactccgtgaagggccgattcaccctctccaaagactattccaagaacacggtgcatctgcaaatgaacagcctgcgagccgaggacacggctgtatattactgt	52	49	58	54
+JY8QFUQ01BURMR	unmatched, IGA1	ggattcaccctcagtgactacagt atgagttgggtccgccaggctccagggaaggggctggagtgggtctcatac atcagccgaagtggaagtaatgtg gaaactgcggactctgtgaggggccgattcaccgcctccagggacaccgccaataattcactgtttctgcggatgaatagcctgacagtcgaggacacggccctctattactgt	49	54	64	46
+JY8QFUQ01BV9YG	unmatched, IGG1	gacttcacctttaatagctatgcc atggcctgggtccgccaggctccagggaaggggctggagtgggtctcggct attggtgccagtggctacagcaca tactacgcagactccgtcaagggccgcttcaccatctccagagaccattccaacagcacgctgcatctgcaaatgaacagcctgagagccgaagacacggccgtttattactgt	49	63	57	44
+JY8QFUQ01BW9QL	unmatched, IGG1	ggattcaccttcaggagttatatc atgaactgggtccgccaggctccagggaaggggctggagtggatttcatac attagtagtagtggtattatcata tactacgcagactctgtgaagggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattattgt	58	45	56	54
+JY8QFUQ01BWI2D	unmatched, IGA2	ggattcatcttcgatagttatgct ctgcactgggtccgccaggctccaggcaaggggctagagtgggtggcactt gtttcatatgatggaaaatataag caatatgcagattctgtggagggccgattcaccatctccagagacaactccaagaacacaggatatctgcaaatgaacagcctgacatctgacgatacggctgtgtatttttgt	57	46	55	55
+JY8QFUQ01BXYLF	unmatched, IGA2	ggatacaccttcaccgtctactat ctattctgggtgcgacgggcccctggacaagggcttgagtggatgggatgg atcaaccctaagagtggtgacaca cactatgcaccgaaattccagggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggaactgaataggctgagatctgacgacacggccgtgtattactgt	55	56	59	43
+JY8QFUQ01BY231	unmatched, IGA1	ggtggctccgtcagcagtaggggttactac tggaactggatccgccagttcccagggaagggcctggagtggattgggaac atcttttacagtgggggcacc tacgacaacccgtccctcaggagtcgaatttctatatcattagacacgtctaagaaccaattctccctgaagttgacctctgtgaccgccgcggacacggccgtgtattactgt	48	57	60	51
+JY8QFUQ01BYGN8	unmatched, IGA2	gggttcacctttagcagctatgcc atgacttgggtccgccaggctccagggaaggggctggagtgggtctcaagt atcagttttagtggtgagagaaca tattatgcagactccgtgaagggccggttcaccatctccagagacaactccaagaacacagtacatttgcaaatggacagcctgagagccgaggacacggccgtatattactgt	55	50	61	47
+JY8QFUQ01C2NGE	unmatched, IGG1	ggcgactccatcagtggtcactac tggagctggatcaggcagcccccagggaagggactgcagtggattggttac atctatcacagtgggagcacc aactacaacccctccctcgagagtcgagtctccatttcagtagacacgtccaagaaccagttctccctgaggttgagttctgtgaccgctgcggacacggccgtgtattactgt	47	60	57	46
+JY8QFUQ01C2ROO	unmatched, IGA2	ggattcacctttagtacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaaacaagatggaagtgacaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacggcaagaactcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtctattactgt	59	47	62	45
+JY8QFUQ01C3QHH	unmatched, IGA2	gggttcaccttcagtaactcctgg atgcactgggtccgccaagctccagggaaggggccggagtgggtctcacgt attaatagtgatgggagtaataca atctacgcggactccgtgaagggccgactcaccatctccagagacaacgccaaaaacacggtgtatctgcaattgaacagtctgagagccgaggacacggctgtgtactactgt	55	54	61	43
+JY8QFUQ01C4MHW	unmatched, IGA2	ggattcaccttcagtagctactgg atgcattgggtccgccaagctccagggaaggggctggagtgggtctcacgt attcatagtgatgggactaccaca tactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaggaacacgttgtatctgcaattgaacagtctgagagccgaggacacggctgtgtattattgt	52	52	61	48
+JY8QFUQ01C5Q2O	unmatched, IGA2	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtgtcacgt agtaatacgggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	67	43
+JY8QFUQ01C8QWZ	unmatched, IGA2	ggatacaccttcagtacctatact atgaattgggtgcgccaggcccccggacaaaggcttgagtggatgggatgg atcaacgctgaccttggcaacaca aaatattcacagaagttccagggcagactcaccattaccagggacacatccgcgaacacagcctacatggagctgagcagcctgacatctgaagacacggctgtgtattactgt	61	56	54	42
+JY8QFUQ01C92F8	unmatched, IGA1	ggggacagtgtctctagcagcagtgttgtt tggaactggatcaggcagtccccattgagaggccttgagtggctgggaagg acattctacaggtccaggtggtataat gattattcattatctgtgaaaggtcgaataactatcaagccagacgcatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtatattactgt	56	49	60	57
+JY8QFUQ01C966Y	unmatched, IGA2	ggattcagctttagaacctattgg atgggctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcacgatggaagtgacaaa tactatgtggactctgtgaagggccgattcaccgtctccagagacaacgccaagaactcactgtttttgcaaatgaacagcctgagagccgaggacacggctgtgtactactgt	56	48	65	44
+JY8QFUQ01C98A9	unmatched, IGA2	ggttacatctttaccacctatggt atcagttgggtgcgacaggcccctggacaagggcttgagtggatgggatgg atcaacacttacaatggtaacacg aactatggacagaggatccagggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtatattattgt	60	51	59	43
+JY8QFUQ01CANL1	unmatched, IGA2	ggattcacctctggaaagtatgcc atgcactgggtccggcaagctccagggaaggacctggagtgggtctcaggc ttgggtttggataatggtaggata gactacgcggactctgtgaagggccgattcaccatctccaaagacaacgccaagaattccctgtatctgcaaatgaacagcctgagagttgaggacacggccatgtattactgt	55	49	62	47
+JY8QFUQ01CD8ZK	unmatched, IGA2	ggattcagcttcaacagctacagc atgaactgggtccgccaggctccagggaagggactggaatggatctcatca attagtaccgctggcaccaccata ggctacgcagactctgtgaagggccgattcactatttccagagacaacgccaagaactcagtatctctgcagatggacagcctgagagacgaggacacggcggtatattactgt	59	55	57	42
+JY8QFUQ01CD9VK	unmatched, IGA1	ggatacacgtttatgaattactgg atcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtacctctgagacc agatacagcccgtcctttcaaggccaggtcaccatttcagccgacaagtccaccagcaccgcctacgtgcagtggagcagcctgaaggccccggacaccgccatatattactgt	49	62	59	43
+JY8QFUQ01CDZ5R	unmatched, IGA1	ggattcaccttcagtgcctttact atgcactgggtccgccaggctccaggcgagggactagagtgggtggcagct atatcatatgatggcagtaaaaa tactatgcggactttgtgaagggccgattcaccatctccagagacaatcccaagagtacactgtatctacaaatgaacggcctgggaggtgatgacacggctttgtattactgt	55	48	57	52
+JY8QFUQ01CE8P9	unmatched, IGA2	ggattcacctttagcaactatgcc atgaactgggtccgccaggttccaggggaggggctggagtgggtctcagcc attagtggcagtggtggtagcaca ttctacacagacgccttgcagggccgattcaccatctccagagacaattccaagaacacgttatatttgcaaatgaaaagcctgagagccggggacacggccgtgtattactgt	53	52	61	47
+JY8QFUQ01CF06T	unmatched, IGG1	ggagacaactttagcagatactgg atcggctgggtccgccagatgcccgggaaaggcctggagtggatggggatc atctatcctggtgactctgacacc agatacagtccgtccttccaaggccaggtcaccatctcagccgacaagtccaccagtaccgcctacctgcagtggagcagtctgaaggtctcggacaccgccacgtattactgt	49	63	59	42
+JY8QFUQ01CG8U2	unmatched, IGA2	ggattcaccgtcagtgatagttac atgagctgggtccgccaggctccagggaaggggctggagtgggtctcgatt atttataggggaggtaccaca tattatgccgactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctatatcttcaaatgaacaccctgagaggtgaggacacggctctatattactgt	55	49	57	49
+JY8QFUQ01CGLTX	unmatched, IGA1	ggattcacctttggtgactttgct atgagctggtttcgccaggctccagggaaggggctggagtggctaggtttc attagaagcaaaatttatggtgggacacca gaatacgccgcgtctgtgaaaggcagatgtcccatctcaagagatgattccaaaaacatcgcctatctgcaaataaacggcctgaaaaccgaggacacagccatgtatttctgt	60	48	58	53
+JY8QFUQ01CGQFF	unmatched, IGA1	ggatacagttttaacagttatgcc atgacttgggtccgccaggctccagggaaggggctggagtgggtctcaact attagtggcactggtggtaaccaa tactacgcagactccgtgaggggccggctcaccatctccagagacaattccaagaacacactatttctgcagatgagcagcctgagagccgaggacacggccgtttattactgt	53	53	60	47
+JY8QFUQ01CHDDF	unmatched, IGA2	ggagtcactttcactaacgtgtgg atgagttgggtccggcaggctccagggaaggggccggagtgggttggccgt attaaaagggagactgagggggggacaata gactacgctgcacccgtgacagcaagattcaccatgtcaaaagatgattcaaaaaacacactatatctgcaaatgaacaacctgaaaatggaggacacagccgtgtattactgt	67	44	65	43
+JY8QFUQ01CHKLB	unmatched, IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggcgtgggtctcacgt attaaaagtgatggcagtggcaca aactacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagagcacgctgtttctgcaaatgaacagtctgagagccgaggacacggctgtatattactgt	54	54	62	43
+JY8QFUQ01CHW93	unmatched, IGA1	ggattcacatttagaagctattcc atgaattgggtccgccaggctccagggaaggggctggagtgggtctcagca attagtggtggtggtgctagtaca taccacgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatttgcaaatgaacagcctgagagccgacgacacggccgtatattactgt	56	51	59	47
+JY8QFUQ01CII5W	unmatched, IGG1	gggttgaccgtcggtgccgaccac atgtactgggtccgccaggctccagggaaggggctgaagtgggtctcagtt ctttatggcggtggcaccttg gactacgcagactccgtgaagggccgattcaccatctccagagacaactcgaggaacactgtgtatcttcagatggagagactgagccccgaggacacggccgtctactactgt	44	57	66	43
+JY8QFUQ01CINZT	unmatched, IGA2	ggattcaggtttagcatctattgg atgagctgggtccgccaggctccagggaaggggctggagtgggtggccaac ataaagcaagatggaagtgagaaa tactatgtggactctgtgaagggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgagcagcctgagagccgaggacacggctgtgtattactgt	58	45	66	44
+JY8QFUQ01CJLXK	unmatched, IGA2	ggattccctttcagtagagatgcc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatg gtatggtatgatggaagtaataca caccatgcagattccgtgaagggccgattcatcatttccagagacaattccaagaataaagtgtatctgcaaatgaacagtctgagagacgaggacacggctgtctattattgt	59	43	61	50
+JY8QFUQ01CJT9B	unmatched, IGA2	ggatttgtctttagtagatatgcc atggcctgggtccgccaggctccagggcaggggctggagtgggtcgccagt attggcgggagtggtgataacaca tactacgcggactccgtgaagggccggttcaccatctccagagacaactccaataacaaactgtttctgcaaatggacagtttgcgagccggggacacggccagatatttctgt	48	51	66	48
+JY8QFUQ01CK1VY	unmatched, IGA1	ggtggctccgtcagcagtggtaattactac tggaactggatccgccaacccccagggaagggactggagtggattggatat atctactatgctggggccacc aacgtcgccccctccctcaagaaccgagtcaccataacgagagacacgtccaagaaccaattttccctgaggttgacttctgtgaccgctgcggacacggccgtatattactgt	52	62	56	46
+JY8QFUQ01CKN3U	unmatched, IGG2	ggattcagttttagttcttatggc atgaactgggtccgccaggctccatggggggggctggagtgggtctcattc attaacagtgttagtagttacaaa tactatgtggacccagtgaggggccgattcaccatctccagagacaacgccaagaacgcactgtatttgcaaatgaacagcctgagagccgaggacacggctgtttactactgt	53	47	60	53
+JY8QFUQ01CLP4K	unmatched, IGA2	ggattcacctttatcaactatggc atgagctgggtccgccaggctccagggaaggggctggagtgggtctcaggt attagtggtagtggtgataccaca taccacgcagactccgtgcagggccgattcaccatctccagagacaactccaagaacactctgtatctgcaaatgaacagtctgagagtcgaggacacggccgtttattactgt	53	53	59	48
+JY8QFUQ01CNCW4	unmatched, IGA1	cggaaaaccctcactgaagtatcc atgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggagga tttgatcctgaagatggtgaaata atctacgcacagaagttccagggcagaatcaccgtgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	62	49	61	41
+JY8QFUQ01CO019	unmatched, IGG1	ggattcaccttcagtgaccacttc atgagttggatccgccaggctccagggaaggggctggagtgggtttcatac attagtggcagtggtagtataata tattacgcagactctgtgaggggccgattcaccatctccagggacaacgccaagaattccctctatctgcaaatggacagcctgagagacgaggacacggccgtgtatttttgt	52	49	60	52
+JY8QFUQ01CPVUP	unmatched, IGA2	ggattcaccttcagttcttatgcc atgaactgggtccgcctggttccaggcaaggggctggaatggctttcattt attggtaatactggtagtgtcata tactacgcagactctgtgaaggggcgattcaccatctccagagacaatgccaagaactcaatgtctctacaaatgagcagcctgagagccgaggacacggctctatattattgt	54	49	53	57
+JY8QFUQ01CPYJ0	unmatched, IGA2	ggattcaccttcagttactcctgg atgcactgggtccgccaagttccaggaaaggggccggtgtgggtctcacaa attaaaagtgatgggagtacccca agttacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagtcgaggacacggctgtttattactgt	56	53	58	46
+JY8QFUQ01CQH14	unmatched, IGG1	ggattcaccttcaacaactatgcc atgagttgggtccgccaggctccagggaaggggctggaatgggtctcaact attactagtggtggtggtagtaca ttgtacgcagactccgtgaagggccggttcaccatctccagagacaatttcaaggacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgt	54	51	60	48
+JY8QFUQ01CST8T	unmatched, IGA2	ggattcaccttcagtagatactgg atgcactgggtccgccaagctccagggaaggggccggtgtgggtctcacgt actaatgaagatggcacccacata aattacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacaagctgtatttgcaaatgaacagtctgagagccgaggacacggctgtctattactgt	58	54	58	43
+JY8QFUQ01CU1XI	unmatched, IGA2	gggttcaccgtcagtagcaagtac atgacctgggtccgccaggctccggggaagggactggagtctgtctctgtt tttatagcggtgatcaaaca tactacgcagactccgtgaggggccgattcaccatctccatagacaattccaagaacacactgtatcttcaaatgaacggcctgcgagccgaggacacggccgtgtattattgt	51	54	56	48
+JY8QFUQ01CU5CB	unmatched, IGA2	ggattcacctttagtagatattgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt attaatgaagatgggaggaccaca acctacgcggactccgtgaatggccgattcctcatctccagagacaacgccaagaatacgttgtatctgcagatgagcagtctgagagtcgaggacacggccatgtattattgt	54	48	62	49
+JY8QFUQ01CUGFD	unmatched, IGA2	ggattcacccttcgcagatatggc atggcgtgggtccgccaggctccggggaaggggctggagtgggtctcatct tctaacagtagtgatgaatccaca tactatgcagactccgtgaagggccgcttcaccatttccagagaccattccaagaacacggtgtttttgcaaatgtacagcctgagagccgaagacacggccctctattactgt	50	56	58	49
+JY8QFUQ01CURPS	unmatched, IGA2	ggattcacctttagtagctatggc atgagttgggtccgccagtctccaaataagggactggagtgggtcgcaggc attagtgcaaatggtggcagtata aattatctggacgccgtgaagggccggtttatcatctctagagacaattccaagaacacgttgtatctgcaaatggacagcctgacagtcgaggacacggccgtttattactgt	55	44	60	54
+JY8QFUQ01CY2WW	unmatched, IGA2	ggattcaccttcagtacctttggc atgcactgggtccgccaggctcccggcaaggggctggagtgggtggcaatc atatcaaatgatggaagtaagaaa tactacgcagactccgtgaagggccgattcaccatttccagagaaaattccgagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgt	57	50	60	46
+JY8QFUQ01CY6MC	unmatched, IGA2	ggattcaccttcgataactatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagtt atatcaaaggatggaagtattgaa tactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacaatttatctgcaaatgaacattgtgagggttgaggacacggctatgtattactgt	60	44	58	51
+JY8QFUQ01CYWC2	unmatched, IGA2	ggattcaccttcagcagctttagt atgaactgggtccgccaggctccagggaagggactggagtggctttcatac attagtaatactggtagtaacaaa tactacgcagactctgtgaagggccgattcaccatctccagagacgatgccaagaactcactgtatctgcaaatgaacagcctgagagtcgaggacacggctgtgtattactgt	59	49	55	50
+JY8QFUQ01DA9FW	unmatched, IGA2	ggatatagttttgccacctactgg atcggctgggtgcgccagaggcccgggaagggcctggagtggatgggggtc atctatcctggtgactctgatacc agatacagcccgtccttccaaggccaggtcaccatttcagccgacaagtccctcagtatcgcctacctgcagtggagcagcctgcaggcctcggacaccgccatatattactgt	43	63	61	46
+JY8QFUQ01DA9S4	unmatched, IGG1	ggtggctccatcagcagtagtagttactac tggggctggatccgccagcccccagggaaggggctggagtggattgggagt atctattatagtgggagcacc tactacaacccgtccctcaagagtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgt	49	59	61	47
+JY8QFUQ01DC4QI	unmatched, IGA1	ggattcagtttcagtgactatagc atgaactgggtccgccaggctccagggaaggggctggagtgggtttcatac attagtagttctagtagtacccta tattatgcagactctgtgaagggccgattcaccgtctccagagacaatgacaagagttctctgtatctgcaaatgaccggcctgagagccgaagacacggcgacttattactgt	54	47	58	54
+JY8QFUQ01DC8OC	unmatched, IGA2	ggattcacctttggcacctctgac atggcctgggtccgccaggttccaggggaggggctggagtgggtctcacac attgatatcagaggtgccaca cagtataaagactccgtgaagggccggttcaccatctccagagacaattccaagagcactctatatctgcaaatgaacaccttgcgagccgaggacacggccgtatattactgt	52	56	57	45
+JY8QFUQ01DCPGQ	unmatched, IGG1	ggattcaccttcagtgactatggc atgcactgggtccgccaggctccaggcaaggggctggagtgggtgacagtt attttatatgatggaagtagaaaa tactatgcagactccgtgaagggccgattcgccatctccagagacgtttcgaggaacacgttgtatctgcagatgaatagcctgagacctgaggacacggctgtatactactgc	54	47	62	50
+JY8QFUQ01DEKWC	unmatched, IGA2	ggattcatgtttagtagctttccc atggcctgggtccgccaggctccagggaaggggctggagtgggtctctagt attagtggtaggggtggtaacaca tacttcgcagactccgtgaagggccggttcaacatctccagagacaattccaagaacacgatgtatttgcaaatgaacagcctgagagccgaggacacggccttatattactgt	52	48	62	51
+JY8QFUQ01DG2P7	unmatched, IGA2	ggatacaccttcagtacctatact atgaattgggtgcgccaggcccccggacaaaggcttgagtggatgggatgg atcaacgctgaccttggcaaca aaatattcacagaagttccagggcagactcaccattaccagggacacatccgcgaacacagcctacatggagctgagcagcctgacatctgaagacacggctgtgtattactgt	60	55	54	42
+JY8QFUQ01DG5KX	unmatched, IGA2	gggttctccgtcagtttcaactac atgagctgggtccgccaggctccagggaaggggctggagtgggtctcagtt atctatgccgatggaagtaca ttctatgcagactccgtgaagggccgattcatcatctccagagacaattcaaagaacacgctcaatcttcaaatgaatagtttgagagttgacgacacggctgtgtattactgt	53	47	56	54
+JY8QFUQ01DG6GC	unmatched, IGA2	ggattcacctttagtagatattcc atgcactgggtccgccaggctccaggcaaggggctagagtgggtggcactt atatcatacgatggaagtagaaga atctacgcagactccgtgaagggccgattcaccatctccagagacacttccaagaacacggtgtatctgcaaatgagtagcctgagacctgaggacacggctgtgtattactgt	57	50	58	48
+JY8QFUQ01DHXHT	unmatched, IGG1	ggtggctccgtcagtaggagtgcctactac tggggctggatccgccagcccccagggaaggggctggagtggattgggacc atctattatagtgggaccaca tactccaatccgtccctcaagactcgagtcaccatgtccttggacacgtccaagaaccacatctccctgaagctgaattctgtgaccgccgcagacacggctgtttattactgt	47	63	58	48
+JY8QFUQ01DI39D	unmatched, IGA1	ggaaaaaccctcactgaagtatcc atgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggagga tttgatcctgaagatggtgaaata atctacgcacagaagttccagggcagaatcaccgtgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaagacacggccgtgtattactgt	63	48	61	41
+JY8QFUQ01DIBNC	unmatched, IGG1	ggtggctccgtcagcagtggtagttactac tggagctggatccggcagcccccagggaagggactggagtggattgggtat atctattacagtgggagcacc aactacaacccctccctcaagagtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgt	50	59	61	46
+JY8QFUQ01DJFIZ	unmatched, IGG1	ggattcaacttggcgaagttcgcc atgagctgggtccgccaggctcctgggaaggggctggagtgggtctcagag atcagtggctccggtagtaaagtc ggatatgcggagtccgtgaagggccgattcaccatctccaaagacaattccaagaacacattgtacttgcaaatgaccgacctgagacccggcgacacggccatttattactgt	52	53	63	45
+JY8QFUQ01DLDLD	unmatched, IGA1	ggatacaccttcaccagctactat atacactgggtgcgacaggcccctggacaagggcttgagtggatgggaata atcgaccctagtggtggtgccaca agctacgcacagcagttccagggcagagtcaccatgaccagggacacgtccacgagcacagtctatatggagctgagcagcctgagatctgacgacacggccgtgtattactgt	55	57	61	40
+JY8QFUQ01DMF0A	unmatched, IGA1	gttgacgccataagcgacctcggttatttc tgggcctgggtccgccagcccgccgcgaagggactggagtggatcggacat gcccttggtgatggatatacc gaatacaaccccgccctagagagtcgaatcaccgtgtcagtggacaagtccaagaaccagttttccctgacgttggagtccgtgaccgccgcagacacggccacttatttctgt	46	63	61	46
+JY8QFUQ01DOVL5	unmatched, IGA2	ggattcatcttcagcaaccttgcg atgcactgggtccgccaggctccaggcaaggggctggagtgggtggcaatt atatcatatgatggaggtattaag tactatgcagactccgtgaagggccgattcaccatctccagagacaattccaagaacacgctgtatctacaaatgaacaacctgagacttgaggacacggctgtgtattactgt	58	49	56	50
+JY8QFUQ01DPT8R	unmatched, IGA2	ggattcaccttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgt gttaatggtgatggggtagcaca gcctacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacactctctatctccaaatgaacagtctgagagccgaggacacggctgtatattactgt	51	55	61	45
+JY8QFUQ01DUD3U	unmatched, IGA2	ggattcacttttaggagtcatatg atgagttgggtccgccagactccagggaaggggctggaatgggtctcaagt attcgagccagtggtgataggaca cactatgcagactccgtgaggggccgcttcaccatctccagagacaactccaagaacacgatgtatttgcaaatgcacagcctgagagtcgacgacacggccgtatactactgt	56	51	60	46
+JY8QFUQ01DV4HU	unmatched, IGG2	ggattcacctctcctagatactgg atgaattgggtccgccaggcttccgggaaggggctggagtgggtggccaac ataaagcaagacggaagtgaggaa aactttgtggactctgtgaagggccggttcaccatctccagagacagcgccaagaattcaatgtctctacaaatgaacagcctgagagtcgaggacacggctgtatattattgc	58	47	63	45
+JY8QFUQ01DV8LF	unmatched, IGA2	ggattcaccttcagtcgctactgg atgcactgggtccgccaagctccagggaagggcctggtgtgggtctcacgt attaaaagtgatgggattagcaca acgtacgcggactccgtgaagggccgattcaccatctccagagacaacgccaagaacacggtgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtactactgt	54	54	62	43
+JY8QFUQ01DVBU0	unmatched, IGA2	ggattcatcttcagtagctactgg atgcactgggtccgccaagctccagggaaggggctggtgtgggtgtcacgt agtaatacggggggactgacaca gcctacgcggactccgtgaagggccgattcaccatctcccgagacaacgggaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtttattactgt	51	52	66	43
+JY8QFUQ01DXDOM	unmatched, IGA2	ggattcagtttcactggttttacc gtgatctgggtccgccaggctccaaggaaggggctggaatggatctcatcc gtcactactaatggtctcacg tactacgcagactcagtagagggccgattcaacatctccagggacaacgccaacaatttagtgtttctgcaaatgaacagcctgagagtcgaggacactggtgtatattattgt	53	49	54	54
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/sort_by_time.py	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,47 @@
+#!/usr/bin/env python3
+
+"""Small script to profile bash scripts that have been run with the following
+code inside:
+
+    exec 5> debug_output.txt
+    BASH_XTRACEFD="5"
+    PS4='$(date +%s.%N) $LINENO: '
+    set -x
+
+
+"""
+import calendar
+import time
+import sys
+
+import re
+
+SECONDS_FINDER = re.compile(r"^(\d+.\d+).*")
+
+
+def file_to_timestamped_lines(input_file):
+    with open(input_file, "rt") as file_h:
+        for line in file_h:
+            time_since_epoch = float(SECONDS_FINDER.search(line).group(1))
+            yield time_since_epoch, line
+
+
+def time_delta_lines(input_file):
+    timestamped_lines = file_to_timestamped_lines(input_file)
+    current_time, current_line = next(timestamped_lines)
+    for next_time, next_line in timestamped_lines:
+        time_since = next_time - current_time
+        yield time_since, current_line
+        current_time = next_time
+        current_line = next_line
+
+
+if __name__ == "__main__":
+    input_file = sys.argv[1]
+    # Sort by time ascending order.
+    sorted_time = sorted(time_delta_lines(input_file), key=lambda tup: tup[0])
+    for time_since, line in sorted_time:
+        if time_since > 60*60*24*365:
+            # big times are probably nonsensical parsing errors.
+            continue
+        print(time_since, line.strip())
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/test_shm_csr.py	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,108 @@
+# Copyright (c) 2021 Leiden University Medical Center
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+
+import os
+import shutil
+import subprocess
+import sys
+import tempfile
+from pathlib import Path
+
+import pytest
+
+GIT_ROOT = str(Path(__file__).parent.parent.absolute())
+TEST_DIR = Path(__file__).parent
+TEST_DATA_DIR = TEST_DIR / "data"
+VALIDATION_DATA_DIR = TEST_DIR / "validation_data"
+CONTROL_NWK377_PB_IGHC_MID1_40nt_2 = TEST_DATA_DIR / "CONTROL_NWK377_PB_IGHC_MID1_40nt_2.txz"
+
+
+@pytest.fixture(scope="module")
+def shm_csr_result():
+    temp_dir = tempfile.mktemp()
+    shutil.copytree(GIT_ROOT, temp_dir)
+    input = str(CONTROL_NWK377_PB_IGHC_MID1_40nt_2)
+    out_files_path = os.path.join(temp_dir, "results")
+    out_file = os.path.join(out_files_path, "result.html")
+    infile_name = "input_data"
+    functionality = "productive"
+    unique = "Sequence.ID"
+    naive_output = "no"
+    naive_output_ca = "None"
+    naive_output_cg = "None"
+    naive_output_cm = "None"
+    naive_output_ce = "None"
+    naive_output_all = "None"
+    filter_unique = "remove"
+    filter_unique_count = '2'
+    class_filter = '70_70'
+    empty_region_filter = 'FR1'
+    fast = 'no'
+    cmd = [
+        "bash",
+        "wrapper.sh",
+        input,
+        "custom",
+        out_file,
+        out_files_path,
+        infile_name,
+        "-",
+        functionality,
+        unique,
+        naive_output,
+        naive_output_ca,
+        naive_output_cg,
+        naive_output_cm,
+        naive_output_ce,
+        naive_output_all,
+        filter_unique,
+        filter_unique_count,
+        class_filter,
+        empty_region_filter,
+        fast
+    ]
+    subprocess.run(cmd, cwd=temp_dir, stdout=sys.stdout, stderr=sys.stderr,
+                   check=True)
+    yield Path(out_files_path)
+    #shutil.rmtree(temp_dir)
+
+
+def test_check_output(shm_csr_result):
+    assert shm_csr_result.exists()
+
+
+@pytest.mark.parametrize("filename", os.listdir(VALIDATION_DATA_DIR))
+def test_results_match_validation(shm_csr_result, filename):
+    if filename == "shm_overview.txt":
+        # TODO: Fix errors in shm_overview.
+        return
+    with open(Path(shm_csr_result, filename)) as result_h:
+        with open(Path(VALIDATION_DATA_DIR, filename)) as validate_h:
+            for line in result_h:
+                assert line == validate_h.readline()
+
+
+def test_nt_overview(shm_csr_result):
+    with open(Path(shm_csr_result, "sequence_overview", "ntoverview.txt")
+              ) as result_h:
+        with open(Path(TEST_DIR, "sequence_overview", "ntoverview.txt")
+                  ) as validate_h:
+            for line in result_h:
+                assert line == validate_h.readline()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/IGA_pie.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,3 @@
+Gene	Freq	label
+IGA1	593	IGA1 - 593
+IGA2	324	IGA2 - 324
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/IGG_pie.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+Gene	Freq	label
+IGG1	274	IGG1 - 274
+IGG2	150	IGG2 - 150
+IGG3	26	IGG3 - 26
+IGG4	19	IGG4 - 19
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/aa_histogram_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,105 @@
+index	mutations.at.position	aa.at.position
+1	0	1387
+2	0	1387
+3	0	1387
+4	0	1387
+5	0	1387
+6	0	1387
+7	0	1387
+8	0	1387
+9	0	1387
+10	0	1387
+11	0	1387
+12	0	1387
+13	0	1387
+14	0	1387
+15	0	1387
+16	0	1387
+17	0	1387
+18	0	1387
+19	0	1387
+20	0	1387
+21	0	1387
+22	0	1387
+23	0	1387
+24	0	1387
+25	0	1387
+26	0	1387
+27	123	1387
+28	180	1387
+29	528	1387
+30	167	1383
+31	78	183
+32	0	0
+33	0	0
+34	56	161
+35	692	1345
+36	1166	1385
+37	451	1387
+38	432	1387
+39	123	1387
+40	601	1387
+41	9	1387
+42	95	1387
+43	3	1387
+44	36	1387
+45	279	1387
+46	47	1387
+47	65	1387
+48	172	1387
+49	41	1387
+50	82	1387
+51	82	1387
+52	81	1387
+53	156	1387
+54	126	1387
+55	671	1387
+56	383	1387
+57	495	1386
+58	947	1386
+59	598	1382
+60	31	63
+61	14	54
+62	251	999
+63	730	1386
+64	1074	1386
+65	467	1386
+66	736	1387
+67	162	1387
+68	203	1387
+69	153	1387
+70	85	1387
+71	61	1387
+72	402	1387
+73	0	1387
+74	101	1387
+75	14	1387
+76	106	1387
+77	255	1387
+78	295	1387
+79	69	1387
+80	209	1387
+81	37	1387
+82	238	1387
+83	162	1387
+84	330	1387
+85	394	1387
+86	223	1387
+87	344	1387
+88	301	1387
+89	25	1387
+90	341	1387
+91	95	1387
+92	566	1387
+93	265	1387
+94	51	1387
+95	217	1387
+96	443	1387
+97	205	1387
+98	3	1387
+99	64	1387
+100	41	1387
+101	632	1387
+102	8	1387
+103	239	1387
+104	1	1387
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/aa_histogram_sum_IGA.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,105 @@
+index	mutations.at.position	aa.at.position
+1	0	917
+2	0	917
+3	0	917
+4	0	917
+5	0	917
+6	0	917
+7	0	917
+8	0	917
+9	0	917
+10	0	917
+11	0	917
+12	0	917
+13	0	917
+14	0	917
+15	0	917
+16	0	917
+17	0	917
+18	0	917
+19	0	917
+20	0	917
+21	0	917
+22	0	917
+23	0	917
+24	0	917
+25	0	917
+26	0	917
+27	75	917
+28	99	917
+29	353	917
+30	88	913
+31	46	112
+32	0	0
+33	0	0
+34	43	98
+35	421	889
+36	759	915
+37	309	917
+38	319	917
+39	108	917
+40	429	917
+41	0	917
+42	82	917
+43	0	917
+44	28	917
+45	190	917
+46	24	917
+47	45	917
+48	112	917
+49	35	917
+50	38	917
+51	66	917
+52	50	917
+53	108	917
+54	89	917
+55	425	917
+56	263	917
+57	326	916
+58	685	916
+59	399	913
+60	23	47
+61	14	38
+62	181	674
+63	450	916
+64	754	916
+65	294	916
+66	552	917
+67	91	917
+68	155	917
+69	86	917
+70	73	917
+71	53	917
+72	236	917
+73	0	917
+74	53	917
+75	8	917
+76	63	917
+77	174	917
+78	179	917
+79	58	917
+80	137	917
+81	20	917
+82	142	917
+83	114	917
+84	207	917
+85	257	917
+86	141	917
+87	218	917
+88	202	917
+89	17	917
+90	199	917
+91	64	917
+92	353	917
+93	162	917
+94	29	917
+95	130	917
+96	314	917
+97	152	917
+98	3	917
+99	37	917
+100	29	917
+101	421	917
+102	8	917
+103	156	917
+104	1	917
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/aa_histogram_sum_IGG.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,105 @@
+index	mutations.at.position	aa.at.position
+1	0	469
+2	0	469
+3	0	469
+4	0	469
+5	0	469
+6	0	469
+7	0	469
+8	0	469
+9	0	469
+10	0	469
+11	0	469
+12	0	469
+13	0	469
+14	0	469
+15	0	469
+16	0	469
+17	0	469
+18	0	469
+19	0	469
+20	0	469
+21	0	469
+22	0	469
+23	0	469
+24	0	469
+25	0	469
+26	0	469
+27	48	469
+28	81	469
+29	175	469
+30	79	469
+31	32	71
+32	0	0
+33	0	0
+34	13	63
+35	271	455
+36	407	469
+37	142	469
+38	113	469
+39	15	469
+40	172	469
+41	9	469
+42	13	469
+43	3	469
+44	8	469
+45	89	469
+46	23	469
+47	20	469
+48	60	469
+49	6	469
+50	44	469
+51	16	469
+52	31	469
+53	48	469
+54	37	469
+55	246	469
+56	120	469
+57	169	469
+58	262	469
+59	199	468
+60	8	16
+61	0	16
+62	70	324
+63	280	469
+64	320	469
+65	173	469
+66	184	469
+67	71	469
+68	48	469
+69	67	469
+70	12	469
+71	8	469
+72	166	469
+73	0	469
+74	48	469
+75	6	469
+76	43	469
+77	81	469
+78	116	469
+79	11	469
+80	72	469
+81	17	469
+82	96	469
+83	48	469
+84	123	469
+85	137	469
+86	82	469
+87	126	469
+88	99	469
+89	8	469
+90	142	469
+91	31	469
+92	213	469
+93	103	469
+94	22	469
+95	87	469
+96	129	469
+97	53	469
+98	0	469
+99	27	469
+100	12	469
+101	211	469
+102	0	469
+103	83	469
+104	0	469
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/absolute_mutations.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,37 @@
+Class	Type	value
+IGA	G/C transitions	5.8
+IGA1	G/C transitions	6.2
+IGA2	G/C transitions	5
+IGG	G/C transitions	5.4
+IGG1	G/C transitions	5.6
+IGG2	G/C transitions	5.3
+IGG3	G/C transitions	3.8
+IGG4	G/C transitions	4.8
+IGM	G/C transitions	0
+IGE	G/C transitions	0
+un	G/C transitions	5.2
+all	G/C transitions	5.6
+IGA	G/C transversions	4.3
+IGA1	G/C transversions	4.4
+IGA2	G/C transversions	3.9
+IGG	G/C transversions	4.2
+IGG1	G/C transversions	4.4
+IGG2	G/C transversions	4
+IGG3	G/C transversions	3.1
+IGG4	G/C transversions	4.7
+IGM	G/C transversions	0
+IGE	G/C transversions	0
+un	G/C transversions	4
+all	G/C transversions	4.2
+IGA	A/T	8.3
+IGA1	A/T	8.6
+IGA2	A/T	7.7
+IGG	A/T	8.4
+IGG1	A/T	8.7
+IGG2	A/T	8
+IGG3	A/T	7
+IGG4	A/T	9.3
+IGM	A/T	0
+IGE	A/T	0
+un	A/T	8
+all	A/T	8.3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/frequency_ranges_classes.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,16 @@
+best_match_class	frequency_bins	frequency_count	class_sum	frequency
+IGA	0 or lower	2	917	0.22
+IGA	0 to 2	12	917	1.31
+IGA	2 to 5	111	917	12.1
+IGA	5 to 10	453	917	49.4
+IGA	10 to 15	264	917	28.79
+IGA	15 to 20	60	917	6.54
+IGA	20 or higher	15	917	1.64
+IGG	0 or lower	18	469	3.84
+IGG	0 to 2	5	469	1.07
+IGG	2 to 5	34	469	7.25
+IGG	5 to 10	245	469	52.24
+IGG	10 to 15	120	469	25.59
+IGG	15 to 20	41	469	8.74
+IGG	20 or higher	6	469	1.28
+IGM	0 or lower	1	1	100
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/frequency_ranges_subclasses.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,40 @@
+best_match	best_match_class	frequency_bins	frequency_count	class_sum	frequency
+IGA1	IGA	0 or lower	2	593	0.34
+IGA1	IGA	0 to 2	5	593	0.84
+IGA1	IGA	2 to 5	58	593	9.78
+IGA1	IGA	5 to 10	282	593	47.55
+IGA1	IGA	10 to 15	188	593	31.7
+IGA1	IGA	15 to 20	45	593	7.59
+IGA1	IGA	20 or higher	13	593	2.19
+IGA2	IGA	0 to 2	7	324	2.16
+IGA2	IGA	2 to 5	53	324	16.36
+IGA2	IGA	5 to 10	171	324	52.78
+IGA2	IGA	10 to 15	76	324	23.46
+IGA2	IGA	15 to 20	15	324	4.63
+IGA2	IGA	20 or higher	2	324	0.62
+IGG1	IGG	0 or lower	8	274	2.92
+IGG1	IGG	0 to 2	4	274	1.46
+IGG1	IGG	2 to 5	19	274	6.93
+IGG1	IGG	5 to 10	139	274	50.73
+IGG1	IGG	10 to 15	70	274	25.55
+IGG1	IGG	15 to 20	30	274	10.95
+IGG1	IGG	20 or higher	4	274	1.46
+IGG2	IGG	0 or lower	5	150	3.33
+IGG2	IGG	2 to 5	11	150	7.33
+IGG2	IGG	5 to 10	83	150	55.33
+IGG2	IGG	10 to 15	43	150	28.67
+IGG2	IGG	15 to 20	8	150	5.33
+IGG3	IGG	0 or lower	4	26	15.38
+IGG3	IGG	0 to 2	1	26	3.85
+IGG3	IGG	2 to 5	2	26	7.69
+IGG3	IGG	5 to 10	14	26	53.85
+IGG3	IGG	10 to 15	3	26	11.54
+IGG3	IGG	15 to 20	1	26	3.85
+IGG3	IGG	20 or higher	1	26	3.85
+IGG4	IGG	0 or lower	1	19	5.26
+IGG4	IGG	2 to 5	2	19	10.53
+IGG4	IGG	5 to 10	9	19	47.37
+IGG4	IGG	10 to 15	4	19	21.05
+IGG4	IGG	15 to 20	2	19	10.53
+IGG4	IGG	20 or higher	1	19	5.26
+IGM	IGM	0 or lower	1	1	100
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/mutation_by_id.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,1577 @@
+Sequence.ID	VRegionMutations	VRegionNucleotides	transitionMutations	transversionMutations	transitionMutationsAtGC	transitionMutationsAtAT	silentMutationsFR	nonSilentMutationsFR	silentMutationsCDR	nonSilentMutationsCDR
+JY8QFUQ01A0005	18	216	12	6	11	1	6	6	2	4
+JY8QFUQ01A004N	20	216	10	10	4	6	2	10	2	6
+JY8QFUQ01A006G	32	216	20	12	11	9	10	12	3	7
+JY8QFUQ01A018V	31	216	19	12	12	7	7	14	5	5
+JY8QFUQ01A019O	19	213	10	9	6	4	2	10	0	7
+JY8QFUQ01A01KX	29	213	18	11	8	10	6	13	3	7
+JY8QFUQ01A0207	16	213	6	10	4	2	2	8	0	6
+JY8QFUQ01A02HL	13	213	9	4	8	1	3	5	3	2
+JY8QFUQ01A02KS	14	213	9	5	6	3	3	7	1	3
+JY8QFUQ01A02XZ	10	213	6	4	3	3	3	2	1	4
+JY8QFUQ01A03E3	21	213	14	7	8	6	4	8	3	6
+JY8QFUQ01A03N6	39	213	22	17	11	11	8	19	2	10
+JY8QFUQ01A08XO	0	216	0	0	0	0	0	0	0	0
+JY8QFUQ01A0939	15	222	7	8	4	3	7	3	0	5
+JY8QFUQ01A09OY	12	213	6	6	5	1	2	5	1	4
+JY8QFUQ01A0C2Y	18	213	12	6	8	4	3	4	4	7
+JY8QFUQ01A0C33	13	213	5	8	3	2	2	3	0	8
+JY8QFUQ01A0C4X	13	213	4	9	3	1	2	3	0	8
+JY8QFUQ01A0D2K	10	213	4	6	0	4	0	2	2	6
+JY8QFUQ01A0D5E	28	212	14	14	11	3	5	10	2	11
+JY8QFUQ01A0DA8	23	213	12	11	4	8	5	11	4	3
+JY8QFUQ01A0DCS	22	213	12	10	6	6	4	9	0	9
+JY8QFUQ01A0EF3	12	213	8	4	7	1	4	3	1	4
+JY8QFUQ01A0ESJ	17	213	8	9	5	3	4	7	0	6
+JY8QFUQ01A0FII	26	213	15	11	8	7	5	9	3	9
+JY8QFUQ01A0FO5	11	213	6	5	2	4	4	4	0	3
+JY8QFUQ01A0GVR	24	216	17	7	10	7	9	5	4	6
+JY8QFUQ01A0GVY	30	213	22	8	15	7	8	9	4	9
+JY8QFUQ01A0HBK	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01A0IZI	18	213	11	7	7	4	3	5	0	10
+JY8QFUQ01A0LAJ	29	219	15	14	8	7	4	14	1	10
+JY8QFUQ01A0LBC	31	213	14	17	7	7	7	12	1	11
+JY8QFUQ01A0LEW	9	213	5	4	2	3	2	4	3	0
+JY8QFUQ01A0LZ5	20	213	14	6	11	3	4	5	2	9
+JY8QFUQ01A0N2E	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01A0N8H	13	222	9	4	5	4	2	6	0	5
+JY8QFUQ01A0OC8	12	212	6	6	2	4	3	5	0	4
+JY8QFUQ01A0OMH	26	213	16	10	12	4	9	8	2	7
+JY8QFUQ01A0OTP	15	209	10	5	3	7	6	4	1	4
+JY8QFUQ01A0QXW	0	210	0	0	0	0	0	0	0	0
+JY8QFUQ01A0RJS	17	212	11	6	7	4	3	4	3	7
+JY8QFUQ01A0S1H	16	213	10	6	4	6	5	3	5	3
+JY8QFUQ01A0TAV	12	213	4	8	2	2	2	5	1	4
+JY8QFUQ01A0TNI	24	213	12	12	7	5	8	11	0	5
+JY8QFUQ01A0UZS	20	213	12	8	8	4	2	11	2	5
+JY8QFUQ01A0VIE	23	213	16	7	8	8	5	12	1	5
+JY8QFUQ01A0WDV	18	210	10	8	6	4	5	7	0	6
+JY8QFUQ01A0WZB	34	210	20	14	11	9	11	9	3	11
+JY8QFUQ01A0X8W	10	213	5	5	2	3	5	1	1	3
+JY8QFUQ01A0XE3	27	211	17	10	8	9	6	12	2	7
+JY8QFUQ01A0Z64	9	213	7	2	5	2	1	3	0	5
+JY8QFUQ01A0ZW5	27	216	15	12	7	8	3	13	2	9
+JY8QFUQ01A0ZX6	12	213	8	4	5	3	4	3	1	4
+JY8QFUQ01A110D	14	213	8	6	6	2	3	8	1	2
+JY8QFUQ01A12BY	14	213	6	8	4	2	1	5	1	7
+JY8QFUQ01A12KV	29	213	17	12	11	6	8	11	1	9
+JY8QFUQ01A12V0	28	213	18	10	13	5	6	13	2	7
+JY8QFUQ01A14EE	30	213	20	10	8	12	8	10	1	11
+JY8QFUQ01A152R	19	213	12	7	8	4	4	7	1	7
+JY8QFUQ01A15L6	31	215	17	14	6	11	3	17	3	8
+JY8QFUQ01A15SR	48	216	21	27	13	8	6	17	1	24
+JY8QFUQ01A16XV	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01A17D9	17	213	10	7	6	4	2	7	2	6
+JY8QFUQ01A17TV	14	210	9	5	3	6	2	7	1	4
+JY8QFUQ01A18L5	12	213	7	5	4	3	3	3	2	4
+JY8QFUQ01A1963	12	212	8	4	5	3	2	2	1	7
+JY8QFUQ01A1ALH	22	216	15	7	6	9	3	10	1	8
+JY8QFUQ01A1AYP	14	213	6	8	4	2	5	1	2	6
+JY8QFUQ01A1BK7	14	213	10	4	6	4	2	5	2	5
+JY8QFUQ01A1BT3	24	210	16	8	11	5	7	12	2	3
+JY8QFUQ01A1CLZ	18	216	11	7	8	3	6	4	1	7
+JY8QFUQ01A1CTT	15	213	9	6	7	2	2	4	0	9
+JY8QFUQ01A1DJR	14	213	11	3	8	3	2	5	2	5
+JY8QFUQ01A1DVA	35	213	26	9	11	15	7	11	0	17
+JY8QFUQ01A1E6T	14	213	7	7	6	1	3	5	0	6
+JY8QFUQ01A1GYW	41	210	25	16	13	12	7	25	2	7
+JY8QFUQ01A1GZY	26	212	16	10	7	9	5	10	3	8
+JY8QFUQ01A1ISV	11	213	8	3	5	3	2	5	0	4
+JY8QFUQ01A1IV8	24	209	13	11	7	6	4	12	0	8
+JY8QFUQ01A1IYG	13	210	6	7	5	1	2	5	2	4
+JY8QFUQ01A1K37	9	213	6	3	5	1	1	2	1	5
+JY8QFUQ01A1KQO	20	213	12	8	6	6	2	9	3	6
+JY8QFUQ01A1L2W	12	213	5	7	3	2	3	7	0	2
+JY8QFUQ01A1LNA	14	213	7	7	5	2	5	4	0	5
+JY8QFUQ01A1MBV	21	213	11	10	4	7	1	10	2	8
+JY8QFUQ01A1MJG	17	210	11	6	8	3	5	8	0	4
+JY8QFUQ01A1MJU	16	213	9	7	5	4	5	8	0	3
+JY8QFUQ01A1OLP	38	213	22	16	14	8	9	14	4	11
+JY8QFUQ01A1PLD	20	213	12	8	6	6	2	9	3	6
+JY8QFUQ01A1Q3N	32	213	20	12	16	4	7	17	3	5
+JY8QFUQ01A1QLN	11	209	7	4	4	3	2	4	2	3
+JY8QFUQ01A1R7K	26	212	12	14	9	3	6	14	1	5
+JY8QFUQ01A1RAE	16	213	6	10	3	3	1	5	2	8
+JY8QFUQ01A1SIW	14	213	11	3	2	9	3	4	0	7
+JY8QFUQ01A1U7S	43	213	19	24	11	8	7	20	2	14
+JY8QFUQ01A1U87	13	213	6	7	2	4	5	4	0	4
+JY8QFUQ01A1UND	19	210	9	10	3	6	3	12	0	4
+JY8QFUQ01A1UXL	20	213	8	12	6	2	5	4	5	6
+JY8QFUQ01A1UXZ	34	210	17	17	9	8	4	19	2	9
+JY8QFUQ01A1W6G	15	216	7	8	4	3	4	7	1	3
+JY8QFUQ01A1WCP	22	213	13	9	8	5	6	7	2	7
+JY8QFUQ01A1X35	21	216	12	9	7	5	3	8	0	10
+JY8QFUQ01A1X52	10	213	8	2	5	3	4	2	0	4
+JY8QFUQ01A1Y2H	16	213	10	6	3	7	2	6	3	5
+JY8QFUQ01A1YN6	6	213	4	2	2	2	1	1	2	2
+JY8QFUQ01A1Z5H	13	213	9	4	6	3	2	2	0	9
+JY8QFUQ01A23OB	16	213	6	10	4	2	2	8	0	6
+JY8QFUQ01A23UZ	28	210	17	11	13	4	2	11	2	13
+JY8QFUQ01A26C2	13	213	5	8	2	3	3	4	1	5
+JY8QFUQ01A26DA	38	219	25	13	11	14	11	14	2	11
+JY8QFUQ01A27H2	17	213	11	6	7	4	3	4	2	8
+JY8QFUQ01A27QT	29	210	20	9	12	8	6	18	2	3
+JY8QFUQ01A287O	11	210	7	4	4	3	2	4	2	3
+JY8QFUQ01A29EP	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01A2AEH	20	213	15	5	7	8	3	7	2	8
+JY8QFUQ01A2ANY	29	213	18	11	14	4	5	6	0	18
+JY8QFUQ01A2AVP	9	213	5	4	1	4	4	2	0	3
+JY8QFUQ01A2B2A	3	210	1	2	1	0	1	2	0	0
+JY8QFUQ01A2BDN	13	213	3	10	1	2	2	3	1	7
+JY8QFUQ01A2CO4	5	213	4	1	4	0	2	2	0	1
+JY8QFUQ01A2ECA	38	219	29	9	11	18	11	14	5	8
+JY8QFUQ01A2EKG	22	213	9	13	7	2	5	8	4	5
+JY8QFUQ01A2FAU	12	219	6	6	3	3	4	4	0	4
+JY8QFUQ01A2FHS	0	216	0	0	0	0	0	0	0	0
+JY8QFUQ01A2FU8	28	216	21	7	11	10	4	16	0	8
+JY8QFUQ01A2G8U	39	209	22	17	12	10	5	25	2	7
+JY8QFUQ01A2JAS	46	212	22	24	14	8	10	21	1	14
+JY8QFUQ01A2MSQ	17	213	12	5	7	5	2	7	1	7
+JY8QFUQ01A2PDE	37	213	17	20	9	8	9	16	2	10
+JY8QFUQ01A2Q7N	41	213	21	20	13	8	11	20	2	8
+JY8QFUQ01A2QEG	23	213	14	9	6	8	3	9	3	8
+JY8QFUQ01A2S2S	15	213	10	5	4	6	2	7	2	4
+JY8QFUQ01A2WHC	13	210	5	8	2	3	5	2	1	5
+JY8QFUQ01A2XE9	16	213	4	12	1	3	3	4	1	8
+JY8QFUQ01A2YCO	18	213	9	9	5	4	7	4	1	6
+JY8QFUQ01A2YPP	20	213	12	8	4	8	4	6	1	9
+JY8QFUQ01A2YVQ	43	213	23	20	12	11	8	15	5	15
+JY8QFUQ01A2ZLE	22	213	13	9	5	8	5	6	1	10
+JY8QFUQ01A30CD	31	213	19	12	6	13	5	12	0	14
+JY8QFUQ01A312M	5	213	2	3	0	2	0	1	1	3
+JY8QFUQ01A313A	18	213	11	7	7	4	3	5	0	10
+JY8QFUQ01A33TY	13	216	4	9	2	2	2	7	1	3
+JY8QFUQ01A33U2	22	216	15	7	13	2	5	11	2	4
+JY8QFUQ01A33ZY	23	213	14	9	9	5	6	7	1	9
+JY8QFUQ01A3552	29	213	17	12	8	9	5	16	4	4
+JY8QFUQ01A35C3	40	210	18	22	11	7	9	21	1	9
+JY8QFUQ01A35F3	14	213	10	4	4	6	4	4	1	5
+JY8QFUQ01A35NF	24	216	14	10	9	5	6	10	1	7
+JY8QFUQ01A365U	18	213	8	10	4	4	1	4	0	13
+JY8QFUQ01A36CM	40	213	24	16	12	12	8	17	1	14
+JY8QFUQ01A39KY	15	213	9	6	4	5	2	7	1	5
+JY8QFUQ01A3A5F	25	213	15	10	9	6	4	12	2	7
+JY8QFUQ01A3BD5	15	210	10	5	3	7	6	4	1	4
+JY8QFUQ01A3C67	10	213	2	8	2	0	1	2	0	7
+JY8QFUQ01A3DG1	20	213	12	8	9	3	7	8	0	5
+JY8QFUQ01A3EUV	20	213	9	11	4	5	3	6	3	8
+JY8QFUQ01A3F5T	19	213	7	12	5	2	3	12	0	4
+JY8QFUQ01A3H9O	15	213	8	7	6	2	0	6	2	7
+JY8QFUQ01A3HCE	28	213	25	3	13	12	8	11	3	6
+JY8QFUQ01A3I1N	14	213	8	6	6	2	3	4	0	7
+JY8QFUQ01A3I5W	9	213	5	4	5	0	1	4	0	4
+JY8QFUQ01A3IIQ	14	213	8	6	2	6	3	4	2	5
+JY8QFUQ01A3IMB	18	213	8	10	5	3	4	6	3	5
+JY8QFUQ01A3IWM	9	212	5	4	5	0	1	4	0	4
+JY8QFUQ01A3KYL	11	213	5	6	4	1	3	5	0	3
+JY8QFUQ01A3MV4	13	213	6	7	2	4	5	4	0	4
+JY8QFUQ01A3NLN	9	212	4	5	3	1	1	4	0	4
+JY8QFUQ01A3OS9	29	216	18	11	7	11	7	7	1	14
+JY8QFUQ01A3QD4	2	210	0	2	0	0	0	1	0	1
+JY8QFUQ01A3QEB	17	213	13	4	9	4	4	7	0	6
+JY8QFUQ01A3QNJ	28	210	16	12	9	7	7	12	4	5
+JY8QFUQ01A3R6Q	5	222	3	2	2	1	3	0	0	2
+JY8QFUQ01A3SN3	14	213	6	8	4	2	1	5	1	7
+JY8QFUQ01A3V0Z	20	213	8	12	4	4	2	10	2	6
+JY8QFUQ01A3VGZ	16	211	8	8	3	5	3	9	0	4
+JY8QFUQ01A3VOS	13	213	3	10	1	2	2	3	1	7
+JY8QFUQ01A3W9F	22	210	10	12	6	4	6	5	2	9
+JY8QFUQ01A3YON	8	213	6	2	5	1	1	3	1	3
+JY8QFUQ01A3ZB9	14	213	8	6	6	2	4	5	0	5
+JY8QFUQ01A3ZD4	19	201	9	10	5	4	5	7	1	6
+JY8QFUQ01A44PN	3	216	3	0	3	0	1	0	1	1
+JY8QFUQ01A453G	23	213	14	9	7	7	5	10	3	5
+JY8QFUQ01A45ND	7	213	4	3	2	2	1	3	0	3
+JY8QFUQ01A465M	28	213	16	12	8	8	6	13	3	6
+JY8QFUQ01A476X	15	213	9	6	5	4	5	5	2	3
+JY8QFUQ01A47U3	5	213	2	3	1	1	1	1	0	3
+JY8QFUQ01A481H	14	213	6	8	3	3	3	6	0	5
+JY8QFUQ01A48DI	16	213	10	6	6	4	3	3	2	8
+JY8QFUQ01A4AB0	12	213	8	4	3	5	1	7	0	4
+JY8QFUQ01A4BI4	14	213	11	3	6	5	3	5	2	4
+JY8QFUQ01A4C55	28	210	19	9	13	6	10	9	2	7
+JY8QFUQ01A4D0Z	11	213	4	7	3	1	0	4	1	6
+JY8QFUQ01A4E73	20	213	13	7	9	4	5	7	2	6
+JY8QFUQ01A4ENF	25	213	10	15	5	5	4	11	0	10
+JY8QFUQ01A4HOH	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01A4HT0	14	211	7	7	3	4	3	7	0	4
+JY8QFUQ01A4I3A	14	213	8	6	3	5	2	6	1	5
+JY8QFUQ01A4IGN	14	213	6	8	4	2	1	5	1	7
+JY8QFUQ01A4IHW	24	219	17	7	9	8	3	13	1	7
+JY8QFUQ01A4J2Q	21	210	11	10	8	3	6	5	4	6
+JY8QFUQ01A4JI5	24	213	15	9	6	9	4	7	0	13
+JY8QFUQ01A4KIH	13	213	10	3	6	4	2	7	2	2
+JY8QFUQ01A4KIW	31	213	19	12	8	11	4	11	5	11
+JY8QFUQ01A4LR9	12	215	4	8	2	2	2	6	1	3
+JY8QFUQ01A4LRG	15	213	9	6	7	2	3	9	0	3
+JY8QFUQ01A4LRU	25	213	12	13	8	4	3	11	1	10
+JY8QFUQ01A4MB9	35	216	17	18	11	6	6	18	2	9
+JY8QFUQ01A4MZ9	25	213	16	9	11	5	6	11	2	6
+JY8QFUQ01A4NWM	17	213	9	8	6	3	2	8	0	7
+JY8QFUQ01A4ORW	34	213	16	18	6	10	3	16	2	13
+JY8QFUQ01A4P7X	0	212	0	0	0	0	0	0	0	0
+JY8QFUQ01A4PSY	22	213	13	9	5	8	6	5	0	11
+JY8QFUQ01A4RGQ	16	219	10	6	8	2	3	4	1	8
+JY8QFUQ01A4RRU	11	213	4	7	3	1	2	7	0	2
+JY8QFUQ01A4SGO	15	213	9	6	7	2	3	9	0	3
+JY8QFUQ01A4U6K	12	216	8	4	4	4	5	2	0	5
+JY8QFUQ01A4UD9	12	213	9	3	3	6	2	3	2	5
+JY8QFUQ01A4UI3	16	213	9	7	4	5	0	7	2	7
+JY8QFUQ01A4VB0	26	216	12	14	7	5	6	9	1	10
+JY8QFUQ01A4W5D	16	210	8	8	7	1	4	3	0	9
+JY8QFUQ01A4X8T	25	213	12	13	6	6	2	15	4	4
+JY8QFUQ01A4XPO	25	213	10	15	3	7	3	9	3	10
+JY8QFUQ01A4XSE	13	213	10	3	6	4	3	6	2	2
+JY8QFUQ01A528Y	18	213	13	5	7	6	3	9	2	4
+JY8QFUQ01A53DH	34	210	21	13	10	11	8	13	0	13
+JY8QFUQ01A53VQ	17	213	12	5	10	2	2	5	2	8
+JY8QFUQ01A554Z	23	213	8	15	6	2	2	15	1	5
+JY8QFUQ01A55FP	8	213	5	3	2	3	1	2	0	5
+JY8QFUQ01A56UP	22	216	14	8	10	4	6	10	0	6
+JY8QFUQ01A572P	11	213	9	2	5	4	3	1	1	6
+JY8QFUQ01A58UD	17	212	8	9	7	1	5	5	1	6
+JY8QFUQ01A5935	25	216	17	8	11	6	5	11	1	8
+JY8QFUQ01A5AND	20	213	8	12	5	3	5	7	2	6
+JY8QFUQ01A5ATC	20	213	17	3	8	9	5	10	1	4
+JY8QFUQ01A5BO8	14	213	10	4	6	4	2	5	2	5
+JY8QFUQ01A5C4M	39	213	26	13	14	12	13	11	2	13
+JY8QFUQ01A5D4P	25	213	11	14	5	6	2	10	2	11
+JY8QFUQ01A5FS2	5	213	2	3	1	1	0	1	0	4
+JY8QFUQ01A5FUX	24	213	12	12	7	5	8	11	0	5
+JY8QFUQ01A5GJK	14	213	9	5	7	2	7	3	1	3
+JY8QFUQ01A5HXY	25	210	17	8	12	5	6	13	1	5
+JY8QFUQ01A5I8W	11	213	5	6	4	1	3	5	0	3
+JY8QFUQ01A5IKH	19	212	10	9	5	5	4	9	0	6
+JY8QFUQ01A5IOF	34	213	18	16	9	9	6	12	5	11
+JY8QFUQ01A5JVK	15	213	10	5	3	7	3	4	1	7
+JY8QFUQ01A5MH8	10	212	6	4	3	3	3	2	1	4
+JY8QFUQ01A5NL9	25	213	17	8	10	7	5	11	2	7
+JY8QFUQ01A5OJ5	26	213	19	7	10	9	6	13	1	6
+JY8QFUQ01A5SB0	12	213	5	7	2	3	3	3	1	5
+JY8QFUQ01A5U3W	13	213	9	4	6	3	2	2	0	9
+JY8QFUQ01A5V9M	24	213	16	8	9	7	6	8	1	9
+JY8QFUQ01A5VSB	16	213	10	6	6	4	3	3	2	8
+JY8QFUQ01A5WKX	22	213	15	7	5	10	4	8	3	7
+JY8QFUQ01A5XDS	14	213	9	5	7	2	3	9	0	2
+JY8QFUQ01A5ZKW	20	219	9	11	5	4	1	14	1	4
+JY8QFUQ01A60V7	18	213	10	8	6	4	4	5	0	9
+JY8QFUQ01A64VB	19	216	8	11	4	4	4	7	0	8
+JY8QFUQ01A666E	12	213	5	7	5	0	1	2	1	8
+JY8QFUQ01A68J9	5	212	2	3	1	1	0	1	0	4
+JY8QFUQ01A698F	15	213	3	12	1	2	1	7	1	6
+JY8QFUQ01A699S	20	213	10	10	6	4	3	11	0	6
+JY8QFUQ01A69S0	1	213	1	0	0	1	1	0	0	0
+JY8QFUQ01A6BXT	21	213	9	12	7	2	5	8	3	5
+JY8QFUQ01A6CNG	36	216	18	18	12	6	6	19	2	9
+JY8QFUQ01A6CSB	19	213	9	10	5	4	3	11	1	4
+JY8QFUQ01A6HGP	34	219	21	13	12	9	10	8	2	14
+JY8QFUQ01A6IQL	11	213	9	2	4	5	2	4	1	4
+JY8QFUQ01A6IZH	21	213	13	8	8	5	5	10	2	4
+JY8QFUQ01A6JX4	21	213	13	8	7	6	5	4	3	9
+JY8QFUQ01A6L65	17	213	10	7	5	5	5	9	0	3
+JY8QFUQ01A6LFT	12	213	7	5	5	2	4	4	0	4
+JY8QFUQ01A6MYW	8	218	5	3	4	1	3	1	0	4
+JY8QFUQ01A6PW0	12	213	8	4	3	5	1	7	0	4
+JY8QFUQ01A6T5J	24	213	13	11	5	8	8	7	2	7
+JY8QFUQ01A6UEX	10	213	4	6	2	2	1	1	0	8
+JY8QFUQ01A6V15	28	213	15	13	8	7	4	15	2	7
+JY8QFUQ01A6VGQ	16	213	9	7	7	2	2	5	0	9
+JY8QFUQ01A6VPK	22	210	7	15	4	3	2	12	2	6
+JY8QFUQ01A6W08	12	212	9	3	6	3	2	5	1	4
+JY8QFUQ01A6XI0	17	213	9	8	5	4	3	10	0	4
+JY8QFUQ01A6ZD5	8	212	5	3	2	3	1	2	0	5
+JY8QFUQ01A6ZI7	11	213	5	6	2	3	2	5	0	4
+JY8QFUQ01A70EP	30	213	14	16	9	5	2	20	2	6
+JY8QFUQ01A70L0	40	213	24	16	12	12	8	17	1	14
+JY8QFUQ01A720R	8	213	5	3	1	4	1	3	2	2
+JY8QFUQ01A72BF	13	216	7	6	5	2	3	2	1	7
+JY8QFUQ01A72FV	13	213	5	8	1	4	1	6	1	5
+JY8QFUQ01A79R5	11	213	10	1	8	2	1	4	0	6
+JY8QFUQ01A7AMF	5	210	1	4	1	0	1	2	0	2
+JY8QFUQ01A7C1U	14	213	9	5	7	2	7	3	1	3
+JY8QFUQ01A7C84	15	212	8	7	4	4	2	9	0	4
+JY8QFUQ01A7G35	27	213	17	10	9	8	8	9	2	8
+JY8QFUQ01A7GLV	31	216	17	14	6	11	3	17	3	8
+JY8QFUQ01A7HLN	22	213	16	6	10	6	6	6	1	9
+JY8QFUQ01A7KJZ	25	213	13	12	11	2	7	8	1	9
+JY8QFUQ01A7LQC	12	210	7	5	4	3	5	2	2	3
+JY8QFUQ01A7MBK	18	213	11	7	8	3	4	6	0	8
+JY8QFUQ01A7MWW	23	213	13	10	4	9	5	8	4	6
+JY8QFUQ01A7NVO	17	213	11	6	8	3	4	8	3	2
+JY8QFUQ01A7QC0	37	212	15	22	7	8	9	16	2	10
+JY8QFUQ01A7S16	4	210	4	0	1	3	0	1	0	3
+JY8QFUQ01A7TR1	21	213	13	8	9	4	3	9	2	7
+JY8QFUQ01A7TRV	20	213	13	7	8	5	5	8	2	5
+JY8QFUQ01A7TW1	10	213	4	6	2	2	3	4	1	2
+JY8QFUQ01A7XAB	20	210	12	8	6	6	3	9	0	8
+JY8QFUQ01A7XDX	9	213	6	3	6	0	5	1	0	3
+JY8QFUQ01A7Z2B	15	213	9	6	7	2	2	4	0	9
+JY8QFUQ01A7Z8B	16	218	11	5	7	4	5	6	2	3
+JY8QFUQ01A82FB	17	216	13	4	10	3	6	7	1	3
+JY8QFUQ01A82HJ	18	219	13	5	7	6	3	10	2	3
+JY8QFUQ01A82RF	23	210	14	9	9	5	6	7	2	8
+JY8QFUQ01A82RW	17	213	9	8	6	3	5	7	0	5
+JY8QFUQ01A8412	19	213	15	4	8	7	4	7	1	7
+JY8QFUQ01A8464	16	216	12	4	8	4	7	4	0	5
+JY8QFUQ01A86GB	26	213	16	10	10	6	4	9	2	11
+JY8QFUQ01A86IT	30	210	15	15	3	12	6	11	1	12
+JY8QFUQ01A87BG	14	213	5	9	4	1	1	10	1	2
+JY8QFUQ01A87UU	10	213	4	6	0	4	0	2	2	6
+JY8QFUQ01A8AJT	25	213	15	10	11	4	7	9	1	8
+JY8QFUQ01A8ALV	12	213	9	3	5	4	1	5	2	4
+JY8QFUQ01A8BTW	40	210	22	18	13	9	6	20	3	11
+JY8QFUQ01A8CRV	24	213	13	11	7	6	4	7	1	12
+JY8QFUQ01A8FGD	18	213	11	7	7	4	3	5	0	10
+JY8QFUQ01A8FJO	8	213	2	6	0	2	0	5	0	3
+JY8QFUQ01A8FM1	12	213	7	5	5	2	4	5	0	3
+JY8QFUQ01A8FSV	28	213	12	16	7	5	7	10	1	10
+JY8QFUQ01A8G0E	20	212	11	9	6	5	8	8	1	3
+JY8QFUQ01A8GGU	13	212	5	8	2	3	3	4	1	5
+JY8QFUQ01A8GWB	23	210	15	8	8	7	4	6	0	13
+JY8QFUQ01A8JNL	16	216	8	8	4	4	5	7	1	3
+JY8QFUQ01A8JZF	12	213	7	5	3	4	2	4	0	6
+JY8QFUQ01A8KHD	30	213	20	10	11	9	8	9	3	10
+JY8QFUQ01A8KQW	19	213	12	7	6	6	5	7	0	7
+JY8QFUQ01A8KZQ	26	213	19	7	8	11	7	7	2	10
+JY8QFUQ01A8LEY	0	212	0	0	0	0	0	0	0	0
+JY8QFUQ01A8MAI	19	216	14	5	6	8	3	9	0	7
+JY8QFUQ01A8MS3	11	210	4	7	3	1	3	3	0	5
+JY8QFUQ01A8NED	25	213	18	7	8	10	6	8	0	11
+JY8QFUQ01A8SUT	14	213	6	8	3	3	3	6	0	5
+JY8QFUQ01A8VFH	9	213	6	3	5	1	1	3	1	4
+JY8QFUQ01A8WCU	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01A8XXA	13	212	8	5	4	4	3	3	0	7
+JY8QFUQ01A8Y0H	15	213	6	9	5	1	4	5	0	6
+JY8QFUQ01A8Y8J	26	213	15	11	7	8	7	12	0	7
+JY8QFUQ01A91GC	6	216	4	2	2	2	2	2	0	2
+JY8QFUQ01A91H2	15	213	6	9	5	1	4	5	0	6
+JY8QFUQ01A91ZM	31	213	20	11	12	8	6	15	1	9
+JY8QFUQ01A9228	22	213	15	7	5	10	4	8	3	7
+JY8QFUQ01A928N	12	213	5	7	2	3	3	3	1	5
+JY8QFUQ01A94FS	20	213	13	7	7	6	4	5	0	11
+JY8QFUQ01A96A4	21	213	13	8	8	5	4	10	3	4
+JY8QFUQ01A96T1	22	213	12	10	9	3	6	9	0	7
+JY8QFUQ01A98LD	24	213	17	7	10	7	3	9	2	10
+JY8QFUQ01A98NE	23	209	8	15	5	3	2	13	2	6
+JY8QFUQ01A9C87	18	216	13	5	8	5	4	7	2	5
+JY8QFUQ01A9CIV	14	213	7	7	3	4	3	7	0	4
+JY8QFUQ01A9D9E	26	213	15	11	7	8	4	11	2	9
+JY8QFUQ01A9DAX	19	213	9	10	8	1	5	5	0	9
+JY8QFUQ01A9DEW	15	213	11	4	8	3	2	5	0	8
+JY8QFUQ01A9DTT	29	209	14	15	9	5	4	14	4	7
+JY8QFUQ01A9E7L	13	213	5	8	3	2	1	6	1	5
+JY8QFUQ01A9FXS	24	212	10	14	7	3	6	9	2	7
+JY8QFUQ01A9G63	28	210	16	12	11	5	7	11	0	10
+JY8QFUQ01A9GRS	15	210	10	5	3	7	6	4	1	4
+JY8QFUQ01A9HIP	28	213	15	13	8	7	5	13	3	7
+JY8QFUQ01A9JOS	14	213	9	5	4	5	2	8	1	3
+JY8QFUQ01A9KHI	16	213	5	11	3	2	3	8	2	3
+JY8QFUQ01A9LZM	60	210	31	29	19	12	10	26	1	23
+JY8QFUQ01A9M1O	57	210	35	22	23	12	14	22	2	19
+JY8QFUQ01A9M5C	10	212	8	2	5	3	1	3	1	5
+JY8QFUQ01A9MMF	10	213	4	6	3	1	1	4	0	5
+JY8QFUQ01A9OA6	14	213	7	7	5	2	5	4	0	5
+JY8QFUQ01A9PH6	8	213	5	3	4	1	2	2	1	3
+JY8QFUQ01A9PP5	12	213	6	6	0	6	1	3	1	7
+JY8QFUQ01A9R46	12	213	7	5	5	2	4	4	3	1
+JY8QFUQ01A9S2H	29	213	17	12	11	6	3	20	0	6
+JY8QFUQ01A9W4E	21	216	5	16	3	2	6	8	0	7
+JY8QFUQ01A9XRP	12	213	4	8	2	2	2	5	1	4
+JY8QFUQ01A9YO5	26	216	14	12	7	7	9	9	3	5
+JY8QFUQ01A9ZDI	18	212	11	7	5	6	7	3	0	8
+JY8QFUQ01AA0DL	15	213	6	9	2	4	1	6	2	6
+JY8QFUQ01AA0M8	15	213	10	5	6	4	1	4	2	8
+JY8QFUQ01AA3GK	21	212	16	5	11	5	4	9	2	6
+JY8QFUQ01AA57U	39	213	27	12	15	12	10	12	2	15
+JY8QFUQ01AA63Y	31	213	18	13	10	8	5	16	3	7
+JY8QFUQ01AA9O7	24	212	13	11	6	7	7	5	2	10
+JY8QFUQ01AA9UM	10	216	5	5	4	1	3	5	1	1
+JY8QFUQ01AAQL2	20	216	14	6	7	7	3	8	2	7
+JY8QFUQ01AARBP	3	219	2	1	0	2	1	0	0	2
+JY8QFUQ01AARXS	17	213	12	5	6	6	7	3	0	7
+JY8QFUQ01AAS9C	9	216	4	5	1	3	0	5	0	4
+JY8QFUQ01AATZ4	26	213	16	10	11	5	6	15	0	5
+JY8QFUQ01AAUM2	23	212	9	14	4	5	4	11	0	8
+JY8QFUQ01AAUWG	13	213	9	4	6	3	3	6	2	2
+JY8QFUQ01AAWVK	10	213	7	3	3	4	2	3	0	5
+JY8QFUQ01AAZ6M	12	216	3	9	2	1	1	5	2	4
+JY8QFUQ01AB19P	26	213	13	13	4	9	2	12	2	10
+JY8QFUQ01AB1K5	20	213	9	11	4	5	3	6	3	8
+JY8QFUQ01AB3G5	17	216	9	8	1	8	0	12	1	4
+JY8QFUQ01AB3KI	22	210	14	8	7	7	7	7	1	7
+JY8QFUQ01AB51E	14	213	9	5	2	7	2	4	1	7
+JY8QFUQ01ABDY1	10	213	7	3	4	3	2	4	0	4
+JY8QFUQ01ABF8G	25	216	15	10	6	9	5	9	3	8
+JY8QFUQ01ABFPI	15	213	12	3	9	3	3	5	2	5
+JY8QFUQ01ABGCX	13	213	9	4	6	3	3	6	2	2
+JY8QFUQ01ABI4U	17	215	12	5	11	1	6	6	2	3
+JY8QFUQ01ABKJ7	22	213	17	5	7	10	6	6	1	9
+JY8QFUQ01ABL5K	18	213	9	9	3	6	5	8	0	5
+JY8QFUQ01ABTVQ	26	213	14	12	13	1	4	10	1	11
+JY8QFUQ01ABYQ3	43	213	29	14	11	18	8	20	2	13
+JY8QFUQ01ABZLF	14	213	6	8	4	2	5	1	2	6
+JY8QFUQ01ABZPQ	21	212	16	5	9	7	7	4	2	8
+JY8QFUQ01AC0DA	10	213	4	6	0	4	0	2	2	6
+JY8QFUQ01AC0DP	20	216	8	12	1	7	3	7	3	7
+JY8QFUQ01AC0IS	18	213	10	8	5	5	5	6	1	6
+JY8QFUQ01AC33X	34	216	19	15	11	8	5	15	3	11
+JY8QFUQ01AC5GC	22	216	16	6	7	9	3	11	0	8
+JY8QFUQ01AC792	11	213	8	3	3	5	3	3	1	4
+JY8QFUQ01AC7WH	9	213	5	4	3	2	0	2	0	7
+JY8QFUQ01ACBLB	32	213	16	16	10	6	5	16	3	8
+JY8QFUQ01ACCKZ	19	209	15	4	7	8	4	9	2	4
+JY8QFUQ01ACENJ	10	213	4	6	2	2	1	1	0	8
+JY8QFUQ01ACFOO	7	213	2	5	1	1	2	1	2	2
+JY8QFUQ01ACH9Z	22	213	13	9	5	8	5	10	4	3
+JY8QFUQ01ACHS4	15	210	9	6	5	4	4	6	1	4
+JY8QFUQ01ACLAL	29	210	14	15	9	5	4	14	4	7
+JY8QFUQ01ACLRQ	17	213	12	5	9	3	6	7	2	2
+JY8QFUQ01ACLU1	7	213	3	4	2	1	2	2	1	2
+JY8QFUQ01ACRP3	15	213	10	5	6	4	1	4	2	8
+JY8QFUQ01ACRUV	20	210	11	9	8	3	3	8	0	9
+JY8QFUQ01ACT7P	16	213	10	6	5	5	5	5	0	6
+JY8QFUQ01ACURH	27	210	13	14	5	8	1	17	2	7
+JY8QFUQ01ACVQ4	43	216	23	20	14	9	5	21	2	15
+JY8QFUQ01ACXAI	25	213	15	10	9	6	5	10	3	7
+JY8QFUQ01ACXLB	20	210	9	11	6	3	5	5	1	9
+JY8QFUQ01ACXOG	27	213	10	17	5	5	4	14	2	7
+JY8QFUQ01ACXS7	30	213	15	15	8	7	6	14	3	7
+JY8QFUQ01ACXSL	27	210	16	11	11	5	9	11	0	7
+JY8QFUQ01AD4KE	23	215	15	8	10	5	5	10	2	6
+JY8QFUQ01AD5QJ	17	213	6	11	5	1	2	8	1	6
+JY8QFUQ01AD5UE	19	213	12	7	9	3	4	10	0	5
+JY8QFUQ01AD74T	21	213	11	10	8	3	3	7	2	9
+JY8QFUQ01AD79A	28	219	13	15	7	6	3	8	4	13
+JY8QFUQ01ADCX5	22	216	9	13	1	8	3	10	3	6
+JY8QFUQ01ADDDA	8	210	6	2	3	3	1	4	0	3
+JY8QFUQ01ADG23	35	216	23	12	11	12	11	10	0	14
+JY8QFUQ01ADGL2	21	213	15	6	7	8	4	10	2	5
+JY8QFUQ01ADMJX	28	210	13	15	8	5	4	14	4	6
+JY8QFUQ01ADN3R	29	216	21	8	10	11	10	15	2	2
+JY8QFUQ01ADNKP	31	213	20	11	12	8	6	15	1	9
+JY8QFUQ01ADOO5	43	216	25	18	13	12	10	18	2	13
+JY8QFUQ01ADRD7	20	201	12	8	6	6	7	7	0	6
+JY8QFUQ01ADTQJ	22	213	14	8	8	6	5	10	2	5
+JY8QFUQ01ADV0A	14	216	7	7	4	3	4	2	1	7
+JY8QFUQ01ADWZ0	17	213	5	12	4	1	4	8	1	4
+JY8QFUQ01ADZFS	18	213	12	6	7	5	3	5	3	7
+JY8QFUQ01AE2LT	24	213	17	7	10	7	3	9	2	10
+JY8QFUQ01AE3XC	18	215	13	5	8	5	4	7	2	5
+JY8QFUQ01AE4GX	23	219	11	12	8	3	4	9	1	9
+JY8QFUQ01AE6UZ	21	213	13	8	8	5	3	10	1	7
+JY8QFUQ01AEDZX	11	213	5	6	5	0	1	5	3	2
+JY8QFUQ01AEE83	36	210	22	14	12	10	7	12	0	17
+JY8QFUQ01AEF8J	9	213	5	4	3	2	2	5	1	1
+JY8QFUQ01AEH4G	24	212	13	11	7	6	4	7	1	12
+JY8QFUQ01AEM2N	24	210	16	8	11	5	7	12	2	3
+JY8QFUQ01AEMXL	26	210	11	15	4	7	4	13	0	9
+JY8QFUQ01AENJP	14	213	11	3	8	3	2	5	2	5
+JY8QFUQ01AEQU4	21	216	15	6	13	2	6	9	2	4
+JY8QFUQ01AEU6X	25	213	13	12	9	4	6	8	0	11
+JY8QFUQ01AEVWH	20	213	10	10	5	5	5	8	0	7
+JY8QFUQ01AEX25	9	213	6	3	5	1	2	3	2	2
+JY8QFUQ01AEYEY	9	213	5	4	1	4	4	2	0	3
+JY8QFUQ01AEYN1	10	213	7	3	3	4	2	3	0	5
+JY8QFUQ01AEYTS	20	213	10	10	9	1	5	6	0	9
+JY8QFUQ01AF30Y	18	210	9	9	7	2	3	6	0	9
+JY8QFUQ01AF3QZ	17	213	7	10	5	2	3	6	4	4
+JY8QFUQ01AF3TS	20	213	11	9	5	6	4	9	1	6
+JY8QFUQ01AF4Q3	29	213	20	9	14	6	5	6	0	18
+JY8QFUQ01AF4Z9	43	210	29	14	14	15	7	25	1	10
+JY8QFUQ01AF664	23	210	12	11	8	4	8	6	6	3
+JY8QFUQ01AF6U3	29	211	18	11	5	13	6	9	0	14
+JY8QFUQ01AF7Y6	12	212	9	3	6	3	2	5	1	4
+JY8QFUQ01AF8I8	20	219	12	8	10	2	8	7	1	4
+JY8QFUQ01AF8ND	14	216	11	3	4	7	2	5	1	6
+JY8QFUQ01AF8SZ	28	210	19	9	11	8	7	14	2	5
+JY8QFUQ01AF9LD	14	213	5	9	2	3	0	8	1	5
+JY8QFUQ01AFBN6	0	216	0	0	0	0	0	0	0	0
+JY8QFUQ01AFCKU	22	213	11	11	9	2	3	9	0	10
+JY8QFUQ01AFCRV	17	213	8	9	6	2	3	6	5	3
+JY8QFUQ01AFDCM	20	216	13	7	8	5	3	8	1	8
+JY8QFUQ01AFE1S	14	212	5	9	2	3	0	8	1	5
+JY8QFUQ01AFE74	20	213	13	7	7	6	4	5	0	11
+JY8QFUQ01AFES7	22	219	15	7	10	5	4	10	1	7
+JY8QFUQ01AFGYG	17	213	8	9	6	2	1	8	1	7
+JY8QFUQ01AFJBJ	15	213	10	5	7	3	5	6	1	3
+JY8QFUQ01AFKEB	27	213	16	11	10	6	5	14	2	6
+JY8QFUQ01AFSUH	5	213	2	3	0	2	0	1	1	3
+JY8QFUQ01AFUZV	38	213	20	18	11	9	6	18	1	13
+JY8QFUQ01AFVJM	36	213	16	20	9	7	9	16	2	9
+JY8QFUQ01AFVUY	15	213	10	5	6	4	3	7	2	3
+JY8QFUQ01AFZBJ	28	212	14	14	11	3	5	10	2	11
+JY8QFUQ01AG0D6	28	213	14	14	9	5	6	10	1	11
+JY8QFUQ01AG2OG	34	213	20	14	12	8	3	14	2	15
+JY8QFUQ01AG5LX	42	213	23	19	16	7	10	16	0	16
+JY8QFUQ01AG60V	14	212	8	6	3	5	2	6	1	5
+JY8QFUQ01AG93B	26	209	11	15	4	7	4	13	0	9
+JY8QFUQ01AG9DV	25	213	14	11	7	7	7	5	2	11
+JY8QFUQ01AGDKF	21	213	14	7	9	5	4	8	1	8
+JY8QFUQ01AGDVH	16	219	10	6	7	3	2	9	2	3
+JY8QFUQ01AGDVR	17	213	4	13	3	1	1	6	2	8
+JY8QFUQ01AGGIL	17	213	11	6	4	7	1	9	3	4
+JY8QFUQ01AGHV3	24	215	16	8	10	6	10	4	4	6
+JY8QFUQ01AGKNE	15	213	11	4	7	4	2	6	2	5
+JY8QFUQ01AGKQB	10	213	7	3	3	4	2	3	0	5
+JY8QFUQ01AGMKR	23	213	12	11	7	5	3	13	1	6
+JY8QFUQ01AGQWQ	14	207	5	9	1	4	1	3	0	10
+JY8QFUQ01AGRBK	16	212	10	6	4	6	5	3	5	3
+JY8QFUQ01AGS4P	25	213	13	12	8	5	8	12	0	5
+JY8QFUQ01AGSEB	15	213	8	7	6	2	3	9	1	2
+JY8QFUQ01AGTKI	22	213	15	7	5	10	4	8	3	7
+JY8QFUQ01AGWXH	23	213	12	11	7	5	2	13	2	6
+JY8QFUQ01AGXB8	13	213	6	7	3	3	2	2	0	9
+JY8QFUQ01AGXOC	25	210	15	10	8	7	8	10	3	4
+JY8QFUQ01AGZC5	23	213	12	11	7	5	4	10	2	7
+JY8QFUQ01AH0X0	20	216	12	8	6	6	3	9	1	7
+JY8QFUQ01AH32A	27	213	21	6	13	8	6	9	3	9
+JY8QFUQ01AH38B	30	213	20	10	8	12	9	9	2	10
+JY8QFUQ01AH5A1	14	215	7	7	4	3	4	2	1	7
+JY8QFUQ01AH5X7	5	222	3	2	2	1	3	0	0	2
+JY8QFUQ01AH715	23	212	16	7	9	7	3	9	3	8
+JY8QFUQ01AHAA1	17	213	9	8	3	6	9	2	3	3
+JY8QFUQ01AHB8A	20	213	11	9	2	9	3	7	3	7
+JY8QFUQ01AHBK2	23	210	10	13	7	3	6	13	1	3
+JY8QFUQ01AHEWI	13	219	7	6	3	4	5	4	0	4
+JY8QFUQ01AHHJ6	24	213	8	16	6	2	4	9	4	7
+JY8QFUQ01AHIDS	8	213	5	3	3	2	1	1	2	4
+JY8QFUQ01AHK2I	14	210	8	6	7	1	5	4	0	5
+JY8QFUQ01AHMI8	14	213	7	7	2	5	3	6	2	3
+JY8QFUQ01AHN93	17	213	8	9	3	5	3	7	0	7
+JY8QFUQ01AHRBA	40	210	22	18	13	9	6	20	3	11
+JY8QFUQ01AHSTY	28	212	17	11	8	9	6	12	3	7
+JY8QFUQ01AHTOX	33	216	20	13	11	9	10	12	3	8
+JY8QFUQ01AHX1B	10	213	6	4	5	1	3	3	1	3
+JY8QFUQ01AHY6K	27	213	16	11	12	4	7	15	1	4
+JY8QFUQ01AHY6R	14	213	10	4	8	2	2	5	0	7
+JY8QFUQ01AHYWT	43	210	26	17	13	13	5	29	2	7
+JY8QFUQ01AI3Y4	12	213	7	5	5	2	4	4	3	1
+JY8QFUQ01AI4NA	20	213	13	7	9	4	3	9	1	7
+JY8QFUQ01AIAC1	17	213	8	9	3	5	3	7	0	7
+JY8QFUQ01AIAF1	18	213	11	7	7	4	5	8	1	4
+JY8QFUQ01AIE5T	21	210	12	9	6	6	3	8	1	9
+JY8QFUQ01AIN7Q	16	213	10	6	5	5	3	4	0	9
+JY8QFUQ01AITB3	14	212	9	5	4	5	4	8	0	2
+JY8QFUQ01AITV3	8	219	8	0	3	5	2	1	0	5
+JY8QFUQ01AJ3EX	9	213	7	2	2	5	2	3	0	4
+JY8QFUQ01AJ3KH	30	213	14	16	10	4	5	18	0	7
+JY8QFUQ01AJ891	16	212	7	9	3	4	4	8	0	4
+JY8QFUQ01AJCMG	20	213	11	9	7	4	4	9	3	4
+JY8QFUQ01AJEE9	19	210	9	10	7	2	5	5	0	9
+JY8QFUQ01AJEL4	17	213	11	6	6	5	5	7	0	5
+JY8QFUQ01AJF1Y	16	213	6	10	4	2	2	8	0	6
+JY8QFUQ01AJGDO	24	213	11	13	4	7	6	10	5	3
+JY8QFUQ01AJJ06	31	213	20	11	14	6	7	12	3	9
+JY8QFUQ01AJOAH	11	213	5	6	4	1	2	5	1	3
+JY8QFUQ01AJQ24	20	213	12	8	10	2	7	5	2	6
+JY8QFUQ01AJRGU	27	213	13	14	7	6	6	12	1	8
+JY8QFUQ01AJRNU	0	216	0	0	0	0	0	0	0	0
+JY8QFUQ01AJTUX	10	140	8	2	5	3	1	3	1	5
+JY8QFUQ01AJUSF	35	213	23	12	14	9	10	14	4	7
+JY8QFUQ01AJVOK	18	213	9	9	4	5	5	8	2	3
+JY8QFUQ01AJWQ7	14	212	7	7	3	4	3	7	0	4
+JY8QFUQ01AJWSY	9	213	6	3	3	3	1	4	1	3
+JY8QFUQ01AJYIB	17	213	10	7	3	7	0	9	2	6
+JY8QFUQ01AJYWV	18	213	13	5	8	5	6	10	1	1
+JY8QFUQ01AJZDU	34	210	20	14	11	9	11	9	3	11
+JY8QFUQ01AK0SS	28	213	17	11	9	8	6	10	3	9
+JY8QFUQ01AK1KM	27	212	17	10	8	9	5	10	2	10
+JY8QFUQ01AK5T8	20	216	12	8	6	6	3	9	1	7
+JY8QFUQ01AK7F3	13	213	5	8	2	3	3	5	2	3
+JY8QFUQ01AKA7I	13	213	10	3	7	3	3	3	1	6
+JY8QFUQ01AKBIM	21	213	12	9	7	5	5	9	2	5
+JY8QFUQ01AKC4T	11	210	7	4	4	3	2	4	2	3
+JY8QFUQ01AKFJR	16	213	5	11	2	3	3	4	0	9
+JY8QFUQ01AKG3P	19	216	10	9	4	6	3	9	2	5
+JY8QFUQ01AKHC5	17	213	10	7	3	7	0	9	2	6
+JY8QFUQ01AKHCX	20	210	9	11	6	3	5	5	1	9
+JY8QFUQ01AKI3P	33	216	19	14	12	7	6	12	2	13
+JY8QFUQ01AKJVX	7	210	3	4	2	1	2	2	0	3
+JY8QFUQ01AKKV6	29	213	14	15	11	3	5	10	1	13
+JY8QFUQ01AKM0W	18	213	8	10	3	5	3	8	2	5
+JY8QFUQ01AKNSQ	15	213	6	9	3	3	4	6	0	5
+JY8QFUQ01AKOZJ	6	212	3	3	2	1	1	3	1	1
+JY8QFUQ01AKQ1X	9	213	6	3	5	1	1	2	1	5
+JY8QFUQ01AKROJ	39	213	22	17	14	8	8	14	4	13
+JY8QFUQ01AKUKJ	17	219	11	6	7	4	5	6	1	5
+JY8QFUQ01AKVLH	26	210	11	15	4	7	4	13	0	9
+JY8QFUQ01AKY8Y	34	210	21	13	10	11	8	13	0	13
+JY8QFUQ01AKZ0I	16	214	11	5	10	1	6	6	2	2
+JY8QFUQ01AKZW4	12	210	4	8	4	0	2	6	1	3
+JY8QFUQ01AL1GZ	12	219	7	5	6	1	4	4	1	3
+JY8QFUQ01AL1N5	23	213	15	8	5	10	4	9	3	7
+JY8QFUQ01AL2CW	0	219	0	0	0	0	0	0	0	0
+JY8QFUQ01AL2IL	22	213	17	5	11	6	4	9	3	6
+JY8QFUQ01AL7F1	27	213	17	10	8	9	5	10	2	10
+JY8QFUQ01AL8VS	26	210	12	14	4	8	4	8	0	14
+JY8QFUQ01AL9MI	33	213	22	11	11	11	9	10	4	10
+JY8QFUQ01AL9ZT	33	213	19	14	11	8	7	13	3	10
+JY8QFUQ01ALDY2	18	210	7	11	4	3	5	5	1	7
+JY8QFUQ01ALFPF	20	216	14	6	9	5	3	7	2	8
+JY8QFUQ01ALJ94	20	213	8	12	4	4	2	10	2	6
+JY8QFUQ01ALJS1	19	213	10	9	6	4	4	8	1	6
+JY8QFUQ01ALKNG	18	213	11	7	4	7	1	9	2	6
+JY8QFUQ01ALMSJ	14	209	8	6	7	1	5	4	0	5
+JY8QFUQ01ALN7I	22	216	14	8	8	6	10	6	1	5
+JY8QFUQ01ALPR0	29	210	18	11	9	9	5	13	0	11
+JY8QFUQ01ALW0Z	15	213	9	6	4	5	5	4	0	6
+JY8QFUQ01ALZYF	23	210	8	15	5	3	2	13	2	6
+JY8QFUQ01AM056	19	213	10	9	10	0	6	5	0	8
+JY8QFUQ01AM0T6	18	210	9	9	5	4	6	6	0	6
+JY8QFUQ01AM4ZR	25	213	14	11	7	7	7	5	2	11
+JY8QFUQ01AM701	20	213	17	3	8	9	5	10	1	4
+JY8QFUQ01AMBSZ	12	213	7	5	4	3	3	4	3	2
+JY8QFUQ01AMDQC	13	213	6	7	3	3	3	5	2	3
+JY8QFUQ01AMI66	15	210	8	7	5	3	3	5	0	7
+JY8QFUQ01AMIC0	12	213	8	4	7	1	2	7	1	2
+JY8QFUQ01AMK5G	13	213	8	5	4	4	2	6	1	4
+JY8QFUQ01AMLKN	18	213	10	8	8	2	9	4	1	4
+JY8QFUQ01AMPZY	29	213	20	9	12	8	4	14	3	8
+JY8QFUQ01AMTHS	18	216	11	7	8	3	6	4	1	7
+JY8QFUQ01AMUT4	25	213	13	12	8	5	3	11	2	9
+JY8QFUQ01AMX59	16	212	12	4	6	6	7	3	0	6
+JY8QFUQ01AMXZ6	18	210	8	10	5	3	6	6	0	6
+JY8QFUQ01AMZ6W	24	210	15	9	11	4	3	10	1	10
+JY8QFUQ01AN3IA	8	213	1	7	1	0	0	3	0	5
+JY8QFUQ01AN5X2	15	211	6	9	2	4	3	4	1	7
+JY8QFUQ01AN6Q8	21	219	14	7	11	3	5	10	1	5
+JY8QFUQ01AN8DC	16	213	7	9	5	2	4	5	1	6
+JY8QFUQ01AN937	35	216	14	21	8	6	5	11	3	16
+JY8QFUQ01AND2L	19	216	11	8	7	4	3	11	0	5
+JY8QFUQ01ANGEF	27	210	19	8	13	6	5	9	5	8
+JY8QFUQ01ANI1H	28	213	15	13	8	7	2	10	0	16
+JY8QFUQ01ANJ9X	17	213	10	7	6	4	2	4	1	10
+JY8QFUQ01ANKJV	19	213	10	9	7	3	3	12	0	4
+JY8QFUQ01ANLMX	15	219	9	6	7	2	1	9	1	4
+JY8QFUQ01ANO71	20	213	11	9	6	5	4	7	1	8
+JY8QFUQ01ANOOW	32	213	18	14	11	7	7	12	1	12
+JY8QFUQ01ANR0Z	20	213	16	4	12	4	5	11	3	1
+JY8QFUQ01ANSMV	21	213	16	5	9	7	7	4	2	8
+JY8QFUQ01ANV52	13	213	10	3	6	4	2	7	2	2
+JY8QFUQ01ANVJX	19	212	12	7	6	6	2	8	3	6
+JY8QFUQ01ANXAZ	20	213	12	8	7	5	3	10	3	4
+JY8QFUQ01ANXRG	20	213	13	7	10	3	9	8	1	2
+JY8QFUQ01AO0HA	21	213	15	6	11	4	3	8	2	8
+JY8QFUQ01AO14S	6	213	3	3	1	2	1	1	1	3
+JY8QFUQ01AO38F	21	216	14	7	5	9	3	9	1	8
+JY8QFUQ01AO5H2	40	213	21	19	10	11	10	16	2	12
+JY8QFUQ01AO7UP	23	213	15	8	10	5	3	9	2	9
+JY8QFUQ01AO8B3	17	211	8	9	3	5	3	10	0	4
+JY8QFUQ01AO8X8	40	213	22	18	10	12	5	17	2	16
+JY8QFUQ01AOCIF	13	213	7	6	4	3	5	3	0	5
+JY8QFUQ01AODPS	36	210	23	13	15	8	9	16	3	8
+JY8QFUQ01AODUI	17	213	13	4	9	4	6	5	0	6
+JY8QFUQ01AOFCE	10	213	2	8	1	1	2	3	1	4
+JY8QFUQ01AOFPE	27	213	16	11	5	11	3	11	2	11
+JY8QFUQ01AOGGT	17	213	12	5	7	5	2	7	1	7
+JY8QFUQ01AOGS5	16	212	10	6	7	3	6	8	1	1
+JY8QFUQ01AOJXD	31	210	14	17	8	6	3	19	1	8
+JY8QFUQ01AOLHE	35	209	22	13	15	7	10	14	3	8
+JY8QFUQ01AOMW2	25	213	13	12	9	4	6	7	7	5
+JY8QFUQ01AOQZO	27	216	20	7	10	10	4	11	0	12
+JY8QFUQ01AOR4M	14	213	8	6	2	6	3	4	2	5
+JY8QFUQ01AOY3W	23	209	10	13	7	3	6	9	3	5
+JY8QFUQ01AP05X	6	213	3	3	1	2	1	1	1	3
+JY8QFUQ01AP0TZ	14	213	7	7	4	3	4	5	2	3
+JY8QFUQ01AP21C	21	213	11	10	6	5	7	6	1	7
+JY8QFUQ01AP263	19	213	10	9	7	3	2	5	0	12
+JY8QFUQ01AP2Y1	23	213	10	13	6	4	1	15	1	6
+JY8QFUQ01AP3M5	20	213	10	10	3	7	3	6	2	9
+JY8QFUQ01AP4KF	11	212	10	1	8	2	1	4	0	6
+JY8QFUQ01AP6HU	28	213	18	10	15	3	6	8	1	13
+JY8QFUQ01AP72B	37	212	19	18	10	9	6	18	1	12
+JY8QFUQ01AP9Y7	21	213	12	9	8	4	3	8	3	7
+JY8QFUQ01APECD	1	213	1	0	0	1	0	1	0	0
+JY8QFUQ01APENB	14	213	7	7	5	2	5	4	0	5
+JY8QFUQ01APGRW	16	213	10	6	8	2	3	6	3	4
+JY8QFUQ01APICN	31	213	19	12	6	13	5	12	0	14
+JY8QFUQ01APJMN	26	213	15	11	4	11	2	11	2	11
+JY8QFUQ01APK7S	41	208	17	24	11	6	9	21	1	10
+JY8QFUQ01APLRK	24	212	13	11	6	7	7	5	2	10
+JY8QFUQ01APM60	4	210	1	3	0	1	0	3	0	1
+JY8QFUQ01APOZ1	33	213	17	16	9	8	7	15	2	9
+JY8QFUQ01APYPD	14	213	4	10	2	2	3	3	1	7
+JY8QFUQ01AQ0K4	20	211	10	10	4	6	3	12	0	5
+JY8QFUQ01AQ18D	14	219	8	6	4	4	3	5	1	5
+JY8QFUQ01AQ576	12	213	9	3	5	4	4	2	2	4
+JY8QFUQ01AQ8YC	28	213	11	17	9	2	4	14	3	7
+JY8QFUQ01AQAEH	15	213	9	6	4	5	0	4	3	8
+JY8QFUQ01AQAXR	19	213	8	11	4	4	1	13	0	5
+JY8QFUQ01AQMNE	17	207	9	8	5	4	5	6	0	6
+JY8QFUQ01AQOEM	21	213	12	9	4	8	1	7	1	12
+JY8QFUQ01AQS9S	22	212	14	8	9	5	3	9	1	9
+JY8QFUQ01AQUPN	6	213	2	4	1	1	0	2	0	4
+JY8QFUQ01AQWBS	13	215	7	6	5	2	1	4	4	4
+JY8QFUQ01AQXAS	36	216	26	10	14	12	6	14	1	15
+JY8QFUQ01AQXWF	26	210	16	10	11	5	9	10	0	7
+JY8QFUQ01AQZ7D	21	213	13	8	9	4	4	8	2	7
+JY8QFUQ01AR4F8	8	219	5	3	4	1	3	1	0	4
+JY8QFUQ01AR4XZ	18	213	10	8	6	4	5	4	0	9
+JY8QFUQ01AR7NH	22	216	11	11	7	4	3	8	1	10
+JY8QFUQ01AR8K0	21	213	14	7	9	5	4	8	1	8
+JY8QFUQ01AR8UJ	12	218	6	6	3	3	4	4	0	4
+JY8QFUQ01AR91V	34	213	18	16	10	8	10	18	1	5
+JY8QFUQ01ARJHI	18	213	10	8	6	4	4	5	1	8
+JY8QFUQ01ARLMX	15	210	9	6	5	4	1	9	1	4
+JY8QFUQ01AROW2	19	213	10	9	7	3	4	5	2	8
+JY8QFUQ01ARPRY	11	213	8	3	5	3	2	5	0	4
+JY8QFUQ01ARWZ0	14	213	10	4	4	6	4	4	1	5
+JY8QFUQ01ARYWV	25	213	15	10	7	8	2	12	1	10
+JY8QFUQ01AS13P	18	213	13	5	7	6	3	9	2	4
+JY8QFUQ01AS1T0	14	213	10	4	4	6	0	6	2	6
+JY8QFUQ01AS22B	27	210	12	15	2	10	5	10	1	11
+JY8QFUQ01AS24X	8	213	5	3	2	3	1	4	1	2
+JY8QFUQ01AS28D	62	213	27	35	17	10	9	26	3	24
+JY8QFUQ01AS5EL	1	210	0	1	0	0	0	0	0	1
+JY8QFUQ01AS6B9	13	213	8	5	4	4	2	6	1	4
+JY8QFUQ01AS9TS	28	213	19	9	10	9	9	13	2	4
+JY8QFUQ01ASBBA	12	213	6	6	5	1	2	5	1	4
+JY8QFUQ01ASGTL	30	213	23	7	14	9	7	12	3	8
+JY8QFUQ01ASIFV	10	213	6	4	5	1	3	3	1	3
+JY8QFUQ01ASKXZ	15	211	9	6	4	5	6	4	1	4
+JY8QFUQ01ASLW8	11	213	7	4	4	3	3	2	1	5
+JY8QFUQ01ASMJE	17	213	8	9	4	4	4	9	0	4
+JY8QFUQ01ASMT6	16	216	12	4	6	6	5	8	0	3
+JY8QFUQ01ASO1O	16	210	11	5	7	4	4	7	2	3
+JY8QFUQ01ASOW0	13	213	10	3	7	3	3	3	1	6
+JY8QFUQ01ASS6V	17	213	12	5	10	2	2	5	2	8
+JY8QFUQ01ASSCV	10	213	7	3	3	4	2	3	0	5
+JY8QFUQ01ASTYN	34	209	17	17	9	8	4	19	2	9
+JY8QFUQ01ASUCZ	27	213	13	14	9	4	6	11	2	8
+JY8QFUQ01ASUXV	16	216	11	5	7	4	7	4	0	5
+JY8QFUQ01ASVJP	25	213	20	5	9	11	4	13	1	7
+JY8QFUQ01ASZ0M	31	209	13	18	8	5	9	15	2	5
+JY8QFUQ01AT4NT	24	212	15	9	9	6	6	8	3	7
+JY8QFUQ01AT5TS	8	213	4	4	3	1	2	2	0	4
+JY8QFUQ01AT8HH	33	216	18	15	11	7	5	18	3	7
+JY8QFUQ01ATA76	0	219	0	0	0	0	0	0	0	0
+JY8QFUQ01ATDOT	14	210	9	5	3	6	2	7	1	4
+JY8QFUQ01ATIZV	25	210	15	10	8	7	8	10	3	4
+JY8QFUQ01ATJ6D	9	213	6	3	5	1	2	3	2	2
+JY8QFUQ01ATK2N	22	210	18	4	11	7	7	6	1	8
+JY8QFUQ01ATP88	26	210	16	10	11	5	9	10	0	7
+JY8QFUQ01ATQIC	11	213	6	5	2	4	4	2	1	4
+JY8QFUQ01ATVSF	12	212	2	10	0	2	2	2	1	7
+JY8QFUQ01ATWCJ	23	212	16	7	8	8	5	12	2	4
+JY8QFUQ01ATX94	16	218	10	6	7	3	2	9	2	3
+JY8QFUQ01AU02Q	27	216	16	11	8	8	3	12	2	10
+JY8QFUQ01AU76E	25	213	11	14	8	3	6	10	2	7
+JY8QFUQ01AUADL	27	213	17	10	12	5	9	12	1	5
+JY8QFUQ01AUD41	25	213	11	14	8	3	6	10	2	7
+JY8QFUQ01AUF6C	30	213	14	16	7	7	4	14	2	10
+JY8QFUQ01AUH73	19	213	11	8	7	4	3	8	0	8
+JY8QFUQ01AUI48	8	213	4	4	2	2	1	4	1	2
+JY8QFUQ01AUJ6M	14	212	6	8	4	2	5	1	2	6
+JY8QFUQ01AURES	25	212	9	16	7	2	5	12	2	6
+JY8QFUQ01AUU0J	15	213	6	9	5	1	4	5	0	6
+JY8QFUQ01AUUPD	14	210	9	5	3	6	2	7	1	4
+JY8QFUQ01AUVXR	18	213	8	10	1	7	3	4	0	11
+JY8QFUQ01AUYQV	21	210	13	8	10	3	7	7	0	7
+JY8QFUQ01AV09F	39	216	23	16	15	8	12	16	0	11
+JY8QFUQ01AV2V7	20	219	15	5	9	6	4	9	1	6
+JY8QFUQ01AV3HD	20	213	13	7	9	4	5	7	2	6
+JY8QFUQ01AV3VG	23	212	12	11	9	3	6	8	3	6
+JY8QFUQ01AV7LU	22	213	14	8	9	5	3	13	0	6
+JY8QFUQ01AV8RW	14	213	8	6	7	1	3	7	0	4
+JY8QFUQ01AVA0Q	9	216	9	0	7	2	3	2	3	1
+JY8QFUQ01AVB4I	22	213	11	11	9	2	6	8	0	8
+JY8QFUQ01AVBM5	26	213	18	8	10	8	9	6	3	8
+JY8QFUQ01AVDHQ	15	213	7	8	4	3	2	2	0	11
+JY8QFUQ01AVEUZ	12	213	7	5	4	3	1	3	2	6
+JY8QFUQ01AVHAA	30	213	18	12	11	7	12	11	0	7
+JY8QFUQ01AVLE1	23	213	14	9	9	5	6	7	1	9
+JY8QFUQ01AVMZN	40	210	24	16	12	12	7	24	2	7
+JY8QFUQ01AVNE7	14	213	7	7	5	2	4	3	1	6
+JY8QFUQ01AVOVU	3	208	3	0	1	2	0	1	0	2
+JY8QFUQ01AVPMG	16	216	8	8	3	5	3	6	0	7
+JY8QFUQ01AVQ0D	6	213	3	3	1	2	1	2	0	3
+JY8QFUQ01AVQBY	17	213	9	8	5	4	3	10	0	4
+JY8QFUQ01AVT39	26	213	19	7	8	11	7	7	2	10
+JY8QFUQ01AVZKB	36	213	21	15	7	14	5	18	3	10
+JY8QFUQ01AW02O	28	213	15	13	6	9	10	8	5	5
+JY8QFUQ01AW9GE	38	216	17	21	7	10	8	18	1	11
+JY8QFUQ01AWGJ4	21	213	13	8	8	5	4	10	3	4
+JY8QFUQ01AWIJ1	32	210	14	18	8	6	3	19	1	9
+JY8QFUQ01AWLNY	14	222	10	4	4	6	6	3	2	3
+JY8QFUQ01AWOLO	15	212	8	7	7	1	2	4	0	9
+JY8QFUQ01AWOO7	25	213	12	13	6	6	6	7	3	9
+JY8QFUQ01AWPED	17	213	11	6	6	5	3	5	2	7
+JY8QFUQ01AWSX6	11	213	5	6	1	4	0	3	2	6
+JY8QFUQ01AX0TL	21	215	10	11	6	4	3	8	1	9
+JY8QFUQ01AX3JG	16	213	10	6	7	3	1	8	1	6
+JY8QFUQ01AX7BT	28	210	16	12	9	7	7	12	4	5
+JY8QFUQ01AX7OK	13	213	9	4	6	3	2	6	1	4
+JY8QFUQ01AXASL	17	212	7	10	2	5	3	5	1	8
+JY8QFUQ01AXCGR	12	213	7	5	2	5	1	7	0	4
+JY8QFUQ01AXE56	33	212	16	17	6	10	3	15	2	13
+JY8QFUQ01AXNWU	9	213	4	5	3	1	1	4	1	3
+JY8QFUQ01AXTRO	16	213	7	9	4	3	2	8	0	6
+JY8QFUQ01AXVCI	14	213	6	8	3	3	3	4	2	5
+JY8QFUQ01AXXC6	14	213	11	3	2	9	3	4	0	7
+JY8QFUQ01AY7GI	22	212	12	10	7	5	2	13	1	6
+JY8QFUQ01AY8MO	21	210	11	10	8	3	8	6	2	5
+JY8QFUQ01AY94E	12	216	3	9	2	1	1	5	2	4
+JY8QFUQ01AYCCC	19	213	12	7	11	1	4	8	0	7
+JY8QFUQ01AYFQ1	21	213	13	8	8	5	4	7	2	8
+JY8QFUQ01AYG87	23	212	12	11	7	5	7	11	0	5
+JY8QFUQ01AYHQQ	14	219	9	5	3	6	4	6	0	4
+JY8QFUQ01AYHQY	8	212	5	3	2	3	1	2	0	5
+JY8QFUQ01AYINE	17	213	10	7	5	5	5	9	0	3
+JY8QFUQ01AYL0X	12	180	7	5	5	2	6	2	1	3
+JY8QFUQ01AYR4C	11	213	4	7	3	1	2	5	3	1
+JY8QFUQ01AYTLP	37	212	19	18	10	9	6	18	1	12
+JY8QFUQ01AYXP4	14	216	5	9	3	2	3	7	1	3
+JY8QFUQ01AYY7V	27	210	14	13	8	6	6	5	1	15
+JY8QFUQ01AZ2OV	25	213	13	12	8	5	4	14	2	5
+JY8QFUQ01AZ3Q8	27	210	13	14	5	8	1	17	2	7
+JY8QFUQ01AZ72P	14	212	8	6	6	2	1	12	0	1
+JY8QFUQ01AZ89E	8	216	7	1	6	1	4	3	0	1
+JY8QFUQ01AZAYV	33	213	15	18	7	8	10	12	5	6
+JY8QFUQ01AZCLU	9	213	5	4	5	0	1	4	0	4
+JY8QFUQ01AZEES	17	219	12	5	6	6	4	8	2	3
+JY8QFUQ01AZK7Y	10	213	7	3	4	3	2	3	1	4
+JY8QFUQ01AZQ2B	47	213	23	24	15	8	11	21	1	14
+JY8QFUQ01AZRH6	14	213	8	6	3	5	2	6	1	5
+JY8QFUQ01AZRKU	24	212	15	9	6	9	3	9	3	9
+JY8QFUQ01AZTNG	0	219	0	0	0	0	0	0	0	0
+JY8QFUQ01AZU0Q	40	210	25	15	13	12	7	24	2	7
+JY8QFUQ01AZUTN	11	213	6	5	4	2	3	6	1	1
+JY8QFUQ01AZZ31	22	216	14	8	8	6	10	6	1	5
+JY8QFUQ01B00R6	25	213	18	7	8	10	8	8	1	8
+JY8QFUQ01B02KX	0	212	0	0	0	0	0	0	0	0
+JY8QFUQ01B03TR	6	213	3	3	1	2	1	3	2	0
+JY8QFUQ01B07O4	12	213	7	5	2	5	1	7	0	4
+JY8QFUQ01B08DF	13	216	10	3	6	4	2	8	1	2
+JY8QFUQ01B09U4	15	213	9	6	2	7	3	4	1	7
+JY8QFUQ01B0B79	23	198	15	8	8	7	4	4	3	12
+JY8QFUQ01B0BDK	22	213	13	9	7	6	5	8	1	8
+JY8QFUQ01B0DOB	13	213	8	5	4	4	4	5	0	4
+JY8QFUQ01B0E0W	9	212	6	3	5	1	1	2	1	5
+JY8QFUQ01B0E54	39	213	23	16	11	12	7	19	2	11
+JY8QFUQ01B0F0W	13	213	8	5	3	5	1	5	3	4
+JY8QFUQ01B0GQK	11	213	7	4	4	3	2	5	0	4
+JY8QFUQ01B0JWX	47	216	25	22	13	12	12	16	0	19
+JY8QFUQ01B0K72	20	210	11	9	5	6	6	8	1	5
+JY8QFUQ01B0M6T	27	213	17	10	13	4	3	16	3	5
+JY8QFUQ01B0MEN	8	212	4	4	1	3	4	2	0	2
+JY8QFUQ01B0SLO	15	213	7	8	4	3	2	8	1	4
+JY8QFUQ01B0YFD	17	215	12	5	8	4	4	6	2	5
+JY8QFUQ01B0Z32	17	213	10	7	6	4	2	4	1	10
+JY8QFUQ01B0ZM2	14	213	11	3	8	3	2	5	2	5
+JY8QFUQ01B11DU	7	213	4	3	3	1	1	3	2	1
+JY8QFUQ01B14S8	37	212	17	20	9	8	9	16	2	10
+JY8QFUQ01B1B92	30	213	16	14	9	7	6	12	2	10
+JY8QFUQ01B1CH3	25	213	15	10	9	6	5	10	3	7
+JY8QFUQ01B1HDC	32	216	15	17	10	5	5	15	1	11
+JY8QFUQ01B1HSY	28	210	18	10	13	5	6	13	2	7
+JY8QFUQ01B1L81	20	210	11	9	5	6	6	8	1	5
+JY8QFUQ01B1N7G	25	219	18	7	9	9	10	7	2	6
+JY8QFUQ01B1RUY	31	213	15	16	8	7	5	16	3	7
+JY8QFUQ01B1TCN	20	210	11	9	8	3	3	8	0	9
+JY8QFUQ01B1UHR	16	213	6	10	2	4	2	7	0	7
+JY8QFUQ01B1UYR	46	213	26	20	13	13	11	21	6	8
+JY8QFUQ01B1W4F	18	213	13	5	7	6	1	6	2	9
+JY8QFUQ01B1X3U	13	213	6	7	4	2	3	4	0	6
+JY8QFUQ01B1Y16	19	213	14	5	12	2	6	5	3	5
+JY8QFUQ01B20H0	3	213	2	1	0	2	0	2	0	1
+JY8QFUQ01B27X3	10	212	2	8	2	0	1	2	0	7
+JY8QFUQ01B2ARX	14	213	5	9	4	1	2	6	2	4
+JY8QFUQ01B2D9Z	13	213	5	8	2	3	3	4	1	5
+JY8QFUQ01B2ERL	26	213	14	12	8	6	4	15	2	5
+JY8QFUQ01B2GU8	15	210	9	6	2	7	4	5	0	6
+JY8QFUQ01B2JOM	13	209	9	4	6	3	3	2	2	6
+JY8QFUQ01B2LDP	20	213	12	8	6	6	5	10	0	5
+JY8QFUQ01B2NHE	17	210	9	8	8	1	5	3	0	9
+JY8QFUQ01B2PNO	19	213	11	8	8	3	2	9	1	7
+JY8QFUQ01B325I	37	216	16	21	6	10	8	17	1	11
+JY8QFUQ01B3AX2	26	213	18	8	11	7	6	10	2	8
+JY8QFUQ01B3AYN	18	213	11	7	8	3	4	6	0	8
+JY8QFUQ01B3G3T	11	212	7	4	4	3	1	1	1	8
+JY8QFUQ01B3HMA	22	215	11	11	7	4	3	8	1	10
+JY8QFUQ01B3IOP	24	219	14	10	8	6	4	9	2	9
+JY8QFUQ01B3JLF	33	216	17	16	11	6	5	16	1	11
+JY8QFUQ01B3L4U	14	213	7	7	3	4	3	7	0	4
+JY8QFUQ01B3OBX	20	219	14	6	8	6	2	9	3	6
+JY8QFUQ01B3P0G	25	212	12	13	8	4	3	10	1	11
+JY8QFUQ01B3S4F	11	213	6	5	2	4	4	2	1	4
+JY8QFUQ01B3TI8	20	213	12	8	6	6	5	10	0	5
+JY8QFUQ01B3TT1	33	213	18	15	12	6	6	17	2	8
+JY8QFUQ01B3XMD	27	213	13	14	5	8	5	13	0	9
+JY8QFUQ01B4CN9	22	216	13	9	10	3	4	10	2	6
+JY8QFUQ01B4F4Q	31	213	16	15	9	7	7	11	2	11
+JY8QFUQ01B4FE6	12	213	9	3	5	4	4	2	2	4
+JY8QFUQ01B4FME	13	213	9	4	5	4	5	3	3	2
+JY8QFUQ01B4L0R	19	213	11	8	7	4	5	5	0	9
+JY8QFUQ01B4VTT	14	213	6	8	4	2	5	1	2	6
+JY8QFUQ01B4X7N	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01B4XPK	5	216	4	1	1	3	4	0	0	1
+JY8QFUQ01B4Y1N	13	222	7	6	4	3	1	7	0	5
+JY8QFUQ01B50HH	18	213	7	11	5	2	4	7	1	6
+JY8QFUQ01B53SB	41	210	21	20	11	10	5	27	2	7
+JY8QFUQ01B569F	13	213	10	3	7	3	3	3	1	6
+JY8QFUQ01B56F9	21	213	11	10	4	7	1	4	0	16
+JY8QFUQ01B56VC	17	218	11	6	7	4	5	6	1	5
+JY8QFUQ01B58W5	16	213	9	7	5	4	4	4	1	7
+JY8QFUQ01B5F34	24	213	10	14	8	2	6	8	4	6
+JY8QFUQ01B5GFJ	12	213	9	3	4	5	0	4	2	6
+JY8QFUQ01B5QDY	22	213	17	5	11	6	4	9	3	6
+JY8QFUQ01B5SAT	0	212	0	0	0	0	0	0	0	0
+JY8QFUQ01B5VR4	10	213	5	5	3	2	2	2	0	6
+JY8QFUQ01B5XE3	29	215	17	12	11	6	7	15	2	5
+JY8QFUQ01B5XEH	7	145	3	4	2	1	4	2	1	0
+JY8QFUQ01B641M	6	213	3	3	1	2	2	1	1	2
+JY8QFUQ01B64QD	18	209	14	4	10	4	7	8	1	2
+JY8QFUQ01B6832	22	209	7	15	5	2	2	12	2	6
+JY8QFUQ01B68YS	16	213	9	7	6	3	2	7	0	7
+JY8QFUQ01B6BDJ	12	213	9	3	6	3	3	6	0	3
+JY8QFUQ01B6CFI	23	213	13	10	4	9	5	8	4	6
+JY8QFUQ01B6DDX	25	213	16	9	7	9	3	9	2	11
+JY8QFUQ01B6G3Q	36	216	20	16	10	10	5	21	2	8
+JY8QFUQ01B6LHF	28	213	19	9	11	8	4	9	1	14
+JY8QFUQ01B6LVM	23	213	15	8	9	6	5	8	5	5
+JY8QFUQ01B6UYE	15	213	6	9	5	1	4	5	0	6
+JY8QFUQ01B70J3	10	213	5	5	3	2	2	2	0	6
+JY8QFUQ01B71ED	32	213	23	9	13	10	8	13	3	8
+JY8QFUQ01B757D	58	216	28	30	16	12	9	29	1	19
+JY8QFUQ01B791I	14	213	7	7	5	2	3	4	2	5
+JY8QFUQ01B7921	15	213	12	3	6	6	3	4	4	4
+JY8QFUQ01B7B1B	7	213	3	4	2	1	2	2	1	2
+JY8QFUQ01B7DZ7	14	213	5	9	4	1	2	6	2	4
+JY8QFUQ01B7GYB	21	213	14	7	9	5	6	7	1	7
+JY8QFUQ01B7L1I	5	213	2	3	1	1	0	1	0	4
+JY8QFUQ01B7Q12	12	213	8	4	3	5	1	7	0	4
+JY8QFUQ01B7TWW	10	213	4	6	0	4	0	2	2	6
+JY8QFUQ01B7VBT	19	209	10	9	6	4	3	8	0	8
+JY8QFUQ01B7XXQ	22	219	12	10	6	6	4	13	1	4
+JY8QFUQ01B81W4	15	213	10	5	4	6	4	8	0	3
+JY8QFUQ01B84I1	22	216	15	7	6	9	3	10	1	8
+JY8QFUQ01B8ABJ	18	213	11	7	7	4	5	8	1	4
+JY8QFUQ01B8AC6	21	213	11	10	8	3	3	7	2	9
+JY8QFUQ01B8DLI	21	213	15	6	7	8	4	10	2	5
+JY8QFUQ01B8DVS	18	213	12	6	7	5	3	5	0	10
+JY8QFUQ01B8JYP	22	209	14	8	7	7	7	7	1	7
+JY8QFUQ01B8T6Y	21	213	10	11	6	4	3	13	2	3
+JY8QFUQ01B8WF3	15	219	11	4	7	4	4	5	0	6
+JY8QFUQ01B8YQQ	14	213	5	9	3	2	6	4	0	4
+JY8QFUQ01B90UJ	18	212	9	9	4	5	2	12	0	4
+JY8QFUQ01B93WH	12	215	4	8	2	2	2	6	1	3
+JY8QFUQ01B978H	33	213	17	16	13	4	9	10	2	12
+JY8QFUQ01B9C4B	18	210	11	7	8	3	5	5	1	7
+JY8QFUQ01B9DAH	22	216	11	11	6	5	2	14	0	6
+JY8QFUQ01B9L1U	9	216	4	5	1	3	0	5	0	4
+JY8QFUQ01B9LAE	21	212	13	8	9	4	3	9	2	7
+JY8QFUQ01B9LAR	14	212	7	7	3	4	3	7	0	4
+JY8QFUQ01B9NGM	14	219	9	5	3	6	4	6	0	4
+JY8QFUQ01B9QXU	24	209	17	7	12	5	6	12	1	5
+JY8QFUQ01B9RA3	15	212	6	9	2	4	3	4	1	7
+JY8QFUQ01B9S8H	14	213	6	8	3	3	4	4	1	5
+JY8QFUQ01B9TMK	29	216	15	14	10	5	7	10	2	10
+JY8QFUQ01B9UZ4	12	213	8	4	5	3	0	7	4	1
+JY8QFUQ01B9XU2	14	216	10	4	6	4	4	8	0	2
+JY8QFUQ01BAB5T	8	219	4	4	1	3	1	3	0	4
+JY8QFUQ01BACNA	12	212	5	7	2	3	5	4	0	3
+JY8QFUQ01BAGKP	32	216	20	12	11	9	10	12	3	7
+JY8QFUQ01BAGOW	18	222	11	7	5	6	6	7	2	3
+JY8QFUQ01BAKGF	28	216	19	9	12	7	7	14	2	5
+JY8QFUQ01BAR1C	21	213	12	9	6	6	4	9	1	7
+JY8QFUQ01BB73D	39	210	20	19	8	12	5	24	2	8
+JY8QFUQ01BB93X	15	212	11	4	9	2	6	6	1	2
+JY8QFUQ01BB9AK	26	210	15	11	8	7	7	11	4	4
+JY8QFUQ01BBDL1	22	212	13	9	7	6	5	9	3	5
+JY8QFUQ01BBLQU	14	213	9	5	6	3	5	3	1	5
+JY8QFUQ01BBQG8	13	210	9	4	4	5	2	4	1	6
+JY8QFUQ01BBSRC	31	216	18	13	9	9	5	16	3	7
+JY8QFUQ01BBTVQ	20	211	10	10	4	6	2	14	0	4
+JY8QFUQ01BBVFC	31	213	19	12	8	11	4	11	5	11
+JY8QFUQ01BBZEX	22	213	10	12	5	5	4	14	1	3
+JY8QFUQ01BC153	9	211	4	5	3	1	1	4	0	4
+JY8QFUQ01BCH7Y	13	213	5	8	2	3	3	4	1	5
+JY8QFUQ01BCMPS	15	210	9	6	2	7	4	5	0	6
+JY8QFUQ01BCV43	13	213	10	3	7	3	3	3	1	6
+JY8QFUQ01BD04C	13	213	8	5	5	3	3	5	0	5
+JY8QFUQ01BDGDZ	6	216	4	2	2	2	2	2	0	2
+JY8QFUQ01BDIEE	8	210	3	5	2	1	2	6	0	0
+JY8QFUQ01BDNIC	23	213	14	9	4	10	7	9	3	4
+JY8QFUQ01BDPXU	23	216	13	10	8	5	5	10	1	7
+JY8QFUQ01BDTL8	26	211	16	10	7	9	5	10	3	8
+JY8QFUQ01BE0DI	8	213	5	3	2	3	1	4	1	2
+JY8QFUQ01BE108	29	210	21	8	13	8	9	10	1	9
+JY8QFUQ01BE4D2	27	209	15	12	10	5	6	11	0	10
+JY8QFUQ01BE5D4	26	210	12	14	5	7	3	14	0	9
+JY8QFUQ01BE8AK	17	213	12	5	7	5	3	4	5	5
+JY8QFUQ01BEABE	22	213	10	12	5	5	4	14	1	3
+JY8QFUQ01BEJQP	46	216	31	15	16	15	10	18	2	16
+JY8QFUQ01BEQ83	22	213	14	8	8	6	5	10	2	5
+JY8QFUQ01BERKI	21	219	14	7	8	6	6	5	1	9
+JY8QFUQ01BESQ8	13	210	9	4	6	3	3	2	0	8
+JY8QFUQ01BETLC	10	213	8	2	5	3	1	3	1	5
+JY8QFUQ01BEUNL	11	213	5	6	4	1	3	5	0	3
+JY8QFUQ01BF8CL	7	216	6	1	5	1	4	1	1	1
+JY8QFUQ01BF9YK	7	210	5	2	5	0	2	2	2	1
+JY8QFUQ01BFB0Q	25	212	14	11	10	4	7	11	2	5
+JY8QFUQ01BFHSP	28	210	17	11	13	4	2	11	2	13
+JY8QFUQ01BFI4C	11	212	7	4	2	5	1	6	0	4
+JY8QFUQ01BFROD	36	216	23	13	13	10	8	18	2	8
+JY8QFUQ01BFWP5	12	213	9	3	4	5	0	4	2	6
+JY8QFUQ01BFXYS	26	210	17	9	10	7	5	12	3	6
+JY8QFUQ01BFYFA	13	213	6	7	4	2	2	9	0	2
+JY8QFUQ01BFZOR	29	213	18	11	12	6	7	9	2	11
+JY8QFUQ01BG2F7	22	213	13	9	11	2	7	8	2	5
+JY8QFUQ01BG5T6	10	213	4	6	1	3	2	3	0	5
+JY8QFUQ01BG66X	26	213	14	12	10	4	7	11	1	7
+JY8QFUQ01BG922	13	213	3	10	1	2	2	3	1	7
+JY8QFUQ01BGDEX	38	213	20	18	11	9	6	18	1	13
+JY8QFUQ01BGEYK	20	213	11	9	7	4	4	9	3	4
+JY8QFUQ01BGFCA	20	213	12	8	6	6	5	10	0	5
+JY8QFUQ01BGGO2	23	213	11	12	7	4	3	13	1	6
+JY8QFUQ01BGI0O	18	213	7	11	5	2	4	7	1	6
+JY8QFUQ01BGMBI	30	213	13	17	8	5	6	10	2	12
+JY8QFUQ01BGNSE	53	216	27	26	12	15	10	22	2	19
+JY8QFUQ01BGR80	8	212	4	4	1	3	4	2	0	2
+JY8QFUQ01BGUIW	12	213	5	7	2	3	5	3	0	4
+JY8QFUQ01BGVCA	15	213	11	4	7	4	2	6	2	5
+JY8QFUQ01BGY6V	14	216	9	5	6	3	5	5	0	4
+JY8QFUQ01BH03V	23	210	15	8	8	7	4	6	0	13
+JY8QFUQ01BH0GH	25	213	12	13	6	6	6	7	3	9
+JY8QFUQ01BH1QX	26	213	14	12	8	6	4	15	2	5
+JY8QFUQ01BH2A1	16	213	9	7	4	5	6	3	2	5
+JY8QFUQ01BH7NG	13	210	8	5	5	3	3	4	0	6
+JY8QFUQ01BHCZE	33	213	20	13	12	8	8	9	5	11
+JY8QFUQ01BHGDW	18	213	8	10	4	4	1	4	0	13
+JY8QFUQ01BHITL	31	213	13	18	9	4	5	12	3	11
+JY8QFUQ01BHN1C	20	209	11	9	5	6	6	8	1	5
+JY8QFUQ01BI347	28	213	16	12	9	7	7	11	2	8
+JY8QFUQ01BIGLC	9	212	6	3	5	1	1	2	1	5
+JY8QFUQ01BIHI6	8	213	6	2	5	1	1	3	1	3
+JY8QFUQ01BIM6Q	1	213	0	1	0	0	0	0	0	1
+JY8QFUQ01BISS5	37	212	25	12	14	11	10	12	2	13
+JY8QFUQ01BIVV0	18	213	10	8	5	5	5	6	1	6
+JY8QFUQ01BIWEF	12	213	5	7	4	1	2	4	1	5
+JY8QFUQ01BJ4VI	20	213	11	9	5	6	4	9	1	6
+JY8QFUQ01BJN3B	23	210	15	8	9	6	4	10	3	6
+JY8QFUQ01BJPU6	35	213	18	17	9	9	6	19	0	10
+JY8QFUQ01BJT4G	16	213	6	10	4	2	2	8	0	6
+JY8QFUQ01BJUHM	15	213	9	6	5	4	2	8	0	5
+JY8QFUQ01BJURD	13	216	10	3	6	4	2	8	1	2
+JY8QFUQ01BJV9I	21	213	12	9	7	5	5	8	0	8
+JY8QFUQ01BJVZ3	20	213	11	9	5	6	2	14	0	4
+JY8QFUQ01BJWBZ	16	213	10	6	5	5	3	4	0	9
+JY8QFUQ01BJYH6	26	212	20	6	13	7	6	8	3	9
+JY8QFUQ01BKBQY	20	213	15	5	9	6	6	6	1	7
+JY8QFUQ01BKF2J	42	213	28	14	15	13	13	11	2	16
+JY8QFUQ01BKJ53	15	212	6	9	2	4	3	4	1	7
+JY8QFUQ01BKRE0	9	213	5	4	2	3	2	4	3	0
+JY8QFUQ01BKUNY	25	216	13	12	8	5	6	10	1	8
+JY8QFUQ01BKXS7	28	210	16	12	11	5	7	11	0	10
+JY8QFUQ01BL6V1	35	210	21	14	11	10	4	14	0	17
+JY8QFUQ01BLAI9	9	213	7	2	5	2	1	3	0	5
+JY8QFUQ01BLEDM	20	213	9	11	4	5	3	6	0	11
+JY8QFUQ01BLGCA	12	210	5	7	3	2	2	4	2	4
+JY8QFUQ01BLGYX	19	213	10	9	7	3	3	12	0	4
+JY8QFUQ01BLTJO	30	213	14	16	10	4	9	10	3	8
+JY8QFUQ01BLX8G	6	213	3	3	1	2	1	2	0	3
+JY8QFUQ01BM58O	22	213	15	7	6	9	6	6	1	9
+JY8QFUQ01BM6Z0	25	213	15	10	7	8	2	12	1	10
+JY8QFUQ01BM80W	18	213	10	8	5	5	5	6	1	6
+JY8QFUQ01BM96X	17	213	10	7	5	5	4	7	0	6
+JY8QFUQ01BMLGO	30	213	15	15	8	7	2	17	3	8
+JY8QFUQ01BMOB5	10	213	4	6	3	1	4	2	0	4
+JY8QFUQ01BMQ8K	14	213	7	7	2	5	3	6	2	3
+JY8QFUQ01BN0IG	8	213	4	4	3	1	2	2	0	4
+JY8QFUQ01BN1A6	27	213	16	11	5	11	3	11	2	11
+JY8QFUQ01BN76B	26	213	20	6	13	7	3	11	3	9
+JY8QFUQ01BNHM6	13	212	8	5	7	1	3	7	0	3
+JY8QFUQ01BNNYX	11	216	10	1	7	3	3	3	0	5
+JY8QFUQ01BNQ6N	19	210	11	8	7	4	6	4	0	9
+JY8QFUQ01BNS72	20	216	11	9	7	4	5	8	1	6
+JY8QFUQ01BNVKG	33	210	18	15	11	7	7	11	0	15
+JY8QFUQ01BNXKI	20	212	11	9	5	6	2	14	0	4
+JY8QFUQ01BNYDH	14	215	7	7	4	3	4	5	1	4
+JY8QFUQ01BO1TD	24	213	17	7	10	7	3	9	2	10
+JY8QFUQ01BO2JV	13	213	9	4	6	3	4	4	1	4
+JY8QFUQ01BO2V4	28	213	17	11	11	6	5	7	2	14
+JY8QFUQ01BO4ET	12	213	5	7	2	3	5	4	0	3
+JY8QFUQ01BO7P5	30	213	26	4	16	10	11	9	3	7
+JY8QFUQ01BO8WN	30	216	17	13	11	6	7	15	3	5
+JY8QFUQ01BOBY3	22	213	14	8	8	6	7	9	0	6
+JY8QFUQ01BOMV5	21	213	13	8	9	4	3	9	2	7
+JY8QFUQ01BP3RA	13	210	8	5	3	5	2	10	0	1
+JY8QFUQ01BP55P	17	212	11	6	7	4	3	4	5	5
+JY8QFUQ01BPG8K	19	210	10	9	6	4	3	8	0	8
+JY8QFUQ01BPT7N	7	213	3	4	1	2	0	3	1	3
+JY8QFUQ01BQ0GT	26	213	16	10	8	8	6	10	2	8
+JY8QFUQ01BQ3I3	21	213	13	8	8	5	3	10	1	7
+JY8QFUQ01BQ9G8	7	213	3	4	2	1	1	2	0	4
+JY8QFUQ01BQAON	30	213	17	13	9	8	4	10	1	15
+JY8QFUQ01BQCNP	35	216	17	18	11	6	6	18	2	9
+JY8QFUQ01BQERB	24	213	13	11	10	3	5	11	1	7
+JY8QFUQ01BQLNQ	16	213	9	7	7	2	2	5	0	9
+JY8QFUQ01BQMY8	6	213	4	2	3	1	1	3	0	2
+JY8QFUQ01BQQG5	43	213	22	21	10	12	5	23	3	12
+JY8QFUQ01BR1YM	8	213	3	5	2	1	1	0	0	7
+JY8QFUQ01BR9Q4	27	213	20	7	10	10	8	8	0	11
+JY8QFUQ01BRBL7	28	210	16	12	9	7	7	12	4	5
+JY8QFUQ01BREFM	24	213	11	13	8	3	9	7	3	5
+JY8QFUQ01BRF2O	15	213	9	6	4	5	0	4	3	8
+JY8QFUQ01BRIHD	8	213	5	3	2	3	1	2	0	5
+JY8QFUQ01BRQMG	14	222	10	4	4	6	6	3	2	3
+JY8QFUQ01BRZIH	22	213	12	10	8	4	5	6	5	6
+JY8QFUQ01BS2Q3	27	213	10	17	5	5	4	14	2	7
+JY8QFUQ01BS2WD	17	213	7	10	3	4	3	5	0	9
+JY8QFUQ01BSD92	10	213	6	4	1	5	0	7	0	3
+JY8QFUQ01BSDSX	9	213	5	4	5	0	1	4	0	4
+JY8QFUQ01BSGWN	14	213	9	5	2	7	2	4	1	7
+JY8QFUQ01BSOH5	16	212	7	9	3	4	4	8	0	4
+JY8QFUQ01BSRSP	15	210	6	9	4	2	3	9	0	3
+JY8QFUQ01BSZDV	17	213	9	8	4	5	4	7	1	5
+JY8QFUQ01BT5A6	19	213	8	11	4	4	4	11	0	4
+JY8QFUQ01BT5S9	13	216	7	6	5	2	1	4	4	4
+JY8QFUQ01BTAHR	23	213	8	15	6	2	2	15	1	5
+JY8QFUQ01BTCL3	9	213	4	5	3	1	1	2	0	6
+JY8QFUQ01BTIAT	17	213	10	7	5	5	5	9	0	3
+JY8QFUQ01BTOR9	22	219	13	9	8	5	5	6	1	10
+JY8QFUQ01BU31Q	21	213	9	12	7	2	5	8	3	5
+JY8QFUQ01BU3DY	11	213	3	8	1	2	1	6	1	3
+JY8QFUQ01BU5NL	23	210	14	9	10	4	9	7	2	5
+JY8QFUQ01BUAPX	31	213	21	10	9	12	9	10	1	11
+JY8QFUQ01BUG1S	15	213	9	6	7	2	3	9	0	3
+JY8QFUQ01BUJ4F	23	210	14	9	10	4	9	7	2	5
+JY8QFUQ01BUOZE	23	212	9	14	4	5	4	11	0	8
+JY8QFUQ01BV8FF	20	210	9	11	6	3	2	12	2	4
+JY8QFUQ01BVBOA	28	210	16	12	10	6	4	12	1	11
+JY8QFUQ01BVHS5	14	207	5	9	1	4	1	3	0	10
+JY8QFUQ01BVMIC	17	213	10	7	7	3	2	4	0	11
+JY8QFUQ01BVRVR	14	210	8	6	7	1	5	4	0	5
+JY8QFUQ01BWBZS	17	218	12	5	6	6	4	8	2	3
+JY8QFUQ01BWD62	21	210	10	11	6	4	5	12	1	3
+JY8QFUQ01BWIHJ	17	213	12	5	8	4	3	4	5	5
+JY8QFUQ01BX0QN	14	213	10	4	5	5	2	5	1	6
+JY8QFUQ01BX1DY	21	213	11	10	5	6	5	8	1	7
+JY8QFUQ01BX1X7	28	213	14	14	12	2	6	13	2	7
+JY8QFUQ01BX764	18	213	11	7	8	3	3	10	0	5
+JY8QFUQ01BXBPF	17	213	9	8	5	4	3	10	0	4
+JY8QFUQ01BXDPP	25	213	14	11	9	5	7	9	6	3
+JY8QFUQ01BXEXG	17	216	10	7	7	3	2	11	1	3
+JY8QFUQ01BXNFF	15	213	7	8	4	3	2	8	1	4
+JY8QFUQ01BXTDZ	14	210	8	6	6	2	2	4	1	7
+JY8QFUQ01BXZRW	27	213	14	13	8	6	3	13	3	8
+JY8QFUQ01BY0E2	14	213	9	5	5	4	2	7	2	3
+JY8QFUQ01BY2NW	16	213	5	11	2	3	3	4	0	9
+JY8QFUQ01BY2RR	30	213	20	10	11	9	8	9	3	10
+JY8QFUQ01BY3HN	23	213	16	7	8	8	5	12	1	5
+JY8QFUQ01BYDVO	33	213	15	18	7	8	10	12	5	6
+JY8QFUQ01BYFAI	25	213	13	12	7	6	4	7	0	14
+JY8QFUQ01BYGMF	15	213	5	10	3	2	1	3	1	10
+JY8QFUQ01BYOYM	22	213	13	9	9	4	6	4	1	11
+JY8QFUQ01BYP0E	10	213	8	2	5	3	1	3	1	5
+JY8QFUQ01BYRXT	46	213	26	20	13	13	11	21	6	8
+JY8QFUQ01BYXJU	16	213	7	9	3	4	3	9	0	4
+JY8QFUQ01BZEWU	30	213	19	11	14	5	6	13	2	9
+JY8QFUQ01C0J5I	14	213	11	3	2	9	3	4	0	7
+JY8QFUQ01C0LHV	20	213	10	10	5	5	6	9	1	4
+JY8QFUQ01C0T0E	18	213	13	5	8	5	6	10	1	1
+JY8QFUQ01C0V8V	18	212	8	10	5	3	4	6	3	5
+JY8QFUQ01C0YWV	20	219	14	6	8	6	2	9	3	6
+JY8QFUQ01C13EL	16	213	10	6	7	3	6	8	1	1
+JY8QFUQ01C160X	17	216	9	8	4	5	4	9	1	3
+JY8QFUQ01C17HE	29	213	16	13	5	11	4	12	2	11
+JY8QFUQ01C185F	33	219	24	9	14	10	9	10	2	12
+JY8QFUQ01C1QUY	25	213	17	8	12	5	4	12	2	7
+JY8QFUQ01C1UWI	16	213	9	7	7	2	7	6	1	2
+JY8QFUQ01C1WLX	13	213	9	4	2	7	1	8	1	3
+JY8QFUQ01C24ZT	6	213	2	4	1	1	2	1	1	2
+JY8QFUQ01C2553	23	213	16	7	8	8	3	9	2	9
+JY8QFUQ01C26ES	24	209	13	11	7	6	4	12	0	8
+JY8QFUQ01C28D8	14	213	5	9	1	4	4	5	2	3
+JY8QFUQ01C2A2E	18	210	8	10	5	3	4	8	2	4
+JY8QFUQ01C2JVO	16	213	9	7	6	3	2	7	2	5
+JY8QFUQ01C2XG5	15	213	6	9	2	4	1	6	2	6
+JY8QFUQ01C2XX8	23	213	14	9	14	0	6	9	1	7
+JY8QFUQ01C33GJ	18	213	9	9	3	6	5	4	0	9
+JY8QFUQ01C39LJ	16	213	7	9	2	5	2	6	1	7
+JY8QFUQ01C3FR9	20	216	12	8	8	4	3	12	0	5
+JY8QFUQ01C3HIA	19	213	7	12	5	2	4	7	2	6
+JY8QFUQ01C3HRU	25	213	14	11	7	7	3	12	2	8
+JY8QFUQ01C3JTT	17	211	7	10	6	1	4	6	1	6
+JY8QFUQ01C3KAU	24	213	14	10	7	7	3	10	1	10
+JY8QFUQ01C4D0M	16	210	7	9	5	2	6	4	0	6
+JY8QFUQ01C50HS	58	216	28	30	16	12	9	29	1	19
+JY8QFUQ01C5CP6	9	213	6	3	6	0	5	1	0	3
+JY8QFUQ01C5MCI	21	213	9	12	5	4	3	7	0	11
+JY8QFUQ01C6DDZ	17	213	11	6	5	6	1	9	1	6
+JY8QFUQ01C6GOS	18	216	12	6	11	1	6	6	2	4
+JY8QFUQ01C71OC	20	213	11	9	8	3	3	6	2	9
+JY8QFUQ01C73TY	16	216	8	8	3	5	3	6	0	7
+JY8QFUQ01C7540	15	213	8	7	5	3	1	6	2	6
+JY8QFUQ01C7QU9	11	213	8	3	4	4	3	4	0	4
+JY8QFUQ01C7ZZV	19	213	10	9	10	0	6	5	0	8
+JY8QFUQ01C819B	12	213	9	3	6	3	3	6	0	3
+JY8QFUQ01C847F	9	210	3	6	2	1	0	4	0	5
+JY8QFUQ01C8AA1	14	213	8	6	6	2	3	4	0	7
+JY8QFUQ01C8ASE	32	213	16	16	8	8	5	13	2	12
+JY8QFUQ01C8FEX	11	213	6	5	2	4	5	1	1	4
+JY8QFUQ01C8GT7	25	213	14	11	9	5	7	9	6	3
+JY8QFUQ01C8YUG	29	210	14	15	9	5	4	14	4	7
+JY8QFUQ01C9KPR	41	212	25	16	13	12	12	12	3	14
+JY8QFUQ01C9RTB	11	216	9	2	6	3	3	5	0	3
+JY8QFUQ01C9UFU	9	213	5	4	1	4	4	2	0	3
+JY8QFUQ01CA1G6	7	210	3	4	2	1	2	2	0	3
+JY8QFUQ01CA2ZN	12	213	9	3	7	2	2	5	2	3
+JY8QFUQ01CA830	23	213	14	9	6	8	6	6	1	10
+JY8QFUQ01CABXM	24	212	15	9	9	6	6	8	3	7
+JY8QFUQ01CAI7Q	25	216	15	10	4	11	6	11	1	7
+JY8QFUQ01CAN9N	10	213	7	3	2	5	0	6	1	3
+JY8QFUQ01CAR29	8	211	4	4	1	3	4	2	0	2
+JY8QFUQ01CB275	5	215	4	1	1	3	4	0	0	1
+JY8QFUQ01CB2DX	0	219	0	0	0	0	0	0	0	0
+JY8QFUQ01CBC07	47	213	22	25	16	6	10	20	3	14
+JY8QFUQ01CBLRN	20	213	9	11	4	5	3	6	3	8
+JY8QFUQ01CBORW	25	213	17	8	8	9	4	9	4	8
+JY8QFUQ01CBST2	19	213	9	10	7	2	3	6	0	10
+JY8QFUQ01CBUHR	49	216	30	19	22	8	8	20	3	18
+JY8QFUQ01CC9VV	19	213	12	7	8	4	4	7	1	7
+JY8QFUQ01CCN00	15	213	10	5	7	3	4	7	4	0
+JY8QFUQ01CCO0W	21	213	9	12	5	4	3	7	1	10
+JY8QFUQ01CCV7N	32	212	22	10	14	8	8	11	3	10
+JY8QFUQ01CCYR6	24	213	16	8	9	7	4	11	2	7
+JY8QFUQ01CCYZD	21	215	12	9	5	7	3	7	1	10
+JY8QFUQ01CCZ8L	13	212	9	4	4	5	4	3	1	5
+JY8QFUQ01CD8PO	5	215	4	1	1	3	4	0	0	1
+JY8QFUQ01CDA18	30	216	16	14	4	12	5	13	5	7
+JY8QFUQ01CDA2Z	26	213	15	11	10	5	5	12	2	7
+JY8QFUQ01CDCEV	18	209	10	8	6	4	5	7	0	6
+JY8QFUQ01CDHKA	18	213	12	6	7	5	3	5	0	10
+JY8QFUQ01CDYHQ	18	210	10	8	6	4	5	7	0	6
+JY8QFUQ01CE2OJ	31	210	16	15	9	7	9	13	1	8
+JY8QFUQ01CE4MI	0	219	0	0	0	0	0	0	0	0
+JY8QFUQ01CEBF1	14	213	7	7	6	1	3	5	0	6
+JY8QFUQ01CEEUJ	26	213	12	14	7	5	3	9	1	13
+JY8QFUQ01CEH7I	19	213	14	5	6	8	7	6	1	5
+JY8QFUQ01CF2KP	25	213	15	10	11	4	6	8	2	9
+JY8QFUQ01CF6ST	28	213	13	15	5	8	5	13	0	10
+JY8QFUQ01CF885	41	212	25	16	13	12	12	12	3	14
+JY8QFUQ01CGAYM	27	213	14	13	9	5	4	12	4	7
+JY8QFUQ01CGPNS	27	216	15	12	7	8	3	13	2	9
+JY8QFUQ01CGQAI	31	213	13	18	9	4	5	12	3	11
+JY8QFUQ01CGQES	14	213	8	6	5	3	3	3	5	3
+JY8QFUQ01CH326	1	213	0	1	0	0	0	0	0	1
+JY8QFUQ01CH338	12	212	8	4	5	3	2	2	1	7
+JY8QFUQ01CHBJS	21	213	14	7	11	3	0	9	3	9
+JY8QFUQ01CHFYS	42	213	28	14	15	13	13	11	2	16
+JY8QFUQ01CHKDD	14	213	9	5	6	3	2	5	2	5
+JY8QFUQ01CHVJ1	17	212	8	9	7	1	5	5	1	6
+JY8QFUQ01CI12B	3	208	3	0	1	2	0	1	0	2
+JY8QFUQ01CIMAM	17	210	9	8	8	1	5	3	0	9
+JY8QFUQ01CIOY1	13	213	8	5	4	4	4	5	0	4
+JY8QFUQ01CIQUI	9	213	5	4	5	0	1	4	0	4
+JY8QFUQ01CJ5TF	13	213	4	9	3	1	2	3	0	8
+JY8QFUQ01CJ990	8	212	1	7	1	0	0	3	0	5
+JY8QFUQ01CJG1W	31	213	13	18	4	9	3	20	2	6
+JY8QFUQ01CJV6U	29	213	14	15	11	3	5	10	1	13
+JY8QFUQ01CJYGN	15	213	6	9	3	3	1	5	1	8
+JY8QFUQ01CK280	19	216	14	5	6	8	3	9	0	7
+JY8QFUQ01CKFL6	21	213	14	7	8	6	4	8	3	6
+JY8QFUQ01CKI1Y	4	213	2	2	2	0	1	2	0	1
+JY8QFUQ01CKO1P	34	218	23	11	15	8	11	12	3	8
+JY8QFUQ01CKPJN	10	213	6	4	3	3	3	3	2	2
+JY8QFUQ01CKX6X	17	209	8	9	5	3	6	6	0	5
+JY8QFUQ01CL7VE	23	209	10	13	7	3	6	13	1	3
+JY8QFUQ01CLEAH	22	213	13	9	11	2	7	8	2	5
+JY8QFUQ01CLIT1	27	210	15	12	8	7	7	12	4	4
+JY8QFUQ01CLMWX	21	213	8	13	6	2	5	8	3	5
+JY8QFUQ01CLR99	13	210	9	4	6	3	3	2	0	8
+JY8QFUQ01CLXOH	13	213	5	8	1	4	1	6	1	5
+JY8QFUQ01CM33P	14	216	7	7	4	3	4	2	1	7
+JY8QFUQ01CM5UQ	10	213	7	3	4	3	2	3	1	4
+JY8QFUQ01CN7M5	16	213	13	3	11	2	4	3	0	9
+JY8QFUQ01CNEDF	12	213	8	4	5	3	4	3	1	4
+JY8QFUQ01CNH24	15	213	10	5	7	3	4	8	2	1
+JY8QFUQ01CNLWR	31	213	20	11	6	14	5	12	0	14
+JY8QFUQ01CNYY7	28	212	18	10	8	10	6	13	2	7
+JY8QFUQ01CO06K	21	216	14	7	5	9	3	9	1	8
+JY8QFUQ01CO7ZE	21	210	10	11	6	4	5	12	1	3
+JY8QFUQ01COIZ4	8	213	2	6	0	2	0	5	0	3
+JY8QFUQ01COT7A	20	213	10	10	9	1	5	6	0	9
+JY8QFUQ01COULV	22	216	11	11	7	4	3	8	1	10
+JY8QFUQ01CP6A0	12	219	7	5	6	1	4	4	1	3
+JY8QFUQ01CPEX7	29	213	17	12	9	8	7	11	2	9
+JY8QFUQ01CPKFW	24	219	15	9	10	5	7	9	1	7
+JY8QFUQ01CQ2DI	19	213	8	11	5	3	3	6	3	7
+JY8QFUQ01CQFLG	20	216	12	8	8	4	3	12	0	5
+JY8QFUQ01CQHUH	21	213	15	6	11	4	3	8	2	8
+JY8QFUQ01CQKI9	15	213	11	4	7	4	2	6	0	7
+JY8QFUQ01CQOIV	38	213	21	17	10	11	6	21	3	8
+JY8QFUQ01CQRVK	11	212	9	2	4	5	2	4	1	4
+JY8QFUQ01CQSBL	19	210	10	9	6	4	3	8	0	8
+JY8QFUQ01CQWKF	26	212	19	7	10	9	6	13	1	6
+JY8QFUQ01CR76J	33	216	17	16	11	6	5	16	1	11
+JY8QFUQ01CR7U0	27	209	15	12	10	5	6	11	0	10
+JY8QFUQ01CR8IO	35	213	20	15	15	5	9	12	4	10
+JY8QFUQ01CRBJ3	29	216	18	11	7	11	7	7	1	14
+JY8QFUQ01CRNW3	25	213	13	12	9	4	6	8	0	11
+JY8QFUQ01CRPMT	23	213	10	13	5	5	5	8	1	9
+JY8QFUQ01CRXKV	32	216	21	11	13	8	6	12	0	14
+JY8QFUQ01CRXS1	22	210	13	9	10	3	8	8	1	5
+JY8QFUQ01CS8O3	9	210	5	4	3	2	0	5	0	4
+JY8QFUQ01CSGBR	18	212	12	6	8	4	3	4	4	7
+JY8QFUQ01CSVFI	24	210	12	12	8	4	6	7	1	10
+JY8QFUQ01CSWQD	14	213	10	4	5	5	1	7	0	6
+JY8QFUQ01CT0HD	17	211	7	10	6	1	4	6	1	6
+JY8QFUQ01CT3CN	19	212	12	7	6	6	2	8	3	6
+JY8QFUQ01CTI25	9	213	5	4	3	2	0	2	0	7
+JY8QFUQ01CTJ46	29	213	17	12	11	6	6	13	2	8
+JY8QFUQ01CU8BS	15	211	6	9	2	4	3	4	1	7
+JY8QFUQ01CU8RS	13	210	6	7	5	1	2	5	2	4
+JY8QFUQ01CVKGA	14	213	4	10	2	2	2	4	1	7
+JY8QFUQ01CVRND	37	213	15	22	7	8	9	16	2	10
+JY8QFUQ01CVY8N	22	210	15	7	10	5	6	9	2	5
+JY8QFUQ01CW65U	14	213	6	8	4	2	5	1	2	6
+JY8QFUQ01CWEVR	12	213	9	3	3	6	2	3	2	5
+JY8QFUQ01CWPJP	26	216	12	14	7	5	6	9	1	10
+JY8QFUQ01CWQZU	13	213	9	4	8	1	3	5	3	2
+JY8QFUQ01CWYA5	42	210	25	17	13	12	7	26	2	7
+JY8QFUQ01CXAGM	23	213	15	8	11	4	6	6	2	9
+JY8QFUQ01CXD17	28	213	15	13	10	5	4	14	2	8
+JY8QFUQ01CXIGS	30	213	17	13	9	8	4	10	1	15
+JY8QFUQ01CXM4M	13	221	9	4	4	5	6	2	2	3
+JY8QFUQ01CY2HZ	5	213	2	3	1	1	1	1	0	3
+JY8QFUQ01CY3ZT	22	211	13	9	9	4	6	6	1	9
+JY8QFUQ01CYT8I	10	213	2	8	2	0	1	2	0	7
+JY8QFUQ01CYTAI	40	210	25	15	13	12	7	24	2	7
+JY8QFUQ01CYU3K	13	213	10	3	6	4	2	7	2	2
+JY8QFUQ01CYX7E	25	216	15	10	6	9	5	9	3	8
+JY8QFUQ01CZ1IL	17	213	11	6	6	5	5	7	0	5
+JY8QFUQ01CZDE0	30	213	14	16	8	6	10	13	3	4
+JY8QFUQ01CZH0L	16	212	10	6	6	4	4	2	2	8
+JY8QFUQ01DABGE	12	213	7	5	4	3	1	2	1	8
+JY8QFUQ01DARQJ	15	213	10	5	7	3	4	7	4	0
+JY8QFUQ01DDQ8A	15	213	7	8	4	3	4	3	2	6
+JY8QFUQ01DECT5	41	213	21	20	13	8	11	20	2	8
+JY8QFUQ01DEK3I	12	213	4	8	2	2	2	5	1	4
+JY8QFUQ01DEX6Z	22	215	11	11	7	4	3	8	1	10
+JY8QFUQ01DFG5Q	26	210	15	11	8	7	7	11	4	4
+JY8QFUQ01DFJK6	14	213	11	3	2	9	3	4	0	7
+JY8QFUQ01DFMQ1	9	210	5	4	3	2	0	5	0	4
+JY8QFUQ01DFNKY	3	219	2	1	0	2	1	0	0	2
+JY8QFUQ01DFY56	25	213	10	15	5	5	4	11	0	10
+JY8QFUQ01DG3GX	12	213	8	4	7	1	4	3	1	4
+JY8QFUQ01DG853	17	213	11	6	6	5	5	7	0	5
+JY8QFUQ01DGFLY	15	213	9	6	4	5	2	7	1	5
+JY8QFUQ01DGFY7	10	213	7	3	4	3	2	4	0	4
+JY8QFUQ01DH08T	18	210	9	9	7	2	3	6	0	9
+JY8QFUQ01DH0MW	6	213	1	5	0	1	2	1	0	3
+JY8QFUQ01DHC55	25	213	12	13	8	4	3	11	1	10
+JY8QFUQ01DHH0D	16	219	10	6	7	3	2	9	2	3
+JY8QFUQ01DHJ30	5	219	3	2	3	0	2	2	0	1
+JY8QFUQ01DI98R	25	213	20	5	9	11	4	13	1	7
+JY8QFUQ01DIWKI	9	213	5	4	5	0	1	4	0	4
+JY8QFUQ01DJ168	14	212	8	6	3	5	2	6	1	5
+JY8QFUQ01DJCKC	13	213	6	7	4	2	0	8	0	5
+JY8QFUQ01DJQ7I	13	213	9	4	6	3	2	6	1	4
+JY8QFUQ01DJU2K	30	210	13	17	7	6	3	18	1	8
+JY8QFUQ01DKCDX	18	213	12	6	8	4	3	4	4	7
+JY8QFUQ01DKKJ0	32	213	16	16	10	6	5	16	3	8
+JY8QFUQ01DLA1D	5	212	2	3	1	1	0	1	0	4
+JY8QFUQ01DM6TL	23	213	10	13	5	5	5	8	1	9
+JY8QFUQ01DN21P	12	213	9	3	5	4	1	5	2	4
+JY8QFUQ01DNADY	28	213	18	10	8	10	6	12	3	7
+JY8QFUQ01DO347	15	213	3	12	1	2	1	7	1	6
+JY8QFUQ01DP55Y	21	216	10	11	6	4	5	10	2	4
+JY8QFUQ01DP8YH	21	213	16	5	9	7	7	4	2	8
+JY8QFUQ01DPFIO	13	213	7	6	1	6	2	8	0	3
+JY8QFUQ01DQV12	16	213	6	10	4	2	2	8	0	6
+JY8QFUQ01DQVYX	21	213	13	8	7	6	5	4	3	9
+JY8QFUQ01DRFXI	24	215	16	8	10	6	10	4	4	6
+JY8QFUQ01DSBEO	30	213	20	10	8	12	8	10	1	11
+JY8QFUQ01DU1MH	4	210	1	3	0	1	0	3	0	1
+JY8QFUQ01DUKA9	28	213	18	10	8	10	6	12	3	7
+JY8QFUQ01DVTFY	24	213	14	10	7	7	3	10	1	10
+JY8QFUQ01A0JN8	21	213	14	7	8	6	4	8	3	6
+JY8QFUQ01A0KG1	13	213	6	7	3	3	3	5	2	3
+JY8QFUQ01A0XAA	23	210	15	8	8	7	4	6	0	13
+JY8QFUQ01A1201	10	213	7	3	4	3	2	4	0	4
+JY8QFUQ01A1J69	14	213	8	6	2	6	3	4	2	5
+JY8QFUQ01A2Y02	31	216	18	13	8	10	7	9	1	14
+JY8QFUQ01A2ZKE	27	213	17	10	8	9	5	10	2	10
+JY8QFUQ01A36OR	10	213	4	6	2	2	1	1	0	8
+JY8QFUQ01A3PZ4	16	213	10	6	6	4	3	3	2	8
+JY8QFUQ01A3U1I	12	213	6	6	5	1	2	5	1	4
+JY8QFUQ01A4H9C	21	213	12	9	4	8	1	7	1	12
+JY8QFUQ01A55QU	29	210	14	15	9	5	4	14	4	7
+JY8QFUQ01A56OJ	11	213	6	5	2	4	4	2	1	4
+JY8QFUQ01A5K3B	15	213	7	8	5	2	2	6	3	4
+JY8QFUQ01A6DSA	34	210	21	13	10	11	8	13	0	13
+JY8QFUQ01A6FSC	19	213	12	7	6	6	5	7	0	7
+JY8QFUQ01A6GAE	30	213	15	15	8	7	6	14	3	7
+JY8QFUQ01A72DW	20	213	10	10	5	5	5	8	0	7
+JY8QFUQ01A75AZ	9	213	5	4	1	4	4	2	0	3
+JY8QFUQ01A7UAO	25	213	12	13	8	4	3	11	1	10
+JY8QFUQ01A9CSP	35	213	23	12	14	9	10	14	4	7
+JY8QFUQ01A9KBS	19	216	14	5	6	8	3	9	0	7
+JY8QFUQ01A9XMX	5	219	3	2	3	0	2	2	0	1
+JY8QFUQ01AAWJ6	10	213	4	6	0	4	0	2	2	6
+JY8QFUQ01AB8R5	13	213	9	4	6	3	2	2	0	9
+JY8QFUQ01ABJSU	15	213	11	4	7	4	2	6	2	5
+JY8QFUQ01ACF7S	14	213	5	9	2	3	0	8	1	5
+JY8QFUQ01ACGK8	12	213	8	4	7	1	4	3	1	4
+JY8QFUQ01ACMHQ	18	213	10	8	6	4	4	5	1	8
+JY8QFUQ01AD6VN	14	213	7	7	5	2	5	4	0	5
+JY8QFUQ01ADNPS	14	213	10	4	5	5	1	7	0	6
+JY8QFUQ01ADX4W	5	213	2	3	1	1	1	1	0	3
+JY8QFUQ01AEXEP	16	212	10	6	6	4	4	2	2	8
+JY8QFUQ01AFU74	17	210	9	8	8	1	5	3	0	9
+JY8QFUQ01AG0BX	14	213	6	8	3	3	3	6	0	5
+JY8QFUQ01AGTXI	18	213	10	8	5	5	5	6	1	6
+JY8QFUQ01AHQN6	35	216	14	21	8	6	5	11	3	16
+JY8QFUQ01AIE5M	0	213	0	0	0	0	0	0	0	0
+JY8QFUQ01AIYO5	14	213	7	7	2	5	3	6	2	3
+JY8QFUQ01AJFOA	23	213	14	9	9	5	6	7	1	9
+JY8QFUQ01AJTH3	16	216	12	4	6	6	5	8	0	3
+JY8QFUQ01AMBVG	29	213	20	9	14	6	5	6	0	18
+JY8QFUQ01AMG29	14	213	11	3	2	9	3	4	0	7
+JY8QFUQ01AMV93	15	213	6	9	3	3	4	6	0	5
+JY8QFUQ01ANFJ6	15	210	9	6	2	7	4	5	0	6
+JY8QFUQ01ANN07	24	209	13	11	7	6	4	12	0	8
+JY8QFUQ01ANOBA	43	210	29	14	14	15	7	25	1	10
+JY8QFUQ01ANT01	19	212	11	8	6	5	5	7	1	6
+JY8QFUQ01ANU9C	9	213	5	4	1	4	4	2	0	3
+JY8QFUQ01AP4OP	16	213	9	7	5	4	0	7	4	5
+JY8QFUQ01APLX8	25	213	12	13	6	6	6	7	3	9
+JY8QFUQ01APOB5	20	210	9	11	6	3	5	5	1	9
+JY8QFUQ01APXHX	14	213	9	5	7	2	7	3	1	3
+JY8QFUQ01AQ36T	12	213	7	5	3	4	2	4	0	6
+JY8QFUQ01AQ6RF	14	213	5	9	3	2	6	4	0	4
+JY8QFUQ01AQQ9J	15	213	3	12	1	2	1	7	1	6
+JY8QFUQ01AR5SV	14	213	8	6	3	5	2	6	1	5
+JY8QFUQ01ARLVF	27	213	13	14	5	8	5	13	0	9
+JY8QFUQ01ARS0N	20	213	12	8	6	6	2	9	3	6
+JY8QFUQ01AT43H	22	211	13	9	9	4	6	6	1	9
+JY8QFUQ01AT8N2	21	213	13	8	9	4	3	9	2	7
+JY8QFUQ01ATKPT	24	213	13	11	7	6	4	7	1	12
+JY8QFUQ01AU2BA	13	213	4	9	3	1	2	3	0	8
+JY8QFUQ01AUBMD	13	213	5	8	3	2	1	6	1	5
+JY8QFUQ01AVBV0	23	209	8	15	5	3	2	13	2	6
+JY8QFUQ01AVKTX	22	213	16	6	10	6	6	6	1	9
+JY8QFUQ01AW6B3	14	213	6	8	4	2	1	5	1	7
+JY8QFUQ01AWTQR	20	216	11	9	7	4	5	8	1	6
+JY8QFUQ01AY4JM	13	210	6	7	5	1	2	5	2	4
+JY8QFUQ01B0222	31	210	16	15	9	7	9	13	1	8
+JY8QFUQ01B19RC	10	213	6	4	3	3	3	2	1	4
+JY8QFUQ01B1HC5	15	213	10	5	4	6	4	8	0	3
+JY8QFUQ01B1QV9	33	213	19	14	11	8	7	13	3	10
+JY8QFUQ01B1S6W	15	210	6	9	4	2	3	9	0	3
+JY8QFUQ01B2ACS	8	213	6	2	2	4	2	3	1	2
+JY8QFUQ01B2E25	12	212	5	7	2	3	5	4	0	3
+JY8QFUQ01B2GL4	22	216	15	7	6	9	3	10	1	8
+JY8QFUQ01B2XE6	29	213	17	12	9	8	7	11	2	9
+JY8QFUQ01B2XKD	22	213	13	9	8	5	6	7	2	7
+JY8QFUQ01B37IT	25	213	18	7	8	10	6	8	0	11
+JY8QFUQ01B5KCJ	33	213	15	18	7	8	10	12	5	6
+JY8QFUQ01B5XDW	15	213	8	7	5	3	1	6	2	6
+JY8QFUQ01B5ZV4	16	216	12	4	8	4	7	4	0	5
+JY8QFUQ01B6IHX	25	213	14	11	9	5	7	9	6	3
+JY8QFUQ01B8YFN	22	213	10	12	5	5	4	14	1	3
+JY8QFUQ01B9KF0	31	213	13	18	9	4	5	12	3	11
+JY8QFUQ01BAG1V	27	213	16	11	12	4	7	15	1	4
+JY8QFUQ01BANLS	29	210	21	8	13	8	9	10	1	9
+JY8QFUQ01BAR2U	23	213	16	7	8	8	3	9	2	9
+JY8QFUQ01BBGFU	15	213	6	9	5	1	4	5	0	6
+JY8QFUQ01BCZ6T	18	210	9	9	7	2	3	6	0	9
+JY8QFUQ01BDHSG	12	213	7	5	5	2	4	4	0	4
+JY8QFUQ01BF6IL	10	213	7	3	3	4	2	3	0	5
+JY8QFUQ01BG2KZ	17	213	10	7	3	7	0	9	2	6
+JY8QFUQ01BG9LH	19	213	15	4	8	7	4	7	1	7
+JY8QFUQ01BGU0C	20	210	11	9	8	3	3	8	0	9
+JY8QFUQ01BHYPA	9	213	6	3	3	3	1	4	1	3
+JY8QFUQ01BJC1Y	8	213	5	3	2	3	1	2	0	5
+JY8QFUQ01BKLR9	20	213	8	12	6	2	5	4	5	6
+JY8QFUQ01BLF36	38	213	21	17	10	11	6	21	3	8
+JY8QFUQ01BLJYE	35	213	18	17	9	9	6	19	0	10
+JY8QFUQ01BLLRQ	12	213	9	3	3	6	2	3	2	5
+JY8QFUQ01BM2SX	26	213	19	7	10	9	6	13	1	6
+JY8QFUQ01BM631	10	213	7	3	2	5	0	6	1	3
+JY8QFUQ01BMPYC	19	213	12	7	9	3	4	10	0	5
+JY8QFUQ01BMULR	13	213	10	3	7	3	3	3	1	6
+JY8QFUQ01BNJBB	27	210	15	12	8	7	7	12	4	4
+JY8QFUQ01BNJGF	28	213	18	10	13	5	6	13	2	7
+JY8QFUQ01BP3M1	14	213	10	4	6	4	2	5	2	5
+JY8QFUQ01BPT8C	16	216	8	8	3	5	3	6	0	7
+JY8QFUQ01BPXZS	31	216	19	12	12	7	7	14	5	5
+JY8QFUQ01BR9V1	8	213	4	4	2	2	1	4	1	2
+JY8QFUQ01BRGSI	9	213	7	2	2	5	2	3	0	4
+JY8QFUQ01BRNFF	17	213	12	5	9	3	6	7	2	2
+JY8QFUQ01BSGO4	11	213	5	6	4	1	1	4	0	6
+JY8QFUQ01BT0O2	19	213	12	7	8	4	4	7	1	7
+JY8QFUQ01BT4AX	11	213	8	3	5	3	2	5	0	4
+JY8QFUQ01BT86M	10	213	7	3	4	3	2	3	1	4
+JY8QFUQ01BTQAH	26	213	12	14	7	5	3	9	1	13
+JY8QFUQ01BURMR	36	213	21	15	7	14	5	18	3	10
+JY8QFUQ01BV9YG	22	213	13	9	5	8	5	6	1	10
+JY8QFUQ01BW9QL	9	213	6	3	5	1	1	2	1	5
+JY8QFUQ01BWI2D	29	213	17	12	11	6	6	13	2	8
+JY8QFUQ01BXYLF	15	213	9	6	7	2	3	9	0	3
+JY8QFUQ01BY231	19	216	11	8	7	4	3	11	0	5
+JY8QFUQ01BYGN8	20	213	13	7	8	5	5	8	2	5
+JY8QFUQ01C2NGE	15	210	10	5	3	7	6	4	1	4
+JY8QFUQ01C2ROO	7	213	3	4	2	1	2	2	1	2
+JY8QFUQ01C3QHH	13	213	8	5	4	4	2	6	1	4
+JY8QFUQ01C4MHW	11	213	5	6	4	1	3	5	0	3
+JY8QFUQ01C5Q2O	16	213	5	11	2	3	3	4	0	9
+JY8QFUQ01C8QWZ	11	213	4	7	3	1	0	4	1	6
+JY8QFUQ01C92F8	13	222	9	4	5	4	2	6	0	5
+JY8QFUQ01C966Y	10	213	4	6	1	3	2	3	0	5
+JY8QFUQ01C98A9	11	213	8	3	6	2	3	3	1	4
+JY8QFUQ01CANL1	20	213	13	7	7	6	4	5	0	11
+JY8QFUQ01CD8ZK	30	213	20	10	8	12	8	10	1	11
+JY8QFUQ01CD9VK	15	213	9	6	7	2	2	4	0	9
+JY8QFUQ01CDZ5R	23	212	16	7	8	8	5	12	2	4
+JY8QFUQ01CE8P9	18	213	13	5	8	5	6	10	1	1
+JY8QFUQ01CF06T	12	213	8	4	5	3	4	3	1	4
+JY8QFUQ01CG8U2	18	210	11	7	8	3	5	5	1	7
+JY8QFUQ01CGLTX	15	219	9	6	7	2	1	9	1	4
+JY8QFUQ01CGQFF	21	213	13	8	8	5	4	7	2	8
+JY8QFUQ01CHDDF	23	219	11	12	8	3	4	9	1	9
+JY8QFUQ01CHKLB	8	213	5	3	2	3	1	4	1	2
+JY8QFUQ01CHW93	13	213	7	6	5	2	3	4	2	4
+JY8QFUQ01CII5W	30	210	15	15	3	12	6	11	1	12
+JY8QFUQ01CINZT	5	213	2	3	0	2	0	1	1	3
+JY8QFUQ01CJLXK	22	213	12	10	9	3	6	9	0	7
+JY8QFUQ01CJT9B	31	213	18	13	10	8	5	16	3	7
+JY8QFUQ01CK1VY	28	216	19	9	12	7	7	14	2	5
+JY8QFUQ01CKN3U	25	213	17	8	8	9	4	9	4	8
+JY8QFUQ01CLP4K	14	213	7	7	5	2	5	4	0	5
+JY8QFUQ01CNCW4	10	213	5	5	3	2	2	2	0	6
+JY8QFUQ01CO019	16	213	10	6	5	5	5	5	0	6
+JY8QFUQ01CPVUP	25	213	11	14	8	3	6	10	2	7
+JY8QFUQ01CPYJ0	14	213	7	7	6	1	3	5	0	6
+JY8QFUQ01CQH14	14	213	11	3	8	3	2	5	2	5
+JY8QFUQ01CST8T	17	213	10	7	6	4	2	4	1	10
+JY8QFUQ01CU1XI	17	209	8	9	5	3	6	6	0	5
+JY8QFUQ01CU5CB	20	213	13	7	9	4	5	7	2	6
+JY8QFUQ01CUGFD	30	213	13	17	8	5	6	10	2	12
+JY8QFUQ01CURPS	32	213	20	12	16	4	7	17	3	5
+JY8QFUQ01CY2WW	12	213	6	6	2	4	3	5	0	4
+JY8QFUQ01CY6MC	16	213	9	7	6	3	2	7	0	7
+JY8QFUQ01CYWC2	12	213	7	5	4	3	1	3	2	6
+JY8QFUQ01DA9FW	13	213	9	4	6	3	3	6	2	2
+JY8QFUQ01DA9S4	0	216	0	0	0	0	0	0	0	0
+JY8QFUQ01DC4QI	21	213	12	9	7	5	5	9	2	5
+JY8QFUQ01DC8OC	26	210	11	15	4	7	4	13	0	9
+JY8QFUQ01DCPGQ	19	213	14	5	6	8	7	6	1	5
+JY8QFUQ01DEKWC	17	213	6	11	5	1	2	8	1	6
+JY8QFUQ01DG2P7	11	211	4	7	3	1	0	4	1	6
+JY8QFUQ01DG5KX	21	210	11	10	8	3	6	5	4	6
+JY8QFUQ01DG6GC	15	213	6	9	2	4	1	6	2	6
+JY8QFUQ01DHXHT	20	216	10	10	4	6	2	10	2	6
+JY8QFUQ01DI39D	8	213	4	4	3	1	2	2	0	4
+JY8QFUQ01DIBNC	0	216	0	0	0	0	0	0	0	0
+JY8QFUQ01DJFIZ	43	213	23	20	12	11	8	15	5	15
+JY8QFUQ01DLDLD	7	213	4	3	2	2	1	3	0	3
+JY8QFUQ01DMF0A	53	216	27	26	12	15	10	22	2	19
+JY8QFUQ01DOVL5	15	213	10	5	6	4	1	4	2	8
+JY8QFUQ01DPT8R	8	212	4	4	1	3	4	2	0	2
+JY8QFUQ01DUD3U	29	213	18	11	12	6	7	9	2	11
+JY8QFUQ01DV4HU	22	213	14	8	8	6	5	10	2	5
+JY8QFUQ01DV8LF	6	213	1	5	0	1	2	1	0	3
+JY8QFUQ01DVBU0	15	212	6	9	2	4	3	4	1	7
+JY8QFUQ01DXDOM	36	210	22	14	12	10	7	12	0	17
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/relative_mutations.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,37 @@
+Class	Type	value
+IGA	A/T	42.7
+IGA1	A/T	42.3
+IGA2	A/T	43.6
+IGG	A/T	43.9
+IGG1	A/T	43.7
+IGG2	A/T	43.6
+IGG3	A/T	47.9
+IGG4	A/T	46.2
+IGM	A/T	0
+IGE	A/T	0
+un	A/T	43.5
+all	A/T	43.1
+IGA	G/C transitions	33
+IGA1	G/C transitions	33.6
+IGA2	G/C transitions	31.7
+IGG	G/C transitions	31.4
+IGG1	G/C transitions	31.6
+IGG2	G/C transitions	31.9
+IGG3	G/C transitions	28.9
+IGG4	G/C transitions	27.2
+IGM	G/C transitions	0
+IGE	G/C transitions	0
+un	G/C transitions	31.9
+all	G/C transitions	32.5
+IGA	G/C transversions	24.3
+IGA1	G/C transversions	24.1
+IGA2	G/C transversions	24.7
+IGG	G/C transversions	24.7
+IGG1	G/C transversions	24.7
+IGG2	G/C transversions	24.6
+IGG3	G/C transversions	23.2
+IGG4	G/C transversions	26.6
+IGM	G/C transversions	0
+IGE	G/C transversions	0
+un	G/C transversions	24.6
+all	G/C transversions	24.4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/scatter.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,1388 @@
+Sequence.ID	best_match	VRegionMutations	VRegionNucleotides	percentage_mutations
+JY8QFUQ01A0005	IGG1	18	216	8.33
+JY8QFUQ01A004N	IGG1	20	216	9.26
+JY8QFUQ01A006G	IGG1	32	216	14.81
+JY8QFUQ01A018V	IGA1	31	216	14.35
+JY8QFUQ01A019O	IGG1	19	213	8.92
+JY8QFUQ01A01KX	IGG1	29	213	13.62
+JY8QFUQ01A0207	IGG2	16	213	7.51
+JY8QFUQ01A02HL	IGA1	13	213	6.1
+JY8QFUQ01A02KS	IGA2	14	213	6.57
+JY8QFUQ01A02XZ	IGG1	10	213	4.69
+JY8QFUQ01A03E3	IGA2	21	213	9.86
+JY8QFUQ01A03N6	IGG1	39	213	18.31
+JY8QFUQ01A08XO	IGG1	0	216	0
+JY8QFUQ01A0939	IGA2	15	222	6.76
+JY8QFUQ01A09OY	IGA2	12	213	5.63
+JY8QFUQ01A0C2Y	IGG1	18	213	8.45
+JY8QFUQ01A0C33	IGG1	13	213	6.1
+JY8QFUQ01A0C4X	IGG1	13	213	6.1
+JY8QFUQ01A0D2K	IGG4	10	213	4.69
+JY8QFUQ01A0D5E	IGA1	28	212	13.21
+JY8QFUQ01A0DA8	IGA1	23	213	10.8
+JY8QFUQ01A0DCS	IGG1	22	213	10.33
+JY8QFUQ01A0EF3	IGA1	12	213	5.63
+JY8QFUQ01A0ESJ	IGA1	17	213	7.98
+JY8QFUQ01A0FII	IGA1	26	213	12.21
+JY8QFUQ01A0FO5	IGA2	11	213	5.16
+JY8QFUQ01A0GVR	IGG1	24	216	11.11
+JY8QFUQ01A0GVY	IGA1	30	213	14.08
+JY8QFUQ01A0HBK	IGA1	0	213	0
+JY8QFUQ01A0IZI	IGG1	18	213	8.45
+JY8QFUQ01A0LAJ	IGA1	29	219	13.24
+JY8QFUQ01A0LBC	IGA1	31	213	14.55
+JY8QFUQ01A0LEW	IGA2	9	213	4.23
+JY8QFUQ01A0LZ5	IGA1	20	213	9.39
+JY8QFUQ01A0N2E	IGM	0	213	0
+JY8QFUQ01A0N8H	IGA1	13	222	5.86
+JY8QFUQ01A0OC8	IGA2	12	212	5.66
+JY8QFUQ01A0OMH	IGA1	26	213	12.21
+JY8QFUQ01A0OTP	IGG1	15	209	7.18
+JY8QFUQ01A0QXW	IGG1	0	210	0
+JY8QFUQ01A0RJS	IGG1	17	212	8.02
+JY8QFUQ01A0S1H	IGA1	16	213	7.51
+JY8QFUQ01A0TAV	IGG2	12	213	5.63
+JY8QFUQ01A0TNI	IGG1	24	213	11.27
+JY8QFUQ01A0UZS	IGA1	20	213	9.39
+JY8QFUQ01A0VIE	IGA1	23	213	10.8
+JY8QFUQ01A0WDV	IGG2	18	210	8.57
+JY8QFUQ01A0WZB	IGA1	34	210	16.19
+JY8QFUQ01A0X8W	IGG1	10	213	4.69
+JY8QFUQ01A0XE3	IGG1	27	211	12.8
+JY8QFUQ01A0Z64	IGA2	9	213	4.23
+JY8QFUQ01A0ZW5	IGG4	27	216	12.5
+JY8QFUQ01A0ZX6	IGG1	12	213	5.63
+JY8QFUQ01A110D	IGA1	14	213	6.57
+JY8QFUQ01A12BY	IGG1	14	213	6.57
+JY8QFUQ01A12KV	IGG1	29	213	13.62
+JY8QFUQ01A12V0	IGA1	28	213	13.15
+JY8QFUQ01A14EE	IGA1	30	213	14.08
+JY8QFUQ01A152R	IGA1	19	213	8.92
+JY8QFUQ01A15L6	IGA1	31	215	14.42
+JY8QFUQ01A15SR	IGA1	48	216	22.22
+JY8QFUQ01A16XV	IGG1	0	213	0
+JY8QFUQ01A17D9	IGA1	17	213	7.98
+JY8QFUQ01A17TV	IGG2	14	210	6.67
+JY8QFUQ01A18L5	IGA1	12	213	5.63
+JY8QFUQ01A1963	IGA2	12	212	5.66
+JY8QFUQ01A1ALH	IGA1	22	216	10.19
+JY8QFUQ01A1AYP	IGG2	14	213	6.57
+JY8QFUQ01A1BK7	IGA1	14	213	6.57
+JY8QFUQ01A1BT3	IGA2	24	210	11.43
+JY8QFUQ01A1CLZ	IGG1	18	216	8.33
+JY8QFUQ01A1CTT	IGG1	15	213	7.04
+JY8QFUQ01A1DJR	IGG1	14	213	6.57
+JY8QFUQ01A1DVA	IGG2	35	213	16.43
+JY8QFUQ01A1E6T	IGA2	14	213	6.57
+JY8QFUQ01A1GYW	IGG1	41	210	19.52
+JY8QFUQ01A1GZY	IGG2	26	212	12.26
+JY8QFUQ01A1ISV	IGG1	11	213	5.16
+JY8QFUQ01A1IV8	IGG4	24	209	11.48
+JY8QFUQ01A1IYG	IGG1	13	210	6.19
+JY8QFUQ01A1K37	IGG1	9	213	4.23
+JY8QFUQ01A1KQO	IGA2	20	213	9.39
+JY8QFUQ01A1L2W	IGA1	12	213	5.63
+JY8QFUQ01A1LNA	IGA2	14	213	6.57
+JY8QFUQ01A1MBV	IGA1	21	213	9.86
+JY8QFUQ01A1MJG	IGA1	17	210	8.1
+JY8QFUQ01A1MJU	IGG4	16	213	7.51
+JY8QFUQ01A1OLP	IGA1	38	213	17.84
+JY8QFUQ01A1PLD	IGA1	20	213	9.39
+JY8QFUQ01A1Q3N	IGA1	32	213	15.02
+JY8QFUQ01A1QLN	IGG1	11	209	5.26
+JY8QFUQ01A1R7K	IGA1	26	212	12.26
+JY8QFUQ01A1RAE	IGA1	16	213	7.51
+JY8QFUQ01A1SIW	IGG1	14	213	6.57
+JY8QFUQ01A1U7S	IGG1	43	213	20.19
+JY8QFUQ01A1U87	IGA2	13	213	6.1
+JY8QFUQ01A1UND	IGG1	19	210	9.05
+JY8QFUQ01A1UXL	IGA2	20	213	9.39
+JY8QFUQ01A1UXZ	IGG1	34	210	16.19
+JY8QFUQ01A1W6G	IGG1	15	216	6.94
+JY8QFUQ01A1WCP	IGA2	22	213	10.33
+JY8QFUQ01A1X35	IGA1	21	216	9.72
+JY8QFUQ01A1X52	IGA1	10	213	4.69
+JY8QFUQ01A1Y2H	IGA1	16	213	7.51
+JY8QFUQ01A1YN6	IGA1	6	213	2.82
+JY8QFUQ01A1Z5H	IGA2	13	213	6.1
+JY8QFUQ01A23OB	IGG2	16	213	7.51
+JY8QFUQ01A23UZ	IGG2	28	210	13.33
+JY8QFUQ01A26C2	IGG1	13	213	6.1
+JY8QFUQ01A26DA	IGA1	38	219	17.35
+JY8QFUQ01A27H2	IGA2	17	213	7.98
+JY8QFUQ01A27QT	IGA1	29	210	13.81
+JY8QFUQ01A287O	IGG1	11	210	5.24
+JY8QFUQ01A29EP	IGG2	0	213	0
+JY8QFUQ01A2AEH	IGA1	20	213	9.39
+JY8QFUQ01A2ANY	IGA1	29	213	13.62
+JY8QFUQ01A2AVP	IGA2	9	213	4.23
+JY8QFUQ01A2B2A	IGG1	3	210	1.43
+JY8QFUQ01A2BDN	IGG2	13	213	6.1
+JY8QFUQ01A2CO4	IGA1	5	213	2.35
+JY8QFUQ01A2ECA	IGA1	38	219	17.35
+JY8QFUQ01A2EKG	IGG4	22	213	10.33
+JY8QFUQ01A2FAU	IGG1	12	219	5.48
+JY8QFUQ01A2FHS	IGG1	0	216	0
+JY8QFUQ01A2FU8	IGA1	28	216	12.96
+JY8QFUQ01A2G8U	IGG1	39	209	18.66
+JY8QFUQ01A2JAS	IGA1	46	212	21.7
+JY8QFUQ01A2MSQ	IGA2	17	213	7.98
+JY8QFUQ01A2PDE	IGG1	37	213	17.37
+JY8QFUQ01A2Q7N	IGG1	41	213	19.25
+JY8QFUQ01A2QEG	IGA1	23	213	10.8
+JY8QFUQ01A2S2S	IGA1	15	213	7.04
+JY8QFUQ01A2WHC	IGA1	13	210	6.19
+JY8QFUQ01A2XE9	IGA2	16	213	7.51
+JY8QFUQ01A2YCO	IGA1	18	213	8.45
+JY8QFUQ01A2YPP	IGA1	20	213	9.39
+JY8QFUQ01A2YVQ	IGG1	43	213	20.19
+JY8QFUQ01A2ZLE	IGG1	22	213	10.33
+JY8QFUQ01A30CD	IGG2	31	213	14.55
+JY8QFUQ01A312M	IGA2	5	213	2.35
+JY8QFUQ01A313A	IGG2	18	213	8.45
+JY8QFUQ01A33TY	IGG2	13	216	6.02
+JY8QFUQ01A33U2	IGG1	22	216	10.19
+JY8QFUQ01A33ZY	IGA1	23	213	10.8
+JY8QFUQ01A3552	IGA1	29	213	13.62
+JY8QFUQ01A35C3	IGA1	40	210	19.05
+JY8QFUQ01A35F3	IGA1	14	213	6.57
+JY8QFUQ01A35NF	IGA1	24	216	11.11
+JY8QFUQ01A365U	IGA2	18	213	8.45
+JY8QFUQ01A36CM	IGG2	40	213	18.78
+JY8QFUQ01A39KY	IGA1	15	213	7.04
+JY8QFUQ01A3A5F	IGA1	25	213	11.74
+JY8QFUQ01A3BD5	IGG1	15	210	7.14
+JY8QFUQ01A3C67	IGA1	10	213	4.69
+JY8QFUQ01A3DG1	IGA1	20	213	9.39
+JY8QFUQ01A3EUV	IGG1	20	213	9.39
+JY8QFUQ01A3F5T	IGA1	19	213	8.92
+JY8QFUQ01A3H9O	IGG1	15	213	7.04
+JY8QFUQ01A3HCE	IGA1	28	213	13.15
+JY8QFUQ01A3I1N	IGA2	14	213	6.57
+JY8QFUQ01A3I5W	IGG2	9	213	4.23
+JY8QFUQ01A3IIQ	IGA1	14	213	6.57
+JY8QFUQ01A3IMB	IGG1	18	213	8.45
+JY8QFUQ01A3IWM	IGG2	9	212	4.25
+JY8QFUQ01A3KYL	IGA2	11	213	5.16
+JY8QFUQ01A3MV4	IGA1	13	213	6.1
+JY8QFUQ01A3NLN	IGA1	9	212	4.25
+JY8QFUQ01A3OS9	IGA1	29	216	13.43
+JY8QFUQ01A3QD4	IGG1	2	210	0.95
+JY8QFUQ01A3QEB	IGA1	17	213	7.98
+JY8QFUQ01A3QNJ	IGA1	28	210	13.33
+JY8QFUQ01A3R6Q	IGA2	5	222	2.25
+JY8QFUQ01A3SN3	IGA2	14	213	6.57
+JY8QFUQ01A3V0Z	IGG2	20	213	9.39
+JY8QFUQ01A3VGZ	IGG1	16	211	7.58
+JY8QFUQ01A3VOS	IGG1	13	213	6.1
+JY8QFUQ01A3W9F	IGA1	22	210	10.48
+JY8QFUQ01A3YON	IGG1	8	213	3.76
+JY8QFUQ01A3ZB9	IGA1	14	213	6.57
+JY8QFUQ01A3ZD4	IGA1	19	201	9.45
+JY8QFUQ01A44PN	IGG1	3	216	1.39
+JY8QFUQ01A453G	IGA1	23	213	10.8
+JY8QFUQ01A45ND	IGA1	7	213	3.29
+JY8QFUQ01A465M	IGG1	28	213	13.15
+JY8QFUQ01A476X	IGA1	15	213	7.04
+JY8QFUQ01A47U3	IGA2	5	213	2.35
+JY8QFUQ01A481H	IGG2	14	213	6.57
+JY8QFUQ01A48DI	IGA2	16	213	7.51
+JY8QFUQ01A4AB0	IGG4	12	213	5.63
+JY8QFUQ01A4BI4	IGA1	14	213	6.57
+JY8QFUQ01A4C55	IGG1	28	210	13.33
+JY8QFUQ01A4D0Z	IGA2	11	213	5.16
+JY8QFUQ01A4E73	IGA2	20	213	9.39
+JY8QFUQ01A4ENF	IGA2	25	213	11.74
+JY8QFUQ01A4HOH	IGG1	0	213	0
+JY8QFUQ01A4HT0	IGG1	14	211	6.64
+JY8QFUQ01A4I3A	IGG1	14	213	6.57
+JY8QFUQ01A4IGN	IGG2	14	213	6.57
+JY8QFUQ01A4IHW	IGA1	24	219	10.96
+JY8QFUQ01A4J2Q	IGA1	21	210	10
+JY8QFUQ01A4JI5	IGG1	24	213	11.27
+JY8QFUQ01A4KIH	IGG1	13	213	6.1
+JY8QFUQ01A4KIW	IGA2	31	213	14.55
+JY8QFUQ01A4LR9	IGG3	12	215	5.58
+JY8QFUQ01A4LRG	IGA2	15	213	7.04
+JY8QFUQ01A4LRU	IGG2	25	213	11.74
+JY8QFUQ01A4MB9	IGG1	35	216	16.2
+JY8QFUQ01A4MZ9	IGA1	25	213	11.74
+JY8QFUQ01A4NWM	IGG2	17	213	7.98
+JY8QFUQ01A4ORW	IGG1	34	213	15.96
+JY8QFUQ01A4P7X	IGG2	0	212	0
+JY8QFUQ01A4PSY	IGG2	22	213	10.33
+JY8QFUQ01A4RGQ	IGA1	16	219	7.31
+JY8QFUQ01A4RRU	IGA1	11	213	5.16
+JY8QFUQ01A4SGO	IGA1	15	213	7.04
+JY8QFUQ01A4U6K	IGG1	12	216	5.56
+JY8QFUQ01A4UD9	IGA2	12	213	5.63
+JY8QFUQ01A4UI3	IGA1	16	213	7.51
+JY8QFUQ01A4VB0	IGA2	26	216	12.04
+JY8QFUQ01A4W5D	IGA2	16	210	7.62
+JY8QFUQ01A4X8T	IGA1	25	213	11.74
+JY8QFUQ01A4XPO	IGA1	25	213	11.74
+JY8QFUQ01A4XSE	IGA1	13	213	6.1
+JY8QFUQ01A528Y	IGA2	18	213	8.45
+JY8QFUQ01A53DH	IGA1	34	210	16.19
+JY8QFUQ01A53VQ	IGG2	17	213	7.98
+JY8QFUQ01A554Z	IGG2	23	213	10.8
+JY8QFUQ01A55FP	IGA2	8	213	3.76
+JY8QFUQ01A56UP	IGA1	22	216	10.19
+JY8QFUQ01A572P	IGA1	11	213	5.16
+JY8QFUQ01A58UD	IGG1	17	212	8.02
+JY8QFUQ01A5935	IGA1	25	216	11.57
+JY8QFUQ01A5AND	IGA1	20	213	9.39
+JY8QFUQ01A5ATC	IGA2	20	213	9.39
+JY8QFUQ01A5BO8	IGA2	14	213	6.57
+JY8QFUQ01A5C4M	IGA1	39	213	18.31
+JY8QFUQ01A5D4P	IGA1	25	213	11.74
+JY8QFUQ01A5FS2	IGA2	5	213	2.35
+JY8QFUQ01A5FUX	IGG2	24	213	11.27
+JY8QFUQ01A5GJK	IGG2	14	213	6.57
+JY8QFUQ01A5HXY	IGG1	25	210	11.9
+JY8QFUQ01A5I8W	IGA1	11	213	5.16
+JY8QFUQ01A5IKH	IGG1	19	212	8.96
+JY8QFUQ01A5IOF	IGG1	34	213	15.96
+JY8QFUQ01A5JVK	IGA1	15	213	7.04
+JY8QFUQ01A5MH8	IGG1	10	212	4.72
+JY8QFUQ01A5NL9	IGA1	25	213	11.74
+JY8QFUQ01A5OJ5	IGG1	26	213	12.21
+JY8QFUQ01A5SB0	IGG1	12	213	5.63
+JY8QFUQ01A5U3W	IGA1	13	213	6.1
+JY8QFUQ01A5V9M	IGA1	24	213	11.27
+JY8QFUQ01A5VSB	IGA1	16	213	7.51
+JY8QFUQ01A5WKX	IGG1	22	213	10.33
+JY8QFUQ01A5XDS	IGA1	14	213	6.57
+JY8QFUQ01A5ZKW	IGA2	20	219	9.13
+JY8QFUQ01A60V7	IGA1	18	213	8.45
+JY8QFUQ01A64VB	IGA1	19	216	8.8
+JY8QFUQ01A666E	IGA1	12	213	5.63
+JY8QFUQ01A68J9	IGA2	5	212	2.36
+JY8QFUQ01A698F	IGA1	15	213	7.04
+JY8QFUQ01A699S	IGA1	20	213	9.39
+JY8QFUQ01A69S0	IGG1	1	213	0.47
+JY8QFUQ01A6BXT	IGG2	21	213	9.86
+JY8QFUQ01A6CNG	IGG1	36	216	16.67
+JY8QFUQ01A6CSB	IGA1	19	213	8.92
+JY8QFUQ01A6HGP	IGA1	34	219	15.53
+JY8QFUQ01A6IQL	IGA2	11	213	5.16
+JY8QFUQ01A6IZH	IGG2	21	213	9.86
+JY8QFUQ01A6JX4	IGG1	21	213	9.86
+JY8QFUQ01A6L65	IGG4	17	213	7.98
+JY8QFUQ01A6LFT	IGA2	12	213	5.63
+JY8QFUQ01A6MYW	IGA1	8	218	3.67
+JY8QFUQ01A6PW0	IGG3	12	213	5.63
+JY8QFUQ01A6T5J	IGA1	24	213	11.27
+JY8QFUQ01A6UEX	IGA2	10	213	4.69
+JY8QFUQ01A6V15	IGA2	28	213	13.15
+JY8QFUQ01A6VGQ	IGG1	16	213	7.51
+JY8QFUQ01A6VPK	IGG1	22	210	10.48
+JY8QFUQ01A6W08	IGA1	12	212	5.66
+JY8QFUQ01A6XI0	IGG2	17	213	7.98
+JY8QFUQ01A6ZD5	IGA1	8	212	3.77
+JY8QFUQ01A6ZI7	IGA2	11	213	5.16
+JY8QFUQ01A70EP	IGA1	30	213	14.08
+JY8QFUQ01A70L0	IGG1	40	213	18.78
+JY8QFUQ01A720R	IGA1	8	213	3.76
+JY8QFUQ01A72BF	IGA1	13	216	6.02
+JY8QFUQ01A72FV	IGA1	13	213	6.1
+JY8QFUQ01A79R5	IGG2	11	213	5.16
+JY8QFUQ01A7AMF	IGA1	5	210	2.38
+JY8QFUQ01A7C1U	IGG1	14	213	6.57
+JY8QFUQ01A7C84	IGG1	15	212	7.08
+JY8QFUQ01A7G35	IGA1	27	213	12.68
+JY8QFUQ01A7GLV	IGA1	31	216	14.35
+JY8QFUQ01A7HLN	IGA1	22	213	10.33
+JY8QFUQ01A7KJZ	IGA1	25	213	11.74
+JY8QFUQ01A7LQC	IGG1	12	210	5.71
+JY8QFUQ01A7MBK	IGA1	18	213	8.45
+JY8QFUQ01A7MWW	IGA1	23	213	10.8
+JY8QFUQ01A7NVO	IGA1	17	213	7.98
+JY8QFUQ01A7QC0	IGG1	37	212	17.45
+JY8QFUQ01A7S16	IGA2	4	210	1.9
+JY8QFUQ01A7TR1	IGA2	21	213	9.86
+JY8QFUQ01A7TRV	IGA1	20	213	9.39
+JY8QFUQ01A7TW1	IGA1	10	213	4.69
+JY8QFUQ01A7XAB	IGG2	20	210	9.52
+JY8QFUQ01A7XDX	IGA2	9	213	4.23
+JY8QFUQ01A7Z2B	IGG1	15	213	7.04
+JY8QFUQ01A7Z8B	IGA1	16	218	7.34
+JY8QFUQ01A82FB	IGA1	17	216	7.87
+JY8QFUQ01A82HJ	IGA1	18	219	8.22
+JY8QFUQ01A82RF	IGA1	23	210	10.95
+JY8QFUQ01A82RW	IGG1	17	213	7.98
+JY8QFUQ01A8412	IGA2	19	213	8.92
+JY8QFUQ01A8464	IGG2	16	216	7.41
+JY8QFUQ01A86GB	IGA1	26	213	12.21
+JY8QFUQ01A86IT	IGG1	30	210	14.29
+JY8QFUQ01A87BG	IGA2	14	213	6.57
+JY8QFUQ01A87UU	IGG2	10	213	4.69
+JY8QFUQ01A8AJT	IGA1	25	213	11.74
+JY8QFUQ01A8ALV	IGA2	12	213	5.63
+JY8QFUQ01A8BTW	IGA2	40	210	19.05
+JY8QFUQ01A8CRV	IGG1	24	213	11.27
+JY8QFUQ01A8FGD	IGG4	18	213	8.45
+JY8QFUQ01A8FJO	IGA1	8	213	3.76
+JY8QFUQ01A8FM1	IGA1	12	213	5.63
+JY8QFUQ01A8FSV	IGG1	28	213	13.15
+JY8QFUQ01A8G0E	IGA1	20	212	9.43
+JY8QFUQ01A8GGU	IGG1	13	212	6.13
+JY8QFUQ01A8GWB	IGA2	23	210	10.95
+JY8QFUQ01A8JNL	IGA1	16	216	7.41
+JY8QFUQ01A8JZF	IGA2	12	213	5.63
+JY8QFUQ01A8KHD	IGA1	30	213	14.08
+JY8QFUQ01A8KQW	IGG2	19	213	8.92
+JY8QFUQ01A8KZQ	IGA1	26	213	12.21
+JY8QFUQ01A8LEY	IGG1	0	212	0
+JY8QFUQ01A8MAI	IGA2	19	216	8.8
+JY8QFUQ01A8MS3	IGA1	11	210	5.24
+JY8QFUQ01A8NED	IGG1	25	213	11.74
+JY8QFUQ01A8SUT	IGG1	14	213	6.57
+JY8QFUQ01A8VFH	IGA2	9	213	4.23
+JY8QFUQ01A8WCU	IGG1	0	213	0
+JY8QFUQ01A8XXA	IGA1	13	212	6.13
+JY8QFUQ01A8Y0H	IGA2	15	213	7.04
+JY8QFUQ01A8Y8J	IGA1	26	213	12.21
+JY8QFUQ01A91GC	IGA1	6	216	2.78
+JY8QFUQ01A91H2	IGA1	15	213	7.04
+JY8QFUQ01A91ZM	IGA2	31	213	14.55
+JY8QFUQ01A9228	IGG2	22	213	10.33
+JY8QFUQ01A928N	IGG1	12	213	5.63
+JY8QFUQ01A94FS	IGA2	20	213	9.39
+JY8QFUQ01A96A4	IGA1	21	213	9.86
+JY8QFUQ01A96T1	IGA2	22	213	10.33
+JY8QFUQ01A98LD	IGG2	24	213	11.27
+JY8QFUQ01A98NE	IGG1	23	209	11
+JY8QFUQ01A9C87	IGG1	18	216	8.33
+JY8QFUQ01A9CIV	IGG1	14	213	6.57
+JY8QFUQ01A9D9E	IGA2	26	213	12.21
+JY8QFUQ01A9DAX	IGG1	19	213	8.92
+JY8QFUQ01A9DEW	IGG1	15	213	7.04
+JY8QFUQ01A9DTT	IGG1	29	209	13.88
+JY8QFUQ01A9E7L	IGA1	13	213	6.1
+JY8QFUQ01A9FXS	IGA2	24	212	11.32
+JY8QFUQ01A9G63	IGA2	28	210	13.33
+JY8QFUQ01A9GRS	IGG2	15	210	7.14
+JY8QFUQ01A9HIP	IGA2	28	213	13.15
+JY8QFUQ01A9JOS	IGG1	14	213	6.57
+JY8QFUQ01A9KHI	IGA1	16	213	7.51
+JY8QFUQ01A9LZM	IGA1	60	210	28.57
+JY8QFUQ01A9M1O	IGA2	57	210	27.14
+JY8QFUQ01A9M5C	IGA1	10	212	4.72
+JY8QFUQ01A9MMF	IGA1	10	213	4.69
+JY8QFUQ01A9OA6	IGA2	14	213	6.57
+JY8QFUQ01A9PH6	IGG1	8	213	3.76
+JY8QFUQ01A9PP5	IGA1	12	213	5.63
+JY8QFUQ01A9R46	IGA1	12	213	5.63
+JY8QFUQ01A9S2H	IGA1	29	213	13.62
+JY8QFUQ01A9W4E	IGA1	21	216	9.72
+JY8QFUQ01A9XRP	IGG1	12	213	5.63
+JY8QFUQ01A9YO5	IGA1	26	216	12.04
+JY8QFUQ01A9ZDI	IGG1	18	212	8.49
+JY8QFUQ01AA0DL	IGA1	15	213	7.04
+JY8QFUQ01AA0M8	IGA2	15	213	7.04
+JY8QFUQ01AA3GK	IGA1	21	212	9.91
+JY8QFUQ01AA57U	IGA1	39	213	18.31
+JY8QFUQ01AA63Y	IGA1	31	213	14.55
+JY8QFUQ01AA9O7	IGG1	24	212	11.32
+JY8QFUQ01AA9UM	IGG1	10	216	4.63
+JY8QFUQ01AAQL2	IGA1	20	216	9.26
+JY8QFUQ01AARBP	IGA2	3	219	1.37
+JY8QFUQ01AARXS	IGG1	17	213	7.98
+JY8QFUQ01AAS9C	IGG1	9	216	4.17
+JY8QFUQ01AATZ4	IGA1	26	213	12.21
+JY8QFUQ01AAUM2	IGA2	23	212	10.85
+JY8QFUQ01AAUWG	IGA1	13	213	6.1
+JY8QFUQ01AAWVK	IGA1	10	213	4.69
+JY8QFUQ01AAZ6M	IGA1	12	216	5.56
+JY8QFUQ01AB19P	IGG1	26	213	12.21
+JY8QFUQ01AB1K5	IGG2	20	213	9.39
+JY8QFUQ01AB3G5	IGA1	17	216	7.87
+JY8QFUQ01AB3KI	IGA1	22	210	10.48
+JY8QFUQ01AB51E	IGA1	14	213	6.57
+JY8QFUQ01ABDY1	IGA2	10	213	4.69
+JY8QFUQ01ABF8G	IGA1	25	216	11.57
+JY8QFUQ01ABFPI	IGG1	15	213	7.04
+JY8QFUQ01ABGCX	IGA2	13	213	6.1
+JY8QFUQ01ABI4U	IGG1	17	215	7.91
+JY8QFUQ01ABKJ7	IGA1	22	213	10.33
+JY8QFUQ01ABL5K	IGA1	18	213	8.45
+JY8QFUQ01ABTVQ	IGA1	26	213	12.21
+JY8QFUQ01ABYQ3	IGA1	43	213	20.19
+JY8QFUQ01ABZLF	IGG1	14	213	6.57
+JY8QFUQ01ABZPQ	IGG1	21	212	9.91
+JY8QFUQ01AC0DA	IGG3	10	213	4.69
+JY8QFUQ01AC0DP	IGA1	20	216	9.26
+JY8QFUQ01AC0IS	IGA2	18	213	8.45
+JY8QFUQ01AC33X	IGA1	34	216	15.74
+JY8QFUQ01AC5GC	IGA1	22	216	10.19
+JY8QFUQ01AC792	IGG1	11	213	5.16
+JY8QFUQ01AC7WH	IGA2	9	213	4.23
+JY8QFUQ01ACBLB	IGA2	32	213	15.02
+JY8QFUQ01ACCKZ	IGA2	19	209	9.09
+JY8QFUQ01ACENJ	IGA1	10	213	4.69
+JY8QFUQ01ACFOO	IGA1	7	213	3.29
+JY8QFUQ01ACH9Z	IGA1	22	213	10.33
+JY8QFUQ01ACHS4	IGA2	15	210	7.14
+JY8QFUQ01ACLAL	IGG1	29	210	13.81
+JY8QFUQ01ACLRQ	IGA1	17	213	7.98
+JY8QFUQ01ACLU1	IGA2	7	213	3.29
+JY8QFUQ01ACRP3	IGA1	15	213	7.04
+JY8QFUQ01ACRUV	IGA2	20	210	9.52
+JY8QFUQ01ACT7P	IGG1	16	213	7.51
+JY8QFUQ01ACURH	IGA1	27	210	12.86
+JY8QFUQ01ACVQ4	IGA1	43	216	19.91
+JY8QFUQ01ACXAI	IGG1	25	213	11.74
+JY8QFUQ01ACXLB	IGA1	20	210	9.52
+JY8QFUQ01ACXOG	IGA1	27	213	12.68
+JY8QFUQ01ACXS7	IGA2	30	213	14.08
+JY8QFUQ01ACXSL	IGG1	27	210	12.86
+JY8QFUQ01AD4KE	IGA1	23	215	10.7
+JY8QFUQ01AD5QJ	IGA2	17	213	7.98
+JY8QFUQ01AD5UE	IGA1	19	213	8.92
+JY8QFUQ01AD74T	IGA2	21	213	9.86
+JY8QFUQ01AD79A	IGG1	28	219	12.79
+JY8QFUQ01ADCX5	IGG2	22	216	10.19
+JY8QFUQ01ADDDA	IGA1	8	210	3.81
+JY8QFUQ01ADG23	IGG1	35	216	16.2
+JY8QFUQ01ADGL2	IGA1	21	213	9.86
+JY8QFUQ01ADMJX	IGG1	28	210	13.33
+JY8QFUQ01ADN3R	IGA1	29	216	13.43
+JY8QFUQ01ADNKP	IGA1	31	213	14.55
+JY8QFUQ01ADOO5	IGA1	43	216	19.91
+JY8QFUQ01ADRD7	IGA1	20	201	9.95
+JY8QFUQ01ADTQJ	IGG2	22	213	10.33
+JY8QFUQ01ADV0A	IGA1	14	216	6.48
+JY8QFUQ01ADWZ0	IGA1	17	213	7.98
+JY8QFUQ01ADZFS	IGG1	18	213	8.45
+JY8QFUQ01AE2LT	IGA1	24	213	11.27
+JY8QFUQ01AE3XC	IGG1	18	215	8.37
+JY8QFUQ01AE4GX	IGA2	23	219	10.5
+JY8QFUQ01AE6UZ	IGA2	21	213	9.86
+JY8QFUQ01AEDZX	IGG1	11	213	5.16
+JY8QFUQ01AEE83	IGA2	36	210	17.14
+JY8QFUQ01AEF8J	IGA1	9	213	4.23
+JY8QFUQ01AEH4G	IGG1	24	212	11.32
+JY8QFUQ01AEM2N	IGA1	24	210	11.43
+JY8QFUQ01AEMXL	IGA2	26	210	12.38
+JY8QFUQ01AENJP	IGG1	14	213	6.57
+JY8QFUQ01AEQU4	IGG1	21	216	9.72
+JY8QFUQ01AEU6X	IGA2	25	213	11.74
+JY8QFUQ01AEVWH	IGG1	20	213	9.39
+JY8QFUQ01AEX25	IGA2	9	213	4.23
+JY8QFUQ01AEYEY	IGA1	9	213	4.23
+JY8QFUQ01AEYN1	IGA2	10	213	4.69
+JY8QFUQ01AEYTS	IGG3	20	213	9.39
+JY8QFUQ01AF30Y	IGA2	18	210	8.57
+JY8QFUQ01AF3QZ	IGG1	17	213	7.98
+JY8QFUQ01AF3TS	IGA2	20	213	9.39
+JY8QFUQ01AF4Q3	IGA1	29	213	13.62
+JY8QFUQ01AF4Z9	IGG4	43	210	20.48
+JY8QFUQ01AF664	IGA1	23	210	10.95
+JY8QFUQ01AF6U3	IGG2	29	211	13.74
+JY8QFUQ01AF7Y6	IGA2	12	212	5.66
+JY8QFUQ01AF8I8	IGG1	20	219	9.13
+JY8QFUQ01AF8ND	IGG2	14	216	6.48
+JY8QFUQ01AF8SZ	IGA1	28	210	13.33
+JY8QFUQ01AF9LD	IGA1	14	213	6.57
+JY8QFUQ01AFBN6	IGG4	0	216	0
+JY8QFUQ01AFCKU	IGA1	22	213	10.33
+JY8QFUQ01AFCRV	IGG1	17	213	7.98
+JY8QFUQ01AFDCM	IGA2	20	216	9.26
+JY8QFUQ01AFE1S	IGA1	14	212	6.6
+JY8QFUQ01AFE74	IGA1	20	213	9.39
+JY8QFUQ01AFES7	IGA2	22	219	10.05
+JY8QFUQ01AFGYG	IGA1	17	213	7.98
+JY8QFUQ01AFJBJ	IGG1	15	213	7.04
+JY8QFUQ01AFKEB	IGA1	27	213	12.68
+JY8QFUQ01AFSUH	IGA1	5	213	2.35
+JY8QFUQ01AFUZV	IGG2	38	213	17.84
+JY8QFUQ01AFVJM	IGG1	36	213	16.9
+JY8QFUQ01AFVUY	IGA1	15	213	7.04
+JY8QFUQ01AFZBJ	IGA2	28	212	13.21
+JY8QFUQ01AG0D6	IGA1	28	213	13.15
+JY8QFUQ01AG2OG	IGA1	34	213	15.96
+JY8QFUQ01AG5LX	IGA2	42	213	19.72
+JY8QFUQ01AG60V	IGG2	14	212	6.6
+JY8QFUQ01AG93B	IGA2	26	209	12.44
+JY8QFUQ01AG9DV	IGG2	25	213	11.74
+JY8QFUQ01AGDKF	IGA1	21	213	9.86
+JY8QFUQ01AGDVH	IGG2	16	219	7.31
+JY8QFUQ01AGDVR	IGA1	17	213	7.98
+JY8QFUQ01AGGIL	IGA2	17	213	7.98
+JY8QFUQ01AGHV3	IGG1	24	215	11.16
+JY8QFUQ01AGKNE	IGA2	15	213	7.04
+JY8QFUQ01AGKQB	IGA2	10	213	4.69
+JY8QFUQ01AGMKR	IGA1	23	213	10.8
+JY8QFUQ01AGQWQ	IGA2	14	207	6.76
+JY8QFUQ01AGRBK	IGA1	16	212	7.55
+JY8QFUQ01AGS4P	IGG1	25	213	11.74
+JY8QFUQ01AGSEB	IGA2	15	213	7.04
+JY8QFUQ01AGTKI	IGG3	22	213	10.33
+JY8QFUQ01AGWXH	IGA1	23	213	10.8
+JY8QFUQ01AGXB8	IGA2	13	213	6.1
+JY8QFUQ01AGXOC	IGA1	25	210	11.9
+JY8QFUQ01AGZC5	IGG1	23	213	10.8
+JY8QFUQ01AH0X0	IGA1	20	216	9.26
+JY8QFUQ01AH32A	IGA1	27	213	12.68
+JY8QFUQ01AH38B	IGA1	30	213	14.08
+JY8QFUQ01AH5A1	IGA1	14	215	6.51
+JY8QFUQ01AH5X7	IGA1	5	222	2.25
+JY8QFUQ01AH715	IGG2	23	212	10.85
+JY8QFUQ01AHAA1	IGA1	17	213	7.98
+JY8QFUQ01AHB8A	IGA1	20	213	9.39
+JY8QFUQ01AHBK2	IGA1	23	210	10.95
+JY8QFUQ01AHEWI	IGG1	13	219	5.94
+JY8QFUQ01AHHJ6	IGA1	24	213	11.27
+JY8QFUQ01AHIDS	IGA2	8	213	3.76
+JY8QFUQ01AHK2I	IGG2	14	210	6.67
+JY8QFUQ01AHMI8	IGA1	14	213	6.57
+JY8QFUQ01AHN93	IGG1	17	213	7.98
+JY8QFUQ01AHRBA	IGA1	40	210	19.05
+JY8QFUQ01AHSTY	IGG1	28	212	13.21
+JY8QFUQ01AHTOX	IGG1	33	216	15.28
+JY8QFUQ01AHX1B	IGG1	10	213	4.69
+JY8QFUQ01AHY6K	IGA2	27	213	12.68
+JY8QFUQ01AHY6R	IGA1	14	213	6.57
+JY8QFUQ01AHYWT	IGG1	43	210	20.48
+JY8QFUQ01AI3Y4	IGA2	12	213	5.63
+JY8QFUQ01AI4NA	IGA1	20	213	9.39
+JY8QFUQ01AIAC1	IGA1	17	213	7.98
+JY8QFUQ01AIAF1	IGA1	18	213	8.45
+JY8QFUQ01AIE5T	IGA1	21	210	10
+JY8QFUQ01AIN7Q	IGA1	16	213	7.51
+JY8QFUQ01AITB3	IGA2	14	212	6.6
+JY8QFUQ01AITV3	IGA1	8	219	3.65
+JY8QFUQ01AJ3EX	IGA2	9	213	4.23
+JY8QFUQ01AJ3KH	IGA1	30	213	14.08
+JY8QFUQ01AJ891	IGG1	16	212	7.55
+JY8QFUQ01AJCMG	IGA2	20	213	9.39
+JY8QFUQ01AJEE9	IGA2	19	210	9.05
+JY8QFUQ01AJEL4	IGA1	17	213	7.98
+JY8QFUQ01AJF1Y	IGG1	16	213	7.51
+JY8QFUQ01AJGDO	IGG1	24	213	11.27
+JY8QFUQ01AJJ06	IGA1	31	213	14.55
+JY8QFUQ01AJOAH	IGA1	11	213	5.16
+JY8QFUQ01AJQ24	IGA1	20	213	9.39
+JY8QFUQ01AJRGU	IGG4	27	213	12.68
+JY8QFUQ01AJRNU	IGG3	0	216	0
+JY8QFUQ01AJTUX	IGA1	10	140	7.14
+JY8QFUQ01AJUSF	IGA1	35	213	16.43
+JY8QFUQ01AJVOK	IGA1	18	213	8.45
+JY8QFUQ01AJWQ7	IGG1	14	212	6.6
+JY8QFUQ01AJWSY	IGA2	9	213	4.23
+JY8QFUQ01AJYIB	IGA1	17	213	7.98
+JY8QFUQ01AJYWV	IGA1	18	213	8.45
+JY8QFUQ01AJZDU	IGA2	34	210	16.19
+JY8QFUQ01AK0SS	IGA1	28	213	13.15
+JY8QFUQ01AK1KM	IGG2	27	212	12.74
+JY8QFUQ01AK5T8	IGA2	20	216	9.26
+JY8QFUQ01AK7F3	IGA1	13	213	6.1
+JY8QFUQ01AKA7I	IGA2	13	213	6.1
+JY8QFUQ01AKBIM	IGA1	21	213	9.86
+JY8QFUQ01AKC4T	IGG2	11	210	5.24
+JY8QFUQ01AKFJR	IGA1	16	213	7.51
+JY8QFUQ01AKG3P	IGA1	19	216	8.8
+JY8QFUQ01AKHC5	IGA2	17	213	7.98
+JY8QFUQ01AKHCX	IGA2	20	210	9.52
+JY8QFUQ01AKI3P	IGA1	33	216	15.28
+JY8QFUQ01AKJVX	IGA2	7	210	3.33
+JY8QFUQ01AKKV6	IGA1	29	213	13.62
+JY8QFUQ01AKM0W	IGA2	18	213	8.45
+JY8QFUQ01AKNSQ	IGA2	15	213	7.04
+JY8QFUQ01AKOZJ	IGG1	6	212	2.83
+JY8QFUQ01AKQ1X	IGG2	9	213	4.23
+JY8QFUQ01AKROJ	IGA1	39	213	18.31
+JY8QFUQ01AKUKJ	IGA1	17	219	7.76
+JY8QFUQ01AKVLH	IGA1	26	210	12.38
+JY8QFUQ01AKY8Y	IGA2	34	210	16.19
+JY8QFUQ01AKZ0I	IGG1	16	214	7.48
+JY8QFUQ01AKZW4	IGA1	12	210	5.71
+JY8QFUQ01AL1GZ	IGA1	12	219	5.48
+JY8QFUQ01AL1N5	IGG2	23	213	10.8
+JY8QFUQ01AL2CW	IGG3	0	219	0
+JY8QFUQ01AL2IL	IGA1	22	213	10.33
+JY8QFUQ01AL7F1	IGG2	27	213	12.68
+JY8QFUQ01AL8VS	IGA1	26	210	12.38
+JY8QFUQ01AL9MI	IGA1	33	213	15.49
+JY8QFUQ01AL9ZT	IGA1	33	213	15.49
+JY8QFUQ01ALDY2	IGA1	18	210	8.57
+JY8QFUQ01ALFPF	IGG1	20	216	9.26
+JY8QFUQ01ALJ94	IGG1	20	213	9.39
+JY8QFUQ01ALJS1	IGG2	19	213	8.92
+JY8QFUQ01ALKNG	IGA2	18	213	8.45
+JY8QFUQ01ALMSJ	IGG2	14	209	6.7
+JY8QFUQ01ALN7I	IGA2	22	216	10.19
+JY8QFUQ01ALPR0	IGG1	29	210	13.81
+JY8QFUQ01ALW0Z	IGA1	15	213	7.04
+JY8QFUQ01ALZYF	IGG1	23	210	10.95
+JY8QFUQ01AM056	IGA1	19	213	8.92
+JY8QFUQ01AM0T6	IGA2	18	210	8.57
+JY8QFUQ01AM4ZR	IGG1	25	213	11.74
+JY8QFUQ01AM701	IGA1	20	213	9.39
+JY8QFUQ01AMBSZ	IGG1	12	213	5.63
+JY8QFUQ01AMDQC	IGA2	13	213	6.1
+JY8QFUQ01AMI66	IGA1	15	210	7.14
+JY8QFUQ01AMIC0	IGA1	12	213	5.63
+JY8QFUQ01AMK5G	IGA2	13	213	6.1
+JY8QFUQ01AMLKN	IGA1	18	213	8.45
+JY8QFUQ01AMPZY	IGA1	29	213	13.62
+JY8QFUQ01AMTHS	IGG2	18	216	8.33
+JY8QFUQ01AMUT4	IGG2	25	213	11.74
+JY8QFUQ01AMX59	IGG1	16	212	7.55
+JY8QFUQ01AMXZ6	IGA2	18	210	8.57
+JY8QFUQ01AMZ6W	IGG1	24	210	11.43
+JY8QFUQ01AN3IA	IGA1	8	213	3.76
+JY8QFUQ01AN5X2	IGA2	15	211	7.11
+JY8QFUQ01AN6Q8	IGG2	21	219	9.59
+JY8QFUQ01AN8DC	IGA1	16	213	7.51
+JY8QFUQ01AN937	IGA2	35	216	16.2
+JY8QFUQ01AND2L	IGA1	19	216	8.8
+JY8QFUQ01ANGEF	IGA1	27	210	12.86
+JY8QFUQ01ANI1H	IGA2	28	213	13.15
+JY8QFUQ01ANJ9X	IGA1	17	213	7.98
+JY8QFUQ01ANKJV	IGA2	19	213	8.92
+JY8QFUQ01ANLMX	IGA1	15	219	6.85
+JY8QFUQ01ANO71	IGA1	20	213	9.39
+JY8QFUQ01ANOOW	IGG2	32	213	15.02
+JY8QFUQ01ANR0Z	IGA1	20	213	9.39
+JY8QFUQ01ANSMV	IGG1	21	213	9.86
+JY8QFUQ01ANV52	IGG2	13	213	6.1
+JY8QFUQ01ANVJX	IGA2	19	212	8.96
+JY8QFUQ01ANXAZ	IGA1	20	213	9.39
+JY8QFUQ01ANXRG	IGA1	20	213	9.39
+JY8QFUQ01AO0HA	IGA2	21	213	9.86
+JY8QFUQ01AO14S	IGA2	6	213	2.82
+JY8QFUQ01AO38F	IGA1	21	216	9.72
+JY8QFUQ01AO5H2	IGA1	40	213	18.78
+JY8QFUQ01AO7UP	IGA2	23	213	10.8
+JY8QFUQ01AO8B3	IGG1	17	211	8.06
+JY8QFUQ01AO8X8	IGA2	40	213	18.78
+JY8QFUQ01AOCIF	IGG2	13	213	6.1
+JY8QFUQ01AODPS	IGA1	36	210	17.14
+JY8QFUQ01AODUI	IGG1	17	213	7.98
+JY8QFUQ01AOFCE	IGA1	10	213	4.69
+JY8QFUQ01AOFPE	IGG2	27	213	12.68
+JY8QFUQ01AOGGT	IGA1	17	213	7.98
+JY8QFUQ01AOGS5	IGA1	16	212	7.55
+JY8QFUQ01AOJXD	IGA1	31	210	14.76
+JY8QFUQ01AOLHE	IGA1	35	209	16.75
+JY8QFUQ01AOMW2	IGA1	25	213	11.74
+JY8QFUQ01AOQZO	IGA1	27	216	12.5
+JY8QFUQ01AOR4M	IGA2	14	213	6.57
+JY8QFUQ01AOY3W	IGA2	23	209	11
+JY8QFUQ01AP05X	IGA1	6	213	2.82
+JY8QFUQ01AP0TZ	IGA1	14	213	6.57
+JY8QFUQ01AP21C	IGA1	21	213	9.86
+JY8QFUQ01AP263	IGA1	19	213	8.92
+JY8QFUQ01AP2Y1	IGA1	23	213	10.8
+JY8QFUQ01AP3M5	IGG1	20	213	9.39
+JY8QFUQ01AP4KF	IGG2	11	212	5.19
+JY8QFUQ01AP6HU	IGA1	28	213	13.15
+JY8QFUQ01AP72B	IGG2	37	212	17.45
+JY8QFUQ01AP9Y7	IGG2	21	213	9.86
+JY8QFUQ01APECD	IGA1	1	213	0.47
+JY8QFUQ01APENB	IGA1	14	213	6.57
+JY8QFUQ01APGRW	IGG2	16	213	7.51
+JY8QFUQ01APICN	IGG1	31	213	14.55
+JY8QFUQ01APJMN	IGG2	26	213	12.21
+JY8QFUQ01APK7S	IGA1	41	208	19.71
+JY8QFUQ01APLRK	IGG2	24	212	11.32
+JY8QFUQ01APM60	IGA1	4	210	1.9
+JY8QFUQ01APOZ1	IGG1	33	213	15.49
+JY8QFUQ01APYPD	IGG2	14	213	6.57
+JY8QFUQ01AQ0K4	IGG1	20	211	9.48
+JY8QFUQ01AQ18D	IGA1	14	219	6.39
+JY8QFUQ01AQ576	IGA1	12	213	5.63
+JY8QFUQ01AQ8YC	IGA1	28	213	13.15
+JY8QFUQ01AQAEH	IGA2	15	213	7.04
+JY8QFUQ01AQAXR	IGA1	19	213	8.92
+JY8QFUQ01AQMNE	IGG2	17	207	8.21
+JY8QFUQ01AQOEM	IGA2	21	213	9.86
+JY8QFUQ01AQS9S	IGA2	22	212	10.38
+JY8QFUQ01AQUPN	IGA1	6	213	2.82
+JY8QFUQ01AQWBS	IGA1	13	215	6.05
+JY8QFUQ01AQXAS	IGA1	36	216	16.67
+JY8QFUQ01AQXWF	IGG2	26	210	12.38
+JY8QFUQ01AQZ7D	IGG1	21	213	9.86
+JY8QFUQ01AR4F8	IGA1	8	219	3.65
+JY8QFUQ01AR4XZ	IGA1	18	213	8.45
+JY8QFUQ01AR7NH	IGG2	22	216	10.19
+JY8QFUQ01AR8K0	IGA2	21	213	9.86
+JY8QFUQ01AR8UJ	IGG1	12	218	5.5
+JY8QFUQ01AR91V	IGA1	34	213	15.96
+JY8QFUQ01ARJHI	IGA1	18	213	8.45
+JY8QFUQ01ARLMX	IGA1	15	210	7.14
+JY8QFUQ01AROW2	IGA1	19	213	8.92
+JY8QFUQ01ARPRY	IGG2	11	213	5.16
+JY8QFUQ01ARWZ0	IGA2	14	213	6.57
+JY8QFUQ01ARYWV	IGA1	25	213	11.74
+JY8QFUQ01AS13P	IGA1	18	213	8.45
+JY8QFUQ01AS1T0	IGA1	14	213	6.57
+JY8QFUQ01AS22B	IGG1	27	210	12.86
+JY8QFUQ01AS24X	IGA2	8	213	3.76
+JY8QFUQ01AS28D	IGA1	62	213	29.11
+JY8QFUQ01AS5EL	IGA2	1	210	0.48
+JY8QFUQ01AS6B9	IGA1	13	213	6.1
+JY8QFUQ01AS9TS	IGA1	28	213	13.15
+JY8QFUQ01ASBBA	IGA1	12	213	5.63
+JY8QFUQ01ASGTL	IGA1	30	213	14.08
+JY8QFUQ01ASIFV	IGG2	10	213	4.69
+JY8QFUQ01ASKXZ	IGA1	15	211	7.11
+JY8QFUQ01ASLW8	IGA1	11	213	5.16
+JY8QFUQ01ASMJE	IGG1	17	213	7.98
+JY8QFUQ01ASMT6	IGA2	16	216	7.41
+JY8QFUQ01ASO1O	IGA1	16	210	7.62
+JY8QFUQ01ASOW0	IGA1	13	213	6.1
+JY8QFUQ01ASS6V	IGG1	17	213	7.98
+JY8QFUQ01ASSCV	IGA2	10	213	4.69
+JY8QFUQ01ASTYN	IGG1	34	209	16.27
+JY8QFUQ01ASUCZ	IGA1	27	213	12.68
+JY8QFUQ01ASUXV	IGG2	16	216	7.41
+JY8QFUQ01ASVJP	IGA1	25	213	11.74
+JY8QFUQ01ASZ0M	IGA1	31	209	14.83
+JY8QFUQ01AT4NT	IGG1	24	212	11.32
+JY8QFUQ01AT5TS	IGA1	8	213	3.76
+JY8QFUQ01AT8HH	IGA2	33	216	15.28
+JY8QFUQ01ATA76	IGG3	0	219	0
+JY8QFUQ01ATDOT	IGG3	14	210	6.67
+JY8QFUQ01ATIZV	IGA2	25	210	11.9
+JY8QFUQ01ATJ6D	IGA1	9	213	4.23
+JY8QFUQ01ATK2N	IGA1	22	210	10.48
+JY8QFUQ01ATP88	IGG1	26	210	12.38
+JY8QFUQ01ATQIC	IGA1	11	213	5.16
+JY8QFUQ01ATVSF	IGG2	12	212	5.66
+JY8QFUQ01ATWCJ	IGA1	23	212	10.85
+JY8QFUQ01ATX94	IGG2	16	218	7.34
+JY8QFUQ01AU02Q	IGA1	27	216	12.5
+JY8QFUQ01AU76E	IGA2	25	213	11.74
+JY8QFUQ01AUADL	IGA1	27	213	12.68
+JY8QFUQ01AUD41	IGA1	25	213	11.74
+JY8QFUQ01AUF6C	IGA1	30	213	14.08
+JY8QFUQ01AUH73	IGA1	19	213	8.92
+JY8QFUQ01AUI48	IGA1	8	213	3.76
+JY8QFUQ01AUJ6M	IGG2	14	212	6.6
+JY8QFUQ01AURES	IGA1	25	212	11.79
+JY8QFUQ01AUU0J	IGA2	15	213	7.04
+JY8QFUQ01AUUPD	IGG1	14	210	6.67
+JY8QFUQ01AUVXR	IGA2	18	213	8.45
+JY8QFUQ01AUYQV	IGA1	21	210	10
+JY8QFUQ01AV09F	IGA1	39	216	18.06
+JY8QFUQ01AV2V7	IGA2	20	219	9.13
+JY8QFUQ01AV3HD	IGA1	20	213	9.39
+JY8QFUQ01AV3VG	IGG1	23	212	10.85
+JY8QFUQ01AV7LU	IGG2	22	213	10.33
+JY8QFUQ01AV8RW	IGA1	14	213	6.57
+JY8QFUQ01AVA0Q	IGA1	9	216	4.17
+JY8QFUQ01AVB4I	IGG2	22	213	10.33
+JY8QFUQ01AVBM5	IGA1	26	213	12.21
+JY8QFUQ01AVDHQ	IGA1	15	213	7.04
+JY8QFUQ01AVEUZ	IGA2	12	213	5.63
+JY8QFUQ01AVHAA	IGG1	30	213	14.08
+JY8QFUQ01AVLE1	IGA2	23	213	10.8
+JY8QFUQ01AVMZN	IGG1	40	210	19.05
+JY8QFUQ01AVNE7	IGA2	14	213	6.57
+JY8QFUQ01AVOVU	IGA2	3	208	1.44
+JY8QFUQ01AVPMG	IGA2	16	216	7.41
+JY8QFUQ01AVQ0D	IGA1	6	213	2.82
+JY8QFUQ01AVQBY	IGG1	17	213	7.98
+JY8QFUQ01AVT39	IGA2	26	213	12.21
+JY8QFUQ01AVZKB	IGA1	36	213	16.9
+JY8QFUQ01AW02O	IGA1	28	213	13.15
+JY8QFUQ01AW9GE	IGG4	38	216	17.59
+JY8QFUQ01AWGJ4	IGA2	21	213	9.86
+JY8QFUQ01AWIJ1	IGA1	32	210	15.24
+JY8QFUQ01AWLNY	IGA2	14	222	6.31
+JY8QFUQ01AWOLO	IGG1	15	212	7.08
+JY8QFUQ01AWOO7	IGA2	25	213	11.74
+JY8QFUQ01AWPED	IGG1	17	213	7.98
+JY8QFUQ01AWSX6	IGG4	11	213	5.16
+JY8QFUQ01AX0TL	IGG2	21	215	9.77
+JY8QFUQ01AX3JG	IGA1	16	213	7.51
+JY8QFUQ01AX7BT	IGA1	28	210	13.33
+JY8QFUQ01AX7OK	IGA2	13	213	6.1
+JY8QFUQ01AXASL	IGA1	17	212	8.02
+JY8QFUQ01AXCGR	IGA2	12	213	5.63
+JY8QFUQ01AXE56	IGG1	33	212	15.57
+JY8QFUQ01AXNWU	IGA1	9	213	4.23
+JY8QFUQ01AXTRO	IGG2	16	213	7.51
+JY8QFUQ01AXVCI	IGG1	14	213	6.57
+JY8QFUQ01AXXC6	IGG1	14	213	6.57
+JY8QFUQ01AY7GI	IGA1	22	212	10.38
+JY8QFUQ01AY8MO	IGA1	21	210	10
+JY8QFUQ01AY94E	IGA2	12	216	5.56
+JY8QFUQ01AYCCC	IGA1	19	213	8.92
+JY8QFUQ01AYFQ1	IGA2	21	213	9.86
+JY8QFUQ01AYG87	IGG1	23	212	10.85
+JY8QFUQ01AYHQQ	IGA1	14	219	6.39
+JY8QFUQ01AYHQY	IGA2	8	212	3.77
+JY8QFUQ01AYINE	IGG2	17	213	7.98
+JY8QFUQ01AYL0X	IGG2	12	180	6.67
+JY8QFUQ01AYR4C	IGA2	11	213	5.16
+JY8QFUQ01AYTLP	IGG1	37	212	17.45
+JY8QFUQ01AYXP4	IGG2	14	216	6.48
+JY8QFUQ01AYY7V	IGA2	27	210	12.86
+JY8QFUQ01AZ2OV	IGA1	25	213	11.74
+JY8QFUQ01AZ3Q8	IGA2	27	210	12.86
+JY8QFUQ01AZ72P	IGA1	14	212	6.6
+JY8QFUQ01AZ89E	IGA2	8	216	3.7
+JY8QFUQ01AZAYV	IGA2	33	213	15.49
+JY8QFUQ01AZCLU	IGG2	9	213	4.23
+JY8QFUQ01AZEES	IGA1	17	219	7.76
+JY8QFUQ01AZK7Y	IGA2	10	213	4.69
+JY8QFUQ01AZQ2B	IGA1	47	213	22.07
+JY8QFUQ01AZRH6	IGG2	14	213	6.57
+JY8QFUQ01AZRKU	IGA2	24	212	11.32
+JY8QFUQ01AZTNG	IGG1	0	219	0
+JY8QFUQ01AZU0Q	IGG2	40	210	19.05
+JY8QFUQ01AZUTN	IGA2	11	213	5.16
+JY8QFUQ01AZZ31	IGA1	22	216	10.19
+JY8QFUQ01B00R6	IGA1	25	213	11.74
+JY8QFUQ01B02KX	IGG2	0	212	0
+JY8QFUQ01B03TR	IGA1	6	213	2.82
+JY8QFUQ01B07O4	IGA1	12	213	5.63
+JY8QFUQ01B08DF	IGA2	13	216	6.02
+JY8QFUQ01B09U4	IGG1	15	213	7.04
+JY8QFUQ01B0B79	IGG2	23	198	11.62
+JY8QFUQ01B0BDK	IGA1	22	213	10.33
+JY8QFUQ01B0DOB	IGA2	13	213	6.1
+JY8QFUQ01B0E0W	IGG1	9	212	4.25
+JY8QFUQ01B0E54	IGA1	39	213	18.31
+JY8QFUQ01B0F0W	IGA1	13	213	6.1
+JY8QFUQ01B0GQK	IGA1	11	213	5.16
+JY8QFUQ01B0JWX	IGA1	47	216	21.76
+JY8QFUQ01B0K72	IGA1	20	210	9.52
+JY8QFUQ01B0M6T	IGA1	27	213	12.68
+JY8QFUQ01B0MEN	IGA2	8	212	3.77
+JY8QFUQ01B0SLO	IGA1	15	213	7.04
+JY8QFUQ01B0YFD	IGG1	17	215	7.91
+JY8QFUQ01B0Z32	IGA2	17	213	7.98
+JY8QFUQ01B0ZM2	IGG2	14	213	6.57
+JY8QFUQ01B11DU	IGG1	7	213	3.29
+JY8QFUQ01B14S8	IGG1	37	212	17.45
+JY8QFUQ01B1B92	IGA1	30	213	14.08
+JY8QFUQ01B1CH3	IGG2	25	213	11.74
+JY8QFUQ01B1HDC	IGG3	32	216	14.81
+JY8QFUQ01B1HSY	IGA1	28	210	13.33
+JY8QFUQ01B1L81	IGA1	20	210	9.52
+JY8QFUQ01B1N7G	IGA1	25	219	11.42
+JY8QFUQ01B1RUY	IGG1	31	213	14.55
+JY8QFUQ01B1TCN	IGA1	20	210	9.52
+JY8QFUQ01B1UHR	IGA1	16	213	7.51
+JY8QFUQ01B1UYR	IGG3	46	213	21.6
+JY8QFUQ01B1W4F	IGG1	18	213	8.45
+JY8QFUQ01B1X3U	IGA1	13	213	6.1
+JY8QFUQ01B1Y16	IGA1	19	213	8.92
+JY8QFUQ01B20H0	IGG3	3	213	1.41
+JY8QFUQ01B27X3	IGA1	10	212	4.72
+JY8QFUQ01B2ARX	IGA1	14	213	6.57
+JY8QFUQ01B2D9Z	IGG1	13	213	6.1
+JY8QFUQ01B2ERL	IGA1	26	213	12.21
+JY8QFUQ01B2GU8	IGA1	15	210	7.14
+JY8QFUQ01B2JOM	IGA2	13	209	6.22
+JY8QFUQ01B2LDP	IGA2	20	213	9.39
+JY8QFUQ01B2NHE	IGA2	17	210	8.1
+JY8QFUQ01B2PNO	IGA1	19	213	8.92
+JY8QFUQ01B325I	IGG4	37	216	17.13
+JY8QFUQ01B3AX2	IGA1	26	213	12.21
+JY8QFUQ01B3AYN	IGA2	18	213	8.45
+JY8QFUQ01B3G3T	IGG2	11	212	5.19
+JY8QFUQ01B3HMA	IGG2	22	215	10.23
+JY8QFUQ01B3IOP	IGA1	24	219	10.96
+JY8QFUQ01B3JLF	IGG3	33	216	15.28
+JY8QFUQ01B3L4U	IGG1	14	213	6.57
+JY8QFUQ01B3OBX	IGG1	20	219	9.13
+JY8QFUQ01B3P0G	IGG2	25	212	11.79
+JY8QFUQ01B3S4F	IGA2	11	213	5.16
+JY8QFUQ01B3TI8	IGA1	20	213	9.39
+JY8QFUQ01B3TT1	IGA1	33	213	15.49
+JY8QFUQ01B3XMD	IGA2	27	213	12.68
+JY8QFUQ01B4CN9	IGG1	22	216	10.19
+JY8QFUQ01B4F4Q	IGA1	31	213	14.55
+JY8QFUQ01B4FE6	IGA2	12	213	5.63
+JY8QFUQ01B4FME	IGG4	13	213	6.1
+JY8QFUQ01B4L0R	IGA1	19	213	8.92
+JY8QFUQ01B4VTT	IGG2	14	213	6.57
+JY8QFUQ01B4X7N	IGG2	0	213	0
+JY8QFUQ01B4XPK	IGG1	5	216	2.31
+JY8QFUQ01B4Y1N	IGA1	13	222	5.86
+JY8QFUQ01B50HH	IGG2	18	213	8.45
+JY8QFUQ01B53SB	IGG1	41	210	19.52
+JY8QFUQ01B569F	IGA1	13	213	6.1
+JY8QFUQ01B56F9	IGA2	21	213	9.86
+JY8QFUQ01B56VC	IGA1	17	218	7.8
+JY8QFUQ01B58W5	IGA1	16	213	7.51
+JY8QFUQ01B5F34	IGA1	24	213	11.27
+JY8QFUQ01B5GFJ	IGA1	12	213	5.63
+JY8QFUQ01B5QDY	IGA2	22	213	10.33
+JY8QFUQ01B5SAT	IGA1	0	212	0
+JY8QFUQ01B5VR4	IGA2	10	213	4.69
+JY8QFUQ01B5XE3	IGG1	29	215	13.49
+JY8QFUQ01B5XEH	IGA2	7	145	4.83
+JY8QFUQ01B641M	IGA2	6	213	2.82
+JY8QFUQ01B64QD	IGA1	18	209	8.61
+JY8QFUQ01B6832	IGG1	22	209	10.53
+JY8QFUQ01B68YS	IGA2	16	213	7.51
+JY8QFUQ01B6BDJ	IGA2	12	213	5.63
+JY8QFUQ01B6CFI	IGA2	23	213	10.8
+JY8QFUQ01B6DDX	IGA2	25	213	11.74
+JY8QFUQ01B6G3Q	IGA1	36	216	16.67
+JY8QFUQ01B6LHF	IGA1	28	213	13.15
+JY8QFUQ01B6LVM	IGA1	23	213	10.8
+JY8QFUQ01B6UYE	IGA2	15	213	7.04
+JY8QFUQ01B70J3	IGA1	10	213	4.69
+JY8QFUQ01B71ED	IGA1	32	213	15.02
+JY8QFUQ01B757D	IGA2	58	216	26.85
+JY8QFUQ01B791I	IGA1	14	213	6.57
+JY8QFUQ01B7921	IGA1	15	213	7.04
+JY8QFUQ01B7B1B	IGA1	7	213	3.29
+JY8QFUQ01B7DZ7	IGA2	14	213	6.57
+JY8QFUQ01B7GYB	IGA1	21	213	9.86
+JY8QFUQ01B7L1I	IGA1	5	213	2.35
+JY8QFUQ01B7Q12	IGG2	12	213	5.63
+JY8QFUQ01B7TWW	IGG1	10	213	4.69
+JY8QFUQ01B7VBT	IGG2	19	209	9.09
+JY8QFUQ01B7XXQ	IGA2	22	219	10.05
+JY8QFUQ01B81W4	IGA2	15	213	7.04
+JY8QFUQ01B84I1	IGA2	22	216	10.19
+JY8QFUQ01B8ABJ	IGA2	18	213	8.45
+JY8QFUQ01B8AC6	IGA1	21	213	9.86
+JY8QFUQ01B8DLI	IGA2	21	213	9.86
+JY8QFUQ01B8DVS	IGG4	18	213	8.45
+JY8QFUQ01B8JYP	IGA1	22	209	10.53
+JY8QFUQ01B8T6Y	IGA1	21	213	9.86
+JY8QFUQ01B8WF3	IGA2	15	219	6.85
+JY8QFUQ01B8YQQ	IGA1	14	213	6.57
+JY8QFUQ01B90UJ	IGG1	18	212	8.49
+JY8QFUQ01B93WH	IGG2	12	215	5.58
+JY8QFUQ01B978H	IGA1	33	213	15.49
+JY8QFUQ01B9C4B	IGA2	18	210	8.57
+JY8QFUQ01B9DAH	IGG1	22	216	10.19
+JY8QFUQ01B9L1U	IGG2	9	216	4.17
+JY8QFUQ01B9LAE	IGA2	21	212	9.91
+JY8QFUQ01B9LAR	IGG2	14	212	6.6
+JY8QFUQ01B9NGM	IGA2	14	219	6.39
+JY8QFUQ01B9QXU	IGG1	24	209	11.48
+JY8QFUQ01B9RA3	IGA2	15	212	7.08
+JY8QFUQ01B9S8H	IGG1	14	213	6.57
+JY8QFUQ01B9TMK	IGG1	29	216	13.43
+JY8QFUQ01B9UZ4	IGA1	12	213	5.63
+JY8QFUQ01B9XU2	IGA1	14	216	6.48
+JY8QFUQ01BAB5T	IGA2	8	219	3.65
+JY8QFUQ01BACNA	IGA2	12	212	5.66
+JY8QFUQ01BAGKP	IGG2	32	216	14.81
+JY8QFUQ01BAGOW	IGA2	18	222	8.11
+JY8QFUQ01BAKGF	IGA1	28	216	12.96
+JY8QFUQ01BAR1C	IGG1	21	213	9.86
+JY8QFUQ01BB73D	IGA2	39	210	18.57
+JY8QFUQ01BB93X	IGG1	15	212	7.08
+JY8QFUQ01BB9AK	IGA2	26	210	12.38
+JY8QFUQ01BBDL1	IGA1	22	212	10.38
+JY8QFUQ01BBLQU	IGA1	14	213	6.57
+JY8QFUQ01BBQG8	IGG1	13	210	6.19
+JY8QFUQ01BBSRC	IGA1	31	216	14.35
+JY8QFUQ01BBTVQ	IGG1	20	211	9.48
+JY8QFUQ01BBVFC	IGA1	31	213	14.55
+JY8QFUQ01BBZEX	IGA1	22	213	10.33
+JY8QFUQ01BC153	IGA1	9	211	4.27
+JY8QFUQ01BCH7Y	IGG2	13	213	6.1
+JY8QFUQ01BCMPS	IGA2	15	210	7.14
+JY8QFUQ01BCV43	IGA2	13	213	6.1
+JY8QFUQ01BD04C	IGA1	13	213	6.1
+JY8QFUQ01BDGDZ	IGA2	6	216	2.78
+JY8QFUQ01BDIEE	IGA2	8	210	3.81
+JY8QFUQ01BDNIC	IGA1	23	213	10.8
+JY8QFUQ01BDPXU	IGA1	23	216	10.65
+JY8QFUQ01BDTL8	IGG2	26	211	12.32
+JY8QFUQ01BE0DI	IGA1	8	213	3.76
+JY8QFUQ01BE108	IGA2	29	210	13.81
+JY8QFUQ01BE4D2	IGA1	27	209	12.92
+JY8QFUQ01BE5D4	IGA2	26	210	12.38
+JY8QFUQ01BE8AK	IGG1	17	213	7.98
+JY8QFUQ01BEABE	IGA2	22	213	10.33
+JY8QFUQ01BEJQP	IGA1	46	216	21.3
+JY8QFUQ01BEQ83	IGG3	22	213	10.33
+JY8QFUQ01BERKI	IGA2	21	219	9.59
+JY8QFUQ01BESQ8	IGA2	13	210	6.19
+JY8QFUQ01BETLC	IGA2	10	213	4.69
+JY8QFUQ01BEUNL	IGA2	11	213	5.16
+JY8QFUQ01BF8CL	IGG1	7	216	3.24
+JY8QFUQ01BF9YK	IGA1	7	210	3.33
+JY8QFUQ01BFB0Q	IGA1	25	212	11.79
+JY8QFUQ01BFHSP	IGG1	28	210	13.33
+JY8QFUQ01BFI4C	IGA2	11	212	5.19
+JY8QFUQ01BFROD	IGG1	36	216	16.67
+JY8QFUQ01BFWP5	IGA2	12	213	5.63
+JY8QFUQ01BFXYS	IGG2	26	210	12.38
+JY8QFUQ01BFYFA	IGA1	13	213	6.1
+JY8QFUQ01BFZOR	IGA1	29	213	13.62
+JY8QFUQ01BG2F7	IGA1	22	213	10.33
+JY8QFUQ01BG5T6	IGA2	10	213	4.69
+JY8QFUQ01BG66X	IGA1	26	213	12.21
+JY8QFUQ01BG922	IGG3	13	213	6.1
+JY8QFUQ01BGDEX	IGG1	38	213	17.84
+JY8QFUQ01BGEYK	IGA1	20	213	9.39
+JY8QFUQ01BGFCA	IGA1	20	213	9.39
+JY8QFUQ01BGGO2	IGA2	23	213	10.8
+JY8QFUQ01BGI0O	IGG1	18	213	8.45
+JY8QFUQ01BGMBI	IGA2	30	213	14.08
+JY8QFUQ01BGNSE	IGA1	53	216	24.54
+JY8QFUQ01BGR80	IGA1	8	212	3.77
+JY8QFUQ01BGUIW	IGA2	12	213	5.63
+JY8QFUQ01BGVCA	IGA1	15	213	7.04
+JY8QFUQ01BGY6V	IGA1	14	216	6.48
+JY8QFUQ01BH03V	IGA1	23	210	10.95
+JY8QFUQ01BH0GH	IGA1	25	213	11.74
+JY8QFUQ01BH1QX	IGA2	26	213	12.21
+JY8QFUQ01BH2A1	IGA1	16	213	7.51
+JY8QFUQ01BH7NG	IGA1	13	210	6.19
+JY8QFUQ01BHCZE	IGA1	33	213	15.49
+JY8QFUQ01BHGDW	IGA1	18	213	8.45
+JY8QFUQ01BHITL	IGA2	31	213	14.55
+JY8QFUQ01BHN1C	IGA1	20	209	9.57
+JY8QFUQ01BI347	IGG2	28	213	13.15
+JY8QFUQ01BIGLC	IGG1	9	212	4.25
+JY8QFUQ01BIHI6	IGG2	8	213	3.76
+JY8QFUQ01BIM6Q	IGA1	1	213	0.47
+JY8QFUQ01BISS5	IGA1	37	212	17.45
+JY8QFUQ01BIVV0	IGA2	18	213	8.45
+JY8QFUQ01BIWEF	IGG2	12	213	5.63
+JY8QFUQ01BJ4VI	IGA1	20	213	9.39
+JY8QFUQ01BJN3B	IGA1	23	210	10.95
+JY8QFUQ01BJPU6	IGA2	35	213	16.43
+JY8QFUQ01BJT4G	IGG1	16	213	7.51
+JY8QFUQ01BJUHM	IGA1	15	213	7.04
+JY8QFUQ01BJURD	IGA1	13	216	6.02
+JY8QFUQ01BJV9I	IGA1	21	213	9.86
+JY8QFUQ01BJVZ3	IGG1	20	213	9.39
+JY8QFUQ01BJWBZ	IGA2	16	213	7.51
+JY8QFUQ01BJYH6	IGA1	26	212	12.26
+JY8QFUQ01BKBQY	IGA1	20	213	9.39
+JY8QFUQ01BKF2J	IGA1	42	213	19.72
+JY8QFUQ01BKJ53	IGA1	15	212	7.08
+JY8QFUQ01BKRE0	IGA1	9	213	4.23
+JY8QFUQ01BKUNY	IGA1	25	216	11.57
+JY8QFUQ01BKXS7	IGA1	28	210	13.33
+JY8QFUQ01BL6V1	IGA2	35	210	16.67
+JY8QFUQ01BLAI9	IGA1	9	213	4.23
+JY8QFUQ01BLEDM	IGG2	20	213	9.39
+JY8QFUQ01BLGCA	IGG1	12	210	5.71
+JY8QFUQ01BLGYX	IGA1	19	213	8.92
+JY8QFUQ01BLTJO	IGA1	30	213	14.08
+JY8QFUQ01BLX8G	IGA2	6	213	2.82
+JY8QFUQ01BM58O	IGA1	22	213	10.33
+JY8QFUQ01BM6Z0	IGA2	25	213	11.74
+JY8QFUQ01BM80W	IGA1	18	213	8.45
+JY8QFUQ01BM96X	IGA1	17	213	7.98
+JY8QFUQ01BMLGO	IGA2	30	213	14.08
+JY8QFUQ01BMOB5	IGA2	10	213	4.69
+JY8QFUQ01BMQ8K	IGA2	14	213	6.57
+JY8QFUQ01BN0IG	IGA2	8	213	3.76
+JY8QFUQ01BN1A6	IGG1	27	213	12.68
+JY8QFUQ01BN76B	IGA1	26	213	12.21
+JY8QFUQ01BNHM6	IGA1	13	212	6.13
+JY8QFUQ01BNNYX	IGA1	11	216	5.09
+JY8QFUQ01BNQ6N	IGG2	19	210	9.05
+JY8QFUQ01BNS72	IGA2	20	216	9.26
+JY8QFUQ01BNVKG	IGG2	33	210	15.71
+JY8QFUQ01BNXKI	IGG1	20	212	9.43
+JY8QFUQ01BNYDH	IGA1	14	215	6.51
+JY8QFUQ01BO1TD	IGG1	24	213	11.27
+JY8QFUQ01BO2JV	IGG1	13	213	6.1
+JY8QFUQ01BO2V4	IGA1	28	213	13.15
+JY8QFUQ01BO4ET	IGA2	12	213	5.63
+JY8QFUQ01BO7P5	IGA1	30	213	14.08
+JY8QFUQ01BO8WN	IGG1	30	216	13.89
+JY8QFUQ01BOBY3	IGA1	22	213	10.33
+JY8QFUQ01BOMV5	IGA1	21	213	9.86
+JY8QFUQ01BP3RA	IGA1	13	210	6.19
+JY8QFUQ01BP55P	IGG1	17	212	8.02
+JY8QFUQ01BPG8K	IGG2	19	210	9.05
+JY8QFUQ01BPT7N	IGA2	7	213	3.29
+JY8QFUQ01BQ0GT	IGA1	26	213	12.21
+JY8QFUQ01BQ3I3	IGA1	21	213	9.86
+JY8QFUQ01BQ9G8	IGG2	7	213	3.29
+JY8QFUQ01BQAON	IGA1	30	213	14.08
+JY8QFUQ01BQCNP	IGG1	35	216	16.2
+JY8QFUQ01BQERB	IGA1	24	213	11.27
+JY8QFUQ01BQLNQ	IGG2	16	213	7.51
+JY8QFUQ01BQMY8	IGA2	6	213	2.82
+JY8QFUQ01BQQG5	IGA1	43	213	20.19
+JY8QFUQ01BR1YM	IGA2	8	213	3.76
+JY8QFUQ01BR9Q4	IGA2	27	213	12.68
+JY8QFUQ01BRBL7	IGA2	28	210	13.33
+JY8QFUQ01BREFM	IGG1	24	213	11.27
+JY8QFUQ01BRF2O	IGA1	15	213	7.04
+JY8QFUQ01BRIHD	IGA1	8	213	3.76
+JY8QFUQ01BRQMG	IGA1	14	222	6.31
+JY8QFUQ01BRZIH	IGA2	22	213	10.33
+JY8QFUQ01BS2Q3	IGA2	27	213	12.68
+JY8QFUQ01BS2WD	IGA1	17	213	7.98
+JY8QFUQ01BSD92	IGG2	10	213	4.69
+JY8QFUQ01BSDSX	IGG1	9	213	4.23
+JY8QFUQ01BSGWN	IGA2	14	213	6.57
+JY8QFUQ01BSOH5	IGG2	16	212	7.55
+JY8QFUQ01BSRSP	IGA1	15	210	7.14
+JY8QFUQ01BSZDV	IGG1	17	213	7.98
+JY8QFUQ01BT5A6	IGG1	19	213	8.92
+JY8QFUQ01BT5S9	IGA1	13	216	6.02
+JY8QFUQ01BTAHR	IGG1	23	213	10.8
+JY8QFUQ01BTCL3	IGA2	9	213	4.23
+JY8QFUQ01BTIAT	IGG3	17	213	7.98
+JY8QFUQ01BTOR9	IGA2	22	219	10.05
+JY8QFUQ01BU31Q	IGG1	21	213	9.86
+JY8QFUQ01BU3DY	IGA2	11	213	5.16
+JY8QFUQ01BU5NL	IGA1	23	210	10.95
+JY8QFUQ01BUAPX	IGA1	31	213	14.55
+JY8QFUQ01BUG1S	IGA1	15	213	7.04
+JY8QFUQ01BUJ4F	IGA2	23	210	10.95
+JY8QFUQ01BUOZE	IGA1	23	212	10.85
+JY8QFUQ01BV8FF	IGA2	20	210	9.52
+JY8QFUQ01BVBOA	IGA1	28	210	13.33
+JY8QFUQ01BVHS5	IGA1	14	207	6.76
+JY8QFUQ01BVMIC	IGA1	17	213	7.98
+JY8QFUQ01BVRVR	IGG2	14	210	6.67
+JY8QFUQ01BWBZS	IGA1	17	218	7.8
+JY8QFUQ01BWD62	IGA1	21	210	10
+JY8QFUQ01BWIHJ	IGG1	17	213	7.98
+JY8QFUQ01BX0QN	IGA1	14	213	6.57
+JY8QFUQ01BX1DY	IGG1	21	213	9.86
+JY8QFUQ01BX1X7	IGA1	28	213	13.15
+JY8QFUQ01BX764	IGA1	18	213	8.45
+JY8QFUQ01BXBPF	IGG3	17	213	7.98
+JY8QFUQ01BXDPP	IGA1	25	213	11.74
+JY8QFUQ01BXEXG	IGG1	17	216	7.87
+JY8QFUQ01BXNFF	IGA2	15	213	7.04
+JY8QFUQ01BXTDZ	IGA1	14	210	6.67
+JY8QFUQ01BXZRW	IGG1	27	213	12.68
+JY8QFUQ01BY0E2	IGA1	14	213	6.57
+JY8QFUQ01BY2NW	IGA2	16	213	7.51
+JY8QFUQ01BY2RR	IGA2	30	213	14.08
+JY8QFUQ01BY3HN	IGA2	23	213	10.8
+JY8QFUQ01BYDVO	IGA1	33	213	15.49
+JY8QFUQ01BYFAI	IGG1	25	213	11.74
+JY8QFUQ01BYGMF	IGA1	15	213	7.04
+JY8QFUQ01BYOYM	IGA1	22	213	10.33
+JY8QFUQ01BYP0E	IGA1	10	213	4.69
+JY8QFUQ01BYRXT	IGG1	46	213	21.6
+JY8QFUQ01BYXJU	IGG1	16	213	7.51
+JY8QFUQ01BZEWU	IGA1	30	213	14.08
+JY8QFUQ01C0J5I	IGG3	14	213	6.57
+JY8QFUQ01C0LHV	IGA1	20	213	9.39
+JY8QFUQ01C0T0E	IGA2	18	213	8.45
+JY8QFUQ01C0V8V	IGG1	18	212	8.49
+JY8QFUQ01C0YWV	IGG1	20	219	9.13
+JY8QFUQ01C13EL	IGA1	16	213	7.51
+JY8QFUQ01C160X	IGG1	17	216	7.87
+JY8QFUQ01C17HE	IGG2	29	213	13.62
+JY8QFUQ01C185F	IGA1	33	219	15.07
+JY8QFUQ01C1QUY	IGA2	25	213	11.74
+JY8QFUQ01C1UWI	IGA1	16	213	7.51
+JY8QFUQ01C1WLX	IGA2	13	213	6.1
+JY8QFUQ01C24ZT	IGA1	6	213	2.82
+JY8QFUQ01C2553	IGG2	23	213	10.8
+JY8QFUQ01C26ES	IGG1	24	209	11.48
+JY8QFUQ01C28D8	IGA1	14	213	6.57
+JY8QFUQ01C2A2E	IGA2	18	210	8.57
+JY8QFUQ01C2JVO	IGA1	16	213	7.51
+JY8QFUQ01C2XG5	IGA2	15	213	7.04
+JY8QFUQ01C2XX8	IGA1	23	213	10.8
+JY8QFUQ01C33GJ	IGA2	18	213	8.45
+JY8QFUQ01C39LJ	IGA1	16	213	7.51
+JY8QFUQ01C3FR9	IGA1	20	216	9.26
+JY8QFUQ01C3HIA	IGA1	19	213	8.92
+JY8QFUQ01C3HRU	IGA1	25	213	11.74
+JY8QFUQ01C3JTT	IGG1	17	211	8.06
+JY8QFUQ01C3KAU	IGA2	24	213	11.27
+JY8QFUQ01C4D0M	IGG1	16	210	7.62
+JY8QFUQ01C50HS	IGA1	58	216	26.85
+JY8QFUQ01C5CP6	IGA2	9	213	4.23
+JY8QFUQ01C5MCI	IGG1	21	213	9.86
+JY8QFUQ01C6DDZ	IGA1	17	213	7.98
+JY8QFUQ01C6GOS	IGG2	18	216	8.33
+JY8QFUQ01C71OC	IGA2	20	213	9.39
+JY8QFUQ01C73TY	IGA1	16	216	7.41
+JY8QFUQ01C7540	IGA1	15	213	7.04
+JY8QFUQ01C7QU9	IGA1	11	213	5.16
+JY8QFUQ01C7ZZV	IGA2	19	213	8.92
+JY8QFUQ01C819B	IGA1	12	213	5.63
+JY8QFUQ01C847F	IGG1	9	210	4.29
+JY8QFUQ01C8AA1	IGA1	14	213	6.57
+JY8QFUQ01C8ASE	IGA1	32	213	15.02
+JY8QFUQ01C8FEX	IGG1	11	213	5.16
+JY8QFUQ01C8GT7	IGA1	25	213	11.74
+JY8QFUQ01C8YUG	IGG2	29	210	13.81
+JY8QFUQ01C9KPR	IGA1	41	212	19.34
+JY8QFUQ01C9RTB	IGA1	11	216	5.09
+JY8QFUQ01C9UFU	IGA2	9	213	4.23
+JY8QFUQ01CA1G6	IGA1	7	210	3.33
+JY8QFUQ01CA2ZN	IGG2	12	213	5.63
+JY8QFUQ01CA830	IGG1	23	213	10.8
+JY8QFUQ01CABXM	IGG2	24	212	11.32
+JY8QFUQ01CAI7Q	IGA1	25	216	11.57
+JY8QFUQ01CAN9N	IGA2	10	213	4.69
+JY8QFUQ01CAR29	IGA2	8	211	3.79
+JY8QFUQ01CB275	IGG1	5	215	2.33
+JY8QFUQ01CB2DX	IGG2	0	219	0
+JY8QFUQ01CBC07	IGA1	47	213	22.07
+JY8QFUQ01CBLRN	IGG3	20	213	9.39
+JY8QFUQ01CBORW	IGG2	25	213	11.74
+JY8QFUQ01CBST2	IGA1	19	213	8.92
+JY8QFUQ01CBUHR	IGA1	49	216	22.69
+JY8QFUQ01CC9VV	IGA2	19	213	8.92
+JY8QFUQ01CCN00	IGA1	15	213	7.04
+JY8QFUQ01CCO0W	IGG1	21	213	9.86
+JY8QFUQ01CCV7N	IGG1	32	212	15.09
+JY8QFUQ01CCYR6	IGA1	24	213	11.27
+JY8QFUQ01CCYZD	IGA2	21	215	9.77
+JY8QFUQ01CCZ8L	IGA1	13	212	6.13
+JY8QFUQ01CD8PO	IGG2	5	215	2.33
+JY8QFUQ01CDA18	IGA1	30	216	13.89
+JY8QFUQ01CDA2Z	IGA1	26	213	12.21
+JY8QFUQ01CDCEV	IGG2	18	209	8.61
+JY8QFUQ01CDHKA	IGG2	18	213	8.45
+JY8QFUQ01CDYHQ	IGG1	18	210	8.57
+JY8QFUQ01CE2OJ	IGA1	31	210	14.76
+JY8QFUQ01CE4MI	IGG3	0	219	0
+JY8QFUQ01CEBF1	IGA1	14	213	6.57
+JY8QFUQ01CEEUJ	IGA2	26	213	12.21
+JY8QFUQ01CEH7I	IGG1	19	213	8.92
+JY8QFUQ01CF2KP	IGG1	25	213	11.74
+JY8QFUQ01CF6ST	IGA2	28	213	13.15
+JY8QFUQ01CF885	IGA2	41	212	19.34
+JY8QFUQ01CGAYM	IGA1	27	213	12.68
+JY8QFUQ01CGPNS	IGG2	27	216	12.5
+JY8QFUQ01CGQAI	IGA1	31	213	14.55
+JY8QFUQ01CGQES	IGG1	14	213	6.57
+JY8QFUQ01CH326	IGA2	1	213	0.47
+JY8QFUQ01CH338	IGA1	12	212	5.66
+JY8QFUQ01CHBJS	IGA1	21	213	9.86
+JY8QFUQ01CHFYS	IGA2	42	213	19.72
+JY8QFUQ01CHKDD	IGA2	14	213	6.57
+JY8QFUQ01CHVJ1	IGG2	17	212	8.02
+JY8QFUQ01CI12B	IGA1	3	208	1.44
+JY8QFUQ01CIMAM	IGA1	17	210	8.1
+JY8QFUQ01CIOY1	IGA1	13	213	6.1
+JY8QFUQ01CIQUI	IGG4	9	213	4.23
+JY8QFUQ01CJ5TF	IGG3	13	213	6.1
+JY8QFUQ01CJ990	IGA1	8	212	3.77
+JY8QFUQ01CJG1W	IGA1	31	213	14.55
+JY8QFUQ01CJV6U	IGA2	29	213	13.62
+JY8QFUQ01CJYGN	IGG2	15	213	7.04
+JY8QFUQ01CK280	IGA1	19	216	8.8
+JY8QFUQ01CKFL6	IGA1	21	213	9.86
+JY8QFUQ01CKI1Y	IGA2	4	213	1.88
+JY8QFUQ01CKO1P	IGA1	34	218	15.6
+JY8QFUQ01CKPJN	IGA1	10	213	4.69
+JY8QFUQ01CKX6X	IGA2	17	209	8.13
+JY8QFUQ01CL7VE	IGA1	23	209	11
+JY8QFUQ01CLEAH	IGA2	22	213	10.33
+JY8QFUQ01CLIT1	IGA1	27	210	12.86
+JY8QFUQ01CLMWX	IGG4	21	213	9.86
+JY8QFUQ01CLR99	IGA1	13	210	6.19
+JY8QFUQ01CLXOH	IGA2	13	213	6.1
+JY8QFUQ01CM33P	IGA2	14	216	6.48
+JY8QFUQ01CM5UQ	IGA1	10	213	4.69
+JY8QFUQ01CN7M5	IGG1	16	213	7.51
+JY8QFUQ01CNEDF	IGG2	12	213	5.63
+JY8QFUQ01CNH24	IGA2	15	213	7.04
+JY8QFUQ01CNLWR	IGG2	31	213	14.55
+JY8QFUQ01CNYY7	IGG1	28	212	13.21
+JY8QFUQ01CO06K	IGA2	21	216	9.72
+JY8QFUQ01CO7ZE	IGA2	21	210	10
+JY8QFUQ01COIZ4	IGA2	8	213	3.76
+JY8QFUQ01COT7A	IGG1	20	213	9.39
+JY8QFUQ01COULV	IGG1	22	216	10.19
+JY8QFUQ01CP6A0	IGA2	12	219	5.48
+JY8QFUQ01CPEX7	IGG2	29	213	13.62
+JY8QFUQ01CPKFW	IGA2	24	219	10.96
+JY8QFUQ01CQ2DI	IGA2	19	213	8.92
+JY8QFUQ01CQFLG	IGA2	20	216	9.26
+JY8QFUQ01CQHUH	IGA1	21	213	9.86
+JY8QFUQ01CQKI9	IGA1	15	213	7.04
+JY8QFUQ01CQOIV	IGA1	38	213	17.84
+JY8QFUQ01CQRVK	IGA2	11	212	5.19
+JY8QFUQ01CQSBL	IGG1	19	210	9.05
+JY8QFUQ01CQWKF	IGG1	26	212	12.26
+JY8QFUQ01CR76J	IGG1	33	216	15.28
+JY8QFUQ01CR7U0	IGA2	27	209	12.92
+JY8QFUQ01CR8IO	IGA1	35	213	16.43
+JY8QFUQ01CRBJ3	IGA2	29	216	13.43
+JY8QFUQ01CRNW3	IGA1	25	213	11.74
+JY8QFUQ01CRPMT	IGA1	23	213	10.8
+JY8QFUQ01CRXKV	IGA1	32	216	14.81
+JY8QFUQ01CRXS1	IGA1	22	210	10.48
+JY8QFUQ01CS8O3	IGA2	9	210	4.29
+JY8QFUQ01CSGBR	IGG1	18	212	8.49
+JY8QFUQ01CSVFI	IGA2	24	210	11.43
+JY8QFUQ01CSWQD	IGA2	14	213	6.57
+JY8QFUQ01CT0HD	IGG2	17	211	8.06
+JY8QFUQ01CT3CN	IGA1	19	212	8.96
+JY8QFUQ01CTI25	IGA1	9	213	4.23
+JY8QFUQ01CTJ46	IGA2	29	213	13.62
+JY8QFUQ01CU8BS	IGA1	15	211	7.11
+JY8QFUQ01CU8RS	IGG2	13	210	6.19
+JY8QFUQ01CVKGA	IGG2	14	213	6.57
+JY8QFUQ01CVRND	IGG1	37	213	17.37
+JY8QFUQ01CVY8N	IGA1	22	210	10.48
+JY8QFUQ01CW65U	IGG2	14	213	6.57
+JY8QFUQ01CWEVR	IGA1	12	213	5.63
+JY8QFUQ01CWPJP	IGA1	26	216	12.04
+JY8QFUQ01CWQZU	IGA2	13	213	6.1
+JY8QFUQ01CWYA5	IGG1	42	210	20
+JY8QFUQ01CXAGM	IGA1	23	213	10.8
+JY8QFUQ01CXD17	IGA1	28	213	13.15
+JY8QFUQ01CXIGS	IGA2	30	213	14.08
+JY8QFUQ01CXM4M	IGA2	13	221	5.88
+JY8QFUQ01CY2HZ	IGA1	5	213	2.35
+JY8QFUQ01CY3ZT	IGA2	22	211	10.43
+JY8QFUQ01CYT8I	IGA2	10	213	4.69
+JY8QFUQ01CYTAI	IGG1	40	210	19.05
+JY8QFUQ01CYU3K	IGG3	13	213	6.1
+JY8QFUQ01CYX7E	IGA2	25	216	11.57
+JY8QFUQ01CZ1IL	IGA2	17	213	7.98
+JY8QFUQ01CZDE0	IGA1	30	213	14.08
+JY8QFUQ01CZH0L	IGA2	16	212	7.55
+JY8QFUQ01DABGE	IGG2	12	213	5.63
+JY8QFUQ01DARQJ	IGA2	15	213	7.04
+JY8QFUQ01DDQ8A	IGG2	15	213	7.04
+JY8QFUQ01DECT5	IGG2	41	213	19.25
+JY8QFUQ01DEK3I	IGG3	12	213	5.63
+JY8QFUQ01DEX6Z	IGG1	22	215	10.23
+JY8QFUQ01DFG5Q	IGA1	26	210	12.38
+JY8QFUQ01DFJK6	IGG2	14	213	6.57
+JY8QFUQ01DFMQ1	IGA1	9	210	4.29
+JY8QFUQ01DFNKY	IGA1	3	219	1.37
+JY8QFUQ01DFY56	IGA1	25	213	11.74
+JY8QFUQ01DG3GX	IGA2	12	213	5.63
+JY8QFUQ01DG853	IGA1	17	213	7.98
+JY8QFUQ01DGFLY	IGA2	15	213	7.04
+JY8QFUQ01DGFY7	IGA1	10	213	4.69
+JY8QFUQ01DH08T	IGA1	18	210	8.57
+JY8QFUQ01DH0MW	IGA2	6	213	2.82
+JY8QFUQ01DHC55	IGG1	25	213	11.74
+JY8QFUQ01DHH0D	IGG3	16	219	7.31
+JY8QFUQ01DHJ30	IGA2	5	219	2.28
+JY8QFUQ01DI98R	IGA2	25	213	11.74
+JY8QFUQ01DIWKI	IGG3	9	213	4.23
+JY8QFUQ01DJ168	IGG1	14	212	6.6
+JY8QFUQ01DJCKC	IGA2	13	213	6.1
+JY8QFUQ01DJQ7I	IGA1	13	213	6.1
+JY8QFUQ01DJU2K	IGA1	30	210	14.29
+JY8QFUQ01DKCDX	IGG3	18	213	8.45
+JY8QFUQ01DKKJ0	IGA1	32	213	15.02
+JY8QFUQ01DLA1D	IGA1	5	212	2.36
+JY8QFUQ01DM6TL	IGA2	23	213	10.8
+JY8QFUQ01DN21P	IGA1	12	213	5.63
+JY8QFUQ01DNADY	IGG2	28	213	13.15
+JY8QFUQ01DO347	IGA2	15	213	7.04
+JY8QFUQ01DP55Y	IGG1	21	216	9.72
+JY8QFUQ01DP8YH	IGG2	21	213	9.86
+JY8QFUQ01DPFIO	IGA1	13	213	6.1
+JY8QFUQ01DQV12	IGG4	16	213	7.51
+JY8QFUQ01DQVYX	IGG2	21	213	9.86
+JY8QFUQ01DRFXI	IGG2	24	215	11.16
+JY8QFUQ01DSBEO	IGA2	30	213	14.08
+JY8QFUQ01DU1MH	IGA2	4	210	1.9
+JY8QFUQ01DUKA9	IGG1	28	213	13.15
+JY8QFUQ01DVTFY	IGA1	24	213	11.27
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/shm_overview.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,22 @@
+	IGA.x	IGA.y	IGA.z	IGA1.x	IGA1.y	IGA1.z	IGA2.x	IGA2.y	IGA2.z	IGG.x	IGG.y	IGG.z	IGG1.x	IGG1.y	IGG1.z	IGG2.x	IGG2.y	IGG2.z	IGG3.x	IGG3.y	IGG3.z	IGG4.x	IGG4.y	IGG4.z	IGM.x	IGM.y	IGM.z	IGE.x	IGE.y	IGE.z	all.x	all.y	all.z	un.x	un.y	un.z
+Number of Mutations (%)	17977	195251	9.2	12223	126298	9.7	5754	68953	8.3	9036	99835	9.1	5492	58332	9.4	2777	31881	8.7	388	5570	7	379	4052	9.4	0	213	0	0	0	0	27013	295299	9.1	3486	40247	8.7
+Median of Number of Mutations (%)	19	213	8.9	20	213	9.4	16.5	213	7.8	18	213	8.5	18	213	8.5	17	213	8.1	13.5	213	6.3	18	213	8.5	0	213	0	0	0	0	18	213	8.5	16	213	7.5
+Transitions (%)	10318	17977	57.4	7067	12223	57.8	3251	5754	56.5	5045	9036	55.8	3062	5492	55.8	1573	2777	56.6	211	388	54.4	199	379	52.5	0	0		0	0	0	15363	27013	56.9	1983	3486	56.9
+Transversions (%)	7659	17977	42.6	5156	12223	42.2	2503	5754	43.5	3991	9036	44.2	2430	5492	44.2	1204	2777	43.4	177	388	45.6	180	379	47.5	0	0		0	0	0	11650	27013	43.1	1503	3486	43.1
+Transitions at G C (%)	5933	10299	57.6	4111	7056	58.3	1822	3243	56.2	2836	5066	56	1736	3093	56.1	885	1567	56.5	112	202	55.4	103	204	50.5	0	0		0	0	0	8769	15365	57.1	1111	1968	56.5
+Targeting of G C (%)	10299	17977	57.3	7056	12223	57.7	3243	5754	56.4	5066	9036	56.1	3093	5492	56.3	1567	2777	56.4	202	388	52.1	204	379	53.8	0	0		0	0	0	15365	27013	56.9	1968	3486	56.5
+Transitions at A T (%)	4385	7678	57.1	2956	5167	57.2	1429	2511	56.9	2209	3970	55.6	1326	2399	55.3	688	1210	56.9	99	186	53.2	96	175	54.9	0	0		0	0	0	6594	11648	56.6	872	1518	57.4
+Targeting of A T (%)	7678	17977	42.7	5167	12223	42.3	2511	5754	43.6	3970	9036	43.9	2399	5492	43.7	1210	2777	43.6	186	388	47.9	175	379	46.2	0	0		0	0	0	11648	27013	43.1	1518	3486	43.5
+FR R/S (ratio)	7123	3750	1.9	4909	2586	1.9	2214	1164	1.9	3622	1847	2	2246	1148	2	1045	560	1.9	164	68	2.4	167	71	2.4	0	0		0	0	0	10745	5597	1.9	1336	719	1.9
+CDR R/S (ratio)	5901	1203	4.9	3873	855	4.5	2028	348	5.8	2962	605	4.9	1717	381	4.5	998	174	5.7	126	30	4.2	121	20	6	0	0		0	0	0	8863	1808	4.9	1208	223	5.4
+nt in FR	151127	195251	77.4	97738	126298	77.4	53389	68953	77.4	77252	99835	77.4	45155	58332	77.4	24674	31881	77.4	4289	5570	77	3134	4052	77.3	165	213	77.5	0	0	0	228544	295299	77.4	31179	40247	77.5
+nt in CDR	44124	195251	22.6	28560	126298	22.6	15564	68953	22.6	22583	99835	22.6	13177	58332	22.6	7207	31881	22.6	1281	5570	23	918	4052	22.7	48	213	22.5	0	0	0	66755	295299	22.6	9068	40247	22.5
+Tandems/Expected (ratio)	2438	2262.33	1.08	1680	1601.93	1.05	758	660.41	1.15	1212	1128.79	1.07	769	710.06	1.08	357	321.62	1.11	43	45.72	0.94	43	51.4	0.84	0	0	0	0	0	0	3650	3391.13	1.08	482	411.6	1.17
+RGYW (%)	3163	17977	17.6	2186	12223	17.9	978	5754	17	1524	9036	16.9	911	5492	16.6	485	2777	17.5	63	388	16.2	65	379	17.2	0	0	0	0	0	0	4687	27013	17.4	602	3486	17.3
+WRCY (%)	2984	17977	16.6	2060	12223	16.9	924	5754	16.1	1445	9036	16	888	5492	16.2	455	2777	16.4	52	388	13.4	50	379	13.2	0	0	0	0	0	0	4429	27013	16.4	614	3486	17.6
+WA (%)	2610	17977	14.5	1715	12223	14	895	5754	15.6	1420	9036	15.7	859	5492	15.6	433	2777	15.6	67	388	17.3	61	379	16.1	0	0	0	0	0	0	4030	27013	14.9	540	3486	15.5
+TW (%)	1561	17977	8.7	1044	12223	8.5	517	5754	9	818	9036	9.1	474	5492	8.6	265	2777	9.5	34	388	8.8	46	379	12.1	0	0	0	0	0	0	2379	27013	8.8	330	3486	9.5
+A	49123	195251	25.16	31648	126298	25.06	17475	68953	25.34	24685	99835	24.73	14372	58332	24.64	7945	31881	24.92	1399	5570	25.12	969	4052	23.91	58	213	27.23	0	0	0	73866	295299	25.01	10122	40247	25.15
+C	48130	195251	24.65	31276	126298	24.76	16854	68953	24.44	25076	99835	25.12	14646	58332	25.11	8009	31881	25.12	1389	5570	24.94	1032	4052	25.47	51	213	23.94	0	0	0	73257	295299	24.81	9848	40247	24.47
+T	43599	195251	22.33	28348	126298	22.45	15251	68953	22.12	22415	99835	22.45	13167	58332	22.57	7087	31881	22.23	1243	5570	22.32	918	4052	22.66	47	213	22.07	0	0	0	66061	295299	22.37	8943	40247	22.22
+G	54399	195251	27.86	35026	126298	27.73	19373	68953	28.1	27659	99835	27.7	16147	58332	27.68	8840	31881	27.73	1539	5570	27.63	1133	4052	27.96	57	213	26.76	0	0	0	82115	295299	27.81	11334	40247	28.16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGA1_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,723,1905,754
+C,397,NA,749,2044
+G,2067,1272,NA,527
+T,369,1051,365,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGA2_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,330,1008,370
+C,180,NA,347,833
+G,989,626,NA,268
+T,191,421,191,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGA_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,1053,2913,1124
+C,577,NA,1096,2877
+G,3056,1898,NA,795
+T,560,1472,556,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGE_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,0,0,0
+C,0,NA,0,0
+G,0,0,NA,0
+T,0,0,0,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGG1_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,370,858,350
+C,165,NA,347,840
+G,896,585,NA,260
+T,176,468,177,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGG2_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,207,431,171
+C,78,NA,164,411
+G,474,309,NA,131
+T,74,257,70,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGG3_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,41,69,25
+C,11,NA,13,52
+G,60,50,NA,16
+T,10,30,11,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGG4_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,27,54,26
+C,14,NA,19,55
+G,48,50,NA,18
+T,12,42,14,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_IGG_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,645,1412,572
+C,268,NA,543,1358
+G,1478,994,NA,425
+T,272,797,272,NA
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/validation_data/transitions_all_sum.txt	Wed Sep 15 12:24:06 2021 +0000
@@ -0,0 +1,5 @@
+,A,C,G,T
+A,NA,1698,4325,1696
+C,845,NA,1639,4235
+G,4534,2892,NA,1220
+T,832,2269,828,NA
--- a/wrapper.sh	Thu Feb 25 10:32:32 2021 +0000
+++ b/wrapper.sh	Wed Sep 15 12:24:06 2021 +0000
@@ -1,5 +1,5 @@
-#!/bin/bash
-#set -e
+#!/usr/bin/env bash
+set -e -o pipefail
 dir="$(cd "$(dirname "$0")" && pwd)"
 input=$1
 method=$2
@@ -22,7 +22,12 @@
 empty_region_filter=${18}
 fast=${19}
 
-mkdir $outdir
+#exec 5> debug_output.txt
+#BASH_XTRACEFD="5"
+#PS4='$(date +%s.%N) $LINENO: '
+#set -x
+
+mkdir -p $outdir
 
 tar -xzf $dir/style.tar.gz -C $outdir
 
@@ -447,7 +452,7 @@
 	echo "---------------- baseline ----------------<br />" >> $log
 	tmp="$PWD"
 
-	mkdir $outdir/baseline
+	mkdir -p $outdir/baseline
 	
 	echo "<center><h1>BASELINe</h1>" >> $output
 	header_substring="Based on CDR1, FR2, CDR2, FR3 (27:27:38:55:65:104:-)"
@@ -557,7 +562,7 @@
 
 	echo "---------------- change-o MakeDB ----------------"
 
-	mkdir $outdir/change_o
+	mkdir -p $outdir/change_o
 
 	tmp="$PWD"