changeset 67:ba33b94637ca draft

Uploaded
author davidvanzessen
date Tue, 29 Jan 2019 03:54:09 -0500
parents 43a1aa648537
children 7b9481fa4a70
files LICENSE README.md aa_histogram.r baseline/Baseline_Functions.r baseline/Baseline_Main.r baseline/FiveS_Mutability.RData baseline/FiveS_Substitution.RData baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa baseline/IMGTVHreferencedataset20161215.fa baseline/baseline_url.txt baseline/comparePDFs.r baseline/script_imgt.py baseline/script_xlsx.py baseline/wrapper.sh change_o/DefineClones.py change_o/MakeDb.py change_o/change_o_url.txt change_o/define_clones.sh change_o/makedb.sh merge_and_filter.r shm_clonality.htm shm_csr.htm shm_csr.r shm_csr.xml shm_downloads.htm shm_first.htm shm_frequency.htm shm_overview.htm shm_selection.htm shm_transition.htm wrapper.sh
diffstat 20 files changed, 5029 insertions(+), 4995 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/LICENSE	Tue Jan 29 03:54:09 2019 -0500
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2019 david
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.md	Tue Jan 29 03:54:09 2019 -0500
@@ -0,0 +1,12 @@
+# SHM CSR
+
+Somatic hypermutation and class switch recombination pipeline 
+
+# Dependencies
+--------------------
+[Python 2.7](https://www.python.org/)  
+[Change-O](https://changeo.readthedocs.io/en/version-0.4.4/)  
+[Baseline](http://selection.med.yale.edu/baseline/)  
+[R data.table](https://cran.r-project.org/web/packages/data.table/data.table.pdf)
+[R ggplot2](https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf)
+[R reshape2](https://cran.r-project.org/web/packages/reshape/reshape.pdf)
\ No newline at end of file
--- a/aa_histogram.r	Thu Dec 07 03:44:38 2017 -0500
+++ b/aa_histogram.r	Tue Jan 29 03:54:09 2019 -0500
@@ -1,69 +1,69 @@
-library(ggplot2)
-
-args <- commandArgs(trailingOnly = TRUE)
-
-mutations.by.id.file = args[1]
-absent.aa.by.id.file = args[2]
-genes = strsplit(args[3], ",")[[1]]
-genes = c(genes, "")
-outdir = args[4]
-
-
-print("---------------- read input ----------------")
-
-mutations.by.id = read.table(mutations.by.id.file, sep="\t", fill=T, header=T, quote="")
-absent.aa.by.id = read.table(absent.aa.by.id.file, sep="\t", fill=T, header=T, quote="")
-
-for(gene in genes){
-	graph.title = paste(gene, "AA mutation frequency")
-	if(gene == ""){
-		mutations.by.id.gene = mutations.by.id[!grepl("unmatched", mutations.by.id$best_match),]
-		absent.aa.by.id.gene = absent.aa.by.id[!grepl("unmatched", absent.aa.by.id$best_match),]
-		
-		graph.title = "AA mutation frequency all"
-	} else {
-		mutations.by.id.gene = mutations.by.id[grepl(paste("^", gene, sep=""), mutations.by.id$best_match),]
-		absent.aa.by.id.gene = absent.aa.by.id[grepl(paste("^", gene, sep=""), absent.aa.by.id$best_match),]
-	}
-	print(paste("nrow", gene, nrow(absent.aa.by.id.gene)))
-	if(nrow(mutations.by.id.gene) == 0){
-		next
-	}
-
-	mutations.at.position = colSums(mutations.by.id.gene[,-c(1,2)])
-	aa.at.position = colSums(absent.aa.by.id.gene[,-c(1,2,3,4)])
-
-	dat_freq = mutations.at.position / aa.at.position
-	dat_freq[is.na(dat_freq)] = 0
-	dat_dt = data.frame(i=1:length(dat_freq), freq=dat_freq)
-	
-
-	print("---------------- plot ----------------")
-
-	m = ggplot(dat_dt, aes(x=i, y=freq)) + theme(axis.text.x = element_text(angle = 90, hjust = 1), text = element_text(size=13, colour="black"))
-	m = m + geom_bar(stat="identity", colour = "black", fill = "darkgrey", alpha=0.8) + scale_x_continuous(breaks=dat_dt$i, labels=dat_dt$i)
-	m = m + annotate("segment", x = 0.5, y = -0.05, xend=26.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.1, label="FR1")
-	m = m + annotate("segment", x = 26.5, y = -0.07, xend=38.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.15, label="CDR1")
-	m = m + annotate("segment", x = 38.5, y = -0.05, xend=55.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.1, label="FR2")
-	m = m + annotate("segment", x = 55.5, y = -0.07, xend=65.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.15, label="CDR2")
-	m = m + annotate("segment", x = 65.5, y = -0.05, xend=104.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.1, label="FR3")
-	m = m + expand_limits(y=c(-0.1,1)) + xlab("AA position") + ylab("Frequency") + ggtitle(graph.title) 
-	m = m + theme(panel.background = element_rect(fill = "white", colour="black"), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
-	#m = m + scale_colour_manual(values=c("black"))
-
-	print("---------------- write/print ----------------")
-
-
-	dat.sums = data.frame(index=1:length(mutations.at.position), mutations.at.position=mutations.at.position, aa.at.position=aa.at.position)
-
-	write.table(dat.sums, paste(outdir, "/aa_histogram_sum_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	write.table(mutations.by.id.gene, paste(outdir, "/aa_histogram_count_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	write.table(absent.aa.by.id.gene, paste(outdir, "/aa_histogram_absent_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	write.table(dat_dt, paste(outdir, "/aa_histogram_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-	
-	png(filename=paste(outdir, "/aa_histogram_", gene, ".png", sep=""), width=1280, height=720)
-	print(m)
-	dev.off()
-	
-	ggsave(paste(outdir, "/aa_histogram_", gene, ".pdf", sep=""), m, width=14, height=7)
-}
+library(ggplot2)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+mutations.by.id.file = args[1]
+absent.aa.by.id.file = args[2]
+genes = strsplit(args[3], ",")[[1]]
+genes = c(genes, "")
+outdir = args[4]
+
+
+print("---------------- read input ----------------")
+
+mutations.by.id = read.table(mutations.by.id.file, sep="\t", fill=T, header=T, quote="")
+absent.aa.by.id = read.table(absent.aa.by.id.file, sep="\t", fill=T, header=T, quote="")
+
+for(gene in genes){
+	graph.title = paste(gene, "AA mutation frequency")
+	if(gene == ""){
+		mutations.by.id.gene = mutations.by.id[!grepl("unmatched", mutations.by.id$best_match),]
+		absent.aa.by.id.gene = absent.aa.by.id[!grepl("unmatched", absent.aa.by.id$best_match),]
+		
+		graph.title = "AA mutation frequency all"
+	} else {
+		mutations.by.id.gene = mutations.by.id[grepl(paste("^", gene, sep=""), mutations.by.id$best_match),]
+		absent.aa.by.id.gene = absent.aa.by.id[grepl(paste("^", gene, sep=""), absent.aa.by.id$best_match),]
+	}
+	print(paste("nrow", gene, nrow(absent.aa.by.id.gene)))
+	if(nrow(mutations.by.id.gene) == 0){
+		next
+	}
+
+	mutations.at.position = colSums(mutations.by.id.gene[,-c(1,2)])
+	aa.at.position = colSums(absent.aa.by.id.gene[,-c(1,2,3,4)])
+
+	dat_freq = mutations.at.position / aa.at.position
+	dat_freq[is.na(dat_freq)] = 0
+	dat_dt = data.frame(i=1:length(dat_freq), freq=dat_freq)
+	
+
+	print("---------------- plot ----------------")
+
+	m = ggplot(dat_dt, aes(x=i, y=freq)) + theme(axis.text.x = element_text(angle = 90, hjust = 1), text = element_text(size=13, colour="black"))
+	m = m + geom_bar(stat="identity", colour = "black", fill = "darkgrey", alpha=0.8) + scale_x_continuous(breaks=dat_dt$i, labels=dat_dt$i)
+	m = m + annotate("segment", x = 0.5, y = -0.05, xend=26.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.1, label="FR1")
+	m = m + annotate("segment", x = 26.5, y = -0.07, xend=38.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.15, label="CDR1")
+	m = m + annotate("segment", x = 38.5, y = -0.05, xend=55.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.1, label="FR2")
+	m = m + annotate("segment", x = 55.5, y = -0.07, xend=65.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.15, label="CDR2")
+	m = m + annotate("segment", x = 65.5, y = -0.05, xend=104.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.1, label="FR3")
+	m = m + expand_limits(y=c(-0.1,1)) + xlab("AA position") + ylab("Frequency") + ggtitle(graph.title) 
+	m = m + theme(panel.background = element_rect(fill = "white", colour="black"), panel.grid.major.y = element_line(colour = "black"), panel.grid.major.x = element_blank())
+	#m = m + scale_colour_manual(values=c("black"))
+
+	print("---------------- write/print ----------------")
+
+
+	dat.sums = data.frame(index=1:length(mutations.at.position), mutations.at.position=mutations.at.position, aa.at.position=aa.at.position)
+
+	write.table(dat.sums, paste(outdir, "/aa_histogram_sum_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	write.table(mutations.by.id.gene, paste(outdir, "/aa_histogram_count_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	write.table(absent.aa.by.id.gene, paste(outdir, "/aa_histogram_absent_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	write.table(dat_dt, paste(outdir, "/aa_histogram_", gene, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+	
+	png(filename=paste(outdir, "/aa_histogram_", gene, ".png", sep=""), width=1280, height=720)
+	print(m)
+	dev.off()
+	
+	ggsave(paste(outdir, "/aa_histogram_", gene, ".pdf", sep=""), m, width=14, height=7)
+}
--- a/baseline/Baseline_Functions.r	Thu Dec 07 03:44:38 2017 -0500
+++ b/baseline/Baseline_Functions.r	Tue Jan 29 03:54:09 2019 -0500
@@ -1,2287 +1,2287 @@
-#########################################################################################
-# License Agreement
-# 
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
-# OR COPYRIGHT LAW IS PROHIBITED.
-# 
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-# Global variables  
-  
-  FILTER_BY_MUTATIONS = 1000
-
-  # Nucleotides
-  NUCLEOTIDES = c("A","C","G","T")
-  
-  # Amino Acids
-  AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
-  names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
-  names(AMINO_ACIDS) <- names(AMINO_ACIDS)
-
-  #Amino Acid Traits
-  #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
-  #B = "Hydrophobic/Burried"  N = "Intermediate/Neutral"  S="Hydrophilic/Surface") 
-  TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
-  names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
-  TRAITS_AMINO_ACIDS <- array(NA,21)
-  
-  # Codon Table
-  CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
-
-  # Substitution Model: Smith DS et al. 1996
-  substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  load("FiveS_Substitution.RData")
-
-  # Mutability Models: Shapiro GS et al. 2002
-  triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
-  triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
-  triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
-  load("FiveS_Mutability.RData")
-
-# Functions
-  
-  # Translate codon to amino acid
-  translateCodonToAminoAcid<-function(Codon){
-     return(AMINO_ACIDS[Codon])
-  }
-
-  # Translate amino acid to trait change
-  translateAminoAcidToTraitChange<-function(AminoAcid){
-     return(TRAITS_AMINO_ACIDS[AminoAcid])
-  }
-    
-  # Initialize Amino Acid Trait Changes
-  initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
-    if(!is.null(traitChangeFileName)){
-      tryCatch(
-          traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
-          , error = function(ex){
-            cat("Error|Error reading trait changes. Please check file name/path and format.\n")
-            q()
-          }
-        )
-    }else{
-      traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
-    }
-    TRAITS_AMINO_ACIDS <<- traitChange
- } 
-  
-  # Read in formatted nucleotide substitution matrix
-  initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
-    if(!is.null(subsMatFileName)){
-      tryCatch(
-          subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
-          , error = function(ex){
-            cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
-            q()
-          }
-        )
-      if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
-    }else{
-      if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
-      if(substitutionModel==2)subsMat <- substitution_Flu_Human      
-      if(substitutionModel==3)subsMat <- substitution_Flu25_Human      
-       
-    }
-
-    if(substitutionModel==0){
-      subsMat <- matrix(1,4,4)
-      subsMat[,] = 1/3
-      subsMat[1,1] = 0
-      subsMat[2,2] = 0
-      subsMat[3,3] = 0
-      subsMat[4,4] = 0
-    }
-    
-    
-    NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
-    if(substitutionModel==5){
-      subsMat <- FiveS_Substitution
-      return(subsMat)
-    }else{
-      subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
-      return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
-    }
-  }
-
-   
-  # Read in formatted Mutability file
-  initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
-    if(!is.null(mutabilityMatFileName)){
-        tryCatch(
-            mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
-            , error = function(ex){
-              cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
-              q()
-            }
-          )
-    }else{
-      mutabilityMat <- triMutability_Literature_Human
-      if(species==2) mutabilityMat <- triMutability_Literature_Mouse
-    }
-
-  if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
-  
-    if(mutabilityModel==5){
-      mutabilityMat <- FiveS_Mutability
-      return(mutabilityMat)
-    }else{
-      return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
-    }
-  }
-
-  # Read FASTA file formats
-  # Modified from read.fasta from the seqinR package
-  baseline.read.fasta <-
-  function (file = system.file("sequences/sample.fasta", package = "seqinr"), 
-      seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE, 
-      set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, 
-      strip.desc = FALSE,  sizeof.longlong = .Machine$sizeof.longlong, 
-      endian = .Platform$endian, apply.mask = TRUE) 
-  {
-      seqtype <- match.arg(seqtype)
-  
-          lines <- readLines(file)
-          
-          if (legacy.mode) {
-              comments <- grep("^;", lines)
-              if (length(comments) > 0) 
-                  lines <- lines[-comments]
-          }
-          
-          
-          ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
-          lines_mod<-lines
-  
-          if(!length(ind_groups)){
-              lines_mod<-c(">>>All sequences combined",lines)            
-          }
-          
-          ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
-  
-          lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
-          id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
-          lines[id] <- "THIS IS A FAKE SEQUENCE"
-          lines[-id] <- lines_mod
-          rm(lines_mod)
-  
-  		ind <- which(substr(lines, 1L, 1L) == ">")
-          nseq <- length(ind)
-          if (nseq == 0) {
-               stop("no line starting with a > character found")
-          }        
-          start <- ind + 1
-          end <- ind - 1
-  
-          while( any(which(ind%in%end)) ){
-            ind=ind[-which(ind%in%end)]
-            nseq <- length(ind)
-            if (nseq == 0) {
-                stop("no line starting with a > character found")
-            }        
-            start <- ind + 1
-            end <- ind - 1        
-          }
-          
-          end <- c(end[-1], length(lines))
-          sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
-          if (seqonly) 
-              return(sequences)
-          nomseq <- lapply(seq_len(nseq), function(i) {
-          
-              #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
-              substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
-          
-          })
-          if (seqtype == "DNA") {
-              if (forceDNAtolower) {
-                  sequences <- as.list(tolower(chartr(".","-",sequences)))
-              }else{
-                  sequences <- as.list(toupper(chartr(".","-",sequences)))
-              }
-          }
-          if (as.string == FALSE) 
-              sequences <- lapply(sequences, s2c)
-          if (set.attributes) {
-              for (i in seq_len(nseq)) {
-                  Annot <- lines[ind[i]]
-                  if (strip.desc) 
-                    Annot <- substr(Annot, 2L, nchar(Annot))
-                  attributes(sequences[[i]]) <- list(name = nomseq[[i]], 
-                    Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA", 
-                      DNA = "SeqFastadna"))
-              }
-          }
-          names(sequences) <- nomseq
-          return(sequences)
-  }
-
-  
-  # Replaces non FASTA characters in input files with N  
-  replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
-    gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
-  }    
-  
-  # Find the germlines in the FASTA list
-  germlinesInFile <- function(seqIDs){
-    firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
-    secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
-    return(firstChar==">" & secondChar!=">")
-  }
-  
-  # Find the groups in the FASTA list
-  groupsInFile <- function(seqIDs){
-    sapply(seqIDs,function(x){substr(x,1,2)})==">>"
-  }
-
-  # In the process of finding germlines/groups, expand from the start to end of the group
-  expandTillNext <- function(vecPosToID){    
-    IDs = names(vecPosToID)
-    posOfInterests =  which(vecPosToID)
-  
-    expandedID = rep(NA,length(IDs))
-    expandedIDNames = gsub(">","",IDs[posOfInterests])
-    startIndexes = c(1,posOfInterests[-1])
-    stopIndexes = c(posOfInterests[-1]-1,length(IDs))
-    expandedID  = unlist(sapply(1:length(startIndexes),function(i){
-                                    rep(i,stopIndexes[i]-startIndexes[i]+1)
-                                  }))
-    names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
-                                    rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
-                                  }))  
-    return(expandedID)                                                                                                  
-  }
-    
-  # Process FASTA (list) to return a matrix[input, germline)
-  processInputAdvanced <- function(inputFASTA){
-  
-    seqIDs = names(inputFASTA)
-    numbSeqs = length(seqIDs)
-    posGermlines1 = germlinesInFile(seqIDs)
-    numbGermlines = sum(posGermlines1)
-    posGroups1 = groupsInFile(seqIDs)
-    numbGroups = sum(posGroups1)
-    consDef = NA
-    
-    if(numbGermlines==0){
-      posGermlines = 2
-      numbGermlines = 1  
-    }
-  
-      glPositionsSum = cumsum(posGermlines1)
-      glPositions = table(glPositionsSum)
-      #Find the position of the conservation row
-      consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1  
-    if( length(consDefPos)> 0 ){
-      consDefID =  match(consDefPos, glPositionsSum) 
-      #The coservation rows need to be pulled out and stores seperately 
-      consDef =  inputFASTA[consDefID]
-      inputFASTA =  inputFASTA[-consDefID]
-  
-      seqIDs = names(inputFASTA)
-      numbSeqs = length(seqIDs)
-      posGermlines1 = germlinesInFile(seqIDs)
-      numbGermlines = sum(posGermlines1)
-      posGroups1 = groupsInFile(seqIDs)
-      numbGroups = sum(posGroups1)
-      if(numbGermlines==0){
-        posGermlines = 2
-        numbGermlines = 1  
-      }    
-    }
-    
-    posGroups <- expandTillNext(posGroups1)
-    posGermlines <- expandTillNext(posGermlines1)
-    posGermlines[posGroups1] = 0
-    names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
-    posInput = rep(TRUE,numbSeqs)
-    posInput[posGroups1 | posGermlines1] = FALSE
-    
-    matInput = matrix(NA, nrow=sum(posInput), ncol=2)
-    rownames(matInput) = seqIDs[posInput]
-    colnames(matInput) = c("Input","Germline")
-    
-    vecInputFASTA = unlist(inputFASTA)  
-    matInput[,1] = vecInputFASTA[posInput]
-    matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
-    
-    germlines = posGermlines[posInput]
-    groups = posGroups[posInput]
-    
-    return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))      
-  }
-
-
-  # Replace leading and trailing dashes in the sequence
-  replaceLeadingTrailingDashes <- function(x,readEnd){
-    iiGap = unlist(gregexpr("-",x[1]))
-    ggGap = unlist(gregexpr("-",x[2]))  
-    #posToChange = intersect(iiGap,ggGap)
-    
-    
-    seqIn = replaceLeadingTrailingDashesHelper(x[1])
-    seqGL = replaceLeadingTrailingDashesHelper(x[2])
-    seqTemplate = rep('N',readEnd)
-    seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
-    seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
-#    if(posToChange!=-1){
-#      seqIn[posToChange] = "-"
-#      seqGL[posToChange] = "-"
-#    }
-  
-    seqIn = c2s(seqIn[1:readEnd])
-    seqGL = c2s(seqGL[1:readEnd])
-  
-    lenGL = nchar(seqGL)
-    if(lenGL<readEnd){
-      seqGL = paste(seqGL,c2s(rep("N",readEnd-lenGL)),sep="")
-    }
-  
-    lenInput = nchar(seqIn)
-    if(lenInput<readEnd){
-      seqIn = paste(seqIn,c2s(rep("N",readEnd-lenInput)),sep="")
-    }    
-    return( c(seqIn,seqGL) )
-  }  
-
-  replaceLeadingTrailingDashesHelper <- function(x){
-    grepResults = gregexpr("-*",x)
-    grepResultsPos = unlist(grepResults)
-    grepResultsLen =  attr(grepResults[[1]],"match.length")   
-    #print(paste("x = '", x, "'", sep=""))
-    x = s2c(x)
-    if(x[1]=="-"){
-      x[1:grepResultsLen[1]] = "N"      
-    }
-    if(x[length(x)]=="-"){
-      x[(length(x)-grepResultsLen[length(grepResultsLen)]+1):length(x)] = "N"      
-    }
-    return(x)
-  }
-
-
-
-  
-  # Check sequences for indels
-  checkForInDels <- function(matInputP){
-    insPos <- checkInsertion(matInputP)
-    delPos <- checkDeletions(matInputP)
-    return(list("Insertions"=insPos, "Deletions"=delPos))
-  }
-
-  # Check sequences for insertions
-  checkInsertion <- function(matInputP){
-    insertionCheck = apply( matInputP,1, function(x){
-                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
-                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )                                          
-                                          return( is.finite( match(FALSE, glGaps%in%inputGaps ) ) )
-                                        })   
-    return(as.vector(insertionCheck))
-  }
-  # Fix inserstions
-  fixInsertions <- function(matInputP){
-    insPos <- checkInsertion(matInputP)
-    sapply((1:nrow(matInputP))[insPos],function(rowIndex){
-                                                x <- matInputP[rowIndex,]
-                                                inputGaps <- gregexpr("-",x[1])[[1]]
-                                                glGaps <- gregexpr("-",x[2])[[1]]
-                                                posInsertions <- glGaps[!(glGaps%in%inputGaps)]
-                                                inputInsertionToN <- s2c(x[2])
-                                                inputInsertionToN[posInsertions]!="-"
-                                                inputInsertionToN[posInsertions] <- "N"
-                                                inputInsertionToN <- c2s(inputInsertionToN)
-                                                matInput[rowIndex,2] <<- inputInsertionToN 
-                                              })                                                               
-    return(insPos)
-  } 
-    
-  # Check sequences for deletions
-  checkDeletions <-function(matInputP){
-    deletionCheck = apply( matInputP,1, function(x){
-                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
-                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )
-                                          return( is.finite( match(FALSE, inputGaps%in%glGaps ) ) )
-                                      })
-    return(as.vector(deletionCheck))                                      
-  }
-  # Fix sequences with deletions
-  fixDeletions <- function(matInputP){
-    delPos <- checkDeletions(matInputP)    
-    sapply((1:nrow(matInputP))[delPos],function(rowIndex){
-                                                x <- matInputP[rowIndex,]
-                                                inputGaps <- gregexpr("-",x[1])[[1]]
-                                                glGaps <- gregexpr("-",x[2])[[1]]
-                                                posDeletions <- inputGaps[!(inputGaps%in%glGaps)]
-                                                inputDeletionToN <- s2c(x[1])
-                                                inputDeletionToN[posDeletions] <- "N"
-                                                inputDeletionToN <- c2s(inputDeletionToN)
-                                                matInput[rowIndex,1] <<- inputDeletionToN 
-                                              })                                                                   
-    return(delPos)
-  }  
-    
-
-  # Trim DNA sequence to the last codon
-  trimToLastCodon <- function(seqToTrim){
-    seqLen = nchar(seqToTrim)  
-    trimmedSeq = s2c(seqToTrim)
-    poi = seqLen
-    tailLen = 0
-    
-    while(trimmedSeq[poi]=="-" || trimmedSeq[poi]=="."){
-      tailLen = tailLen + 1
-      poi = poi - 1   
-    }
-    
-    trimmedSeq = c2s(trimmedSeq[1:(seqLen-tailLen)])
-    seqLen = nchar(trimmedSeq)
-    # Trim sequence to last codon
-  	if( getCodonPos(seqLen)[3] > seqLen )
-  	  trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
-    
-    return(trimmedSeq)
-  }
-  
-  # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
-  # e.g. nuc 86 is part of nucs 85,86,87
-  getCodonPos <- function(nucPos){
-    codonNum =  (ceiling(nucPos/3))*3
-    return( (codonNum-2):codonNum)
-  }
-  
-  # Given a nuclotide position, returns the codon number
-  # e.g. nuc 86  = codon 29
-  getCodonNumb <- function(nucPos){
-    return( ceiling(nucPos/3) )
-  }
-  
-  # Given a codon, returns all the nuc positions that make the codon
-  getCodonNucs <- function(codonNumb){
-    getCodonPos(codonNumb*3)
-  }  
-
-  computeCodonTable <- function(testID=1){
-                  
-    if(testID<=4){    
-      # Pre-compute every codons
-      intCounter = 1
-      for(pOne in NUCLEOTIDES){
-        for(pTwo in NUCLEOTIDES){
-          for(pThree in NUCLEOTIDES){
-            codon = paste(pOne,pTwo,pThree,sep="")
-            colnames(CODON_TABLE)[intCounter] =  codon
-            intCounter = intCounter + 1
-            CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
-          }  
-        }
-      }
-      chars = c("N","A","C","G","T", "-")
-      for(a in chars){
-        for(b in chars){
-          for(c in chars){
-            if(a=="N" | b=="N" | c=="N"){ 
-              #cat(paste(a,b,c),sep="","\n") 
-              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
-            }
-          }  
-        }
-      }
-      
-      chars = c("-","A","C","G","T")
-      for(a in chars){
-        for(b in chars){
-          for(c in chars){
-            if(a=="-" | b=="-" | c=="-"){ 
-              #cat(paste(a,b,c),sep="","\n") 
-              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
-            }
-          }  
-        }
-      }
-      CODON_TABLE <<- as.matrix(CODON_TABLE)
-    }
-  }
-  
-  collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
-  #print(length(vecInputSeqs))
-    vecInputSeqs = unique(vecInputSeqs) 
-    if(length(vecInputSeqs)==1){
-      return( list( c(vecInputSeqs,glSeq), F) )
-    }else{
-      charInputSeqs <- sapply(vecInputSeqs, function(x){
-                                              s2c(x)[1:readEnd]
-                                            })
-      charGLSeq <- s2c(glSeq)
-      matClone <- sapply(1:readEnd, function(i){
-                                            posNucs = unique(charInputSeqs[i,])
-                                            posGL = charGLSeq[i]
-                                            error = FALSE                                            
-                                            if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
-                                              return(c("-",error))
-                                            }
-                                            if(length(posNucs)==1)
-                                              return(c(posNucs[1],error))
-                                            else{
-                                              if("N"%in%posNucs){
-                                                error=TRUE
-                                              }
-                                              if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
-                                                return( c(posGL,error) )  
-                                              }else{
-                                                #return( c(sample(posNucs[posNucs!="N"],1),error) )  
-                                                if(nonTerminalOnly==0){
-                                                  return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )  
-                                                }else{
-                                                  posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
-                                                  posNucsTable = table(posNucs)
-                                                  if(sum(posNucsTable>1)==0){
-                                                    return( c(posGL,error) )
-                                                  }else{
-                                                    return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
-                                                  }
-                                                }
-                                                
-                                              }
-                                            } 
-                                          })
-      
-                                          
-      #print(length(vecInputSeqs))                                        
-      return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
-    }
-  }
-
-  # Compute the expected for each sequence-germline pair
-  getExpectedIndividual <- function(matInput){
-  if( any(grep("multicore",search())) ){ 
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
-                                                      computeMutabilities(facLevels[x])
-                                                    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
-                                                      cInput = rep(NA,nchar(matInput[x,1]))
-                                                      cInput[s2c(matInput[x,1])!="N"] = 1
-                                                      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-                                                    })
-                                                    
-    LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
-                                                      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-                                                    })
-                                                    
-    LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
-                                                    #print(x)
-                                                    computeMutationTypes(matInput[x,2])
-                                                })
-    
-    LisGLs_Exp = mclapply(1:dim(matInput)[1],  function(x){
-                                                  computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
-                                                })
-    
-    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
-    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
-  }else{
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
-      computeMutabilities(facLevels[x])
-    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
-      cInput = rep(NA,nchar(matInput[x,1]))
-      cInput[s2c(matInput[x,1])!="N"] = 1
-      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-    })
-    
-    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
-      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-    })
-    
-    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
-      #print(x)
-      computeMutationTypes(matInput[x,2])
-    })
-    
-    LisGLs_Exp = lapply(1:dim(matInput)[1],  function(x){
-      computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
-    })
-    
-    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
-    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
-    
-  }
-  }
-
-  # Compute mutabilities of sequence based on the tri-nucleotide model
-  computeMutabilities <- function(paramSeq){
-    seqLen = nchar(paramSeq)
-    seqMutabilites = rep(NA,seqLen)
-  
-    gaplessSeq = gsub("-", "", paramSeq)
-    gaplessSeqLen = nchar(gaplessSeq)
-    gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
-    
-    if(mutabilityModel!=5){
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqMutabilites[pos] =      
-        tapply( c(
-                                        getMutability( substr(subSeq,1,3), 3) , 
-                                        getMutability( substr(subSeq,2,4), 2), 
-                                        getMutability( substr(subSeq,3,5), 1) 
-                                        ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
-                                      )
-      #Pos 1
-      subSeq =  substr(gaplessSeq,1,3)
-      gaplessSeqMutabilites[1] =  getMutability(subSeq , 1)
-      #Pos 2
-      subSeq =  substr(gaplessSeq,1,4)
-      gaplessSeqMutabilites[2] =  mean( c(
-                                            getMutability( substr(subSeq,1,3), 2) , 
-                                            getMutability( substr(subSeq,2,4), 1) 
-                                          ),na.rm=T
-                                      ) 
-      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
-      return(seqMutabilites)
-    }else{
-      
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
-      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
-      return(seqMutabilites)
-    }
-
-  }
-
-  # Returns the mutability of a triplet at a given position
-  getMutability <- function(codon, pos=1:3){
-    triplets <- rownames(mutability)
-    mutability[  match(codon,triplets) ,pos]
-  }
-
-  getMutability5 <- function(fivemer){
-    return(mutability[fivemer])
-  }
-
-  # Returns the substitution probabilty
-  getTransistionProb <- function(nuc){
-    substitution[nuc,]
-  }
-
-  getTransistionProb5 <- function(fivemer){    
-    if(any(which(fivemer==colnames(substitution)))){
-      return(substitution[,fivemer])
-    }else{
-      return(array(NA,4))
-    }
-  }
-
-  # Given a nuc, returns the other 3 nucs it can mutate to
-  canMutateTo <- function(nuc){
-    NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
-  }
-  
-  # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to 
-  canMutateToProb <- function(nuc){
-    substitution[nuc,canMutateTo(nuc)]
-  }
-
-  # Compute targeting, based on precomputed mutatbility & substitution  
-  computeTargeting <- function(param_strSeq,param_vecMutabilities){
-
-    if(substitutionModel!=5){
-      vecSeq = s2c(param_strSeq)
-      matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )  
-      #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
-      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(length(vecSeq))) 
-      return (matTargeting)
-    }else{
-      
-      seqLen = nchar(param_strSeq)
-      seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
-      paramSeq <- param_strSeq
-      gaplessSeq = gsub("-", "", paramSeq)
-      gaplessSeqLen = nchar(gaplessSeq)
-      gaplessSeqSubstitution  = matrix(NA,ncol=gaplessSeqLen,nrow=4) 
-      
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
-      seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
-      #matTargeting <- param_vecMutabilities  %*% seqsubstitution
-      matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
-      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(seqLen)) 
-      return (matTargeting)      
-    }
-  }  
-
-  # Compute the mutations types   
-  computeMutationTypes <- function(param_strSeq){
-  #cat(param_strSeq,"\n")
-    #vecSeq = trimToLastCodon(param_strSeq)
-    lenSeq = nchar(param_strSeq)
-    vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
-    matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
-    dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
-    return(matMutationTypes)   
-  }  
-  computeMutationTypesFast <- function(param_strSeq){
-    matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
-    #dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(length(vecSeq)))
-    return(matMutationTypes)   
-  }  
-  mutationTypeOptimized <- function( matOfCodons ){
-   apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } ) 
-  }  
-
-  # Returns a vector of codons 1 mutation away from the given codon
-  permutateAllCodon <- function(codon){
-    cCodon = s2c(codon)
-    matCodons = t(array(cCodon,dim=c(3,12)))
-    matCodons[1:4,1] = NUCLEOTIDES
-    matCodons[5:8,2] = NUCLEOTIDES
-    matCodons[9:12,3] = NUCLEOTIDES
-    apply(matCodons,1,c2s)
-  }
-
-  # Given two codons, tells you if the mutation is R or S (based on your definition)
-  mutationType <- function(codonFrom,codonTo){
-    if(testID==4){
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        mutationType = "S"
-        if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
-          mutationType = "R"                                                              
-        }
-        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
-          mutationType = "Stop"
-        }
-        return(mutationType)
-      }  
-    }else if(testID==5){  
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        if(codonFrom==codonTo){
-          mutationType = "S"
-        }else{
-          codonFrom = s2c(codonFrom)
-          codonTo = s2c(codonTo)  
-          mutationType = "Stop"
-          nucOfI = codonFrom[which(codonTo!=codonFrom)]
-          if(nucOfI=="C"){
-            mutationType = "R"  
-          }else if(nucOfI=="G"){
-            mutationType = "S"
-          }
-        }
-        return(mutationType)
-      }
-    }else{
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        mutationType = "S"
-        if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
-          mutationType = "R"                                                              
-        }
-        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
-          mutationType = "Stop"
-        }
-        return(mutationType)
-      }  
-    }    
-  }
-
-  
-  #given a mat of targeting & it's corresponding mutationtypes returns 
-  #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
-  computeExpected <- function(paramTargeting,paramMutationTypes){
-    # Replacements
-    RPos = which(paramMutationTypes=="R")  
-      #FWR
-      Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
-      #CDR
-      Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
-    # Silents
-    SPos = which(paramMutationTypes=="S")  
-      #FWR
-      Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
-      #CDR
-      Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
-  
-      return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
-  }
-  
-  # Count the mutations in a sequence
-  # each mutation is treated independently 
-  analyzeMutations2NucUri_website <- function( rev_in_matrix ){
-    paramGL = rev_in_matrix[2,]
-    paramSeq = rev_in_matrix[1,]  
-    
-    #Fill seq with GL seq if gapped
-    #if( any(paramSeq=="-") ){
-    #  gapPos_Seq =  which(paramSeq=="-")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}
-  
-  
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}  
-      
-    analyzeMutations2NucUri(  matrix(c( paramGL, paramSeq  ),2,length(paramGL),byrow=T)  )
-    
-  }
-
-  #1 = GL 
-  #2 = Seq
-  analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
-    paramGL = in_matrix[2,]
-    paramSeq = in_matrix[1,]
-    paramSeqUri = paramGL
-    #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
-    mutations_val = paramGL != paramSeq   
-    if(any(mutations_val)){
-      mutationPos = {1:length(mutations_val)}[mutations_val]  
-      mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-      if(any(mutationPos)){  
-
-        pos<- mutationPos
-        pos_array<-array(sapply(pos,getCodonPos))
-        codonGL =  paramGL[pos_array]
-        
-        codonSeq = sapply(pos,function(x){
-                                  seqP = paramGL[getCodonPos(x)]
-                                  muCodonPos = {x-1}%%3+1 
-                                  seqP[muCodonPos] = paramSeq[x]
-                                  return(seqP)
-                                })      
-        GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-        Seqcodons =   apply(codonSeq,2,c2s)
-        mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-        names(mutationInfo) = mutationPos
-    }
-    if(any(!is.na(mutationInfo))){
-      return(mutationInfo[!is.na(mutationInfo)])    
-    }else{
-      return(NA)
-    }
-    
-    
-    }else{
-      return (NA)
-    }
-  }
-  
-  processNucMutations2 <- function(mu){
-    if(!is.na(mu)){
-      #R
-      if(any(mu=="R")){
-        Rs = mu[mu=="R"]
-        nucNumbs = as.numeric(names(Rs))
-        R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
-        R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
-      }else{
-        R_CDR = 0
-        R_FWR = 0
-      }    
-      
-      #S
-      if(any(mu=="S")){
-        Ss = mu[mu=="S"]
-        nucNumbs = as.numeric(names(Ss))
-        S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
-        S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
-      }else{
-        S_CDR = 0
-        S_FWR = 0
-      }    
-      
-      
-      retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
-      retVec[is.na(retVec)]=0
-      return(retVec)
-    }else{
-      return(rep(0,4))
-    }
-  }        
-  
-  
-  ## Z-score Test
-  computeZScore <- function(mat, test="Focused"){
-    matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
-    if(test=="Focused"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }
-  
-    if(test=="Local"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }
-    
-    if(test=="Imbalanced"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
-      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
-      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }    
-      
-    matRes[is.nan(matRes)] = NA
-    return(matRes)
-  }
-
-  # Return a p-value for a z-score
-  z2p <- function(z){
-    p=NA
-    if( !is.nan(z) && !is.na(z)){   
-      if(z>0){
-        p = (1 - pnorm(z,0,1))
-      } else if(z<0){
-        p = (-1 * pnorm(z,0,1))
-      } else{
-        p = 0.5
-      }
-    }else{
-      p = NA
-    }
-    return(p)
-  }    
-  
-  
-  ## Bayesian  Test
-
-  # Fitted parameter for the bayesian framework
-BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
-  CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
-  
-  # Given x, M & p, returns a pdf 
-  calculate_bayes <- function ( x=3, N=10, p=0.33,
-                                i=CONST_i,
-                                max_sigma=20,length_sigma=4001
-                              ){
-    if(!0%in%N){
-      G <- max(length(x),length(N),length(p))
-      x=array(x,dim=G)
-      N=array(N,dim=G)
-      p=array(p,dim=G)
-      sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
-      sigma_1<-log({i/{1-i}}/{p/{1-p}})
-      index<-min(N,60)
-      y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
-      if(!sum(is.na(y))){
-        tmp<-approx(sigma_1,y,sigma_s)$y
-        tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
-      }else{
-        return(NA)
-      }
-    }else{
-      return(NA)
-    }
-  }  
-  # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
-  computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
-    flagOneSeq = F
-    if(nrow(mat)==1){
-      mat=rbind(mat,mat)
-      flagOneSeq = T
-    }
-    if(test=="Focused"){
-      #CDR
-      P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,1],0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,3],0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-    
-    if(test=="Local"){
-      #CDR
-      P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
-      X = c(mat[,1],0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,3],0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    } 
-     
-    if(test=="Imbalanced"){
-      #CDR
-      P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
-      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
-      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-
-    if(test=="ImbalancedSilent"){
-      #CDR
-      P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
-      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
-      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-        
-    if(flagOneSeq==T){
-      bayesCDR = bayesCDR[1]  
-      bayesFWR = bayesFWR[1]
-    }
-    return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
-  }
-  
-  ##Covolution
-  break2chunks<-function(G=1000){
-  base<-2^round(log(sqrt(G),2),0)
-  return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
-  }  
-  
-  PowersOfTwo <- function(G=100){
-    exponents <- array()
-    i = 0
-    while(G > 0){
-      i=i+1
-      exponents[i] <- floor( log2(G) )
-      G <- G-2^exponents[i]
-    }
-    return(exponents)
-  }
-  
-  convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
-    G = ncol(cons)
-    if(G>1){
-      for(gen in log(G,2):1){
-        ll<-seq(from=2,to=2^gen,by=2)
-        sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
-      }
-    }
-    return( cons[,1] )
-  }
-  
-  convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
-    if(length(ncol(cons))) G<-ncol(cons)
-    groups <- PowersOfTwo(G)
-    matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
-    startIndex = 1
-    for( i in 1:length(groups) ){
-      stopIndex <- 2^groups[i] + startIndex - 1
-      if(stopIndex!=startIndex){
-        matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
-        startIndex = stopIndex + 1
-      }
-      else {
-        if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
-        else matG[,i] <- cons
-        #startIndex = stopIndex + 1
-      }
-    }
-    return( list( matG, groups ) )
-  }
-  
-  weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
-    lx<-length(x)
-    ly<-length(y)
-    if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
-      if(w<1){
-        y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
-        x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
-        lx<-length(x1)
-        ly<-length(y1)
-      }
-      else {
-        y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
-        x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
-        lx<-length(x1)
-        ly<-length(y1)
-      }
-    }
-    else{
-      x1<-x
-      y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
-      ly<-length(y1)
-    }
-    tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
-    tmp[tmp<=0] = 0
-    return(tmp/sum(tmp))
-  }
-  
-  calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
-    matG <- listMatG[[1]]
-    groups <- listMatG[[2]]
-    i = 1
-    resConv <- matG[,i]
-    denom <- 2^groups[i]
-    if(length(groups)>1){
-      while( i<length(groups) ){
-        i = i + 1
-        resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
-        #cat({{2^groups[i]}/denom},"\n")
-        denom <- denom + 2^groups[i]
-      }
-    }
-    return(resConv)
-  }
-  
-  # Given a list of PDFs, returns a convoluted PDF    
-  groupPosteriors <- function( listPosteriors, max_sigma=20, length_sigma=4001 ,Threshold=2 ){  
-    listPosteriors = listPosteriors[ !is.na(listPosteriors) ]
-    Length_Postrior<-length(listPosteriors)
-    if(Length_Postrior>1 & Length_Postrior<=Threshold){
-      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
-      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
-      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }else if(Length_Postrior==1) return(listPosteriors[[1]])
-    else  if(Length_Postrior==0) return(NA)
-    else {
-      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
-      y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }
-  }
-
-  fastConv<-function(cons, max_sigma=20, length_sigma=4001){
-    chunks<-break2chunks(G=ncol(cons))
-    if(ncol(cons)==3) chunks<-2:1
-    index_chunks_end <- cumsum(chunks)
-    index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
-    index_chunks <- cbind(index_chunks_start,index_chunks_end)
-    
-    case <- sum(chunks!=chunks[1])
-    if(case==1) End <- max(1,((length(index_chunks)/2)-1))
-    else End <- max(1,((length(index_chunks)/2)))
-    
-    firsts <- sapply(1:End,function(i){
-          	    indexes<-index_chunks[i,1]:index_chunks[i,2]
-          	    convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
-          	  })
-    if(case==0){
-    	result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
-    }else if(case==1){
-      last<-list(calculate_bayesGHelper(
-      convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
-                                      ),0)
-      result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
-      result<-calculate_bayesGHelper(
-        list(
-          cbind(
-          result_first,last[[1]]),
-          c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
-        )
-      )
-    }
-    return(as.vector(result))
-  }
-    
-  # Computes the 95% CI for a pdf
-  calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
-    if(length(Pdf)!=length_sigma) return(NA)
-    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
-    cdf = cumsum(Pdf)
-    cdf = cdf/cdf[length(cdf)]  
-    return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) ) 
-  }
-  
-  # Computes a mean for a pdf
-  calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
-    if(length(Pdf)!=length_sigma) return(NA)
-    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
-    norm = {length_sigma-1}/2/max_sigma
-    return( (Pdf%*%sigma_s/norm)  ) 
-  }
-  
-  # Returns the mean, and the 95% CI for a pdf
-  calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
-    if(is.na(Pdf)) 
-     return(rep(NA,3))  
-    bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
-    bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
-    return(c(bMean, bCI))
-  }   
-
-  # Computes the p-value of a pdf
-  computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
-    if(length(Pdf)>1){
-      norm = {length_sigma-1}/2/max_sigma
-      pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
-      if(pVal>0.5){
-        pVal = pVal-1
-      }
-      return(pVal)
-    }else{
-      return(NA)
-    }
-  }    
-  
-  # Compute p-value of two distributions
-  compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
-  #print(c(length(dens1),length(dens2)))
-  if(length(dens1)>1 & length(dens2)>1 ){
-    dens1<-dens1/sum(dens1)
-    dens2<-dens2/sum(dens2)
-    cum2 <- cumsum(dens2)-dens2/2
-    tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
-    #print(tmp)
-    if(tmp>0.5)tmp<-tmp-1
-    return( tmp )
-    }
-    else {
-    return(NA)
-    }
-    #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
-  }  
-  
-  # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
-  numberOfSeqsWithMutations <- function(matMutations,test=1){
-    if(test==4)test=2
-    cdrSeqs <- 0
-    fwrSeqs <- 0    
-    if(test==1){#focused
-      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
-      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
-      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
-      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
-    }
-    if(test==2){#local
-      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
-      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
-      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
-      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
-    }
-  return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
-}  
-
-
-
-shadeColor <- function(sigmaVal=NA,pVal=NA){
-  if(is.na(sigmaVal) & is.na(pVal)) return(NA)
-  if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
-  if(is.na(pVal) || pVal==1 || pVal==0){
-    returnColor = "#FFFFFF";
-  }else{
-    colVal=abs(pVal);
-    
-    if(sigmaVal<0){      
-        if(colVal>0.1)
-          returnColor = "#CCFFCC";
-        if(colVal<=0.1)
-          returnColor = "#99FF99";
-        if(colVal<=0.050)
-          returnColor = "#66FF66";
-        if(colVal<=0.010)
-          returnColor = "#33FF33";
-        if(colVal<=0.005)
-          returnColor = "#00FF00";
-      
-    }else{
-      if(colVal>0.1)
-        returnColor = "#FFCCCC";
-      if(colVal<=0.1)
-        returnColor = "#FF9999";
-      if(colVal<=0.05)
-        returnColor = "#FF6666";
-      if(colVal<=0.01)
-        returnColor = "#FF3333";
-      if(colVal<0.005)
-        returnColor = "#FF0000";
-    }
-  }
-  
-  return(returnColor)
-}
-
-
-
-plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
-  if(!log){
-    x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
-    y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
-  }else {
-    if(log==2){
-      x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
-      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
-    }
-    if(log==1){
-      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
-      y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
-    }
-    if(log==3){
-      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
-      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
-    }
-  }
-  return(c("x"=x,"y"=y))
-}
-
-# SHMulation
-
-  # Based on targeting, introduce a single mutation & then update the targeting 
-  oneMutation <- function(){
-    # Pick a postion + mutation
-    posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
-    posNucNumb = ceiling(posMutation/4)                    # Nucleotide number
-    posNucKind = 4 - ( (posNucNumb*4) - posMutation )   # Nuc the position mutates to
-  
-    #mutate the simulation sequence
-    seqSimVec <-  s2c(seqSim)
-    seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
-    seqSim <<-  c2s(seqSimVec)
-    
-    #update Mutability, Targeting & MutationsTypes
-    updateMutabilityNTargeting(posNucNumb)
-  
-    #return(c(posNucNumb,NUCLEOTIDES[posNucKind])) 
-    return(posNucNumb)
-  }  
-  
-  updateMutabilityNTargeting <- function(position){
-    min_i<-max((position-2),1)
-    max_i<-min((position+2),nchar(seqSim))
-    min_ii<-min(min_i,3)
-    
-    #mutability - update locally
-    seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
-    
-    
-    #targeting - compute locally
-    seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])                 
-    seqTargeting[is.na(seqTargeting)] <<- 0
-    #mutCodonPos = getCodonPos(position) 
-    mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
-    #cat(mutCodonPos,"\n")                                                  
-    mutTypeCodon = getCodonPos(position)
-    seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) ) 
-    # Stop = 0
-    if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
-      seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
-    }
-    
-  
-    #Selection
-    selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))  
-    # CDR
-    selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
-    seqTargeting[selectedCDR] <<-  seqTargeting[selectedCDR] *  exp(selCDR)
-    seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
-        
-    # FWR
-    selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
-    seqTargeting[selectedFWR] <<-  seqTargeting[selectedFWR] *  exp(selFWR)
-    seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K      
-    
-  }  
-  
-
-
-  # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.   
-  validateMutation <- function(){  
-    if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
-      uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
-      mutatedPositions[uniqueMutationsIntroduced] <<-  mutatedPos  
-    }else{
-      if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
-        mutatedPositions <<-  mutatedPositions[-which(mutatedPositions==mutatedPos)]
-        uniqueMutationsIntroduced <<-  uniqueMutationsIntroduced - 1
-      }      
-    }
-  }  
-  
-  
-  
-  # Places text (labels) at normalized coordinates 
-  myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
-    par(xpd=TRUE)
-    if(!log)
-      text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
-    else {
-    if(log==2)
-    text(
-      par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
-      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
-      w,cex=cex,adj=adj,col=thecol)
-    if(log==1)
-      text(
-      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
-      par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
-      w,cex=cex,adj=adj,col=thecol)
-    if(log==3)
-      text(
-      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
-      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
-      w,cex=cex,adj=adj,col=thecol)
-    }
-    par(xpd=FALSE)
-  }
-  
-  
-  
-  # Count the mutations in a sequence
-  analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
-
-    paramGL = s2c(matInput[inputMatrixIndex,2])
-    paramSeq = s2c(matInput[inputMatrixIndex,1])            
-    
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}        
-    mutations_val = paramGL != paramSeq   
-    
-    if(any(mutations_val)){
-      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-                          
-      pos<- mutationPos
-      pos_array<-array(sapply(pos,getCodonPos))
-      codonGL =  paramGL[pos_array]
-      codonSeqWhole =  paramSeq[pos_array]
-      codonSeq = sapply(pos,function(x){
-                                seqP = paramGL[getCodonPos(x)]
-                                muCodonPos = {x-1}%%3+1 
-                                seqP[muCodonPos] = paramSeq[x]
-                                return(seqP)
-                              })
-      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
-      Seqcodons =   apply(codonSeq,2,c2s)
-      
-      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-      names(mutationInfo) = mutationPos     
-      
-      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
-      names(mutationInfoWhole) = mutationPos
-
-      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
-      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-      
-      if(any(!is.na(mutationInfo))){       
-  
-        #Filter based on Stop (at the codon level)
-        if(seqWithStops==1){
-          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
-          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
-          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
-        }else{
-          countStops = sum(mutationInfoWhole=="Stop")
-          if(seqWithStops==2 & countStops==0) mutationInfo = NA
-          if(seqWithStops==3 & countStops>0) mutationInfo = NA
-        }         
-        
-        if(any(!is.na(mutationInfo))){
-          #Filter mutations based on multipleMutation
-          if(multipleMutation==1 & !is.na(mutationInfo)){
-            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
-            tableMutationCodons <- table(mutationCodons)
-            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
-            if(any(codonsWithMultipleMutations)){
-              #remove the nucleotide mutations in the codons with multiple mutations
-              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
-              #replace those codons with Ns in the input sequence
-              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
-              matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
-            }
-          }
-
-          #Filter mutations based on the model
-          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
-            
-            if(model==1 & !is.na(mutationInfo)){
-              mutationInfo <- mutationInfo[mutationInfo=="S"]
-            }  
-            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
-            else return(NA)
-          }else{
-            return(NA)
-          }
-        }else{
-          return(NA)
-        }
-        
-        
-      }else{
-        return(NA)
-      }
-    
-    
-    }else{
-      return (NA)
-    }    
-  }  
-
-   analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
-
-    paramGL = s2c(inputArray[2])
-    paramSeq = s2c(inputArray[1])            
-    inputSeq <- inputArray[1]
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}        
-    mutations_val = paramGL != paramSeq   
-    
-    if(any(mutations_val)){
-      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-                          
-      pos<- mutationPos
-      pos_array<-array(sapply(pos,getCodonPos))
-      codonGL =  paramGL[pos_array]
-      codonSeqWhole =  paramSeq[pos_array]
-      codonSeq = sapply(pos,function(x){
-                                seqP = paramGL[getCodonPos(x)]
-                                muCodonPos = {x-1}%%3+1 
-                                seqP[muCodonPos] = paramSeq[x]
-                                return(seqP)
-                              })
-      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
-      Seqcodons =   apply(codonSeq,2,c2s)
-      
-      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-      names(mutationInfo) = mutationPos     
-      
-      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
-      names(mutationInfoWhole) = mutationPos
-
-      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
-      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-      
-      if(any(!is.na(mutationInfo))){       
-  
-        #Filter based on Stop (at the codon level)
-        if(seqWithStops==1){
-          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
-          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
-          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
-        }else{
-          countStops = sum(mutationInfoWhole=="Stop")
-          if(seqWithStops==2 & countStops==0) mutationInfo = NA
-          if(seqWithStops==3 & countStops>0) mutationInfo = NA
-        }         
-        
-        if(any(!is.na(mutationInfo))){
-          #Filter mutations based on multipleMutation
-          if(multipleMutation==1 & !is.na(mutationInfo)){
-            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
-            tableMutationCodons <- table(mutationCodons)
-            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
-            if(any(codonsWithMultipleMutations)){
-              #remove the nucleotide mutations in the codons with multiple mutations
-              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
-              #replace those codons with Ns in the input sequence
-              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
-              #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
-              inputSeq <- c2s(paramSeq)
-            }
-          }
-          
-          #Filter mutations based on the model
-          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
-            
-            if(model==1 & !is.na(mutationInfo)){
-              mutationInfo <- mutationInfo[mutationInfo=="S"]
-            }  
-            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
-            else return(list(NA,inputSeq))
-          }else{
-            return(list(NA,inputSeq))
-          }
-        }else{
-          return(list(NA,inputSeq))
-        }
-        
-        
-      }else{
-        return(list(NA,inputSeq))
-      }
-    
-    
-    }else{
-      return (list(NA,inputSeq))
-    }    
-  }  
- 
-  # triMutability Background Count
-  buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
-    
-    #rowOrigMatInput = matInput[inputMatrixIndex,]    
-    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
-    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
-    #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
-    tempInput <- cbind(seqInput,seqGL)
-    seqLength = nchar(seqGL)      
-    list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
-    mutationCount <- list_analyzeMutationsFixed[[1]]
-    seqInput <- list_analyzeMutationsFixed[[2]]
-    BackgroundMatrix = mutabilityMatrix
-    MutationMatrix = mutabilityMatrix    
-    MutationCountMatrix = mutabilityMatrix    
-    if(!is.na(mutationCount)){
-      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
-                  
-        fivermerStartPos = 1:(seqLength-4)
-        fivemerLength <- length(fivermerStartPos)
-        fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
-        fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
-    
-        #Background
-        for(fivemerIndex in 1:fivemerLength){
-          fivemer = fivemerGL[fivemerIndex]
-          if(!any(grep("N",fivemer))){
-            fivemerCodonPos = fivemerCodon(fivemerIndex)
-            fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
-            fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])          
-            
-            # All mutations model
-            #if(!any(grep("N",fivemerReadingFrameCodon))){
-              if(model==0){
-                if(stopMutations==0){
-                  if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
-                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)              
-                }else{
-                  if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
-                    positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
-                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
-                  }
-                }
-              }else{ # Only silent mutations
-                if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
-                  positionWithinCodon = which(fivemerCodonPos==3)
-                  BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
-                }
-              }
-            #}
-          }
-        }
-        
-        #Mutations
-        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
-        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
-        mutationPositions = as.numeric(names(mutationCount))
-        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        countMutations = 0 
-        for(mutationPosition in mutationPositions){
-          fivemerIndex = mutationPosition-2
-          fivemer = fivemerSeq[fivemerIndex]
-          GLfivemer = fivemerGL[fivemerIndex]
-          fivemerCodonPos = fivemerCodon(fivemerIndex)
-          fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
-          fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
-          if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
-            if(model==0){
-                countMutations = countMutations + 1              
-                MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
-                MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)             
-            }else{
-              if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
-                  countMutations = countMutations + 1
-                  positionWithinCodon = which(fivemerCodonPos==3)
-                  glNuc =  substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
-                  inputNuc =  substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
-                  MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
-                  MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)                                    
-              }                
-            }                  
-          }              
-        }
-        
-        seqMutability = MutationMatrix/BackgroundMatrix
-        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
-        #cat(inputMatrixIndex,"\t",countMutations,"\n")
-        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
-        
-      }        
-    }
-  
-  }  
-  
-  #Returns the codon position containing the middle nucleotide
-  fivemerCodon <- function(fivemerIndex){
-    codonPos = list(2:4,1:3,3:5)
-    fivemerType = fivemerIndex%%3
-    return(codonPos[[fivemerType+1]])
-  }
-
-  #returns probability values for one mutation in codons resulting in R, S or Stop
-  probMutations <- function(typeOfMutation){    
-    matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))   
-    for(codon in rownames(matMutationProb)){
-        if( !any(grep("N",codon)) ){
-        for(muPos in 1:3){
-          matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
-          glNuc = matCodon[1,muPos]
-          matCodon[,muPos] = canMutateTo(glNuc) 
-          substitutionRate = substitution[glNuc,matCodon[,muPos]]
-          typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})        
-          matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
-        }
-      }
-    }
-    
-    return(matMutationProb) 
-  }
-  
-  
-  
-  
-#Mapping Trinucleotides to fivemers
-mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
-  rownames(triMutability) <- triMutability_Names
-  Fivemer<-rep(NA,1024)
-  names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
-  Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
-  Fivemer<-Fivemer/sum(Fivemer)
-  return(Fivemer)
-}
-
-collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
-}
-
-
-
-CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
-}
-
-#Uses the real counts of the mutated fivemers
-CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
-}
-
-bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
-N<-sum(x)
-if(N){
-p<-x/N
-k<-length(x)-1
-tmp<-rmultinom(M, size = N, prob=p)
-tmp_p<-apply(tmp,2,function(y)y/N)
-(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
-}
-else return(matrix(0,2,length(x)))
-}
-
-
-
-
-bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
-
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
-(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
-}
-
-
-
-p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
-n=sum(x_obs)
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
-tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
-sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
-sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
-}
-
-#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
-# Remove SNPs from IMGT germline segment alleles
-generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
-  repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
-  alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
-  SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
-    Indices<-NULL
-    for(i in 1:length(x)){
-      firstSeq = s2c(x[[1]])
-      iSeq = s2c(x[[i]])
-      Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="."  ))
-    }
-    return(sort(unique(Indices)))
-  })
- repertoireOut <- repertoireIn
- repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
-                                        alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
-                                        geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
-                                        alleleSeq <- s2c(repertoireOut[[repertoireName]])
-                                        alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
-                                        alleleSeq <- c2s(alleleSeq)
-                                        repertoireOut[[repertoireName]] <- alleleSeq
-                                      })
-  names(repertoireOut) <- names(repertoireIn)
-  write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)                                               
-                                      
-}
-
-
-
-
-
-
-############
-groupBayes2 = function(indexes, param_resultMat){
-  
-  BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
-  BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
-  #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
-  #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
-  #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
-  #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
-  return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
-                "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
-                #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
-                #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
-#                "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
-#                "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
-
-
-}
-
-
-calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
-  G <- max(length(x),length(N),length(p))
-  x=array(x,dim=G)
-  N=array(N,dim=G)
-  p=array(p,dim=G)
-
-  indexOfZero = N>0 & p>0
-  N = N[indexOfZero]
-  x = x[indexOfZero]
-  p = p[indexOfZero]  
-  G <- length(x)
-  
-  if(G){
-    
-    cons<-array( dim=c(length_sigma,G) )
-    if(G==1) {
-    return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
-    }
-    else {
-      for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
-      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
-      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }
-  }else{
-    return(NA)
-  }
-}
-
-
-calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
-  matG <- listMatG[[1]]  
-  groups <- listMatG[[2]]
-  i = 1  
-  resConv <- matG[,i]
-  denom <- 2^groups[i]
-  if(length(groups)>1){
-    while( i<length(groups) ){
-      i = i + 1
-      resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
-      #cat({{2^groups[i]}/denom},"\n")
-      denom <- denom + 2^groups[i]
-    }
-  }
-  return(resConv)  
-}
-
-weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
-lx<-length(x)
-ly<-length(y)
-if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
-if(w<1){
-y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
-x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
-lx<-length(x1)
-ly<-length(y1)
-}
-else {
-y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
-x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
-lx<-length(x1)
-ly<-length(y1)
-}
-}
-else{
-x1<-x
-y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
-ly<-length(y1)
-}
-tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
-tmp[tmp<=0] = 0 
-return(tmp/sum(tmp))
-}
-
-########################
-
-
-
-
-mutabilityMatrixONE<-rep(0,4)
-names(mutabilityMatrixONE)<-NUCLEOTIDES
-
-  # triMutability Background Count
-  buildMutabilityModelONE <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
-    
-    #rowOrigMatInput = matInput[inputMatrixIndex,]    
-    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
-    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
-    matInput[inputMatrixIndex,] <<- c(seqInput,seqGL)
-    seqLength = nchar(seqGL)      
-    mutationCount <- analyzeMutations(inputMatrixIndex, model, multipleMutation, seqWithStops)
-    BackgroundMatrix = mutabilityMatrixONE
-    MutationMatrix = mutabilityMatrixONE    
-    MutationCountMatrix = mutabilityMatrixONE    
-    if(!is.na(mutationCount)){
-      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
-                  
-#         ONEmerStartPos = 1:(seqLength)
-#         ONEmerLength <- length(ONEmerStartPos)
-        ONEmerGL <- s2c(seqGL)
-        ONEmerSeq <- s2c(seqInput)
-    
-        #Background
-        for(ONEmerIndex in 1:seqLength){
-          ONEmer = ONEmerGL[ONEmerIndex]
-          if(ONEmer!="N"){
-            ONEmerCodonPos = getCodonPos(ONEmerIndex)
-            ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos]) 
-            ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )         
-            
-            # All mutations model
-            #if(!any(grep("N",ONEmerReadingFrameCodon))){
-              if(model==0){
-                if(stopMutations==0){
-                  if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
-                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)              
-                }else{
-                  if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
-                    positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
-                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
-                  }
-                }
-              }else{ # Only silent mutations
-                if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
-                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
-                  BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
-                }
-              }
-            }
-          }
-        }
-        
-        #Mutations
-        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
-        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
-        mutationPositions = as.numeric(names(mutationCount))
-        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        countMutations = 0 
-        for(mutationPosition in mutationPositions){
-          ONEmerIndex = mutationPosition
-          ONEmer = ONEmerSeq[ONEmerIndex]
-          GLONEmer = ONEmerGL[ONEmerIndex]
-          ONEmerCodonPos = getCodonPos(ONEmerIndex)
-          ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])  
-          ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])  
-          if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
-            if(model==0){
-                countMutations = countMutations + 1              
-                MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
-                MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)             
-            }else{
-              if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
-                  countMutations = countMutations + 1
-                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
-                  glNuc =  substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
-                  inputNuc =  substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
-                  MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
-                  MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)                                    
-              }                
-            }                  
-          }              
-        }
-        
-        seqMutability = MutationMatrix/BackgroundMatrix
-        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
-        #cat(inputMatrixIndex,"\t",countMutations,"\n")
-        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
-#         tmp<-list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
-      }        
-    }
-  
-################
-# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
-
-trim <- function(s, recode.factor=TRUE, ...)
-  UseMethod("trim", s)
-
-trim.default <- function(s, recode.factor=TRUE, ...)
-  s
-
-trim.character <- function(s, recode.factor=TRUE, ...)
-{
-  s <- sub(pattern="^ +", replacement="", x=s)
-  s <- sub(pattern=" +$", replacement="", x=s)
-  s
-}
-
-trim.factor <- function(s, recode.factor=TRUE, ...)
-{
-  levels(s) <- trim(levels(s))
-  if(recode.factor) {
-    dots <- list(x=s, ...)
-    if(is.null(dots$sort)) dots$sort <- sort
-    s <- do.call(what=reorder.factor, args=dots)
-  }
-  s
-}
-
-trim.list <- function(s, recode.factor=TRUE, ...)
-  lapply(s, trim, recode.factor=recode.factor, ...)
-
-trim.data.frame <- function(s, recode.factor=TRUE, ...)
-{
-  s[] <- trim.list(s, recode.factor=recode.factor, ...)
-  s
-}
-#######################################
-# Compute the expected for each sequence-germline pair by codon 
-getExpectedIndividualByCodon <- function(matInput){    
-if( any(grep("multicore",search())) ){  
-  facGL <- factor(matInput[,2])
-  facLevels = levels(facGL)
-  LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
-    computeMutabilities(facLevels[x])
-  })
-  facIndex = match(facGL,facLevels)
-  
-  LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
-    cInput = rep(NA,nchar(matInput[x,1]))
-    cInput[s2c(matInput[x,1])!="N"] = 1
-    LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-  })
-  
-  LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
-    computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-  })
-  
-  LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
-    #print(x)
-    computeMutationTypes(matInput[x,2])
-  })
-  
-  LisGLs_R_Exp = mclapply(1:nrow(matInput),  function(x){
-    Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                        function(codonNucs){                                                      
-                          RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
-                          sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
-                        }
-    )                                                   
-  })
-  
-  LisGLs_S_Exp = mclapply(1:nrow(matInput),  function(x){
-    Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                        function(codonNucs){                                                      
-                          SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
-                          sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
-                        }
-    )                                                 
-  })                                                
-  
-  Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-  Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-  return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
-  }else{
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
-      computeMutabilities(facLevels[x])
-    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
-      cInput = rep(NA,nchar(matInput[x,1]))
-      cInput[s2c(matInput[x,1])!="N"] = 1
-      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-    })
-    
-    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
-      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-    })
-    
-    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
-      #print(x)
-      computeMutationTypes(matInput[x,2])
-    })
-    
-    LisGLs_R_Exp = lapply(1:nrow(matInput),  function(x){
-      Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                          function(codonNucs){                                                      
-                            RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
-                            sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
-                          }
-      )                                                   
-    })
-    
-    LisGLs_S_Exp = lapply(1:nrow(matInput),  function(x){
-      Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                          function(codonNucs){                                                      
-                            SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
-                            sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
-                          }
-      )                                                 
-    })                                                
-    
-    Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-    Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-    return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )    
-  }
-}
-
-# getObservedMutationsByCodon <- function(listMutations){
-#   numbSeqs <- length(listMutations) 
-#   obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
-#   obsMu_S <- obsMu_R
-#   temp <- mclapply(1:length(listMutations), function(i){
-#     arrMutations = listMutations[[i]]
-#     RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
-#     RPos <- sapply(RPos,getCodonNumb)                                                                    
-#     if(any(RPos)){
-#       tabR <- table(RPos)
-#       obsMu_R[i,as.numeric(names(tabR))] <<- tabR
-#     }                                    
-#     
-#     SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
-#     SPos <- sapply(SPos,getCodonNumb)
-#     if(any(SPos)){
-#       tabS <- table(SPos)
-#       obsMu_S[i,names(tabS)] <<- tabS
-#     }                                          
-#   }
-#   )
-#   return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
-# }
-
-getObservedMutationsByCodon <- function(listMutations){
-  numbSeqs <- length(listMutations) 
-  obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
-  obsMu_S <- obsMu_R
-  temp <- lapply(1:length(listMutations), function(i){
-    arrMutations = listMutations[[i]]
-    RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
-    RPos <- sapply(RPos,getCodonNumb)                                                                    
-    if(any(RPos)){
-      tabR <- table(RPos)
-      obsMu_R[i,as.numeric(names(tabR))] <<- tabR
-    }                                    
-    
-    SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
-    SPos <- sapply(SPos,getCodonNumb)
-    if(any(SPos)){
-      tabS <- table(SPos)
-      obsMu_S[i,names(tabS)] <<- tabS
-    }                                          
-  }
-  )
-  return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
-}
-
+#########################################################################################
+# License Agreement
+# 
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
+# OR COPYRIGHT LAW IS PROHIBITED.
+# 
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+# Global variables  
+  
+  FILTER_BY_MUTATIONS = 1000
+
+  # Nucleotides
+  NUCLEOTIDES = c("A","C","G","T")
+  
+  # Amino Acids
+  AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
+  names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
+  names(AMINO_ACIDS) <- names(AMINO_ACIDS)
+
+  #Amino Acid Traits
+  #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
+  #B = "Hydrophobic/Burried"  N = "Intermediate/Neutral"  S="Hydrophilic/Surface") 
+  TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
+  names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
+  TRAITS_AMINO_ACIDS <- array(NA,21)
+  
+  # Codon Table
+  CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
+
+  # Substitution Model: Smith DS et al. 1996
+  substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  load("FiveS_Substitution.RData")
+
+  # Mutability Models: Shapiro GS et al. 2002
+  triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
+  triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
+  triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
+  load("FiveS_Mutability.RData")
+
+# Functions
+  
+  # Translate codon to amino acid
+  translateCodonToAminoAcid<-function(Codon){
+     return(AMINO_ACIDS[Codon])
+  }
+
+  # Translate amino acid to trait change
+  translateAminoAcidToTraitChange<-function(AminoAcid){
+     return(TRAITS_AMINO_ACIDS[AminoAcid])
+  }
+    
+  # Initialize Amino Acid Trait Changes
+  initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
+    if(!is.null(traitChangeFileName)){
+      tryCatch(
+          traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
+          , error = function(ex){
+            cat("Error|Error reading trait changes. Please check file name/path and format.\n")
+            q()
+          }
+        )
+    }else{
+      traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
+    }
+    TRAITS_AMINO_ACIDS <<- traitChange
+ } 
+  
+  # Read in formatted nucleotide substitution matrix
+  initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
+    if(!is.null(subsMatFileName)){
+      tryCatch(
+          subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
+          , error = function(ex){
+            cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
+            q()
+          }
+        )
+      if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
+    }else{
+      if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
+      if(substitutionModel==2)subsMat <- substitution_Flu_Human      
+      if(substitutionModel==3)subsMat <- substitution_Flu25_Human      
+       
+    }
+
+    if(substitutionModel==0){
+      subsMat <- matrix(1,4,4)
+      subsMat[,] = 1/3
+      subsMat[1,1] = 0
+      subsMat[2,2] = 0
+      subsMat[3,3] = 0
+      subsMat[4,4] = 0
+    }
+    
+    
+    NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
+    if(substitutionModel==5){
+      subsMat <- FiveS_Substitution
+      return(subsMat)
+    }else{
+      subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
+      return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
+    }
+  }
+
+   
+  # Read in formatted Mutability file
+  initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
+    if(!is.null(mutabilityMatFileName)){
+        tryCatch(
+            mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
+            , error = function(ex){
+              cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
+              q()
+            }
+          )
+    }else{
+      mutabilityMat <- triMutability_Literature_Human
+      if(species==2) mutabilityMat <- triMutability_Literature_Mouse
+    }
+
+  if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
+  
+    if(mutabilityModel==5){
+      mutabilityMat <- FiveS_Mutability
+      return(mutabilityMat)
+    }else{
+      return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
+    }
+  }
+
+  # Read FASTA file formats
+  # Modified from read.fasta from the seqinR package
+  baseline.read.fasta <-
+  function (file = system.file("sequences/sample.fasta", package = "seqinr"), 
+      seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE, 
+      set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, 
+      strip.desc = FALSE,  sizeof.longlong = .Machine$sizeof.longlong, 
+      endian = .Platform$endian, apply.mask = TRUE) 
+  {
+      seqtype <- match.arg(seqtype)
+  
+          lines <- readLines(file)
+          
+          if (legacy.mode) {
+              comments <- grep("^;", lines)
+              if (length(comments) > 0) 
+                  lines <- lines[-comments]
+          }
+          
+          
+          ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
+          lines_mod<-lines
+  
+          if(!length(ind_groups)){
+              lines_mod<-c(">>>All sequences combined",lines)            
+          }
+          
+          ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
+  
+          lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
+          id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
+          lines[id] <- "THIS IS A FAKE SEQUENCE"
+          lines[-id] <- lines_mod
+          rm(lines_mod)
+  
+  		ind <- which(substr(lines, 1L, 1L) == ">")
+          nseq <- length(ind)
+          if (nseq == 0) {
+               stop("no line starting with a > character found")
+          }        
+          start <- ind + 1
+          end <- ind - 1
+  
+          while( any(which(ind%in%end)) ){
+            ind=ind[-which(ind%in%end)]
+            nseq <- length(ind)
+            if (nseq == 0) {
+                stop("no line starting with a > character found")
+            }        
+            start <- ind + 1
+            end <- ind - 1        
+          }
+          
+          end <- c(end[-1], length(lines))
+          sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
+          if (seqonly) 
+              return(sequences)
+          nomseq <- lapply(seq_len(nseq), function(i) {
+          
+              #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
+              substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
+          
+          })
+          if (seqtype == "DNA") {
+              if (forceDNAtolower) {
+                  sequences <- as.list(tolower(chartr(".","-",sequences)))
+              }else{
+                  sequences <- as.list(toupper(chartr(".","-",sequences)))
+              }
+          }
+          if (as.string == FALSE) 
+              sequences <- lapply(sequences, s2c)
+          if (set.attributes) {
+              for (i in seq_len(nseq)) {
+                  Annot <- lines[ind[i]]
+                  if (strip.desc) 
+                    Annot <- substr(Annot, 2L, nchar(Annot))
+                  attributes(sequences[[i]]) <- list(name = nomseq[[i]], 
+                    Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA", 
+                      DNA = "SeqFastadna"))
+              }
+          }
+          names(sequences) <- nomseq
+          return(sequences)
+  }
+
+  
+  # Replaces non FASTA characters in input files with N  
+  replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
+    gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
+  }    
+  
+  # Find the germlines in the FASTA list
+  germlinesInFile <- function(seqIDs){
+    firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
+    secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
+    return(firstChar==">" & secondChar!=">")
+  }
+  
+  # Find the groups in the FASTA list
+  groupsInFile <- function(seqIDs){
+    sapply(seqIDs,function(x){substr(x,1,2)})==">>"
+  }
+
+  # In the process of finding germlines/groups, expand from the start to end of the group
+  expandTillNext <- function(vecPosToID){    
+    IDs = names(vecPosToID)
+    posOfInterests =  which(vecPosToID)
+  
+    expandedID = rep(NA,length(IDs))
+    expandedIDNames = gsub(">","",IDs[posOfInterests])
+    startIndexes = c(1,posOfInterests[-1])
+    stopIndexes = c(posOfInterests[-1]-1,length(IDs))
+    expandedID  = unlist(sapply(1:length(startIndexes),function(i){
+                                    rep(i,stopIndexes[i]-startIndexes[i]+1)
+                                  }))
+    names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
+                                    rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
+                                  }))  
+    return(expandedID)                                                                                                  
+  }
+    
+  # Process FASTA (list) to return a matrix[input, germline)
+  processInputAdvanced <- function(inputFASTA){
+  
+    seqIDs = names(inputFASTA)
+    numbSeqs = length(seqIDs)
+    posGermlines1 = germlinesInFile(seqIDs)
+    numbGermlines = sum(posGermlines1)
+    posGroups1 = groupsInFile(seqIDs)
+    numbGroups = sum(posGroups1)
+    consDef = NA
+    
+    if(numbGermlines==0){
+      posGermlines = 2
+      numbGermlines = 1  
+    }
+  
+      glPositionsSum = cumsum(posGermlines1)
+      glPositions = table(glPositionsSum)
+      #Find the position of the conservation row
+      consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1  
+    if( length(consDefPos)> 0 ){
+      consDefID =  match(consDefPos, glPositionsSum) 
+      #The coservation rows need to be pulled out and stores seperately 
+      consDef =  inputFASTA[consDefID]
+      inputFASTA =  inputFASTA[-consDefID]
+  
+      seqIDs = names(inputFASTA)
+      numbSeqs = length(seqIDs)
+      posGermlines1 = germlinesInFile(seqIDs)
+      numbGermlines = sum(posGermlines1)
+      posGroups1 = groupsInFile(seqIDs)
+      numbGroups = sum(posGroups1)
+      if(numbGermlines==0){
+        posGermlines = 2
+        numbGermlines = 1  
+      }    
+    }
+    
+    posGroups <- expandTillNext(posGroups1)
+    posGermlines <- expandTillNext(posGermlines1)
+    posGermlines[posGroups1] = 0
+    names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
+    posInput = rep(TRUE,numbSeqs)
+    posInput[posGroups1 | posGermlines1] = FALSE
+    
+    matInput = matrix(NA, nrow=sum(posInput), ncol=2)
+    rownames(matInput) = seqIDs[posInput]
+    colnames(matInput) = c("Input","Germline")
+    
+    vecInputFASTA = unlist(inputFASTA)  
+    matInput[,1] = vecInputFASTA[posInput]
+    matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
+    
+    germlines = posGermlines[posInput]
+    groups = posGroups[posInput]
+    
+    return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))      
+  }
+
+
+  # Replace leading and trailing dashes in the sequence
+  replaceLeadingTrailingDashes <- function(x,readEnd){
+    iiGap = unlist(gregexpr("-",x[1]))
+    ggGap = unlist(gregexpr("-",x[2]))  
+    #posToChange = intersect(iiGap,ggGap)
+    
+    
+    seqIn = replaceLeadingTrailingDashesHelper(x[1])
+    seqGL = replaceLeadingTrailingDashesHelper(x[2])
+    seqTemplate = rep('N',readEnd)
+    seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
+    seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
+#    if(posToChange!=-1){
+#      seqIn[posToChange] = "-"
+#      seqGL[posToChange] = "-"
+#    }
+  
+    seqIn = c2s(seqIn[1:readEnd])
+    seqGL = c2s(seqGL[1:readEnd])
+  
+    lenGL = nchar(seqGL)
+    if(lenGL<readEnd){
+      seqGL = paste(seqGL,c2s(rep("N",readEnd-lenGL)),sep="")
+    }
+  
+    lenInput = nchar(seqIn)
+    if(lenInput<readEnd){
+      seqIn = paste(seqIn,c2s(rep("N",readEnd-lenInput)),sep="")
+    }    
+    return( c(seqIn,seqGL) )
+  }  
+
+  replaceLeadingTrailingDashesHelper <- function(x){
+    grepResults = gregexpr("-*",x)
+    grepResultsPos = unlist(grepResults)
+    grepResultsLen =  attr(grepResults[[1]],"match.length")   
+    #print(paste("x = '", x, "'", sep=""))
+    x = s2c(x)
+    if(x[1]=="-"){
+      x[1:grepResultsLen[1]] = "N"      
+    }
+    if(x[length(x)]=="-"){
+      x[(length(x)-grepResultsLen[length(grepResultsLen)]+1):length(x)] = "N"      
+    }
+    return(x)
+  }
+
+
+
+  
+  # Check sequences for indels
+  checkForInDels <- function(matInputP){
+    insPos <- checkInsertion(matInputP)
+    delPos <- checkDeletions(matInputP)
+    return(list("Insertions"=insPos, "Deletions"=delPos))
+  }
+
+  # Check sequences for insertions
+  checkInsertion <- function(matInputP){
+    insertionCheck = apply( matInputP,1, function(x){
+                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
+                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )                                          
+                                          return( is.finite( match(FALSE, glGaps%in%inputGaps ) ) )
+                                        })   
+    return(as.vector(insertionCheck))
+  }
+  # Fix inserstions
+  fixInsertions <- function(matInputP){
+    insPos <- checkInsertion(matInputP)
+    sapply((1:nrow(matInputP))[insPos],function(rowIndex){
+                                                x <- matInputP[rowIndex,]
+                                                inputGaps <- gregexpr("-",x[1])[[1]]
+                                                glGaps <- gregexpr("-",x[2])[[1]]
+                                                posInsertions <- glGaps[!(glGaps%in%inputGaps)]
+                                                inputInsertionToN <- s2c(x[2])
+                                                inputInsertionToN[posInsertions]!="-"
+                                                inputInsertionToN[posInsertions] <- "N"
+                                                inputInsertionToN <- c2s(inputInsertionToN)
+                                                matInput[rowIndex,2] <<- inputInsertionToN 
+                                              })                                                               
+    return(insPos)
+  } 
+    
+  # Check sequences for deletions
+  checkDeletions <-function(matInputP){
+    deletionCheck = apply( matInputP,1, function(x){
+                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
+                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )
+                                          return( is.finite( match(FALSE, inputGaps%in%glGaps ) ) )
+                                      })
+    return(as.vector(deletionCheck))                                      
+  }
+  # Fix sequences with deletions
+  fixDeletions <- function(matInputP){
+    delPos <- checkDeletions(matInputP)    
+    sapply((1:nrow(matInputP))[delPos],function(rowIndex){
+                                                x <- matInputP[rowIndex,]
+                                                inputGaps <- gregexpr("-",x[1])[[1]]
+                                                glGaps <- gregexpr("-",x[2])[[1]]
+                                                posDeletions <- inputGaps[!(inputGaps%in%glGaps)]
+                                                inputDeletionToN <- s2c(x[1])
+                                                inputDeletionToN[posDeletions] <- "N"
+                                                inputDeletionToN <- c2s(inputDeletionToN)
+                                                matInput[rowIndex,1] <<- inputDeletionToN 
+                                              })                                                                   
+    return(delPos)
+  }  
+    
+
+  # Trim DNA sequence to the last codon
+  trimToLastCodon <- function(seqToTrim){
+    seqLen = nchar(seqToTrim)  
+    trimmedSeq = s2c(seqToTrim)
+    poi = seqLen
+    tailLen = 0
+    
+    while(trimmedSeq[poi]=="-" || trimmedSeq[poi]=="."){
+      tailLen = tailLen + 1
+      poi = poi - 1   
+    }
+    
+    trimmedSeq = c2s(trimmedSeq[1:(seqLen-tailLen)])
+    seqLen = nchar(trimmedSeq)
+    # Trim sequence to last codon
+  	if( getCodonPos(seqLen)[3] > seqLen )
+  	  trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
+    
+    return(trimmedSeq)
+  }
+  
+  # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
+  # e.g. nuc 86 is part of nucs 85,86,87
+  getCodonPos <- function(nucPos){
+    codonNum =  (ceiling(nucPos/3))*3
+    return( (codonNum-2):codonNum)
+  }
+  
+  # Given a nuclotide position, returns the codon number
+  # e.g. nuc 86  = codon 29
+  getCodonNumb <- function(nucPos){
+    return( ceiling(nucPos/3) )
+  }
+  
+  # Given a codon, returns all the nuc positions that make the codon
+  getCodonNucs <- function(codonNumb){
+    getCodonPos(codonNumb*3)
+  }  
+
+  computeCodonTable <- function(testID=1){
+                  
+    if(testID<=4){    
+      # Pre-compute every codons
+      intCounter = 1
+      for(pOne in NUCLEOTIDES){
+        for(pTwo in NUCLEOTIDES){
+          for(pThree in NUCLEOTIDES){
+            codon = paste(pOne,pTwo,pThree,sep="")
+            colnames(CODON_TABLE)[intCounter] =  codon
+            intCounter = intCounter + 1
+            CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
+          }  
+        }
+      }
+      chars = c("N","A","C","G","T", "-")
+      for(a in chars){
+        for(b in chars){
+          for(c in chars){
+            if(a=="N" | b=="N" | c=="N"){ 
+              #cat(paste(a,b,c),sep="","\n") 
+              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+            }
+          }  
+        }
+      }
+      
+      chars = c("-","A","C","G","T")
+      for(a in chars){
+        for(b in chars){
+          for(c in chars){
+            if(a=="-" | b=="-" | c=="-"){ 
+              #cat(paste(a,b,c),sep="","\n") 
+              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+            }
+          }  
+        }
+      }
+      CODON_TABLE <<- as.matrix(CODON_TABLE)
+    }
+  }
+  
+  collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
+  #print(length(vecInputSeqs))
+    vecInputSeqs = unique(vecInputSeqs) 
+    if(length(vecInputSeqs)==1){
+      return( list( c(vecInputSeqs,glSeq), F) )
+    }else{
+      charInputSeqs <- sapply(vecInputSeqs, function(x){
+                                              s2c(x)[1:readEnd]
+                                            })
+      charGLSeq <- s2c(glSeq)
+      matClone <- sapply(1:readEnd, function(i){
+                                            posNucs = unique(charInputSeqs[i,])
+                                            posGL = charGLSeq[i]
+                                            error = FALSE                                            
+                                            if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
+                                              return(c("-",error))
+                                            }
+                                            if(length(posNucs)==1)
+                                              return(c(posNucs[1],error))
+                                            else{
+                                              if("N"%in%posNucs){
+                                                error=TRUE
+                                              }
+                                              if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
+                                                return( c(posGL,error) )  
+                                              }else{
+                                                #return( c(sample(posNucs[posNucs!="N"],1),error) )  
+                                                if(nonTerminalOnly==0){
+                                                  return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )  
+                                                }else{
+                                                  posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
+                                                  posNucsTable = table(posNucs)
+                                                  if(sum(posNucsTable>1)==0){
+                                                    return( c(posGL,error) )
+                                                  }else{
+                                                    return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
+                                                  }
+                                                }
+                                                
+                                              }
+                                            } 
+                                          })
+      
+                                          
+      #print(length(vecInputSeqs))                                        
+      return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
+    }
+  }
+
+  # Compute the expected for each sequence-germline pair
+  getExpectedIndividual <- function(matInput){
+  if( any(grep("multicore",search())) ){ 
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
+                                                      computeMutabilities(facLevels[x])
+                                                    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
+                                                      cInput = rep(NA,nchar(matInput[x,1]))
+                                                      cInput[s2c(matInput[x,1])!="N"] = 1
+                                                      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+                                                    })
+                                                    
+    LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
+                                                      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+                                                    })
+                                                    
+    LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
+                                                    #print(x)
+                                                    computeMutationTypes(matInput[x,2])
+                                                })
+    
+    LisGLs_Exp = mclapply(1:dim(matInput)[1],  function(x){
+                                                  computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+                                                })
+    
+    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
+    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+  }else{
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
+      computeMutabilities(facLevels[x])
+    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
+      cInput = rep(NA,nchar(matInput[x,1]))
+      cInput[s2c(matInput[x,1])!="N"] = 1
+      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+    })
+    
+    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
+      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+    })
+    
+    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
+      #print(x)
+      computeMutationTypes(matInput[x,2])
+    })
+    
+    LisGLs_Exp = lapply(1:dim(matInput)[1],  function(x){
+      computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+    })
+    
+    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
+    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+    
+  }
+  }
+
+  # Compute mutabilities of sequence based on the tri-nucleotide model
+  computeMutabilities <- function(paramSeq){
+    seqLen = nchar(paramSeq)
+    seqMutabilites = rep(NA,seqLen)
+  
+    gaplessSeq = gsub("-", "", paramSeq)
+    gaplessSeqLen = nchar(gaplessSeq)
+    gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
+    
+    if(mutabilityModel!=5){
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqMutabilites[pos] =      
+        tapply( c(
+                                        getMutability( substr(subSeq,1,3), 3) , 
+                                        getMutability( substr(subSeq,2,4), 2), 
+                                        getMutability( substr(subSeq,3,5), 1) 
+                                        ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
+                                      )
+      #Pos 1
+      subSeq =  substr(gaplessSeq,1,3)
+      gaplessSeqMutabilites[1] =  getMutability(subSeq , 1)
+      #Pos 2
+      subSeq =  substr(gaplessSeq,1,4)
+      gaplessSeqMutabilites[2] =  mean( c(
+                                            getMutability( substr(subSeq,1,3), 2) , 
+                                            getMutability( substr(subSeq,2,4), 1) 
+                                          ),na.rm=T
+                                      ) 
+      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+      return(seqMutabilites)
+    }else{
+      
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
+      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+      return(seqMutabilites)
+    }
+
+  }
+
+  # Returns the mutability of a triplet at a given position
+  getMutability <- function(codon, pos=1:3){
+    triplets <- rownames(mutability)
+    mutability[  match(codon,triplets) ,pos]
+  }
+
+  getMutability5 <- function(fivemer){
+    return(mutability[fivemer])
+  }
+
+  # Returns the substitution probabilty
+  getTransistionProb <- function(nuc){
+    substitution[nuc,]
+  }
+
+  getTransistionProb5 <- function(fivemer){    
+    if(any(which(fivemer==colnames(substitution)))){
+      return(substitution[,fivemer])
+    }else{
+      return(array(NA,4))
+    }
+  }
+
+  # Given a nuc, returns the other 3 nucs it can mutate to
+  canMutateTo <- function(nuc){
+    NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
+  }
+  
+  # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to 
+  canMutateToProb <- function(nuc){
+    substitution[nuc,canMutateTo(nuc)]
+  }
+
+  # Compute targeting, based on precomputed mutatbility & substitution  
+  computeTargeting <- function(param_strSeq,param_vecMutabilities){
+
+    if(substitutionModel!=5){
+      vecSeq = s2c(param_strSeq)
+      matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )  
+      #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
+      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(length(vecSeq))) 
+      return (matTargeting)
+    }else{
+      
+      seqLen = nchar(param_strSeq)
+      seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
+      paramSeq <- param_strSeq
+      gaplessSeq = gsub("-", "", paramSeq)
+      gaplessSeqLen = nchar(gaplessSeq)
+      gaplessSeqSubstitution  = matrix(NA,ncol=gaplessSeqLen,nrow=4) 
+      
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
+      seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
+      #matTargeting <- param_vecMutabilities  %*% seqsubstitution
+      matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
+      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(seqLen)) 
+      return (matTargeting)      
+    }
+  }  
+
+  # Compute the mutations types   
+  computeMutationTypes <- function(param_strSeq){
+  #cat(param_strSeq,"\n")
+    #vecSeq = trimToLastCodon(param_strSeq)
+    lenSeq = nchar(param_strSeq)
+    vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
+    matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
+    dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
+    return(matMutationTypes)   
+  }  
+  computeMutationTypesFast <- function(param_strSeq){
+    matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
+    #dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(length(vecSeq)))
+    return(matMutationTypes)   
+  }  
+  mutationTypeOptimized <- function( matOfCodons ){
+   apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } ) 
+  }  
+
+  # Returns a vector of codons 1 mutation away from the given codon
+  permutateAllCodon <- function(codon){
+    cCodon = s2c(codon)
+    matCodons = t(array(cCodon,dim=c(3,12)))
+    matCodons[1:4,1] = NUCLEOTIDES
+    matCodons[5:8,2] = NUCLEOTIDES
+    matCodons[9:12,3] = NUCLEOTIDES
+    apply(matCodons,1,c2s)
+  }
+
+  # Given two codons, tells you if the mutation is R or S (based on your definition)
+  mutationType <- function(codonFrom,codonTo){
+    if(testID==4){
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        mutationType = "S"
+        if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
+          mutationType = "R"                                                              
+        }
+        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+          mutationType = "Stop"
+        }
+        return(mutationType)
+      }  
+    }else if(testID==5){  
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        if(codonFrom==codonTo){
+          mutationType = "S"
+        }else{
+          codonFrom = s2c(codonFrom)
+          codonTo = s2c(codonTo)  
+          mutationType = "Stop"
+          nucOfI = codonFrom[which(codonTo!=codonFrom)]
+          if(nucOfI=="C"){
+            mutationType = "R"  
+          }else if(nucOfI=="G"){
+            mutationType = "S"
+          }
+        }
+        return(mutationType)
+      }
+    }else{
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        mutationType = "S"
+        if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
+          mutationType = "R"                                                              
+        }
+        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+          mutationType = "Stop"
+        }
+        return(mutationType)
+      }  
+    }    
+  }
+
+  
+  #given a mat of targeting & it's corresponding mutationtypes returns 
+  #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
+  computeExpected <- function(paramTargeting,paramMutationTypes){
+    # Replacements
+    RPos = which(paramMutationTypes=="R")  
+      #FWR
+      Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+      #CDR
+      Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+    # Silents
+    SPos = which(paramMutationTypes=="S")  
+      #FWR
+      Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+      #CDR
+      Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+  
+      return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
+  }
+  
+  # Count the mutations in a sequence
+  # each mutation is treated independently 
+  analyzeMutations2NucUri_website <- function( rev_in_matrix ){
+    paramGL = rev_in_matrix[2,]
+    paramSeq = rev_in_matrix[1,]  
+    
+    #Fill seq with GL seq if gapped
+    #if( any(paramSeq=="-") ){
+    #  gapPos_Seq =  which(paramSeq=="-")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}
+  
+  
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}  
+      
+    analyzeMutations2NucUri(  matrix(c( paramGL, paramSeq  ),2,length(paramGL),byrow=T)  )
+    
+  }
+
+  #1 = GL 
+  #2 = Seq
+  analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
+    paramGL = in_matrix[2,]
+    paramSeq = in_matrix[1,]
+    paramSeqUri = paramGL
+    #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
+    mutations_val = paramGL != paramSeq   
+    if(any(mutations_val)){
+      mutationPos = {1:length(mutations_val)}[mutations_val]  
+      mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+      if(any(mutationPos)){  
+
+        pos<- mutationPos
+        pos_array<-array(sapply(pos,getCodonPos))
+        codonGL =  paramGL[pos_array]
+        
+        codonSeq = sapply(pos,function(x){
+                                  seqP = paramGL[getCodonPos(x)]
+                                  muCodonPos = {x-1}%%3+1 
+                                  seqP[muCodonPos] = paramSeq[x]
+                                  return(seqP)
+                                })      
+        GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+        Seqcodons =   apply(codonSeq,2,c2s)
+        mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+        names(mutationInfo) = mutationPos
+    }
+    if(any(!is.na(mutationInfo))){
+      return(mutationInfo[!is.na(mutationInfo)])    
+    }else{
+      return(NA)
+    }
+    
+    
+    }else{
+      return (NA)
+    }
+  }
+  
+  processNucMutations2 <- function(mu){
+    if(!is.na(mu)){
+      #R
+      if(any(mu=="R")){
+        Rs = mu[mu=="R"]
+        nucNumbs = as.numeric(names(Rs))
+        R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+        R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
+      }else{
+        R_CDR = 0
+        R_FWR = 0
+      }    
+      
+      #S
+      if(any(mu=="S")){
+        Ss = mu[mu=="S"]
+        nucNumbs = as.numeric(names(Ss))
+        S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+        S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
+      }else{
+        S_CDR = 0
+        S_FWR = 0
+      }    
+      
+      
+      retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
+      retVec[is.na(retVec)]=0
+      return(retVec)
+    }else{
+      return(rep(0,4))
+    }
+  }        
+  
+  
+  ## Z-score Test
+  computeZScore <- function(mat, test="Focused"){
+    matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
+    if(test=="Focused"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }
+  
+    if(test=="Local"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }
+    
+    if(test=="Imbalanced"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
+      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
+      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }    
+      
+    matRes[is.nan(matRes)] = NA
+    return(matRes)
+  }
+
+  # Return a p-value for a z-score
+  z2p <- function(z){
+    p=NA
+    if( !is.nan(z) && !is.na(z)){   
+      if(z>0){
+        p = (1 - pnorm(z,0,1))
+      } else if(z<0){
+        p = (-1 * pnorm(z,0,1))
+      } else{
+        p = 0.5
+      }
+    }else{
+      p = NA
+    }
+    return(p)
+  }    
+  
+  
+  ## Bayesian  Test
+
+  # Fitted parameter for the bayesian framework
+BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
+  CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
+  
+  # Given x, M & p, returns a pdf 
+  calculate_bayes <- function ( x=3, N=10, p=0.33,
+                                i=CONST_i,
+                                max_sigma=20,length_sigma=4001
+                              ){
+    if(!0%in%N){
+      G <- max(length(x),length(N),length(p))
+      x=array(x,dim=G)
+      N=array(N,dim=G)
+      p=array(p,dim=G)
+      sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
+      sigma_1<-log({i/{1-i}}/{p/{1-p}})
+      index<-min(N,60)
+      y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
+      if(!sum(is.na(y))){
+        tmp<-approx(sigma_1,y,sigma_s)$y
+        tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
+      }else{
+        return(NA)
+      }
+    }else{
+      return(NA)
+    }
+  }  
+  # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
+  computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
+    flagOneSeq = F
+    if(nrow(mat)==1){
+      mat=rbind(mat,mat)
+      flagOneSeq = T
+    }
+    if(test=="Focused"){
+      #CDR
+      P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,1],0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,3],0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+    
+    if(test=="Local"){
+      #CDR
+      P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
+      X = c(mat[,1],0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,3],0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    } 
+     
+    if(test=="Imbalanced"){
+      #CDR
+      P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
+      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
+      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+
+    if(test=="ImbalancedSilent"){
+      #CDR
+      P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
+      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
+      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+        
+    if(flagOneSeq==T){
+      bayesCDR = bayesCDR[1]  
+      bayesFWR = bayesFWR[1]
+    }
+    return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
+  }
+  
+  ##Covolution
+  break2chunks<-function(G=1000){
+  base<-2^round(log(sqrt(G),2),0)
+  return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
+  }  
+  
+  PowersOfTwo <- function(G=100){
+    exponents <- array()
+    i = 0
+    while(G > 0){
+      i=i+1
+      exponents[i] <- floor( log2(G) )
+      G <- G-2^exponents[i]
+    }
+    return(exponents)
+  }
+  
+  convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
+    G = ncol(cons)
+    if(G>1){
+      for(gen in log(G,2):1){
+        ll<-seq(from=2,to=2^gen,by=2)
+        sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
+      }
+    }
+    return( cons[,1] )
+  }
+  
+  convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
+    if(length(ncol(cons))) G<-ncol(cons)
+    groups <- PowersOfTwo(G)
+    matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
+    startIndex = 1
+    for( i in 1:length(groups) ){
+      stopIndex <- 2^groups[i] + startIndex - 1
+      if(stopIndex!=startIndex){
+        matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
+        startIndex = stopIndex + 1
+      }
+      else {
+        if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
+        else matG[,i] <- cons
+        #startIndex = stopIndex + 1
+      }
+    }
+    return( list( matG, groups ) )
+  }
+  
+  weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
+    lx<-length(x)
+    ly<-length(y)
+    if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
+      if(w<1){
+        y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
+        x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
+        lx<-length(x1)
+        ly<-length(y1)
+      }
+      else {
+        y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
+        x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
+        lx<-length(x1)
+        ly<-length(y1)
+      }
+    }
+    else{
+      x1<-x
+      y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
+      ly<-length(y1)
+    }
+    tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
+    tmp[tmp<=0] = 0
+    return(tmp/sum(tmp))
+  }
+  
+  calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
+    matG <- listMatG[[1]]
+    groups <- listMatG[[2]]
+    i = 1
+    resConv <- matG[,i]
+    denom <- 2^groups[i]
+    if(length(groups)>1){
+      while( i<length(groups) ){
+        i = i + 1
+        resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
+        #cat({{2^groups[i]}/denom},"\n")
+        denom <- denom + 2^groups[i]
+      }
+    }
+    return(resConv)
+  }
+  
+  # Given a list of PDFs, returns a convoluted PDF    
+  groupPosteriors <- function( listPosteriors, max_sigma=20, length_sigma=4001 ,Threshold=2 ){  
+    listPosteriors = listPosteriors[ !is.na(listPosteriors) ]
+    Length_Postrior<-length(listPosteriors)
+    if(Length_Postrior>1 & Length_Postrior<=Threshold){
+      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }else if(Length_Postrior==1) return(listPosteriors[[1]])
+    else  if(Length_Postrior==0) return(NA)
+    else {
+      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+      y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }
+  }
+
+  fastConv<-function(cons, max_sigma=20, length_sigma=4001){
+    chunks<-break2chunks(G=ncol(cons))
+    if(ncol(cons)==3) chunks<-2:1
+    index_chunks_end <- cumsum(chunks)
+    index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
+    index_chunks <- cbind(index_chunks_start,index_chunks_end)
+    
+    case <- sum(chunks!=chunks[1])
+    if(case==1) End <- max(1,((length(index_chunks)/2)-1))
+    else End <- max(1,((length(index_chunks)/2)))
+    
+    firsts <- sapply(1:End,function(i){
+          	    indexes<-index_chunks[i,1]:index_chunks[i,2]
+          	    convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
+          	  })
+    if(case==0){
+    	result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
+    }else if(case==1){
+      last<-list(calculate_bayesGHelper(
+      convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
+                                      ),0)
+      result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
+      result<-calculate_bayesGHelper(
+        list(
+          cbind(
+          result_first,last[[1]]),
+          c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
+        )
+      )
+    }
+    return(as.vector(result))
+  }
+    
+  # Computes the 95% CI for a pdf
+  calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+    if(length(Pdf)!=length_sigma) return(NA)
+    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+    cdf = cumsum(Pdf)
+    cdf = cdf/cdf[length(cdf)]  
+    return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) ) 
+  }
+  
+  # Computes a mean for a pdf
+  calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
+    if(length(Pdf)!=length_sigma) return(NA)
+    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+    norm = {length_sigma-1}/2/max_sigma
+    return( (Pdf%*%sigma_s/norm)  ) 
+  }
+  
+  # Returns the mean, and the 95% CI for a pdf
+  calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+    if(is.na(Pdf)) 
+     return(rep(NA,3))  
+    bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
+    bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
+    return(c(bMean, bCI))
+  }   
+
+  # Computes the p-value of a pdf
+  computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
+    if(length(Pdf)>1){
+      norm = {length_sigma-1}/2/max_sigma
+      pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
+      if(pVal>0.5){
+        pVal = pVal-1
+      }
+      return(pVal)
+    }else{
+      return(NA)
+    }
+  }    
+  
+  # Compute p-value of two distributions
+  compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+  #print(c(length(dens1),length(dens2)))
+  if(length(dens1)>1 & length(dens2)>1 ){
+    dens1<-dens1/sum(dens1)
+    dens2<-dens2/sum(dens2)
+    cum2 <- cumsum(dens2)-dens2/2
+    tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+    #print(tmp)
+    if(tmp>0.5)tmp<-tmp-1
+    return( tmp )
+    }
+    else {
+    return(NA)
+    }
+    #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+  }  
+  
+  # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
+  numberOfSeqsWithMutations <- function(matMutations,test=1){
+    if(test==4)test=2
+    cdrSeqs <- 0
+    fwrSeqs <- 0    
+    if(test==1){#focused
+      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
+      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
+      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
+    }
+    if(test==2){#local
+      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
+      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
+      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
+    }
+  return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
+}  
+
+
+
+shadeColor <- function(sigmaVal=NA,pVal=NA){
+  if(is.na(sigmaVal) & is.na(pVal)) return(NA)
+  if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
+  if(is.na(pVal) || pVal==1 || pVal==0){
+    returnColor = "#FFFFFF";
+  }else{
+    colVal=abs(pVal);
+    
+    if(sigmaVal<0){      
+        if(colVal>0.1)
+          returnColor = "#CCFFCC";
+        if(colVal<=0.1)
+          returnColor = "#99FF99";
+        if(colVal<=0.050)
+          returnColor = "#66FF66";
+        if(colVal<=0.010)
+          returnColor = "#33FF33";
+        if(colVal<=0.005)
+          returnColor = "#00FF00";
+      
+    }else{
+      if(colVal>0.1)
+        returnColor = "#FFCCCC";
+      if(colVal<=0.1)
+        returnColor = "#FF9999";
+      if(colVal<=0.05)
+        returnColor = "#FF6666";
+      if(colVal<=0.01)
+        returnColor = "#FF3333";
+      if(colVal<0.005)
+        returnColor = "#FF0000";
+    }
+  }
+  
+  return(returnColor)
+}
+
+
+
+plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
+  if(!log){
+    x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+    y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+  }else {
+    if(log==2){
+      x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+    }
+    if(log==1){
+      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+      y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+    }
+    if(log==3){
+      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+    }
+  }
+  return(c("x"=x,"y"=y))
+}
+
+# SHMulation
+
+  # Based on targeting, introduce a single mutation & then update the targeting 
+  oneMutation <- function(){
+    # Pick a postion + mutation
+    posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
+    posNucNumb = ceiling(posMutation/4)                    # Nucleotide number
+    posNucKind = 4 - ( (posNucNumb*4) - posMutation )   # Nuc the position mutates to
+  
+    #mutate the simulation sequence
+    seqSimVec <-  s2c(seqSim)
+    seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
+    seqSim <<-  c2s(seqSimVec)
+    
+    #update Mutability, Targeting & MutationsTypes
+    updateMutabilityNTargeting(posNucNumb)
+  
+    #return(c(posNucNumb,NUCLEOTIDES[posNucKind])) 
+    return(posNucNumb)
+  }  
+  
+  updateMutabilityNTargeting <- function(position){
+    min_i<-max((position-2),1)
+    max_i<-min((position+2),nchar(seqSim))
+    min_ii<-min(min_i,3)
+    
+    #mutability - update locally
+    seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
+    
+    
+    #targeting - compute locally
+    seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])                 
+    seqTargeting[is.na(seqTargeting)] <<- 0
+    #mutCodonPos = getCodonPos(position) 
+    mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
+    #cat(mutCodonPos,"\n")                                                  
+    mutTypeCodon = getCodonPos(position)
+    seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) ) 
+    # Stop = 0
+    if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
+      seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
+    }
+    
+  
+    #Selection
+    selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))  
+    # CDR
+    selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
+    seqTargeting[selectedCDR] <<-  seqTargeting[selectedCDR] *  exp(selCDR)
+    seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
+        
+    # FWR
+    selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
+    seqTargeting[selectedFWR] <<-  seqTargeting[selectedFWR] *  exp(selFWR)
+    seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K      
+    
+  }  
+  
+
+
+  # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.   
+  validateMutation <- function(){  
+    if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
+      uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
+      mutatedPositions[uniqueMutationsIntroduced] <<-  mutatedPos  
+    }else{
+      if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
+        mutatedPositions <<-  mutatedPositions[-which(mutatedPositions==mutatedPos)]
+        uniqueMutationsIntroduced <<-  uniqueMutationsIntroduced - 1
+      }      
+    }
+  }  
+  
+  
+  
+  # Places text (labels) at normalized coordinates 
+  myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
+    par(xpd=TRUE)
+    if(!log)
+      text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
+    else {
+    if(log==2)
+    text(
+      par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
+      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+      w,cex=cex,adj=adj,col=thecol)
+    if(log==1)
+      text(
+      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+      par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
+      w,cex=cex,adj=adj,col=thecol)
+    if(log==3)
+      text(
+      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+      w,cex=cex,adj=adj,col=thecol)
+    }
+    par(xpd=FALSE)
+  }
+  
+  
+  
+  # Count the mutations in a sequence
+  analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
+
+    paramGL = s2c(matInput[inputMatrixIndex,2])
+    paramSeq = s2c(matInput[inputMatrixIndex,1])            
+    
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}        
+    mutations_val = paramGL != paramSeq   
+    
+    if(any(mutations_val)){
+      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+                          
+      pos<- mutationPos
+      pos_array<-array(sapply(pos,getCodonPos))
+      codonGL =  paramGL[pos_array]
+      codonSeqWhole =  paramSeq[pos_array]
+      codonSeq = sapply(pos,function(x){
+                                seqP = paramGL[getCodonPos(x)]
+                                muCodonPos = {x-1}%%3+1 
+                                seqP[muCodonPos] = paramSeq[x]
+                                return(seqP)
+                              })
+      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
+      Seqcodons =   apply(codonSeq,2,c2s)
+      
+      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+      names(mutationInfo) = mutationPos     
+      
+      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
+      names(mutationInfoWhole) = mutationPos
+
+      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+      
+      if(any(!is.na(mutationInfo))){       
+  
+        #Filter based on Stop (at the codon level)
+        if(seqWithStops==1){
+          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+        }else{
+          countStops = sum(mutationInfoWhole=="Stop")
+          if(seqWithStops==2 & countStops==0) mutationInfo = NA
+          if(seqWithStops==3 & countStops>0) mutationInfo = NA
+        }         
+        
+        if(any(!is.na(mutationInfo))){
+          #Filter mutations based on multipleMutation
+          if(multipleMutation==1 & !is.na(mutationInfo)){
+            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+            tableMutationCodons <- table(mutationCodons)
+            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+            if(any(codonsWithMultipleMutations)){
+              #remove the nucleotide mutations in the codons with multiple mutations
+              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+              #replace those codons with Ns in the input sequence
+              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+              matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+            }
+          }
+
+          #Filter mutations based on the model
+          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
+            
+            if(model==1 & !is.na(mutationInfo)){
+              mutationInfo <- mutationInfo[mutationInfo=="S"]
+            }  
+            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
+            else return(NA)
+          }else{
+            return(NA)
+          }
+        }else{
+          return(NA)
+        }
+        
+        
+      }else{
+        return(NA)
+      }
+    
+    
+    }else{
+      return (NA)
+    }    
+  }  
+
+   analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
+
+    paramGL = s2c(inputArray[2])
+    paramSeq = s2c(inputArray[1])            
+    inputSeq <- inputArray[1]
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}        
+    mutations_val = paramGL != paramSeq   
+    
+    if(any(mutations_val)){
+      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+                          
+      pos<- mutationPos
+      pos_array<-array(sapply(pos,getCodonPos))
+      codonGL =  paramGL[pos_array]
+      codonSeqWhole =  paramSeq[pos_array]
+      codonSeq = sapply(pos,function(x){
+                                seqP = paramGL[getCodonPos(x)]
+                                muCodonPos = {x-1}%%3+1 
+                                seqP[muCodonPos] = paramSeq[x]
+                                return(seqP)
+                              })
+      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
+      Seqcodons =   apply(codonSeq,2,c2s)
+      
+      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+      names(mutationInfo) = mutationPos     
+      
+      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
+      names(mutationInfoWhole) = mutationPos
+
+      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+      
+      if(any(!is.na(mutationInfo))){       
+  
+        #Filter based on Stop (at the codon level)
+        if(seqWithStops==1){
+          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+        }else{
+          countStops = sum(mutationInfoWhole=="Stop")
+          if(seqWithStops==2 & countStops==0) mutationInfo = NA
+          if(seqWithStops==3 & countStops>0) mutationInfo = NA
+        }         
+        
+        if(any(!is.na(mutationInfo))){
+          #Filter mutations based on multipleMutation
+          if(multipleMutation==1 & !is.na(mutationInfo)){
+            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+            tableMutationCodons <- table(mutationCodons)
+            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+            if(any(codonsWithMultipleMutations)){
+              #remove the nucleotide mutations in the codons with multiple mutations
+              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+              #replace those codons with Ns in the input sequence
+              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+              #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+              inputSeq <- c2s(paramSeq)
+            }
+          }
+          
+          #Filter mutations based on the model
+          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
+            
+            if(model==1 & !is.na(mutationInfo)){
+              mutationInfo <- mutationInfo[mutationInfo=="S"]
+            }  
+            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
+            else return(list(NA,inputSeq))
+          }else{
+            return(list(NA,inputSeq))
+          }
+        }else{
+          return(list(NA,inputSeq))
+        }
+        
+        
+      }else{
+        return(list(NA,inputSeq))
+      }
+    
+    
+    }else{
+      return (list(NA,inputSeq))
+    }    
+  }  
+ 
+  # triMutability Background Count
+  buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
+    
+    #rowOrigMatInput = matInput[inputMatrixIndex,]    
+    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
+    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
+    #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
+    tempInput <- cbind(seqInput,seqGL)
+    seqLength = nchar(seqGL)      
+    list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
+    mutationCount <- list_analyzeMutationsFixed[[1]]
+    seqInput <- list_analyzeMutationsFixed[[2]]
+    BackgroundMatrix = mutabilityMatrix
+    MutationMatrix = mutabilityMatrix    
+    MutationCountMatrix = mutabilityMatrix    
+    if(!is.na(mutationCount)){
+      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
+                  
+        fivermerStartPos = 1:(seqLength-4)
+        fivemerLength <- length(fivermerStartPos)
+        fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+        fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+    
+        #Background
+        for(fivemerIndex in 1:fivemerLength){
+          fivemer = fivemerGL[fivemerIndex]
+          if(!any(grep("N",fivemer))){
+            fivemerCodonPos = fivemerCodon(fivemerIndex)
+            fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
+            fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])          
+            
+            # All mutations model
+            #if(!any(grep("N",fivemerReadingFrameCodon))){
+              if(model==0){
+                if(stopMutations==0){
+                  if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
+                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)              
+                }else{
+                  if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
+                    positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
+                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
+                  }
+                }
+              }else{ # Only silent mutations
+                if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
+                  positionWithinCodon = which(fivemerCodonPos==3)
+                  BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
+                }
+              }
+            #}
+          }
+        }
+        
+        #Mutations
+        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
+        mutationPositions = as.numeric(names(mutationCount))
+        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        countMutations = 0 
+        for(mutationPosition in mutationPositions){
+          fivemerIndex = mutationPosition-2
+          fivemer = fivemerSeq[fivemerIndex]
+          GLfivemer = fivemerGL[fivemerIndex]
+          fivemerCodonPos = fivemerCodon(fivemerIndex)
+          fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
+          fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
+          if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
+            if(model==0){
+                countMutations = countMutations + 1              
+                MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
+                MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)             
+            }else{
+              if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
+                  countMutations = countMutations + 1
+                  positionWithinCodon = which(fivemerCodonPos==3)
+                  glNuc =  substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+                  inputNuc =  substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+                  MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
+                  MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)                                    
+              }                
+            }                  
+          }              
+        }
+        
+        seqMutability = MutationMatrix/BackgroundMatrix
+        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+        #cat(inputMatrixIndex,"\t",countMutations,"\n")
+        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
+        
+      }        
+    }
+  
+  }  
+  
+  #Returns the codon position containing the middle nucleotide
+  fivemerCodon <- function(fivemerIndex){
+    codonPos = list(2:4,1:3,3:5)
+    fivemerType = fivemerIndex%%3
+    return(codonPos[[fivemerType+1]])
+  }
+
+  #returns probability values for one mutation in codons resulting in R, S or Stop
+  probMutations <- function(typeOfMutation){    
+    matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))   
+    for(codon in rownames(matMutationProb)){
+        if( !any(grep("N",codon)) ){
+        for(muPos in 1:3){
+          matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
+          glNuc = matCodon[1,muPos]
+          matCodon[,muPos] = canMutateTo(glNuc) 
+          substitutionRate = substitution[glNuc,matCodon[,muPos]]
+          typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})        
+          matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
+        }
+      }
+    }
+    
+    return(matMutationProb) 
+  }
+  
+  
+  
+  
+#Mapping Trinucleotides to fivemers
+mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
+  rownames(triMutability) <- triMutability_Names
+  Fivemer<-rep(NA,1024)
+  names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
+  Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
+  Fivemer<-Fivemer/sum(Fivemer)
+  return(Fivemer)
+}
+
+collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
+}
+
+
+
+CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
+}
+
+#Uses the real counts of the mutated fivemers
+CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
+}
+
+bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
+N<-sum(x)
+if(N){
+p<-x/N
+k<-length(x)-1
+tmp<-rmultinom(M, size = N, prob=p)
+tmp_p<-apply(tmp,2,function(y)y/N)
+(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
+}
+else return(matrix(0,2,length(x)))
+}
+
+
+
+
+bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
+
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
+(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
+}
+
+
+
+p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
+n=sum(x_obs)
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
+tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
+sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
+sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
+}
+
+#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
+# Remove SNPs from IMGT germline segment alleles
+generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
+  repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+  alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
+  SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
+    Indices<-NULL
+    for(i in 1:length(x)){
+      firstSeq = s2c(x[[1]])
+      iSeq = s2c(x[[i]])
+      Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="."  ))
+    }
+    return(sort(unique(Indices)))
+  })
+ repertoireOut <- repertoireIn
+ repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
+                                        alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
+                                        geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
+                                        alleleSeq <- s2c(repertoireOut[[repertoireName]])
+                                        alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
+                                        alleleSeq <- c2s(alleleSeq)
+                                        repertoireOut[[repertoireName]] <- alleleSeq
+                                      })
+  names(repertoireOut) <- names(repertoireIn)
+  write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)                                               
+                                      
+}
+
+
+
+
+
+
+############
+groupBayes2 = function(indexes, param_resultMat){
+  
+  BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
+  BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
+  #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
+  #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
+  #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
+  #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
+  return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
+                "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
+                #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
+                #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
+#                "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
+#                "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
+
+
+}
+
+
+calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
+  G <- max(length(x),length(N),length(p))
+  x=array(x,dim=G)
+  N=array(N,dim=G)
+  p=array(p,dim=G)
+
+  indexOfZero = N>0 & p>0
+  N = N[indexOfZero]
+  x = x[indexOfZero]
+  p = p[indexOfZero]  
+  G <- length(x)
+  
+  if(G){
+    
+    cons<-array( dim=c(length_sigma,G) )
+    if(G==1) {
+    return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
+    }
+    else {
+      for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
+      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }
+  }else{
+    return(NA)
+  }
+}
+
+
+calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
+  matG <- listMatG[[1]]  
+  groups <- listMatG[[2]]
+  i = 1  
+  resConv <- matG[,i]
+  denom <- 2^groups[i]
+  if(length(groups)>1){
+    while( i<length(groups) ){
+      i = i + 1
+      resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
+      #cat({{2^groups[i]}/denom},"\n")
+      denom <- denom + 2^groups[i]
+    }
+  }
+  return(resConv)  
+}
+
+weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
+lx<-length(x)
+ly<-length(y)
+if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
+if(w<1){
+y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
+x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
+lx<-length(x1)
+ly<-length(y1)
+}
+else {
+y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
+x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
+lx<-length(x1)
+ly<-length(y1)
+}
+}
+else{
+x1<-x
+y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
+ly<-length(y1)
+}
+tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
+tmp[tmp<=0] = 0 
+return(tmp/sum(tmp))
+}
+
+########################
+
+
+
+
+mutabilityMatrixONE<-rep(0,4)
+names(mutabilityMatrixONE)<-NUCLEOTIDES
+
+  # triMutability Background Count
+  buildMutabilityModelONE <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
+    
+    #rowOrigMatInput = matInput[inputMatrixIndex,]    
+    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
+    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
+    matInput[inputMatrixIndex,] <<- c(seqInput,seqGL)
+    seqLength = nchar(seqGL)      
+    mutationCount <- analyzeMutations(inputMatrixIndex, model, multipleMutation, seqWithStops)
+    BackgroundMatrix = mutabilityMatrixONE
+    MutationMatrix = mutabilityMatrixONE    
+    MutationCountMatrix = mutabilityMatrixONE    
+    if(!is.na(mutationCount)){
+      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
+                  
+#         ONEmerStartPos = 1:(seqLength)
+#         ONEmerLength <- length(ONEmerStartPos)
+        ONEmerGL <- s2c(seqGL)
+        ONEmerSeq <- s2c(seqInput)
+    
+        #Background
+        for(ONEmerIndex in 1:seqLength){
+          ONEmer = ONEmerGL[ONEmerIndex]
+          if(ONEmer!="N"){
+            ONEmerCodonPos = getCodonPos(ONEmerIndex)
+            ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos]) 
+            ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )         
+            
+            # All mutations model
+            #if(!any(grep("N",ONEmerReadingFrameCodon))){
+              if(model==0){
+                if(stopMutations==0){
+                  if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
+                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)              
+                }else{
+                  if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
+                    positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
+                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+                  }
+                }
+              }else{ # Only silent mutations
+                if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
+                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+                  BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+                }
+              }
+            }
+          }
+        }
+        
+        #Mutations
+        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
+        mutationPositions = as.numeric(names(mutationCount))
+        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        countMutations = 0 
+        for(mutationPosition in mutationPositions){
+          ONEmerIndex = mutationPosition
+          ONEmer = ONEmerSeq[ONEmerIndex]
+          GLONEmer = ONEmerGL[ONEmerIndex]
+          ONEmerCodonPos = getCodonPos(ONEmerIndex)
+          ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])  
+          ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])  
+          if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
+            if(model==0){
+                countMutations = countMutations + 1              
+                MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
+                MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)             
+            }else{
+              if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
+                  countMutations = countMutations + 1
+                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+                  glNuc =  substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+                  inputNuc =  substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+                  MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
+                  MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)                                    
+              }                
+            }                  
+          }              
+        }
+        
+        seqMutability = MutationMatrix/BackgroundMatrix
+        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+        #cat(inputMatrixIndex,"\t",countMutations,"\n")
+        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
+#         tmp<-list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
+      }        
+    }
+  
+################
+# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
+
+trim <- function(s, recode.factor=TRUE, ...)
+  UseMethod("trim", s)
+
+trim.default <- function(s, recode.factor=TRUE, ...)
+  s
+
+trim.character <- function(s, recode.factor=TRUE, ...)
+{
+  s <- sub(pattern="^ +", replacement="", x=s)
+  s <- sub(pattern=" +$", replacement="", x=s)
+  s
+}
+
+trim.factor <- function(s, recode.factor=TRUE, ...)
+{
+  levels(s) <- trim(levels(s))
+  if(recode.factor) {
+    dots <- list(x=s, ...)
+    if(is.null(dots$sort)) dots$sort <- sort
+    s <- do.call(what=reorder.factor, args=dots)
+  }
+  s
+}
+
+trim.list <- function(s, recode.factor=TRUE, ...)
+  lapply(s, trim, recode.factor=recode.factor, ...)
+
+trim.data.frame <- function(s, recode.factor=TRUE, ...)
+{
+  s[] <- trim.list(s, recode.factor=recode.factor, ...)
+  s
+}
+#######################################
+# Compute the expected for each sequence-germline pair by codon 
+getExpectedIndividualByCodon <- function(matInput){    
+if( any(grep("multicore",search())) ){  
+  facGL <- factor(matInput[,2])
+  facLevels = levels(facGL)
+  LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
+    computeMutabilities(facLevels[x])
+  })
+  facIndex = match(facGL,facLevels)
+  
+  LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
+    cInput = rep(NA,nchar(matInput[x,1]))
+    cInput[s2c(matInput[x,1])!="N"] = 1
+    LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+  })
+  
+  LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
+    computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+  })
+  
+  LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
+    #print(x)
+    computeMutationTypes(matInput[x,2])
+  })
+  
+  LisGLs_R_Exp = mclapply(1:nrow(matInput),  function(x){
+    Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                        function(codonNucs){                                                      
+                          RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
+                          sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
+                        }
+    )                                                   
+  })
+  
+  LisGLs_S_Exp = mclapply(1:nrow(matInput),  function(x){
+    Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                        function(codonNucs){                                                      
+                          SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
+                          sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+                        }
+    )                                                 
+  })                                                
+  
+  Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+  Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+  return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
+  }else{
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
+      computeMutabilities(facLevels[x])
+    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
+      cInput = rep(NA,nchar(matInput[x,1]))
+      cInput[s2c(matInput[x,1])!="N"] = 1
+      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+    })
+    
+    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
+      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+    })
+    
+    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
+      #print(x)
+      computeMutationTypes(matInput[x,2])
+    })
+    
+    LisGLs_R_Exp = lapply(1:nrow(matInput),  function(x){
+      Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                          function(codonNucs){                                                      
+                            RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
+                            sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
+                          }
+      )                                                   
+    })
+    
+    LisGLs_S_Exp = lapply(1:nrow(matInput),  function(x){
+      Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                          function(codonNucs){                                                      
+                            SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
+                            sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+                          }
+      )                                                 
+    })                                                
+    
+    Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+    Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+    return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )    
+  }
+}
+
+# getObservedMutationsByCodon <- function(listMutations){
+#   numbSeqs <- length(listMutations) 
+#   obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+#   obsMu_S <- obsMu_R
+#   temp <- mclapply(1:length(listMutations), function(i){
+#     arrMutations = listMutations[[i]]
+#     RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+#     RPos <- sapply(RPos,getCodonNumb)                                                                    
+#     if(any(RPos)){
+#       tabR <- table(RPos)
+#       obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+#     }                                    
+#     
+#     SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+#     SPos <- sapply(SPos,getCodonNumb)
+#     if(any(SPos)){
+#       tabS <- table(SPos)
+#       obsMu_S[i,names(tabS)] <<- tabS
+#     }                                          
+#   }
+#   )
+#   return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
+# }
+
+getObservedMutationsByCodon <- function(listMutations){
+  numbSeqs <- length(listMutations) 
+  obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+  obsMu_S <- obsMu_R
+  temp <- lapply(1:length(listMutations), function(i){
+    arrMutations = listMutations[[i]]
+    RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+    RPos <- sapply(RPos,getCodonNumb)                                                                    
+    if(any(RPos)){
+      tabR <- table(RPos)
+      obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+    }                                    
+    
+    SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+    SPos <- sapply(SPos,getCodonNumb)
+    if(any(SPos)){
+      tabS <- table(SPos)
+      obsMu_S[i,names(tabS)] <<- tabS
+    }                                          
+  }
+  )
+  return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
+}
+
--- a/baseline/Baseline_Main.r	Thu Dec 07 03:44:38 2017 -0500
+++ b/baseline/Baseline_Main.r	Tue Jan 29 03:54:09 2019 -0500
@@ -1,388 +1,388 @@
-#########################################################################################
-# License Agreement
-# 
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
-# OR COPYRIGHT LAW IS PROHIBITED.
-# 
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-op <- options();
-options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
-library('seqinr')
-if( F & Sys.info()[1]=="Linux"){
-  library("multicore")
-}
-
-# Load functions and initialize global variables
-source("Baseline_Functions.r")
-
-# Initialize parameters with user provided arguments
-  arg <- commandArgs(TRUE)                       
-  #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
-  #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
-  #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
-  testID <- as.numeric(arg[1])                    # 1 = Focused, 2 = Local
-  species <- as.numeric(arg[2])                   # 1 = Human. 2 = Mouse
-  substitutionModel <- as.numeric(arg[3])         # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
-  mutabilityModel <- as.numeric(arg[4])           # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002)  , 5 = FiveS
-  clonal <- as.numeric(arg[5])                    # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
-  fixIndels <- as.numeric(arg[6])                 # 0 = Do nothing, 1 = Try and fix Indels
-  region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
-  inputFilePath <- arg[8]                         # Full path to input file
-  outputPath <- arg[9]                            # Full path to location of output files
-  outputID <- arg[10]                             # ID for session output  
-  
-
-  if(testID==5){
-    traitChangeModel <- 1
-    if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11])    # 1 <- Chothia 1998
-    initializeTraitChange(traitChangeModel)    
-  }
-  
-# Initialize other parameters/variables
-    
-  # Initialzie the codon table ( definitions of R/S )
-  computeCodonTable(testID) 
-
-  # Initialize   
-  # Test Name
-  testName<-"Focused"
-  if(testID==2) testName<-"Local"
-  if(testID==3) testName<-"Imbalanced"    
-  if(testID==4) testName<-"ImbalancedSilent"    
-    
-  # Indel placeholders initialization
-  indelPos <- NULL
-  delPos <- NULL
-  insPos <- NULL
-
-  # Initialize in Tranistion & Mutability matrixes
-  substitution <- initializeSubstitutionMatrix(substitutionModel,species)
-  mutability <- initializeMutabilityMatrix(mutabilityModel,species)
-  
-  # FWR/CDR boundaries
-  flagTrim <- F
-  if( is.na(region[7])){
-    flagTrim <- T
-    region[7]<-region[6]
-  }
-  readStart = min(region,na.rm=T)
-  readEnd = max(region,na.rm=T)
-  if(readStart>1){
-    region = region - (readStart - 1)
-  }
-  region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
-  region_Cod = region
-  
-  readStart = (readStart*3)-2
-  readEnd = (readEnd*3)
-    
-    FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
-                  rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
-                  rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
-                  rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
-                  rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
-                  rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
-                )
-    CDR_Nuc <- (1-FWR_Nuc)
-    CDR_Nuc <- as.logical(CDR_Nuc)
-    FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
-    CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
-    
-    FWR_Codon <- c( rep(TRUE,(region[2])),
-                  rep(FALSE,(region[3]-region[2])),
-                  rep(TRUE,(region[4]-region[3])),
-                  rep(FALSE,(region[5]-region[4])),
-                  rep(TRUE,(region[6]-region[5])),
-                  rep(FALSE,(region[7]-region[6]))
-                )
-    CDR_Codon <- (1-FWR_Codon)
-    CDR_Codon <- as.logical(CDR_Codon)
-
-
-# Read input FASTA file
-  tryCatch(
-    inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
-    , error = function(ex){
-      cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
-      q()
-    }
-  )
-  
-  if (length(inputFASTA)==1) {
-    cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
-    q()
-  }
-
-  # Process sequence IDs/names
-  names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
-  
-  # Convert non nucleotide characters to N
-  inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
-  inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
-
-  # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
-  processedInput <- processInputAdvanced(inputFASTA)
-  matInput <- processedInput[[1]]
-  germlines <- processedInput[[2]]
-  lenGermlines = length(unique(germlines))
-  groups <- processedInput[[3]]
-  lenGroups = length(unique(groups))
-  rm(processedInput)
-  rm(inputFASTA)
-
-#   # remove clones with less than 2 seqeunces
-#   tableGL <- table(germlines)
-#   singletons <- which(tableGL<8)
-#   rowsToRemove <- match(singletons,germlines)
-#   if(any(rowsToRemove)){    
-#     matInput <- matInput[-rowsToRemove,]
-#     germlines <- germlines[-rowsToRemove]    
-#     groups <- groups[-rowsToRemove]
-#   }
-# 
-#   # remove unproductive seqs
-#   nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
-#   if(any(nonFuctionalSeqs)){
-#     if(sum(nonFuctionalSeqs)==length(germlines)){
-#       write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#       q()      
-#     }
-#     matInput <- matInput[-which(nonFuctionalSeqs),]
-#     germlines <- germlines[-which(nonFuctionalSeqs)]
-#     germlines[1:length(germlines)] <- 1:length(germlines)
-#     groups <- groups[-which(nonFuctionalSeqs)]
-#   }
-# 
-#   if(class(matInput)=="character"){
-#     write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#     q()    
-#   }
-#   
-#   if(nrow(matInput)<10 | is.null(nrow(matInput))){
-#     write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#     q()
-#   }
-
-# replace leading & trailing "-" with "N:
-  matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
-    
-  # Trim (nucleotide) input sequences to the last codon
-  #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon) 
-
-#   # Check for Indels
-#   if(fixIndels){
-#     delPos <- fixDeletions(matInput)
-#     insPos <- fixInsertions(matInput)
-#   }else{
-#     # Check for indels
-#     indelPos <- checkForInDels(matInput)
-#     indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
-#   }
-  
-  # If indels are present, remove mutations in the seqeunce & throw warning at end
-  #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
-  
-  colnames(matInput)=c("Input","Germline")
-
-  # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
-  germlinesOriginal = NULL
-  if(clonal){
-    germlinesOriginal <- germlines
-    collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
-                                                                collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
-                                                              })
-    matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
-    names_groups = tapply(groups,germlines,function(x){names(x[1])})  
-    groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})  
-    names(groups) = names_groups
-  
-    names_germlines =  tapply(germlines,germlines,function(x){names(x[1])})  
-    germlines = tapply(   germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))}   )
-    names(germlines) = names_germlines
-    matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})  
-  }
-
-
-# Selection Analysis
-
-  
-#  if (length(germlines)>sequenceLimit) {
-#    # Code to parallelize processing goes here
-#    stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
-#  }
-
-#  if (length(germlines)<sequenceLimit) {}
-  
-    # Compute expected mutation frequencies
-    matExpected <- getExpectedIndividual(matInput)
-    
-    # Count observed number of mutations in the different regions
-    mutations <- lapply( 1:nrow(matInput),  function(i){
-                                              #cat(i,"\n")
-                                              seqI = s2c(matInput[i,1])
-                                              seqG = s2c(matInput[i,2])
-                                              matIGL = matrix(c(seqI,seqG),ncol=length(seqI),nrow=2,byrow=T)    
-                                              retVal <- NA
-                                              tryCatch(
-                                                retVal <- analyzeMutations2NucUri(matIGL)
-                                                , error = function(ex){
-                                                  retVal <- NA
-                                                }
-                                              )                                              
-                                              
-                                              
-                                              return( retVal )
-                                            })
-
-    matObserved <- t(sapply( mutations, processNucMutations2 ))
-    numberOfSeqsWithMutations <- numberOfSeqsWithMutations(matObserved, testID)
-
-    #if(sum(numberOfSeqsWithMutations)==0){
-    #  write.table("No mutated sequences",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-    #  q()      
-    #}
-    
-    matMutationInfo <- cbind(matObserved,matExpected)
-    rm(matObserved,matExpected)
-    
-     
-    #Bayesian  PDFs
-    bayes_pdf = computeBayesianScore(matMutationInfo, test=testName, max_sigma=20,length_sigma=4001)
-    bayesPDF_cdr = bayes_pdf[[1]]
-    bayesPDF_fwr = bayes_pdf[[2]]    
-    rm(bayes_pdf)
-
-    bayesPDF_germlines_cdr = tapply(bayesPDF_cdr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
-    bayesPDF_germlines_fwr = tapply(bayesPDF_fwr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
-    
-    bayesPDF_groups_cdr = tapply(bayesPDF_cdr,groups,function(x) groupPosteriors(x,length_sigma=4001))
-    bayesPDF_groups_fwr = tapply(bayesPDF_fwr,groups,function(x) groupPosteriors(x,length_sigma=4001))
-    
-    if(lenGroups>1){
-      groups <- c(groups,lenGroups+1)
-      names(groups)[length(groups)] = "All sequences combined"
-      bayesPDF_groups_cdr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
-      bayesPDF_groups_fwr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
-    }
-    
-    #Bayesian  Outputs
-    bayes_cdr =  t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
-    bayes_fwr =  t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
-    bayes_germlines_cdr =  t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
-    bayes_germlines_fwr =  t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
-    bayes_groups_cdr =  t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
-    bayes_groups_fwr =  t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
-    
-    #P-values
-    simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
-    simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
-    
-    simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
-    simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
-    
-    simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
-    simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
-    
-    
-    #Format output
-    
-    # Round expected mutation frequencies to 3 decimal places
-    matMutationInfo[germlinesOriginal[indelPos],] = NA
-    if(nrow(matMutationInfo)==1){
-      matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
-    }else{
-      matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
-    }
-    
-    listPDFs = list()
-    nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
-    
-    matOutput = matrix(NA,ncol=18,nrow=nRows)
-    rowNumb = 1
-    for(G in unique(groups)){
-      #print(G)
-      matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
-      listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
-      names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
-      #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
-      gs = unique(germlines[groups==G])
-      rowNumb = rowNumb+1
-      if( !is.na(gs) ){
-        for( g in gs ){
-          matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
-          listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
-          names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
-          rowNumb = rowNumb+1
-          indexesOfInterest = which(germlines==g)
-          numbSeqsOfInterest =  length(indexesOfInterest)
-          rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
-          matOutput[rowNumb,] = matrix(   c(  rep("Sequence",numbSeqsOfInterest),
-                                              rownames(matInput)[indexesOfInterest],
-                                              c(matMutationInfo[indexesOfInterest,1:4]),
-                                              c(matMutationInfo[indexesOfInterest,5:8]),
-                                              c(bayes_cdr[indexesOfInterest,]),
-                                              c(bayes_fwr[indexesOfInterest,]),
-                                              c(simgaP_cdr[indexesOfInterest]),
-                                              c(simgaP_fwr[indexesOfInterest])                                              
-          ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
-          increment=0
-          for( ioi in indexesOfInterest){
-            listPDFs[[min(rowNumb)+increment]] =  list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
-            names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
-            increment = increment + 1
-          }
-          rowNumb=max(rowNumb)+1
-
-        }
-      }
-    }
-    colsToFormat = 11:18
-    matOutput[,colsToFormat] = formatC(  matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) ,  digits=3)
-    matOutput[matOutput== " NaN"] = NA
-    
-    
-    
-    colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
-                            "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
-                            paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
-                            paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
-    )
-    fileName = paste(outputPath,outputID,".txt",sep="")
-    write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
-    fileName = paste(outputPath,outputID,".RData",sep="")
-    save(listPDFs,file=fileName)
-
-indelWarning = FALSE
-if(sum(indelPos)>0){
-  indelWarning = "<P>Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
-  indelWarning = paste( indelWarning , "<UL>", sep="" )
-  for(indels in names(indelPos)[indelPos]){
-    indelWarning = paste( indelWarning , "<LI>", indels, "</LI>", sep="" )
-  }
-  indelWarning = paste( indelWarning , "</UL></P>", sep="" )
-}
-
-cloneWarning = FALSE
-if(clonal==1){
-  if(sum(matInputErrors)>0){
-    cloneWarning = "<P>Warning: The following clones have sequences of unequal length.";
-    cloneWarning = paste( cloneWarning , "<UL>", sep="" )
-    for(clone in names(matInputErrors)[matInputErrors]){
-      cloneWarning = paste( cloneWarning , "<LI>", names(germlines)[as.numeric(clone)], "</LI>", sep="" )
-    }
-    cloneWarning = paste( cloneWarning , "</UL></P>", sep="" )
-  }
-}
-cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
+#########################################################################################
+# License Agreement
+# 
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
+# OR COPYRIGHT LAW IS PROHIBITED.
+# 
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+op <- options();
+options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
+library('seqinr')
+if( F & Sys.info()[1]=="Linux"){
+  library("multicore")
+}
+
+# Load functions and initialize global variables
+source("Baseline_Functions.r")
+
+# Initialize parameters with user provided arguments
+  arg <- commandArgs(TRUE)                       
+  #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
+  #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
+  #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
+  testID <- as.numeric(arg[1])                    # 1 = Focused, 2 = Local
+  species <- as.numeric(arg[2])                   # 1 = Human. 2 = Mouse
+  substitutionModel <- as.numeric(arg[3])         # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
+  mutabilityModel <- as.numeric(arg[4])           # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002)  , 5 = FiveS
+  clonal <- as.numeric(arg[5])                    # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
+  fixIndels <- as.numeric(arg[6])                 # 0 = Do nothing, 1 = Try and fix Indels
+  region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
+  inputFilePath <- arg[8]                         # Full path to input file
+  outputPath <- arg[9]                            # Full path to location of output files
+  outputID <- arg[10]                             # ID for session output  
+  
+
+  if(testID==5){
+    traitChangeModel <- 1
+    if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11])    # 1 <- Chothia 1998
+    initializeTraitChange(traitChangeModel)    
+  }
+  
+# Initialize other parameters/variables
+    
+  # Initialzie the codon table ( definitions of R/S )
+  computeCodonTable(testID) 
+
+  # Initialize   
+  # Test Name
+  testName<-"Focused"
+  if(testID==2) testName<-"Local"
+  if(testID==3) testName<-"Imbalanced"    
+  if(testID==4) testName<-"ImbalancedSilent"    
+    
+  # Indel placeholders initialization
+  indelPos <- NULL
+  delPos <- NULL
+  insPos <- NULL
+
+  # Initialize in Tranistion & Mutability matrixes
+  substitution <- initializeSubstitutionMatrix(substitutionModel,species)
+  mutability <- initializeMutabilityMatrix(mutabilityModel,species)
+  
+  # FWR/CDR boundaries
+  flagTrim <- F
+  if( is.na(region[7])){
+    flagTrim <- T
+    region[7]<-region[6]
+  }
+  readStart = min(region,na.rm=T)
+  readEnd = max(region,na.rm=T)
+  if(readStart>1){
+    region = region - (readStart - 1)
+  }
+  region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
+  region_Cod = region
+  
+  readStart = (readStart*3)-2
+  readEnd = (readEnd*3)
+    
+    FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
+                  rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
+                  rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
+                  rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
+                  rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
+                  rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
+                )
+    CDR_Nuc <- (1-FWR_Nuc)
+    CDR_Nuc <- as.logical(CDR_Nuc)
+    FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
+    CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
+    
+    FWR_Codon <- c( rep(TRUE,(region[2])),
+                  rep(FALSE,(region[3]-region[2])),
+                  rep(TRUE,(region[4]-region[3])),
+                  rep(FALSE,(region[5]-region[4])),
+                  rep(TRUE,(region[6]-region[5])),
+                  rep(FALSE,(region[7]-region[6]))
+                )
+    CDR_Codon <- (1-FWR_Codon)
+    CDR_Codon <- as.logical(CDR_Codon)
+
+
+# Read input FASTA file
+  tryCatch(
+    inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+    , error = function(ex){
+      cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+      q()
+    }
+  )
+  
+  if (length(inputFASTA)==1) {
+    cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+    q()
+  }
+
+  # Process sequence IDs/names
+  names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
+  
+  # Convert non nucleotide characters to N
+  inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
+  inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
+
+  # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
+  processedInput <- processInputAdvanced(inputFASTA)
+  matInput <- processedInput[[1]]
+  germlines <- processedInput[[2]]
+  lenGermlines = length(unique(germlines))
+  groups <- processedInput[[3]]
+  lenGroups = length(unique(groups))
+  rm(processedInput)
+  rm(inputFASTA)
+
+#   # remove clones with less than 2 seqeunces
+#   tableGL <- table(germlines)
+#   singletons <- which(tableGL<8)
+#   rowsToRemove <- match(singletons,germlines)
+#   if(any(rowsToRemove)){    
+#     matInput <- matInput[-rowsToRemove,]
+#     germlines <- germlines[-rowsToRemove]    
+#     groups <- groups[-rowsToRemove]
+#   }
+# 
+#   # remove unproductive seqs
+#   nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
+#   if(any(nonFuctionalSeqs)){
+#     if(sum(nonFuctionalSeqs)==length(germlines)){
+#       write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#       q()      
+#     }
+#     matInput <- matInput[-which(nonFuctionalSeqs),]
+#     germlines <- germlines[-which(nonFuctionalSeqs)]
+#     germlines[1:length(germlines)] <- 1:length(germlines)
+#     groups <- groups[-which(nonFuctionalSeqs)]
+#   }
+# 
+#   if(class(matInput)=="character"){
+#     write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#     q()    
+#   }
+#   
+#   if(nrow(matInput)<10 | is.null(nrow(matInput))){
+#     write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#     q()
+#   }
+
+# replace leading & trailing "-" with "N:
+  matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
+    
+  # Trim (nucleotide) input sequences to the last codon
+  #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon) 
+
+#   # Check for Indels
+#   if(fixIndels){
+#     delPos <- fixDeletions(matInput)
+#     insPos <- fixInsertions(matInput)
+#   }else{
+#     # Check for indels
+#     indelPos <- checkForInDels(matInput)
+#     indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
+#   }
+  
+  # If indels are present, remove mutations in the seqeunce & throw warning at end
+  #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
+  
+  colnames(matInput)=c("Input","Germline")
+
+  # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
+  germlinesOriginal = NULL
+  if(clonal){
+    germlinesOriginal <- germlines
+    collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
+                                                                collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
+                                                              })
+    matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
+    names_groups = tapply(groups,germlines,function(x){names(x[1])})  
+    groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})  
+    names(groups) = names_groups
+  
+    names_germlines =  tapply(germlines,germlines,function(x){names(x[1])})  
+    germlines = tapply(   germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))}   )
+    names(germlines) = names_germlines
+    matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})  
+  }
+
+
+# Selection Analysis
+
+  
+#  if (length(germlines)>sequenceLimit) {
+#    # Code to parallelize processing goes here
+#    stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
+#  }
+
+#  if (length(germlines)<sequenceLimit) {}
+  
+    # Compute expected mutation frequencies
+    matExpected <- getExpectedIndividual(matInput)
+    
+    # Count observed number of mutations in the different regions
+    mutations <- lapply( 1:nrow(matInput),  function(i){
+                                              #cat(i,"\n")
+                                              seqI = s2c(matInput[i,1])
+                                              seqG = s2c(matInput[i,2])
+                                              matIGL = matrix(c(seqI,seqG),ncol=length(seqI),nrow=2,byrow=T)    
+                                              retVal <- NA
+                                              tryCatch(
+                                                retVal <- analyzeMutations2NucUri(matIGL)
+                                                , error = function(ex){
+                                                  retVal <- NA
+                                                }
+                                              )                                              
+                                              
+                                              
+                                              return( retVal )
+                                            })
+
+    matObserved <- t(sapply( mutations, processNucMutations2 ))
+    numberOfSeqsWithMutations <- numberOfSeqsWithMutations(matObserved, testID)
+
+    #if(sum(numberOfSeqsWithMutations)==0){
+    #  write.table("No mutated sequences",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+    #  q()      
+    #}
+    
+    matMutationInfo <- cbind(matObserved,matExpected)
+    rm(matObserved,matExpected)
+    
+     
+    #Bayesian  PDFs
+    bayes_pdf = computeBayesianScore(matMutationInfo, test=testName, max_sigma=20,length_sigma=4001)
+    bayesPDF_cdr = bayes_pdf[[1]]
+    bayesPDF_fwr = bayes_pdf[[2]]    
+    rm(bayes_pdf)
+
+    bayesPDF_germlines_cdr = tapply(bayesPDF_cdr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
+    bayesPDF_germlines_fwr = tapply(bayesPDF_fwr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
+    
+    bayesPDF_groups_cdr = tapply(bayesPDF_cdr,groups,function(x) groupPosteriors(x,length_sigma=4001))
+    bayesPDF_groups_fwr = tapply(bayesPDF_fwr,groups,function(x) groupPosteriors(x,length_sigma=4001))
+    
+    if(lenGroups>1){
+      groups <- c(groups,lenGroups+1)
+      names(groups)[length(groups)] = "All sequences combined"
+      bayesPDF_groups_cdr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
+      bayesPDF_groups_fwr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
+    }
+    
+    #Bayesian  Outputs
+    bayes_cdr =  t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
+    bayes_fwr =  t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
+    bayes_germlines_cdr =  t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
+    bayes_germlines_fwr =  t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
+    bayes_groups_cdr =  t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
+    bayes_groups_fwr =  t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
+    
+    #P-values
+    simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
+    simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
+    
+    simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
+    simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
+    
+    simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
+    simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
+    
+    
+    #Format output
+    
+    # Round expected mutation frequencies to 3 decimal places
+    matMutationInfo[germlinesOriginal[indelPos],] = NA
+    if(nrow(matMutationInfo)==1){
+      matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
+    }else{
+      matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
+    }
+    
+    listPDFs = list()
+    nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
+    
+    matOutput = matrix(NA,ncol=18,nrow=nRows)
+    rowNumb = 1
+    for(G in unique(groups)){
+      #print(G)
+      matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
+      listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
+      names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
+      #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
+      gs = unique(germlines[groups==G])
+      rowNumb = rowNumb+1
+      if( !is.na(gs) ){
+        for( g in gs ){
+          matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
+          listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
+          names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
+          rowNumb = rowNumb+1
+          indexesOfInterest = which(germlines==g)
+          numbSeqsOfInterest =  length(indexesOfInterest)
+          rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
+          matOutput[rowNumb,] = matrix(   c(  rep("Sequence",numbSeqsOfInterest),
+                                              rownames(matInput)[indexesOfInterest],
+                                              c(matMutationInfo[indexesOfInterest,1:4]),
+                                              c(matMutationInfo[indexesOfInterest,5:8]),
+                                              c(bayes_cdr[indexesOfInterest,]),
+                                              c(bayes_fwr[indexesOfInterest,]),
+                                              c(simgaP_cdr[indexesOfInterest]),
+                                              c(simgaP_fwr[indexesOfInterest])                                              
+          ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
+          increment=0
+          for( ioi in indexesOfInterest){
+            listPDFs[[min(rowNumb)+increment]] =  list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
+            names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
+            increment = increment + 1
+          }
+          rowNumb=max(rowNumb)+1
+
+        }
+      }
+    }
+    colsToFormat = 11:18
+    matOutput[,colsToFormat] = formatC(  matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) ,  digits=3)
+    matOutput[matOutput== " NaN"] = NA
+    
+    
+    
+    colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
+                            "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
+                            paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
+                            paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
+    )
+    fileName = paste(outputPath,outputID,".txt",sep="")
+    write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
+    fileName = paste(outputPath,outputID,".RData",sep="")
+    save(listPDFs,file=fileName)
+
+indelWarning = FALSE
+if(sum(indelPos)>0){
+  indelWarning = "<P>Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
+  indelWarning = paste( indelWarning , "<UL>", sep="" )
+  for(indels in names(indelPos)[indelPos]){
+    indelWarning = paste( indelWarning , "<LI>", indels, "</LI>", sep="" )
+  }
+  indelWarning = paste( indelWarning , "</UL></P>", sep="" )
+}
+
+cloneWarning = FALSE
+if(clonal==1){
+  if(sum(matInputErrors)>0){
+    cloneWarning = "<P>Warning: The following clones have sequences of unequal length.";
+    cloneWarning = paste( cloneWarning , "<UL>", sep="" )
+    for(clone in names(matInputErrors)[matInputErrors]){
+      cloneWarning = paste( cloneWarning , "<LI>", names(germlines)[as.numeric(clone)], "</LI>", sep="" )
+    }
+    cloneWarning = paste( cloneWarning , "</UL></P>", sep="" )
+  }
+}
+cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/baseline_url.txt	Tue Jan 29 03:54:09 2019 -0500
@@ -0,0 +1,1 @@
+http://selection.med.yale.edu/baseline/
\ No newline at end of file
--- a/baseline/comparePDFs.r	Thu Dec 07 03:44:38 2017 -0500
+++ b/baseline/comparePDFs.r	Tue Jan 29 03:54:09 2019 -0500
@@ -1,225 +1,225 @@
-options("warn"=-1)
-
-#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
-# Compute p-value of two distributions
-compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
-#print(c(length(dens1),length(dens2)))
-if(length(dens1)>1 & length(dens2)>1 ){
-	dens1<-dens1/sum(dens1)
-	dens2<-dens2/sum(dens2)
-	cum2 <- cumsum(dens2)-dens2/2
-	tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
-	#print(tmp)
-	if(tmp>0.5)tmp<-tmp-1
-	return( tmp )
-	}
-	else {
-	return(NA)
-	}
-	#return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
-}  
-
-
-require("grid")
-arg <- commandArgs(TRUE)
-#arg <- c("300143","4","5")
-arg[!arg=="clonal"]
-input <- arg[1]
-output <- arg[2]
-rowIDs <- as.numeric(  sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } )  )
-
-numbSeqs = length(rowIDs)
-
-if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
-  stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
-}
-
-#load( paste("output/",sessionID,".RData",sep="") )
-load( input )
-#input
-
-xMarks = seq(-20,20,length.out=4001)
-
-plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
-  yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
-
-  if(length(xlim==2)){
-    xMin=xlim[1]
-    xMax=xlim[2]
-  } else {
-    xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
-    xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
-    xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
-    xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
-  
-    xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
-    xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
-    xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
-    xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
-  
-    xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
-    xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
-  }
-
-  sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
-  grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
-  x <- sigma
-  pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
-  #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
-  pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
-  grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
-  grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
-  grid.rect()
-  grid.xaxis(gp = gpar(cex=cex/1.1))
-  yticks = pretty(c(-yMax,yMax),8)
-  yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
-  grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
-  if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
-    ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
-  }
-  if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
-    yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
-   }
-
-  if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
-    ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
-  }
-  if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
-    yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
-   }
-
-  grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
-  grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
-
-  grid.text("All", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
-  grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
-  
-  if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
-    pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])       
-    pval = formatC(as.numeric(pCDRFWR),digits=3)
-    grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
-  }
-  grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
-  grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
-  popViewport(2)
-}
-#plot_grid_s(1)
-
-
-p2col<-function(p=0.01){
-  breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
-  i<-findInterval(p,breaks)
-  cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
-            rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
-  return(cols[i])
-}
-
-
-plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
-  if(upper){
-    pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])       
-    pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
-    pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])       
-    pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
-    grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
-         
-    grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
-    grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
-
-    grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    
-           
- #   grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
- #   grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
-  }
-  else{
-  }
-}
-
-
-##################################################################################
-################## The whole OCD's matrix ########################################
-##################################################################################
-
-#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
-pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3) 
-
-pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
-
-for( seqOne in 1:numbSeqs+1){
-  pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
-  if(seqOne>2){ 
-    grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
-    grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
-    grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
-       
-    grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
-    grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
-  }
-  grid.rect(gp = gpar(col=grey(0.9)))
-  grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
-  popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
-  pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
-  if(seqOne<=numbSeqs){   
-    grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
-    grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
-    grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
-    grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
-    grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
-  }
-  grid.rect(gp = gpar(col=grey(0.9)))
-  grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
-  popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
-  for(seqTwo in 1:numbSeqs+1){
-    pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
-    if(seqTwo>seqOne){
-      plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
-      grid.rect()
-    }    
-    popViewport(1)
-  }
-}
-   
-
-xMin=0
-xMax=0.01
-for(pdf1 in rowIDs){
-  xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
-  xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
-  xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
-  xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
-  xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
-  xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
-}
-
-
-
-for(i in 1:numbSeqs+1){
-  for(j in (i-1):numbSeqs){    
-    pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
-    grid.rect()
-    plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
-    popViewport(1)
-  }
-}
-
-dev.off() 
-
-cat("Success", paste(rowIDs,collapse="_"),sep=":")
-
+options("warn"=-1)
+
+#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
+# Compute p-value of two distributions
+compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+#print(c(length(dens1),length(dens2)))
+if(length(dens1)>1 & length(dens2)>1 ){
+	dens1<-dens1/sum(dens1)
+	dens2<-dens2/sum(dens2)
+	cum2 <- cumsum(dens2)-dens2/2
+	tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+	#print(tmp)
+	if(tmp>0.5)tmp<-tmp-1
+	return( tmp )
+	}
+	else {
+	return(NA)
+	}
+	#return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+}  
+
+
+require("grid")
+arg <- commandArgs(TRUE)
+#arg <- c("300143","4","5")
+arg[!arg=="clonal"]
+input <- arg[1]
+output <- arg[2]
+rowIDs <- as.numeric(  sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } )  )
+
+numbSeqs = length(rowIDs)
+
+if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
+  stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
+}
+
+#load( paste("output/",sessionID,".RData",sep="") )
+load( input )
+#input
+
+xMarks = seq(-20,20,length.out=4001)
+
+plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
+  yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
+
+  if(length(xlim==2)){
+    xMin=xlim[1]
+    xMax=xlim[2]
+  } else {
+    xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+    xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+    xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+    xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+  
+    xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
+    xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
+    xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
+    xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
+  
+    xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
+    xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
+  }
+
+  sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
+  grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
+  x <- sigma
+  pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
+  #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
+  pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
+  grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
+  grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
+  grid.rect()
+  grid.xaxis(gp = gpar(cex=cex/1.1))
+  yticks = pretty(c(-yMax,yMax),8)
+  yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
+  grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
+  if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
+    ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
+  }
+  if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
+    yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
+   }
+
+  if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
+    ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
+  }
+  if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
+    yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
+   }
+
+  grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
+  grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
+
+  grid.text("All", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
+  grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
+  
+  if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
+    pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])       
+    pval = formatC(as.numeric(pCDRFWR),digits=3)
+    grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
+  }
+  grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
+  grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
+  popViewport(2)
+}
+#plot_grid_s(1)
+
+
+p2col<-function(p=0.01){
+  breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
+  i<-findInterval(p,breaks)
+  cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
+            rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
+  return(cols[i])
+}
+
+
+plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
+  if(upper){
+    pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])       
+    pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
+    pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])       
+    pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
+    grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
+         
+    grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
+    grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
+
+    grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    
+           
+ #   grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
+ #   grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
+  }
+  else{
+  }
+}
+
+
+##################################################################################
+################## The whole OCD's matrix ########################################
+##################################################################################
+
+#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
+pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3) 
+
+pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
+
+for( seqOne in 1:numbSeqs+1){
+  pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
+  if(seqOne>2){ 
+    grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+    grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+    grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
+       
+    grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
+    grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
+  }
+  grid.rect(gp = gpar(col=grey(0.9)))
+  grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
+  popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+  pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
+  if(seqOne<=numbSeqs){   
+    grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+    grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+    grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
+    grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
+    grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
+  }
+  grid.rect(gp = gpar(col=grey(0.9)))
+  grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
+  popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+  for(seqTwo in 1:numbSeqs+1){
+    pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
+    if(seqTwo>seqOne){
+      plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
+      grid.rect()
+    }    
+    popViewport(1)
+  }
+}
+   
+
+xMin=0
+xMax=0.01
+for(pdf1 in rowIDs){
+  xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+  xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+  xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+  xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+  xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
+  xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
+}
+
+
+
+for(i in 1:numbSeqs+1){
+  for(j in (i-1):numbSeqs){    
+    pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
+    grid.rect()
+    plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
+    popViewport(1)
+  }
+}
+
+dev.off() 
+
+cat("Success", paste(rowIDs,collapse="_"),sep=":")
+
--- a/baseline/script_imgt.py	Thu Dec 07 03:44:38 2017 -0500
+++ b/baseline/script_imgt.py	Tue Jan 29 03:54:09 2019 -0500
@@ -1,86 +1,86 @@
-#import xlrd #avoid dep
-import argparse
-import re
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
-
-args = parser.parse_args()
-
-print "script_imgt.py"
-print "input:", args.input
-print "ref:", args.ref
-print "output:", args.output
-print "id:", args.id
-
-refdic = dict()
-with open(args.ref, 'rU') as ref:
-	currentSeq = ""
-	currentId = ""
-	for line in ref:
-		if line.startswith(">"):
-			if currentSeq is not "" and currentId is not "":
-				refdic[currentId[1:]] = currentSeq
-			currentId = line.rstrip()
-			currentSeq = ""
-		else:
-			currentSeq += line.rstrip()
-	refdic[currentId[1:]] = currentSeq
-
-print "Have", str(len(refdic)), "reference sequences"
-
-vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
-#						r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
-#						r"(IGKV[0-3]D?-[0-9]{1,2})",
-#						r"(IGLV[0-9]-[0-9]{1,2})",
-#						r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
-#						r"(TRGV[234589])",
-#						r"(TRDV[1-3])"]
-
-#vPattern = re.compile(r"|".join(vPattern))
-vPattern = re.compile("|".join(vPattern))
-
-def filterGene(s, pattern):
-    if type(s) is not str:
-        return None
-    res = pattern.search(s)
-    if res:
-        return res.group(0)
-    return None
-
-
-
-currentSeq = ""
-currentId = ""
-first=True
-with open(args.input, 'r') as i:
-	with open(args.output, 'a') as o:
-		o.write(">>>" + args.id + "\n")
-		outputdic = dict()
-		for line in i:
-			if first:
-				first = False
-				continue
-			linesplt = line.split("\t")
-			ref = filterGene(linesplt[1], vPattern)
-			if not ref or not linesplt[2].rstrip():
-				continue
-			if ref in outputdic:
-				outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
-			else:
-				outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
-		#print outputdic
-		
-		for k in outputdic.keys():
-			if k in refdic:
-				o.write(">>" + k + "\n")
-				o.write(refdic[k] + "\n")
-				for seq in outputdic[k]:
-					#print seq
-					o.write(">" + seq[0] + "\n")
-					o.write(seq[1] + "\n")
-			else:
-				print k + " not in reference, skipping " + k
+#import xlrd #avoid dep
+import argparse
+import re
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
+
+args = parser.parse_args()
+
+print "script_imgt.py"
+print "input:", args.input
+print "ref:", args.ref
+print "output:", args.output
+print "id:", args.id
+
+refdic = dict()
+with open(args.ref, 'rU') as ref:
+	currentSeq = ""
+	currentId = ""
+	for line in ref:
+		if line.startswith(">"):
+			if currentSeq is not "" and currentId is not "":
+				refdic[currentId[1:]] = currentSeq
+			currentId = line.rstrip()
+			currentSeq = ""
+		else:
+			currentSeq += line.rstrip()
+	refdic[currentId[1:]] = currentSeq
+
+print "Have", str(len(refdic)), "reference sequences"
+
+vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
+#						r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
+#						r"(IGKV[0-3]D?-[0-9]{1,2})",
+#						r"(IGLV[0-9]-[0-9]{1,2})",
+#						r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
+#						r"(TRGV[234589])",
+#						r"(TRDV[1-3])"]
+
+#vPattern = re.compile(r"|".join(vPattern))
+vPattern = re.compile("|".join(vPattern))
+
+def filterGene(s, pattern):
+    if type(s) is not str:
+        return None
+    res = pattern.search(s)
+    if res:
+        return res.group(0)
+    return None
+
+
+
+currentSeq = ""
+currentId = ""
+first=True
+with open(args.input, 'r') as i:
+	with open(args.output, 'a') as o:
+		o.write(">>>" + args.id + "\n")
+		outputdic = dict()
+		for line in i:
+			if first:
+				first = False
+				continue
+			linesplt = line.split("\t")
+			ref = filterGene(linesplt[1], vPattern)
+			if not ref or not linesplt[2].rstrip():
+				continue
+			if ref in outputdic:
+				outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+			else:
+				outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+		#print outputdic
+		
+		for k in outputdic.keys():
+			if k in refdic:
+				o.write(">>" + k + "\n")
+				o.write(refdic[k] + "\n")
+				for seq in outputdic[k]:
+					#print seq
+					o.write(">" + seq[0] + "\n")
+					o.write(seq[1] + "\n")
+			else:
+				print k + " not in reference, skipping " + k
--- a/baseline/script_xlsx.py	Thu Dec 07 03:44:38 2017 -0500
+++ b/baseline/script_xlsx.py	Tue Jan 29 03:54:09 2019 -0500
@@ -1,58 +1,58 @@
-import xlrd
-import argparse
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-
-args = parser.parse_args()
-
-gene_column = 6
-id_column = 7
-seq_column = 8
-LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
-
-
-refdic = dict()
-with open(args.ref, 'r') as ref:
-	currentSeq = ""
-	currentId = ""
-	for line in ref.readlines():
-		if line[0] is ">":
-			if currentSeq is not "" and currentId is not "":
-				refdic[currentId[1:]] = currentSeq
-			currentId = line.rstrip()
-			currentSeq = ""
-		else:
-			currentSeq += line.rstrip()
-	refdic[currentId[1:]] = currentSeq
-	
-currentSeq = ""
-currentId = ""
-with xlrd.open_workbook(args.input, 'r') as wb:
-	with open(args.output, 'a') as o:
-		for sheet in wb.sheets():
-			if sheet.cell(1,gene_column).value.find("IGHV") < 0:
-				print "Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name
-				continue
-			o.write(">>>" + sheet.name + "\n")
-			outputdic = dict()
-			for rowindex in range(1, sheet.nrows):
-				ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
-				if ref in outputdic:
-					outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
-				else:
-					outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
-			#print outputdic
-			
-			for k in outputdic.keys():
-				if k in refdic:
-					o.write(">>" + k + "\n")
-					o.write(refdic[k] + "\n")
-					for seq in outputdic[k]:
-						#print seq
-						o.write(">" + seq[0] + "\n")
-						o.write(seq[1] + "\n")
-				else:
-					print k + " not in reference, skipping " + k
+import xlrd
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+
+args = parser.parse_args()
+
+gene_column = 6
+id_column = 7
+seq_column = 8
+LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
+
+
+refdic = dict()
+with open(args.ref, 'r') as ref:
+	currentSeq = ""
+	currentId = ""
+	for line in ref.readlines():
+		if line[0] is ">":
+			if currentSeq is not "" and currentId is not "":
+				refdic[currentId[1:]] = currentSeq
+			currentId = line.rstrip()
+			currentSeq = ""
+		else:
+			currentSeq += line.rstrip()
+	refdic[currentId[1:]] = currentSeq
+	
+currentSeq = ""
+currentId = ""
+with xlrd.open_workbook(args.input, 'r') as wb:
+	with open(args.output, 'a') as o:
+		for sheet in wb.sheets():
+			if sheet.cell(1,gene_column).value.find("IGHV") < 0:
+				print "Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name
+				continue
+			o.write(">>>" + sheet.name + "\n")
+			outputdic = dict()
+			for rowindex in range(1, sheet.nrows):
+				ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
+				if ref in outputdic:
+					outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+				else:
+					outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+			#print outputdic
+			
+			for k in outputdic.keys():
+				if k in refdic:
+					o.write(">>" + k + "\n")
+					o.write(refdic[k] + "\n")
+					for seq in outputdic[k]:
+						#print seq
+						o.write(">" + seq[0] + "\n")
+						o.write(seq[1] + "\n")
+				else:
+					print k + " not in reference, skipping " + k
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/change_o/change_o_url.txt	Tue Jan 29 03:54:09 2019 -0500
@@ -0,0 +1,1 @@
+https://changeo.readthedocs.io/en/version-0.4.4/
\ No newline at end of file
--- a/merge_and_filter.r	Thu Dec 07 03:44:38 2017 -0500
+++ b/merge_and_filter.r	Tue Jan 29 03:54:09 2019 -0500
@@ -1,303 +1,303 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-
-summaryfile = args[1]
-sequencesfile = args[2]
-mutationanalysisfile = args[3]
-mutationstatsfile = args[4]
-hotspotsfile = args[5]
-aafile = args[6]
-gene_identification_file= args[7]
-output = args[8]
-before.unique.file = args[9]
-unmatchedfile = args[10]
-method=args[11]
-functionality=args[12]
-unique.type=args[13]
-filter.unique=args[14]
-filter.unique.count=as.numeric(args[15])
-class.filter=args[16]
-empty.region.filter=args[17]
-
-print(paste("filter.unique.count:", filter.unique.count))
-
-summ = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-sequences = read.table(sequencesfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-mutationanalysis = read.table(mutationanalysisfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-mutationstats = read.table(mutationstatsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-hotspots = read.table(hotspotsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-AAs = read.table(aafile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-gene_identification = read.table(gene_identification_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
-
-fix_column_names = function(df){
-    if("V.DOMAIN.Functionality" %in% names(df)){
-        names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
-        print("found V.DOMAIN.Functionality, changed")
-    }
-    if("V.DOMAIN.Functionality.comment" %in% names(df)){
-        names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
-        print("found V.DOMAIN.Functionality.comment, changed")
-    }
-    return(df)
-}
-
-fix_non_unique_ids = function(df){
-	df$Sequence.ID = paste(df$Sequence.ID, 1:nrow(df))
-	return(df)
-}
-
-summ = fix_column_names(summ)
-sequences = fix_column_names(sequences)
-mutationanalysis = fix_column_names(mutationanalysis)
-mutationstats = fix_column_names(mutationstats)
-hotspots = fix_column_names(hotspots)
-AAs = fix_column_names(AAs)
-
-if(method == "blastn"){
-	#"qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore"
-	gene_identification = gene_identification[!duplicated(gene_identification$qseqid),]
-	ref_length = data.frame(sseqid=c("ca1", "ca2", "cg1", "cg2", "cg3", "cg4", "cm"), ref.length=c(81,81,141,141,141,141,52))
-	gene_identification = merge(gene_identification, ref_length, by="sseqid", all.x=T)
-	gene_identification$chunk_hit_percentage = (gene_identification$length / gene_identification$ref.length) * 100
-	gene_identification = gene_identification[,c("qseqid", "chunk_hit_percentage", "pident", "qstart", "sseqid")]
-	colnames(gene_identification) = c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")
-}
-
-#print("Summary analysis files columns")
-#print(names(summ))
-
-
-
-input.sequence.count = nrow(summ)
-print(paste("Number of sequences in summary file:", input.sequence.count))
-
-filtering.steps = data.frame(character(0), numeric(0))
-
-filtering.steps = rbind(filtering.steps, c("Input", input.sequence.count))
-
-filtering.steps[,1] = as.character(filtering.steps[,1])
-filtering.steps[,2] = as.character(filtering.steps[,2])
-#filtering.steps[,3] = as.numeric(filtering.steps[,3])
-
-#print("summary files columns")
-#print(names(summ))
-
-summ = merge(summ, gene_identification, by="Sequence.ID")
-
-print(paste("Number of sequences after merging with gene identification:", nrow(summ)))
-
-summ = summ[summ$Functionality != "No results",]
-
-print(paste("Number of sequences after 'No results' filter:", nrow(summ)))
-
-filtering.steps = rbind(filtering.steps, c("After 'No results' filter", nrow(summ)))
-
-if(functionality == "productive"){
-	summ = summ[summ$Functionality == "productive (see comment)" | summ$Functionality == "productive",]
-} else if (functionality == "unproductive"){
-	summ = summ[summ$Functionality == "unproductive (see comment)" | summ$Functionality == "unproductive",]
-} else if (functionality == "remove_unknown"){
-	summ = summ[summ$Functionality != "No results" & summ$Functionality != "unknown (see comment)" & summ$Functionality != "unknown",]
-}
-
-print(paste("Number of sequences after functionality filter:", nrow(summ)))
-
-filtering.steps = rbind(filtering.steps, c("After functionality filter", nrow(summ)))
-
-if(F){ #to speed up debugging
-    set.seed(1)
-    summ = summ[sample(nrow(summ), floor(nrow(summ) * 0.03)),]
-    print(paste("Number of sequences after sampling 3%:", nrow(summ)))
-
-    filtering.steps = rbind(filtering.steps, c("Number of sequences after sampling 3%", nrow(summ)))
-}
-
-print("mutation analysis files columns")
-print(names(mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])]))
-
-result = merge(summ, mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with mutation analysis file:", nrow(result)))
-
-#print("mutation stats files columns")
-#print(names(mutationstats[,!(names(mutationstats) %in% names(result)[-1])]))
-
-result = merge(result, mutationstats[,!(names(mutationstats) %in% names(result)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with mutation stats file:", nrow(result)))
-
-print("hotspots files columns")
-print(names(hotspots[,!(names(hotspots) %in% names(result)[-1])]))
-
-result = merge(result, hotspots[,!(names(hotspots) %in% names(result)[-1])], by="Sequence.ID")
-
-print(paste("Number of sequences after merging with hotspots file:", nrow(result)))
-
-print("sequences files columns")
-print(c("FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT"))
-
-sequences = sequences[,c("Sequence.ID", "FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT")]
-names(sequences) = c("Sequence.ID", "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq")
-result = merge(result, sequences, by="Sequence.ID", all.x=T)
-
-print("sequences files columns")
-print("CDR3.IMGT")
-
-AAs = AAs[,c("Sequence.ID", "CDR3.IMGT")]
-names(AAs) = c("Sequence.ID", "CDR3.IMGT.AA")
-result = merge(result, AAs, by="Sequence.ID", all.x=T)
-
-print(paste("Number of sequences in result after merging with sequences:", nrow(result)))
-
-result$VGene = gsub("^Homsap ", "", result$V.GENE.and.allele)
-result$VGene = gsub("[*].*", "", result$VGene)
-result$DGene = gsub("^Homsap ", "", result$D.GENE.and.allele)
-result$DGene = gsub("[*].*", "", result$DGene)
-result$JGene = gsub("^Homsap ", "", result$J.GENE.and.allele)
-result$JGene = gsub("[*].*", "", result$JGene)
-
-splt = strsplit(class.filter, "_")[[1]]
-chunk_hit_threshold = as.numeric(splt[1])
-nt_hit_threshold = as.numeric(splt[2])
-
-higher_than=(result$chunk_hit_percentage >= chunk_hit_threshold & result$nt_hit_percentage >= nt_hit_threshold)
-
-if(!all(higher_than, na.rm=T)){ #check for no unmatched
-	result[!higher_than,"best_match"] = paste("unmatched,", result[!higher_than,"best_match"])
-}
-
-if(class.filter == "101_101"){
-	result$best_match = "all"
-}
-
-write.table(x=result, file=gsub("merged.txt$", "before_filters.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
-
-print(paste("Number of empty CDR1 sequences:", sum(result$CDR1.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty FR2 sequences:", sum(result$FR2.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "", na.rm=T)))
-print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "", na.rm=T)))
-
-if(empty.region.filter == "leader"){
-	result = result[result$FR1.IMGT.seq != "" & result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "FR1"){
-	result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "CDR1"){
-	result = result[result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-} else if(empty.region.filter == "FR2"){
-	result = result[result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-}
-
-print(paste("After removal sequences that are missing a gene region:", nrow(result)))
-filtering.steps = rbind(filtering.steps, c("After removal sequences that are missing a gene region", nrow(result)))
-
-if(empty.region.filter == "leader"){
-	result = result[!(grepl("n|N", result$FR1.IMGT.seq) | grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "FR1"){
-	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "CDR1"){
-	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-} else if(empty.region.filter == "FR2"){
-	result = result[!(grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
-}
-
-print(paste("Number of sequences in result after n filtering:", nrow(result)))
-filtering.steps = rbind(filtering.steps, c("After N filter", nrow(result)))
-
-cleanup_columns = c("FR1.IMGT.Nb.of.mutations", 
-                    "CDR1.IMGT.Nb.of.mutations", 
-                    "FR2.IMGT.Nb.of.mutations", 
-                    "CDR2.IMGT.Nb.of.mutations", 
-                    "FR3.IMGT.Nb.of.mutations")
-
-for(col in cleanup_columns){
-  result[,col] = gsub("\\(.*\\)", "", result[,col])
-  result[,col] = as.numeric(result[,col])
-  result[is.na(result[,col]),] = 0
-}
-
-write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T)
-
-if(filter.unique != "no"){
-	clmns = names(result)
-	if(filter.unique == "remove_vjaa"){
-		result$unique.def = paste(result$VGene, result$JGene, result$CDR3.IMGT.AA)
-	} else if(empty.region.filter == "leader"){
-		result$unique.def = paste(result$FR1.IMGT.seq, result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	} else if(empty.region.filter == "FR1"){
-		result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	} else if(empty.region.filter == "CDR1"){
-		result$unique.def = paste(result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	} else if(empty.region.filter == "FR2"){
-		result$unique.def = paste(result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
-	}
-	
-	if(grepl("remove", filter.unique)){
-		result = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),]
-		unique.defs = data.frame(table(result$unique.def))
-		unique.defs = unique.defs[unique.defs$Freq >= filter.unique.count,]
-		result = result[result$unique.def %in% unique.defs$Var1,]
-	}
-
-	if(filter.unique != "remove_vjaa"){
-		result$unique.def = paste(result$unique.def, gsub(",.*", "", result$best_match)) #keep the unique sequences that are in multiple classes, gsub so the unmatched don't have a class after it
-	}
-
-	result = result[!duplicated(result$unique.def),]
-}
-
-write.table(result, gsub("before_unique_filter.txt", "after_unique_filter.txt", before.unique.file), sep="\t", quote=F,row.names=F,col.names=T)
-
-filtering.steps = rbind(filtering.steps, c("After filter unique sequences", nrow(result)))
-
-print(paste("Number of sequences in result after unique filtering:", nrow(result)))
-
-if(nrow(summ) == 0){
-	stop("No data remaining after filter")
-}
-
-result$best_match_class = gsub(",.*", "", result$best_match) #gsub so the unmatched don't have a class after it
-
-#result$past = ""
-#cls = unlist(strsplit(unique.type, ","))
-#for (i in 1:nrow(result)){
-#	result[i,"past"] = paste(result[i,cls], collapse=":")
-#}
-
-
-
-result$past = do.call(paste, c(result[unlist(strsplit(unique.type, ","))], sep = ":"))
-
-result.matched = result[!grepl("unmatched", result$best_match),]
-result.unmatched = result[grepl("unmatched", result$best_match),]
-
-result = rbind(result.matched, result.unmatched)
-
-result = result[!(duplicated(result$past)), ]
-
-result = result[,!(names(result) %in% c("past", "best_match_class"))]
-
-print(paste("Number of sequences in result after", unique.type, "filtering:", nrow(result)))
-
-filtering.steps = rbind(filtering.steps, c("After remove duplicates based on filter", nrow(result)))
-
-unmatched = result[grepl("^unmatched", result$best_match),c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")]
-
-print(paste("Number of rows in result:", nrow(result)))
-print(paste("Number of rows in unmatched:", nrow(unmatched)))
-
-matched.sequences = result[!grepl("^unmatched", result$best_match),]
-
-write.table(x=matched.sequences, file=gsub("merged.txt$", "filtered.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
-
-matched.sequences.count = nrow(matched.sequences)
-unmatched.sequences.count = sum(grepl("^unmatched", result$best_match))
-
-filtering.steps = rbind(filtering.steps, c("Number of matched sequences", matched.sequences.count))
-filtering.steps = rbind(filtering.steps, c("Number of unmatched sequences", unmatched.sequences.count))
-filtering.steps[,2] = as.numeric(filtering.steps[,2])
-filtering.steps$perc = round(filtering.steps[,2] / input.sequence.count * 100, 2)
-
-write.table(x=filtering.steps, file=gsub("unmatched", "filtering_steps", unmatchedfile), sep="\t",quote=F,row.names=F,col.names=F)
-
-write.table(x=result, file=output, sep="\t",quote=F,row.names=F,col.names=T)
-write.table(x=unmatched, file=unmatchedfile, sep="\t",quote=F,row.names=F,col.names=T)
+args <- commandArgs(trailingOnly = TRUE)
+
+
+summaryfile = args[1]
+sequencesfile = args[2]
+mutationanalysisfile = args[3]
+mutationstatsfile = args[4]
+hotspotsfile = args[5]
+aafile = args[6]
+gene_identification_file= args[7]
+output = args[8]
+before.unique.file = args[9]
+unmatchedfile = args[10]
+method=args[11]
+functionality=args[12]
+unique.type=args[13]
+filter.unique=args[14]
+filter.unique.count=as.numeric(args[15])
+class.filter=args[16]
+empty.region.filter=args[17]
+
+print(paste("filter.unique.count:", filter.unique.count))
+
+summ = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+sequences = read.table(sequencesfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+mutationanalysis = read.table(mutationanalysisfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+mutationstats = read.table(mutationstatsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+hotspots = read.table(hotspotsfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+AAs = read.table(aafile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+gene_identification = read.table(gene_identification_file, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
+
+fix_column_names = function(df){
+    if("V.DOMAIN.Functionality" %in% names(df)){
+        names(df)[names(df) == "V.DOMAIN.Functionality"] = "Functionality"
+        print("found V.DOMAIN.Functionality, changed")
+    }
+    if("V.DOMAIN.Functionality.comment" %in% names(df)){
+        names(df)[names(df) == "V.DOMAIN.Functionality.comment"] = "Functionality.comment"
+        print("found V.DOMAIN.Functionality.comment, changed")
+    }
+    return(df)
+}
+
+fix_non_unique_ids = function(df){
+	df$Sequence.ID = paste(df$Sequence.ID, 1:nrow(df))
+	return(df)
+}
+
+summ = fix_column_names(summ)
+sequences = fix_column_names(sequences)
+mutationanalysis = fix_column_names(mutationanalysis)
+mutationstats = fix_column_names(mutationstats)
+hotspots = fix_column_names(hotspots)
+AAs = fix_column_names(AAs)
+
+if(method == "blastn"){
+	#"qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore"
+	gene_identification = gene_identification[!duplicated(gene_identification$qseqid),]
+	ref_length = data.frame(sseqid=c("ca1", "ca2", "cg1", "cg2", "cg3", "cg4", "cm"), ref.length=c(81,81,141,141,141,141,52))
+	gene_identification = merge(gene_identification, ref_length, by="sseqid", all.x=T)
+	gene_identification$chunk_hit_percentage = (gene_identification$length / gene_identification$ref.length) * 100
+	gene_identification = gene_identification[,c("qseqid", "chunk_hit_percentage", "pident", "qstart", "sseqid")]
+	colnames(gene_identification) = c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")
+}
+
+#print("Summary analysis files columns")
+#print(names(summ))
+
+
+
+input.sequence.count = nrow(summ)
+print(paste("Number of sequences in summary file:", input.sequence.count))
+
+filtering.steps = data.frame(character(0), numeric(0))
+
+filtering.steps = rbind(filtering.steps, c("Input", input.sequence.count))
+
+filtering.steps[,1] = as.character(filtering.steps[,1])
+filtering.steps[,2] = as.character(filtering.steps[,2])
+#filtering.steps[,3] = as.numeric(filtering.steps[,3])
+
+#print("summary files columns")
+#print(names(summ))
+
+summ = merge(summ, gene_identification, by="Sequence.ID")
+
+print(paste("Number of sequences after merging with gene identification:", nrow(summ)))
+
+summ = summ[summ$Functionality != "No results",]
+
+print(paste("Number of sequences after 'No results' filter:", nrow(summ)))
+
+filtering.steps = rbind(filtering.steps, c("After 'No results' filter", nrow(summ)))
+
+if(functionality == "productive"){
+	summ = summ[summ$Functionality == "productive (see comment)" | summ$Functionality == "productive",]
+} else if (functionality == "unproductive"){
+	summ = summ[summ$Functionality == "unproductive (see comment)" | summ$Functionality == "unproductive",]
+} else if (functionality == "remove_unknown"){
+	summ = summ[summ$Functionality != "No results" & summ$Functionality != "unknown (see comment)" & summ$Functionality != "unknown",]
+}
+
+print(paste("Number of sequences after functionality filter:", nrow(summ)))
+
+filtering.steps = rbind(filtering.steps, c("After functionality filter", nrow(summ)))
+
+if(F){ #to speed up debugging
+    set.seed(1)
+    summ = summ[sample(nrow(summ), floor(nrow(summ) * 0.03)),]
+    print(paste("Number of sequences after sampling 3%:", nrow(summ)))
+
+    filtering.steps = rbind(filtering.steps, c("Number of sequences after sampling 3%", nrow(summ)))
+}
+
+print("mutation analysis files columns")
+print(names(mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])]))
+
+result = merge(summ, mutationanalysis[,!(names(mutationanalysis) %in% names(summ)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with mutation analysis file:", nrow(result)))
+
+#print("mutation stats files columns")
+#print(names(mutationstats[,!(names(mutationstats) %in% names(result)[-1])]))
+
+result = merge(result, mutationstats[,!(names(mutationstats) %in% names(result)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with mutation stats file:", nrow(result)))
+
+print("hotspots files columns")
+print(names(hotspots[,!(names(hotspots) %in% names(result)[-1])]))
+
+result = merge(result, hotspots[,!(names(hotspots) %in% names(result)[-1])], by="Sequence.ID")
+
+print(paste("Number of sequences after merging with hotspots file:", nrow(result)))
+
+print("sequences files columns")
+print(c("FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT"))
+
+sequences = sequences[,c("Sequence.ID", "FR1.IMGT", "CDR1.IMGT", "FR2.IMGT", "CDR2.IMGT", "FR3.IMGT", "CDR3.IMGT")]
+names(sequences) = c("Sequence.ID", "FR1.IMGT.seq", "CDR1.IMGT.seq", "FR2.IMGT.seq", "CDR2.IMGT.seq", "FR3.IMGT.seq", "CDR3.IMGT.seq")
+result = merge(result, sequences, by="Sequence.ID", all.x=T)
+
+print("sequences files columns")
+print("CDR3.IMGT")
+
+AAs = AAs[,c("Sequence.ID", "CDR3.IMGT")]
+names(AAs) = c("Sequence.ID", "CDR3.IMGT.AA")
+result = merge(result, AAs, by="Sequence.ID", all.x=T)
+
+print(paste("Number of sequences in result after merging with sequences:", nrow(result)))
+
+result$VGene = gsub("^Homsap ", "", result$V.GENE.and.allele)
+result$VGene = gsub("[*].*", "", result$VGene)
+result$DGene = gsub("^Homsap ", "", result$D.GENE.and.allele)
+result$DGene = gsub("[*].*", "", result$DGene)
+result$JGene = gsub("^Homsap ", "", result$J.GENE.and.allele)
+result$JGene = gsub("[*].*", "", result$JGene)
+
+splt = strsplit(class.filter, "_")[[1]]
+chunk_hit_threshold = as.numeric(splt[1])
+nt_hit_threshold = as.numeric(splt[2])
+
+higher_than=(result$chunk_hit_percentage >= chunk_hit_threshold & result$nt_hit_percentage >= nt_hit_threshold)
+
+if(!all(higher_than, na.rm=T)){ #check for no unmatched
+	result[!higher_than,"best_match"] = paste("unmatched,", result[!higher_than,"best_match"])
+}
+
+if(class.filter == "101_101"){
+	result$best_match = "all"
+}
+
+write.table(x=result, file=gsub("merged.txt$", "before_filters.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
+
+print(paste("Number of empty CDR1 sequences:", sum(result$CDR1.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty FR2 sequences:", sum(result$FR2.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "", na.rm=T)))
+print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "", na.rm=T)))
+
+if(empty.region.filter == "leader"){
+	result = result[result$FR1.IMGT.seq != "" & result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "FR1"){
+	result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "CDR1"){
+	result = result[result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+} else if(empty.region.filter == "FR2"){
+	result = result[result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+}
+
+print(paste("After removal sequences that are missing a gene region:", nrow(result)))
+filtering.steps = rbind(filtering.steps, c("After removal sequences that are missing a gene region", nrow(result)))
+
+if(empty.region.filter == "leader"){
+	result = result[!(grepl("n|N", result$FR1.IMGT.seq) | grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "FR1"){
+	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "CDR1"){
+	result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+} else if(empty.region.filter == "FR2"){
+	result = result[!(grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
+}
+
+print(paste("Number of sequences in result after n filtering:", nrow(result)))
+filtering.steps = rbind(filtering.steps, c("After N filter", nrow(result)))
+
+cleanup_columns = c("FR1.IMGT.Nb.of.mutations", 
+                    "CDR1.IMGT.Nb.of.mutations", 
+                    "FR2.IMGT.Nb.of.mutations", 
+                    "CDR2.IMGT.Nb.of.mutations", 
+                    "FR3.IMGT.Nb.of.mutations")
+
+for(col in cleanup_columns){
+  result[,col] = gsub("\\(.*\\)", "", result[,col])
+  result[,col] = as.numeric(result[,col])
+  result[is.na(result[,col]),] = 0
+}
+
+write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T)
+
+if(filter.unique != "no"){
+	clmns = names(result)
+	if(filter.unique == "remove_vjaa"){
+		result$unique.def = paste(result$VGene, result$JGene, result$CDR3.IMGT.AA)
+	} else if(empty.region.filter == "leader"){
+		result$unique.def = paste(result$FR1.IMGT.seq, result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	} else if(empty.region.filter == "FR1"){
+		result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	} else if(empty.region.filter == "CDR1"){
+		result$unique.def = paste(result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	} else if(empty.region.filter == "FR2"){
+		result$unique.def = paste(result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
+	}
+	
+	if(grepl("remove", filter.unique)){
+		result = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),]
+		unique.defs = data.frame(table(result$unique.def))
+		unique.defs = unique.defs[unique.defs$Freq >= filter.unique.count,]
+		result = result[result$unique.def %in% unique.defs$Var1,]
+	}
+
+	if(filter.unique != "remove_vjaa"){
+		result$unique.def = paste(result$unique.def, gsub(",.*", "", result$best_match)) #keep the unique sequences that are in multiple classes, gsub so the unmatched don't have a class after it
+	}
+
+	result = result[!duplicated(result$unique.def),]
+}
+
+write.table(result, gsub("before_unique_filter.txt", "after_unique_filter.txt", before.unique.file), sep="\t", quote=F,row.names=F,col.names=T)
+
+filtering.steps = rbind(filtering.steps, c("After filter unique sequences", nrow(result)))
+
+print(paste("Number of sequences in result after unique filtering:", nrow(result)))
+
+if(nrow(summ) == 0){
+	stop("No data remaining after filter")
+}
+
+result$best_match_class = gsub(",.*", "", result$best_match) #gsub so the unmatched don't have a class after it
+
+#result$past = ""
+#cls = unlist(strsplit(unique.type, ","))
+#for (i in 1:nrow(result)){
+#	result[i,"past"] = paste(result[i,cls], collapse=":")
+#}
+
+
+
+result$past = do.call(paste, c(result[unlist(strsplit(unique.type, ","))], sep = ":"))
+
+result.matched = result[!grepl("unmatched", result$best_match),]
+result.unmatched = result[grepl("unmatched", result$best_match),]
+
+result = rbind(result.matched, result.unmatched)
+
+result = result[!(duplicated(result$past)), ]
+
+result = result[,!(names(result) %in% c("past", "best_match_class"))]
+
+print(paste("Number of sequences in result after", unique.type, "filtering:", nrow(result)))
+
+filtering.steps = rbind(filtering.steps, c("After remove duplicates based on filter", nrow(result)))
+
+unmatched = result[grepl("^unmatched", result$best_match),c("Sequence.ID", "chunk_hit_percentage", "nt_hit_percentage", "start_locations", "best_match")]
+
+print(paste("Number of rows in result:", nrow(result)))
+print(paste("Number of rows in unmatched:", nrow(unmatched)))
+
+matched.sequences = result[!grepl("^unmatched", result$best_match),]
+
+write.table(x=matched.sequences, file=gsub("merged.txt$", "filtered.txt", output), sep="\t",quote=F,row.names=F,col.names=T)
+
+matched.sequences.count = nrow(matched.sequences)
+unmatched.sequences.count = sum(grepl("^unmatched", result$best_match))
+
+filtering.steps = rbind(filtering.steps, c("Number of matched sequences", matched.sequences.count))
+filtering.steps = rbind(filtering.steps, c("Number of unmatched sequences", unmatched.sequences.count))
+filtering.steps[,2] = as.numeric(filtering.steps[,2])
+filtering.steps$perc = round(filtering.steps[,2] / input.sequence.count * 100, 2)
+
+write.table(x=filtering.steps, file=gsub("unmatched", "filtering_steps", unmatchedfile), sep="\t",quote=F,row.names=F,col.names=F)
+
+write.table(x=result, file=output, sep="\t",quote=F,row.names=F,col.names=T)
+write.table(x=unmatched, file=unmatchedfile, sep="\t",quote=F,row.names=F,col.names=T)
--- a/shm_clonality.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_clonality.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,144 +1,144 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
-@font-face
-	{font-family:Tahoma;
-	panose-1:2 11 6 4 3 5 4 4 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-p
-	{margin-right:0in;
-	margin-left:0in;
-	font-size:12.0pt;
-	font-family:"Times New Roman","serif";}
-p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
-	{mso-style-link:"Balloon Text Char";
-	margin:0in;
-	margin-bottom:.0001pt;
-	font-size:8.0pt;
-	font-family:"Tahoma","sans-serif";}
-p.msochpdefault, li.msochpdefault, div.msochpdefault
-	{mso-style-name:msochpdefault;
-	margin-right:0in;
-	margin-left:0in;
-	font-size:12.0pt;
-	font-family:"Calibri","sans-serif";}
-p.msopapdefault, li.msopapdefault, div.msopapdefault
-	{mso-style-name:msopapdefault;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:12.0pt;
-	font-family:"Times New Roman","serif";}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-span.BalloonTextChar
-	{mso-style-name:"Balloon Text Char";
-	mso-style-link:"Balloon Text";
-	font-family:"Tahoma","sans-serif";}
-.MsoChpDefault
-	{font-size:10.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><b><span lang=EN-GB style='color:black'>References</span></b></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>Gupta,
-Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria,
-Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). <a name="OLE_LINK106"></a><a
-name="OLE_LINK107"></a>Change-O: a toolkit for analyzing large-scale B cell
-immunoglobulin repertoire sequencing data: Table 1. In<span
-class=apple-converted-space>&nbsp;</span><em>Bioinformatics, 31 (20), pp.
-3356–3358.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><a
-href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
-lang=EN-GB style='color:#303030'>doi:10.1093/bioinformatics/btv359</span></a><span
-lang=EN-GB style='color:black'>][</span><a
-href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
-lang=EN-GB style='color:#303030'>Link</span></a><span lang=EN-GB
-style='color:black'>]</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><a name="OLE_LINK110"><u><span lang=EN-GB
-style='color:black'>All, IGA, IGG, IGM and IGE tabs</span></u></a></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>In
-these tabs information on the clonal relation of transcripts can be found. To
-calculate clonal relation Change-O is used (Gupta et al, PMID: 26069265).
-Transcripts are considered clonally related if they have maximal three nucleotides
-difference in their CDR3 sequence and the same first V segment (as assigned by
-IMGT). Results are represented in a table format showing the clone size and the
-number of clones or sequences with this clone size. Change-O settings used are
-the </span><span lang=EN-GB>nucleotide hamming distance substitution model with
-a complete distance of maximal three. For clonal assignment the first gene
-segments were used, and the distances were not normalized. In case of
-asymmetric distances, the minimal distance was used.<span style='color:black'> </span></span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><u><span lang=EN-GB style='color:black'>Overlap
-tab</span></u><span lang=EN-GB style='color:black'> </span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span lang=EN-GB style='color:black'>This
-tab gives information on with which (sub)classe(s) each unique analyzed region
-(based on the exact nucleotide sequence of the analyzes region and the CDR3
-nucleotide sequence) is found with. This gives information if the combination
-of the exact same nucleotide sequence of the analyzed region and the CDR3
-sequence can be found in multiple (sub)classes.</span></p>
-
-<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
-text-align:justify;background:white'><span style='color:black'><img src=""> Please note that this tab is based on all
-sequences before filter unique sequences and the remove duplicates based on
-filters are applied. In this table only sequences occuring more than once are
-included. </span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+@font-face
+	{font-family:Tahoma;
+	panose-1:2 11 6 4 3 5 4 4 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+p
+	{margin-right:0in;
+	margin-left:0in;
+	font-size:12.0pt;
+	font-family:"Times New Roman","serif";}
+p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
+	{mso-style-link:"Balloon Text Char";
+	margin:0in;
+	margin-bottom:.0001pt;
+	font-size:8.0pt;
+	font-family:"Tahoma","sans-serif";}
+p.msochpdefault, li.msochpdefault, div.msochpdefault
+	{mso-style-name:msochpdefault;
+	margin-right:0in;
+	margin-left:0in;
+	font-size:12.0pt;
+	font-family:"Calibri","sans-serif";}
+p.msopapdefault, li.msopapdefault, div.msopapdefault
+	{mso-style-name:msopapdefault;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:12.0pt;
+	font-family:"Times New Roman","serif";}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+span.BalloonTextChar
+	{mso-style-name:"Balloon Text Char";
+	mso-style-link:"Balloon Text";
+	font-family:"Tahoma","sans-serif";}
+.MsoChpDefault
+	{font-size:10.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><b><span lang=EN-GB style='color:black'>References</span></b></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>Gupta,
+Namita T. and Vander Heiden, Jason A. and Uduman, Mohamed and Gadala-Maria,
+Daniel and Yaari, Gur and Kleinstein, Steven H. (2015). <a name="OLE_LINK106"></a><a
+name="OLE_LINK107"></a>Change-O: a toolkit for analyzing large-scale B cell
+immunoglobulin repertoire sequencing data: Table 1. In<span
+class=apple-converted-space>&nbsp;</span><em>Bioinformatics, 31 (20), pp.
+3356–3358.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><a
+href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
+lang=EN-GB style='color:#303030'>doi:10.1093/bioinformatics/btv359</span></a><span
+lang=EN-GB style='color:black'>][</span><a
+href="http://dx.doi.org/10.1093/bioinformatics/btv359" target="_blank"><span
+lang=EN-GB style='color:#303030'>Link</span></a><span lang=EN-GB
+style='color:black'>]</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><a name="OLE_LINK110"><u><span lang=EN-GB
+style='color:black'>All, IGA, IGG, IGM and IGE tabs</span></u></a></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>In
+these tabs information on the clonal relation of transcripts can be found. To
+calculate clonal relation Change-O is used (Gupta et al, PMID: 26069265).
+Transcripts are considered clonally related if they have maximal three nucleotides
+difference in their CDR3 sequence and the same first V segment (as assigned by
+IMGT). Results are represented in a table format showing the clone size and the
+number of clones or sequences with this clone size. Change-O settings used are
+the </span><span lang=EN-GB>nucleotide hamming distance substitution model with
+a complete distance of maximal three. For clonal assignment the first gene
+segments were used, and the distances were not normalized. In case of
+asymmetric distances, the minimal distance was used.<span style='color:black'> </span></span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>&nbsp;</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><u><span lang=EN-GB style='color:black'>Overlap
+tab</span></u><span lang=EN-GB style='color:black'> </span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span lang=EN-GB style='color:black'>This
+tab gives information on with which (sub)classe(s) each unique analyzed region
+(based on the exact nucleotide sequence of the analyzes region and the CDR3
+nucleotide sequence) is found with. This gives information if the combination
+of the exact same nucleotide sequence of the analyzed region and the CDR3
+sequence can be found in multiple (sub)classes.</span></p>
+
+<p style='margin-top:0in;margin-right:0in;margin-bottom:6.4pt;margin-left:0in;
+text-align:justify;background:white'><span style='color:black'><img src=""> Please note that this tab is based on all
+sequences before filter unique sequences and the remove duplicates based on
+filters are applied. In this table only sequences occuring more than once are
+included. </span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_csr.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_csr.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,95 +1,95 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
-graphs in this tab give insight into the subclass distribution of IGG and IGA
-transcripts. </span><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Human Cµ, C&#945;, C&#947; and C&#949;
-constant genes are assigned using a </span><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>custom script
-specifically designed for human (sub)class assignment in repertoire data as
-described in van Schouwenburg and IJspeert et al, submitted for publication. In
-this script the reference sequences for the subclasses are divided in 8
-nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are
-then individually aligned in the right order to each input sequence. The
-percentage of the chunks identified in each rearrangement is calculated in the
-‘chunk hit percentage’. </span><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>C&#945; and C&#947;
-subclasses are very homologous and only differ in a few nucleotides. To assign
-subclasses the </span><span lang=EN-GB style='font-size:12.0pt;line-height:
-115%;font-family:"Times New Roman","serif"'>‘nt hit percentage’ is calculated.
-This percentage indicates how well the chunks covering the subclass specific
-nucleotide match with the different subclasses. </span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Information
-on normal distribution of subclasses in healthy individuals of different ages
-can be found in IJspeert and van Schouwenburg et al, PMID: 27799928.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK100"></a><a
-name="OLE_LINK99"></a><a name="OLE_LINK25"><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGA
-subclass distribution</span></u></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
-chart showing the relative distribution of IGA1 and IGA2 transcripts in the
-sample.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGG
-subclass distribution</span></u></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
-chart showing the relative distribution of IGG1, IGG2, IGG3 and IGG4
-transcripts in the sample.</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
+graphs in this tab give insight into the subclass distribution of IGG and IGA
+transcripts. </span><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Human Cµ, C&#945;, C&#947; and C&#949;
+constant genes are assigned using a </span><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>custom script
+specifically designed for human (sub)class assignment in repertoire data as
+described in van Schouwenburg and IJspeert et al, submitted for publication. In
+this script the reference sequences for the subclasses are divided in 8
+nucleotide chunks which overlap by 4 nucleotides. These overlapping chunks are
+then individually aligned in the right order to each input sequence. The
+percentage of the chunks identified in each rearrangement is calculated in the
+‘chunk hit percentage’. </span><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>C&#945; and C&#947;
+subclasses are very homologous and only differ in a few nucleotides. To assign
+subclasses the </span><span lang=EN-GB style='font-size:12.0pt;line-height:
+115%;font-family:"Times New Roman","serif"'>‘nt hit percentage’ is calculated.
+This percentage indicates how well the chunks covering the subclass specific
+nucleotide match with the different subclasses. </span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Information
+on normal distribution of subclasses in healthy individuals of different ages
+can be found in IJspeert and van Schouwenburg et al, PMID: 27799928.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK100"></a><a
+name="OLE_LINK99"></a><a name="OLE_LINK25"><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGA
+subclass distribution</span></u></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
+chart showing the relative distribution of IGA1 and IGA2 transcripts in the
+sample.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IGG
+subclass distribution</span></u></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Pie
+chart showing the relative distribution of IGG1, IGG2, IGG3 and IGG4
+transcripts in the sample.</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_csr.xml	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_csr.xml	Tue Jan 29 03:54:09 2019 -0500
@@ -1,14 +1,13 @@
 <tool id="shm_csr" name="SHM &amp; CSR pipeline" version="1.0">
 	<description></description>
 	<requirements>
-		<!--
-		<requirement type="package" version="3.3.2">r-base</requirement>
-		<requirement type="package" version="3.1_3">r-seqinr</requirement>
-		<requirement type="package" version="2.2.0">r-ggplot2</requirement>
-		<requirement type="package" version="1.4.2">r-reshape2</requirement>
-		<requirement type="package" version="0.4.1">r-scales</requirement>
-		<requirement type="package" version="1.10.0">r-data.table</requirement>
-		-->
+		<requirement type="package" version="1.16.0">numpy</requirement>
+		<requirement type="package" version="1.2.0">xlrd</requirement>
+		<requirement type="package" version="3.0.0">r-ggplot2</requirement>
+		<requirement type="package" version="1.4.3">r-reshape2</requirement>
+		<requirement type="package" version="0.5.0">r-scales</requirement>
+		<requirement type="package" version="3.4_5">r-seqinr</requirement>
+		<requirement type="package" version="1.11.4">r-data.table</requirement>
 	</requirements>
 	<command interpreter="bash">
 		#if str ( $filter_unique.filter_unique_select ) == "remove":
--- a/shm_downloads.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_downloads.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,538 +1,538 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing
-	{margin:0in;
-	margin-bottom:.0001pt;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Info</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The complete
-dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Allows downloading of the complete parsed data set.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The filtered
-dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Allows downloading of all parsed IMGT information of all transcripts that
-passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The alignment
-info on the unmatched sequences:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Provides information of the subclass
-alignment of all unmatched sequences. For each sequence the chunck hit
-percentage and the nt hit percentage is shown together with the best matched
-subclass.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Overview</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The SHM Overview
-table as a dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Allows downloading of the SHM Overview
-table as a data set.  </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Motif data per
-sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> Provides a file that contains information for each
-transcript on the number of mutations present in WA/TW and RGYW/WRCY motives.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Mutation data
-per sequence ID: </span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'>Provides a file containing information
-on the number of sequences bases, the number and location of mutations and the
-type of mutations found in each transcript. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Base count for
-every sequence:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> links to a page showing for each transcript the
-sequence of the analysed region (as dependent on the sequence starts at filter),
-the assigned subclass and the number of sequenced A,C,G and T’s.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the percentage of mutations in AID and pol eta motives plot:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Provides a file containing the values used to generate the percentage of
-mutations in AID and pol eta motives plot in the SHM overview tab.</span></p>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
-data used to generate the relative mutation patterns plot:</span></u><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Provides a download with the data used to generate the relative mutation
-patterns plot in the SHM overview tab.</span></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
-data used to generate the absolute mutation patterns plot:</span></u><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Provides a download with the data used to generate the absolute mutation
-patterns plot in the SHM overview tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Frequency</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data
-generate the frequency scatter plot:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
-downloading the data used to generate the frequency scatter plot in the SHM
-frequency tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the frequency by class plot:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
-downloading the data used to generate frequency by class plot included in the
-SHM frequency tab.           </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for
-frequency by subclass:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Provides information of the number and
-percentage of sequences that have 0%, 0-2%, 2-5%, 5-10%, 10-15%, 15-20%,
-&gt;20% SHM. Information is provided for each subclass.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Transition
-Tables</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'all' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGA' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGA sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGA1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGA1 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGA2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGA2 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG1 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG2 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG3' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG3 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGG4' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGG4 sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGM' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the information used to
-generate the transition table for all IGM sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-'IGE' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Contains the
-information used to generate the transition table for all IGE sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Antigen
-selection</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>AA mutation data
-per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> Provides for each transcript information on whether
-there is replacement mutation at each amino acid location (as defined by IMGT).
-For all amino acids outside of the analysed region the value 0 is given.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Presence of AA
-per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'> Provides for each transcript information on which
-amino acid location (as defined by IMGT) is present. </span><span lang=NL
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>0 is absent, 1
-is present. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
-data used to generate the aa mutation frequency plot for all sequences in the
-antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGA:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>  Provides the
-data used to generate the aa mutation frequency plot for all IGA sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGG:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
-data used to generate the aa mutation frequency plot for all IGG sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGM:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
-data used to generate the aa mutation frequency plot for all IGM sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
-generate the aa mutation frequency plot for IGE:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>   Provides the
-data used to generate the aa mutation frequency plot for all IGE sequences in
-the antigen selection tab.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline PDF (</span></u><span
-lang=EN-GB><a href="http://selection.med.yale.edu/baseline/"><span
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>http://selection.med.yale.edu/baseline/</span></a></span><u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>):</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
-containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline data:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual sequence and the sum of all
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
-PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGA sequence and the sum of
-all IGA sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
-PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGG
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGG sequence and the sum of
-all IGG sequences.        </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM PDF:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
-containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGM
-sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGM sequence and the sum of
-all IGM sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
-PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
-"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGE
-sequences.</span><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
-data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Table output of the BASELINe analysis. Calculation of antigen selection as
-performed by BASELINe are shown for each individual IGE sequence and the sum of
-all IGE sequences.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>CSR</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
-subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> </span><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Data used for
-the generation of the </span><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'>IGA subclass distribution plot provided
-in the CSR tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
-</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
-subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Data used for the generation of the </span><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGG
-subclass distribution plot provided in the CSR tab. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=NL
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Clonal relation</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Sequence overlap
-between subclasses:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Link to the overlap table as provided
-under the clonality overlap tab.         </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones and subclass annotation:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
-Downloads a table with the calculation of clonal relation between all
-sequences. For each individual transcript the results of the clonal assignment
-as provided by Change-O are provided. Sequences with the same number in the CLONE
-column are considered clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file:</span></u><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'> Gives a summary of the total number of
-clones in all sequences and their clone size.           </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGA:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
-calculation of clonal relation between all IGA sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGA:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGA sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGG:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
-calculation of clonal relation between all IGG sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGG:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGG sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGM:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table
-with the calculation of clonal relation between all IGM sequences. For each
-individual transcript the results of the clonal assignment as provided by
-Change-O are provided. Sequences with the same number in the CLONE column are
-considered clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGM:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGM sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-file with defined clones of IGE:</span></u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
-calculation of clonal relation between all IGE sequences. For each individual
-transcript the results of the clonal assignment as provided by Change-O are
-provided. Sequences with the same number in the CLONE column are considered
-clonally related. </span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
-defined clones summary file of IGE:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
-of the total number of clones in all IGE sequences and their clone size.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Filtered IMGT
-output files</span></b></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGA sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGA
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGA1 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGA1
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGA2 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGA2
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGG
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG1 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG1
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG2 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG2
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG3 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGG3
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGG4 sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGG4
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGM sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
-file with the same format as downloaded IMGT files that contains all IGM
-sequences that have passed the chosen filter settings.</span></p>
-
-<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
-with just the matched and filtered IGE sequences:</span></u><span lang=EN-GB
-style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
-.txz file with the same format as downloaded IMGT files that contains all IGE
-sequences that have passed the chosen filter settings.</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing
+	{margin:0in;
+	margin-bottom:.0001pt;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Info</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The complete
+dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Allows downloading of the complete parsed data set.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The filtered
+dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Allows downloading of all parsed IMGT information of all transcripts that
+passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The alignment
+info on the unmatched sequences:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Provides information of the subclass
+alignment of all unmatched sequences. For each sequence the chunck hit
+percentage and the nt hit percentage is shown together with the best matched
+subclass.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Overview</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The SHM Overview
+table as a dataset:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Allows downloading of the SHM Overview
+table as a data set.  </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Motif data per
+sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> Provides a file that contains information for each
+transcript on the number of mutations present in WA/TW and RGYW/WRCY motives.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Mutation data
+per sequence ID: </span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'>Provides a file containing information
+on the number of sequences bases, the number and location of mutations and the
+type of mutations found in each transcript. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Base count for
+every sequence:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> links to a page showing for each transcript the
+sequence of the analysed region (as dependent on the sequence starts at filter),
+the assigned subclass and the number of sequenced A,C,G and T’s.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the percentage of mutations in AID and pol eta motives plot:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Provides a file containing the values used to generate the percentage of
+mutations in AID and pol eta motives plot in the SHM overview tab.</span></p>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
+data used to generate the relative mutation patterns plot:</span></u><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Provides a download with the data used to generate the relative mutation
+patterns plot in the SHM overview tab.</span></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>The
+data used to generate the absolute mutation patterns plot:</span></u><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Provides a download with the data used to generate the absolute mutation
+patterns plot in the SHM overview tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>SHM Frequency</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data
+generate the frequency scatter plot:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
+downloading the data used to generate the frequency scatter plot in the SHM
+frequency tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the frequency by class plot:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Allows
+downloading the data used to generate frequency by class plot included in the
+SHM frequency tab.           </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for
+frequency by subclass:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Provides information of the number and
+percentage of sequences that have 0%, 0-2%, 2-5%, 5-10%, 10-15%, 15-20%,
+&gt;20% SHM. Information is provided for each subclass.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Transition
+Tables</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'all' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGA' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGA sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGA1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGA1 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGA2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGA2 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG1' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG1 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG2' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG2 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG3' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG3 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGG4' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGG4 sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGM' transition plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the information used to
+generate the transition table for all IGM sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+'IGE' transition plot:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Contains the
+information used to generate the transition table for all IGE sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Antigen
+selection</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>AA mutation data
+per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> Provides for each transcript information on whether
+there is replacement mutation at each amino acid location (as defined by IMGT).
+For all amino acids outside of the analysed region the value 0 is given.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Presence of AA
+per sequence ID:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'> Provides for each transcript information on which
+amino acid location (as defined by IMGT) is present. </span><span lang=NL
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>0 is absent, 1
+is present. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
+data used to generate the aa mutation frequency plot for all sequences in the
+antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGA:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>  Provides the
+data used to generate the aa mutation frequency plot for all IGA sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGG:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
+data used to generate the aa mutation frequency plot for all IGG sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGM:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Provides the
+data used to generate the aa mutation frequency plot for all IGM sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data used to
+generate the aa mutation frequency plot for IGE:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>   Provides the
+data used to generate the aa mutation frequency plot for all IGE sequences in
+the antigen selection tab.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline PDF (</span></u><span
+lang=EN-GB><a href="http://selection.med.yale.edu/baseline/"><span
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>http://selection.med.yale.edu/baseline/</span></a></span><u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>):</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
+containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline data:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual sequence and the sum of all
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
+PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGA
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGA sequence and the sum of
+all IGA sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
+PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGG
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGG
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGG sequence and the sum of
+all IGG sequences.        </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM PDF:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> PDF
+containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGM
+sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGM
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGM sequence and the sum of
+all IGM sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
+PDF:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+PDF containing the </span><span lang=EN-GB style='font-size:12.0pt;font-family:
+"Times New Roman","serif"'>Antigen selection (BASELINe) graph for all IGE
+sequences.</span><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Baseline IGE
+data:</span></u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Table output of the BASELINe analysis. Calculation of antigen selection as
+performed by BASELINe are shown for each individual IGE sequence and the sum of
+all IGE sequences.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>CSR</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
+subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> </span><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Data used for
+the generation of the </span><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'>IGA subclass distribution plot provided
+in the CSR tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The data for the
+</span></u><u><span lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGA
+subclass distribution plot :</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Data used for the generation of the </span><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IGG
+subclass distribution plot provided in the CSR tab. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=NL
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Clonal relation</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Sequence overlap
+between subclasses:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Link to the overlap table as provided
+under the clonality overlap tab.         </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones and subclass annotation:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>
+Downloads a table with the calculation of clonal relation between all
+sequences. For each individual transcript the results of the clonal assignment
+as provided by Change-O are provided. Sequences with the same number in the CLONE
+column are considered clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file:</span></u><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'> Gives a summary of the total number of
+clones in all sequences and their clone size.           </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGA:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
+calculation of clonal relation between all IGA sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGA:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGA sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGG:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
+calculation of clonal relation between all IGG sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGG:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGG sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGM:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table
+with the calculation of clonal relation between all IGM sequences. For each
+individual transcript the results of the clonal assignment as provided by
+Change-O are provided. Sequences with the same number in the CLONE column are
+considered clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGM:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGM sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+file with defined clones of IGE:</span></u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'> Downloads a table with the
+calculation of clonal relation between all IGE sequences. For each individual
+transcript the results of the clonal assignment as provided by Change-O are
+provided. Sequences with the same number in the CLONE column are considered
+clonally related. </span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>The Change-O DB
+defined clones summary file of IGE:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Gives a summary
+of the total number of clones in all IGE sequences and their clone size.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>Filtered IMGT
+output files</span></b></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGA sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGA
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGA1 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGA1
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGA2 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGA2
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGG
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG1 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG1
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG2 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG2
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG3 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGG3
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGG4 sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGG4
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGM sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a .txz
+file with the same format as downloaded IMGT files that contains all IGM
+sequences that have passed the chosen filter settings.</span></p>
+
+<p class=MsoNoSpacing style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'>An IMGT archive
+with just the matched and filtered IGE sequences:</span></u><span lang=EN-GB
+style='font-size:12.0pt;font-family:"Times New Roman","serif"'> Downloads a
+.txz file with the same format as downloaded IMGT files that contains all IGE
+sequences that have passed the chosen filter settings.</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_first.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_first.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,127 +1,127 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><span lang=EN-GB style='font-size:12.0pt;
-font-family:"Times New Roman","serif"'>Table showing the order of each
-filtering step and the number and percentage of sequences after each filtering
-step. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'>Input:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
-number of sequences in the original IMGT file. This is always 100% of the
-sequences.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'>After &quot;no results&quot; filter: </span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IMGT
-classifies sequences either as &quot;productive&quot;, &quot;unproductive&quot;, &quot;unknown&quot;, or &quot;no
-results&quot;. Here, the number and percentages of sequences that are not classified
-as &quot;no results&quot; are reported.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
-text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
-12.0pt;font-family:"Times New Roman","serif"'>After functionality filter:</span></u><span
-lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
-number and percentages of sequences that have passed the functionality filter. The
-filtering performed is dependent on the settings of the functionality filter.
-Details on the functionality filter <a name="OLE_LINK12"></a><a
-name="OLE_LINK11"></a><a name="OLE_LINK10">can be found on the start page of
-the SHM&amp;CSR pipeline</a>.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-removal sequences that are missing a gene region:</span></u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-In this step all sequences that are missing a gene region (FR1, CDR1, FR2,
-CDR2, FR3) that should be present are removed from analysis. The sequence
-regions that should be present are dependent on the settings of the sequence
-starts at filter. <a name="OLE_LINK9"></a><a name="OLE_LINK8">The number and
-percentage of sequences that pass this filter step are reported.</a> </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-N filter:</span></u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> In this step all sequences that contain
-an ambiguous base (n) in the analysed region or the CDR3 are removed from the
-analysis. The analysed region is determined by the setting of the sequence
-starts at filter. The number and percentage of sequences that pass this filter
-step are reported.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-filter unique sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>: The number and
-percentage of sequences that pass the &quot;filter unique sequences&quot; filter. Details
-on this filter </span><span lang=EN-GB style='font-size:12.0pt;line-height:
-115%;font-family:"Times New Roman","serif"'>can be found on the start page of
-the SHM&amp;CSR pipeline</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
-remove duplicate based on filter:</span></u><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'> The number and
-percentage of sequences that passed the remove duplicate filter. Details on the
-&quot;remove duplicate filter based on filter&quot; can be found on the start page of the
-SHM&amp;CSR pipeline.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK17"></a><a
-name="OLE_LINK16"><u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Number of matches sequences:</span></u></a><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-The number and percentage of sequences that passed all the filters described
-above and have a (sub)class assigned.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
-of unmatched sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>: The number and percentage
-of sequences that passed all the filters described above and do not have
-subclass assigned.</span></p>
-
-<p class=MsoNormal><span lang=EN-GB>&nbsp;</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><span lang=EN-GB style='font-size:12.0pt;
+font-family:"Times New Roman","serif"'>Table showing the order of each
+filtering step and the number and percentage of sequences after each filtering
+step. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'>Input:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
+number of sequences in the original IMGT file. This is always 100% of the
+sequences.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'>After &quot;no results&quot; filter: </span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'>IMGT
+classifies sequences either as &quot;productive&quot;, &quot;unproductive&quot;, &quot;unknown&quot;, or &quot;no
+results&quot;. Here, the number and percentages of sequences that are not classified
+as &quot;no results&quot; are reported.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='margin-bottom:0in;margin-bottom:.0001pt;
+text-align:justify;line-height:normal'><u><span lang=EN-GB style='font-size:
+12.0pt;font-family:"Times New Roman","serif"'>After functionality filter:</span></u><span
+lang=EN-GB style='font-size:12.0pt;font-family:"Times New Roman","serif"'> The
+number and percentages of sequences that have passed the functionality filter. The
+filtering performed is dependent on the settings of the functionality filter.
+Details on the functionality filter <a name="OLE_LINK12"></a><a
+name="OLE_LINK11"></a><a name="OLE_LINK10">can be found on the start page of
+the SHM&amp;CSR pipeline</a>.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+removal sequences that are missing a gene region:</span></u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+In this step all sequences that are missing a gene region (FR1, CDR1, FR2,
+CDR2, FR3) that should be present are removed from analysis. The sequence
+regions that should be present are dependent on the settings of the sequence
+starts at filter. <a name="OLE_LINK9"></a><a name="OLE_LINK8">The number and
+percentage of sequences that pass this filter step are reported.</a> </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+N filter:</span></u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> In this step all sequences that contain
+an ambiguous base (n) in the analysed region or the CDR3 are removed from the
+analysis. The analysed region is determined by the setting of the sequence
+starts at filter. The number and percentage of sequences that pass this filter
+step are reported.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+filter unique sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>: The number and
+percentage of sequences that pass the &quot;filter unique sequences&quot; filter. Details
+on this filter </span><span lang=EN-GB style='font-size:12.0pt;line-height:
+115%;font-family:"Times New Roman","serif"'>can be found on the start page of
+the SHM&amp;CSR pipeline</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>After
+remove duplicate based on filter:</span></u><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'> The number and
+percentage of sequences that passed the remove duplicate filter. Details on the
+&quot;remove duplicate filter based on filter&quot; can be found on the start page of the
+SHM&amp;CSR pipeline.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK17"></a><a
+name="OLE_LINK16"><u><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Number of matches sequences:</span></u></a><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+The number and percentage of sequences that passed all the filters described
+above and have a (sub)class assigned.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
+of unmatched sequences</span></u><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>: The number and percentage
+of sequences that passed all the filters described above and do not have
+subclass assigned.</span></p>
+
+<p class=MsoNormal><span lang=EN-GB>&nbsp;</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_frequency.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_frequency.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,87 +1,87 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><b><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>SHM
-frequency tab</span></u></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
-graphs give insight into the level of SHM. The data represented in these graphs
-can be downloaded in the download tab. <a name="OLE_LINK24"></a><a
-name="OLE_LINK23"></a><a name="OLE_LINK90"></a><a name="OLE_LINK89">More
-information on the values found in healthy individuals of different ages can be
-found in IJspeert and van Schouwenburg et al, PMID: 27799928. </a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Frequency
-scatter plot</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
-dot plot showing the percentage of SHM in each transcript divided into the
-different (sub)classes. </span><span lang=NL style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>In the graph each dot
-represents an individual transcript.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
-frequency by class</span></u></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
-bar graph showing the percentage of transcripts that contain 0%, 0-2%, 2-5%,
-5-10% 10-15%, 15-20% or more than 20% SHM for each subclass. </span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><b><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>SHM
+frequency tab</span></u></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
+graphs give insight into the level of SHM. The data represented in these graphs
+can be downloaded in the download tab. <a name="OLE_LINK24"></a><a
+name="OLE_LINK23"></a><a name="OLE_LINK90"></a><a name="OLE_LINK89">More
+information on the values found in healthy individuals of different ages can be
+found in IJspeert and van Schouwenburg et al, PMID: 27799928. </a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Frequency
+scatter plot</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
+dot plot showing the percentage of SHM in each transcript divided into the
+different (sub)classes. </span><span lang=NL style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>In the graph each dot
+represents an individual transcript.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
+frequency by class</span></u></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A
+bar graph showing the percentage of transcripts that contain 0%, 0-2%, 2-5%,
+5-10% 10-15%, 15-20% or more than 20% SHM for each subclass. </span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_overview.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_overview.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,332 +1,332 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Info
-table</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>This
-table contains information on different characteristics of SHM. For all
-characteristics information can be found for all sequences or only sequences of
-a certain (sub)class. All results are based on the sequences that passed the filter
-settings chosen on the start page of the SHM &amp; CSR pipeline and only
-include details on the analysed region as determined by the setting of the
-sequence starts at filter. All data in this table can be downloaded via the
-“downloads” tab.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
-frequency:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK83"></a><a
-name="OLE_LINK82"></a><a name="OLE_LINK81"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
-give information on the level of SHM. </span></a><a name="OLE_LINK22"></a><a
-name="OLE_LINK21"></a><a name="OLE_LINK20"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
-on the values found in healthy individuals of different ages can be found in </span></a><a
-name="OLE_LINK15"></a><a name="OLE_LINK14"></a><a name="OLE_LINK13"><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IJspeert
-and van Schouwenburg et al, PMID: 27799928</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
-of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:
-115%;font-family:"Times New Roman","serif"'> Shows the number of total
-mutations / the number of sequenced bases (the % of mutated bases).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Median
-number of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'> Shows the median % of
-SHM of all sequences.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Patterns
-of SHM:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK72"></a><a
-name="OLE_LINK71"></a><a name="OLE_LINK70"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
-give insights into the targeting and patterns of SHM. These values can give
-insight into the repair pathways used to repair the U:G mismatches introduced
-by AID. </span></a><a name="OLE_LINK40"></a><a name="OLE_LINK39"></a><a
-name="OLE_LINK38"></a><a name="OLE_LINK60"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
-on the values found in healthy individuals of different ages can be found in
-IJspeert and van Schouwenburg et al, PMID: 27799928</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Shows the number of transition mutations / the number of total mutations (the
-percentage of mutations that are transitions). Transition mutations are C&gt;T,
-T&gt;C, A&gt;G, G&gt;A. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transversions:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Shows the number of transversion mutations / the number of total mutations (the
-percentage of mutations that are transitions). Transversion mutations are
-C&gt;A, C&gt;G, T&gt;A, T&gt;G, A&gt;T, A&gt;C, G&gt;T, G&gt;C.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
-at GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK2"></a><a
-name="OLE_LINK1">Shows the number of transitions at GC locations (C&gt;T,
-G&gt;A) / the total number of mutations at GC locations (the percentage of
-mutations at GC locations that are transitions).</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
-of GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK7"></a><a
-name="OLE_LINK6"></a><a name="OLE_LINK3">Shows the number of mutations at GC
-locations / the total number of mutations (the percentage of total mutations
-that are at GC locations).</a> </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
-at AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of transitions at AT
-locations (T&gt;C, A&gt;G) / the total number of mutations at AT locations (the
-percentage of mutations at AT locations that are transitions).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
-of AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of mutations at AT
-locations / the total number of mutations (the percentage of total mutations
-that are at AT locations).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>RGYW:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-<a name="OLE_LINK28"></a><a name="OLE_LINK27"></a><a name="OLE_LINK26">Shows
-the number of mutations that are in a RGYW motive / The number of total mutations
-(the percentage of mutations that are in a RGYW motive). </a><a
-name="OLE_LINK62"></a><a name="OLE_LINK61">RGYW motives are known to be
-preferentially targeted by AID </a></span><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
-Y=pyrimidine, W = A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WRCY:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-<a name="OLE_LINK34"></a><a name="OLE_LINK33">Shows the number of mutations
-that are in a </a><a name="OLE_LINK32"></a><a name="OLE_LINK31"></a><a
-name="OLE_LINK30"></a><a name="OLE_LINK29">WRCY</a> motive / The number of
-total mutations (the percentage of mutations that are in a WRCY motive). WRCY
-motives are known to be preferentially targeted by AID </span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
-Y=pyrimidine, W = A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WA:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-<a name="OLE_LINK37"></a><a name="OLE_LINK36"></a><a name="OLE_LINK35">Shows
-the number of mutations that are in a WA motive / The number of total mutations
-(the percentage of mutations that are in a WA motive). It is described that
-polymerase eta preferentially makes errors at WA motives </a></span><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
-= A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>TW:</span></i><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-Shows the number of mutations that are in a TW motive / The number of total mutations
-(the percentage of mutations that are in a TW motive). It is described that
-polymerase eta preferentially makes errors at TW motives </span><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
-= A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
-selection:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
-values give insight into antigen selection. It has been described that during
-antigen selection, there is selection against replacement mutations in the FR
-regions as these can cause instability of the B-cell receptor. In contrast
-replacement mutations in the CDR regions are important for changing the
-affinity of the B-cell receptor and therefore there is selection for this type
-of mutations. Silent mutations do not alter the amino acid sequence and
-therefore do not play a role in selection. More information on the values found
-in healthy individuals of different ages can be found in IJspeert and van
-Schouwenburg et al, PMID: 27799928</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>FR
-R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK43"></a><a
-name="OLE_LINK42"></a><a name="OLE_LINK41">Shows the number of replacement
-mutations in the FR regions / The number of silent mutations in the FR regions
-(the number of replacement mutations in the FR regions divided by the number of
-silent mutations in the FR regions)</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>CDR
-R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of replacement
-mutations in the CDR regions / The number of silent mutations in the CDR
-regions (the number of replacement mutations in the CDR regions divided by the
-number of silent mutations in the CDR regions)</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
-of sequences nucleotides:</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
-values give information on the number of sequenced nucleotides.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
-in FR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> <a name="OLE_LINK46"></a><a
-name="OLE_LINK45"></a><a name="OLE_LINK44">Shows the number of sequences bases
-that are located in the FR regions / The total number of sequenced bases (the
-percentage of sequenced bases that are present in the FR regions).</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
-in CDR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'> Shows the number of sequenced bases
-that are located in the CDR regions / <a name="OLE_LINK48"></a><a
-name="OLE_LINK47">The total number of sequenced bases (the percentage of
-sequenced bases that are present in the CDR regions).</a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A:
-</span></i><a name="OLE_LINK51"></a><a name="OLE_LINK50"></a><a
-name="OLE_LINK49"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Shows the total number of sequenced
-adenines / The total number of sequenced bases (the percentage of sequenced
-bases that were adenines).</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>C:
-</span></i><a name="OLE_LINK53"></a><a name="OLE_LINK52"><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
-the total number of sequenced cytosines / The total number of sequenced bases
-(the percentage of sequenced bases that were cytosines).</span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>T:
-</span></i><a name="OLE_LINK57"></a><a name="OLE_LINK56"><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
-the total number of sequenced </span></a><a name="OLE_LINK55"></a><a
-name="OLE_LINK54"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>thymines</span></a><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
-/ The total number of sequenced bases (the percentage of sequenced bases that
-were thymines).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>G:
-</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Shows the total number of sequenced <a
-name="OLE_LINK59"></a><a name="OLE_LINK58">guanine</a>s / The total number of
-sequenced bases (the percentage of sequenced bases that were guanines).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK69"><b><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK75"></a><a
-name="OLE_LINK74"></a><a name="OLE_LINK73"><span lang=EN-GB style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs visualize
-information on the patterns and targeting of SHM and thereby give information
-into the repair pathways used to repair the U:G mismatches introduced by AID. The
-data represented in these graphs can be downloaded in the download tab. More
-information on the values found in healthy individuals of different ages can be
-found in IJspeert and van Schouwenburg et al, PMID: 27799928</span></a><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>.
-<a name="OLE_LINK85"></a><a name="OLE_LINK84"></a></span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Percentage
-of mutations in AID and pol eta motives</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
-<a name="OLE_LINK80"></a><a name="OLE_LINK79"></a><a name="OLE_LINK78">for each
-(sub)class </a>the percentage of mutations that are present in AID (RGYW or
-WRCY) or polymerase eta motives (WA or TW) in the different subclasses </span><span
-lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
-Y=pyrimidine, W = A or T).</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Relative
-mutation patterns</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
-for each (sub)class the distribution of mutations between mutations at AT
-locations and transitions or transversions at GC locations. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Absolute
-mutation patterns</span></u></p>
-
-<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualized
-for each (sub)class the percentage of sequenced AT and GC bases that are
-mutated. The mutations at GC bases are divided into transition and transversion
-mutations<a name="OLE_LINK77"></a><a name="OLE_LINK76">. </a></span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Info
+table</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>This
+table contains information on different characteristics of SHM. For all
+characteristics information can be found for all sequences or only sequences of
+a certain (sub)class. All results are based on the sequences that passed the filter
+settings chosen on the start page of the SHM &amp; CSR pipeline and only
+include details on the analysed region as determined by the setting of the
+sequence starts at filter. All data in this table can be downloaded via the
+“downloads” tab.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Mutation
+frequency:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK83"></a><a
+name="OLE_LINK82"></a><a name="OLE_LINK81"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
+give information on the level of SHM. </span></a><a name="OLE_LINK22"></a><a
+name="OLE_LINK21"></a><a name="OLE_LINK20"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
+on the values found in healthy individuals of different ages can be found in </span></a><a
+name="OLE_LINK15"></a><a name="OLE_LINK14"></a><a name="OLE_LINK13"><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>IJspeert
+and van Schouwenburg et al, PMID: 27799928</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
+of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:
+115%;font-family:"Times New Roman","serif"'> Shows the number of total
+mutations / the number of sequenced bases (the % of mutated bases).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Median
+number of mutations:</span></i><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'> Shows the median % of
+SHM of all sequences.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Patterns
+of SHM:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK72"></a><a
+name="OLE_LINK71"></a><a name="OLE_LINK70"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These values
+give insights into the targeting and patterns of SHM. These values can give
+insight into the repair pathways used to repair the U:G mismatches introduced
+by AID. </span></a><a name="OLE_LINK40"></a><a name="OLE_LINK39"></a><a
+name="OLE_LINK38"></a><a name="OLE_LINK60"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>More information
+on the values found in healthy individuals of different ages can be found in
+IJspeert and van Schouwenburg et al, PMID: 27799928</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Shows the number of transition mutations / the number of total mutations (the
+percentage of mutations that are transitions). Transition mutations are C&gt;T,
+T&gt;C, A&gt;G, G&gt;A. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transversions:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Shows the number of transversion mutations / the number of total mutations (the
+percentage of mutations that are transitions). Transversion mutations are
+C&gt;A, C&gt;G, T&gt;A, T&gt;G, A&gt;T, A&gt;C, G&gt;T, G&gt;C.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
+at GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK2"></a><a
+name="OLE_LINK1">Shows the number of transitions at GC locations (C&gt;T,
+G&gt;A) / the total number of mutations at GC locations (the percentage of
+mutations at GC locations that are transitions).</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
+of GC:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK7"></a><a
+name="OLE_LINK6"></a><a name="OLE_LINK3">Shows the number of mutations at GC
+locations / the total number of mutations (the percentage of total mutations
+that are at GC locations).</a> </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transitions
+at AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of transitions at AT
+locations (T&gt;C, A&gt;G) / the total number of mutations at AT locations (the
+percentage of mutations at AT locations that are transitions).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Targeting
+of AT:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of mutations at AT
+locations / the total number of mutations (the percentage of total mutations
+that are at AT locations).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>RGYW:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+<a name="OLE_LINK28"></a><a name="OLE_LINK27"></a><a name="OLE_LINK26">Shows
+the number of mutations that are in a RGYW motive / The number of total mutations
+(the percentage of mutations that are in a RGYW motive). </a><a
+name="OLE_LINK62"></a><a name="OLE_LINK61">RGYW motives are known to be
+preferentially targeted by AID </a></span><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
+Y=pyrimidine, W = A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WRCY:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+<a name="OLE_LINK34"></a><a name="OLE_LINK33">Shows the number of mutations
+that are in a </a><a name="OLE_LINK32"></a><a name="OLE_LINK31"></a><a
+name="OLE_LINK30"></a><a name="OLE_LINK29">WRCY</a> motive / The number of
+total mutations (the percentage of mutations that are in a WRCY motive). WRCY
+motives are known to be preferentially targeted by AID </span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
+Y=pyrimidine, W = A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>WA:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+<a name="OLE_LINK37"></a><a name="OLE_LINK36"></a><a name="OLE_LINK35">Shows
+the number of mutations that are in a WA motive / The number of total mutations
+(the percentage of mutations that are in a WA motive). It is described that
+polymerase eta preferentially makes errors at WA motives </a></span><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
+= A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>TW:</span></i><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+Shows the number of mutations that are in a TW motive / The number of total mutations
+(the percentage of mutations that are in a TW motive). It is described that
+polymerase eta preferentially makes errors at TW motives </span><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(W
+= A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
+selection:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
+values give insight into antigen selection. It has been described that during
+antigen selection, there is selection against replacement mutations in the FR
+regions as these can cause instability of the B-cell receptor. In contrast
+replacement mutations in the CDR regions are important for changing the
+affinity of the B-cell receptor and therefore there is selection for this type
+of mutations. Silent mutations do not alter the amino acid sequence and
+therefore do not play a role in selection. More information on the values found
+in healthy individuals of different ages can be found in IJspeert and van
+Schouwenburg et al, PMID: 27799928</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>FR
+R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK43"></a><a
+name="OLE_LINK42"></a><a name="OLE_LINK41">Shows the number of replacement
+mutations in the FR regions / The number of silent mutations in the FR regions
+(the number of replacement mutations in the FR regions divided by the number of
+silent mutations in the FR regions)</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>CDR
+R/S:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of replacement
+mutations in the CDR regions / The number of silent mutations in the CDR
+regions (the number of replacement mutations in the CDR regions divided by the
+number of silent mutations in the CDR regions)</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Number
+of sequences nucleotides:</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These
+values give information on the number of sequenced nucleotides.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
+in FR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> <a name="OLE_LINK46"></a><a
+name="OLE_LINK45"></a><a name="OLE_LINK44">Shows the number of sequences bases
+that are located in the FR regions / The total number of sequenced bases (the
+percentage of sequenced bases that are present in the FR regions).</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Nt
+in CDR:</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'> Shows the number of sequenced bases
+that are located in the CDR regions / <a name="OLE_LINK48"></a><a
+name="OLE_LINK47">The total number of sequenced bases (the percentage of
+sequenced bases that are present in the CDR regions).</a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>A:
+</span></i><a name="OLE_LINK51"></a><a name="OLE_LINK50"></a><a
+name="OLE_LINK49"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Shows the total number of sequenced
+adenines / The total number of sequenced bases (the percentage of sequenced
+bases that were adenines).</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>C:
+</span></i><a name="OLE_LINK53"></a><a name="OLE_LINK52"><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
+the total number of sequenced cytosines / The total number of sequenced bases
+(the percentage of sequenced bases that were cytosines).</span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>T:
+</span></i><a name="OLE_LINK57"></a><a name="OLE_LINK56"><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
+the total number of sequenced </span></a><a name="OLE_LINK55"></a><a
+name="OLE_LINK54"><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>thymines</span></a><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>
+/ The total number of sequenced bases (the percentage of sequenced bases that
+were thymines).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><i><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>G:
+</span></i><span lang=EN-GB style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Shows the total number of sequenced <a
+name="OLE_LINK59"></a><a name="OLE_LINK58">guanine</a>s / The total number of
+sequenced bases (the percentage of sequenced bases that were guanines).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK69"><b><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK75"></a><a
+name="OLE_LINK74"></a><a name="OLE_LINK73"><span lang=EN-GB style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs visualize
+information on the patterns and targeting of SHM and thereby give information
+into the repair pathways used to repair the U:G mismatches introduced by AID. The
+data represented in these graphs can be downloaded in the download tab. More
+information on the values found in healthy individuals of different ages can be
+found in IJspeert and van Schouwenburg et al, PMID: 27799928</span></a><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>.
+<a name="OLE_LINK85"></a><a name="OLE_LINK84"></a></span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Percentage
+of mutations in AID and pol eta motives</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
+<a name="OLE_LINK80"></a><a name="OLE_LINK79"></a><a name="OLE_LINK78">for each
+(sub)class </a>the percentage of mutations that are present in AID (RGYW or
+WRCY) or polymerase eta motives (WA or TW) in the different subclasses </span><span
+lang=EN-GB style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>(R=Purine,
+Y=pyrimidine, W = A or T).</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Relative
+mutation patterns</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualizes
+for each (sub)class the distribution of mutations between mutations at AT
+locations and transitions or transversions at GC locations. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=NL
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Absolute
+mutation patterns</span></u></p>
+
+<p class=MsoNormalCxSpLast style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Visualized
+for each (sub)class the percentage of sequenced AT and GC bases that are
+mutated. The mutations at GC bases are divided into transition and transversion
+mutations<a name="OLE_LINK77"></a><a name="OLE_LINK76">. </a></span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_selection.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_selection.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,128 +1,128 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
-@font-face
-	{font-family:UICTFontTextStyleBody;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-.MsoChpDefault
-	{font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>References</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:black'>Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying
-selection in high-throughput Immunoglobulin sequencing data sets. In<span
-class=apple-converted-space>&nbsp;</span><em>Nucleic Acids Research, 40 (17),
-pp. e134–e134.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><span
-lang=EN-GB><a href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:#303030'>doi:10.1093/nar/gks457</span></a></span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:black'>][</span><span lang=EN-GB><a
-href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
-color:#303030'>Link</span></a></span><span lang=EN-GB style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif";color:black'>]</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>AA
-mutation frequency</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>For
-each class, the frequency of replacement mutations at each amino acid position
-is shown, which is calculated by dividing the number of replacement mutations
-at a particular amino acid position/the number sequences that have an amino
-acid at that particular position. Since the length of the CDR1 and CDR2 region
-is not the same for every VH gene, some amino acids positions are absent.
-Therefore we calculate the frequency using the number of amino acids present at
-that that particular location. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
-selection (BASELINe)</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
-the results of the analysis of antigen selection as performed using BASELINe.
-Details on the analysis performed by BASELINe can be found in Yaari et al,
-PMID: 22641856. The settings used for the analysis are</span><span lang=EN-GB
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>:
-focused, SHM targeting model: human Tri-nucleotide, custom bounderies. The
-custom boundries are dependent on the ‘sequence starts at filter’. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>Leader:
-1:26:38:55:65:104:-</span></p>
-
-<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>FR1: 27:27:38:55:65:104:-</span></p>
-
-<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>CDR1:&nbsp;27:27:38:55:65:104:-</span></p>
-
-<p class=MsoNormalCxSpLast style='line-height:normal'><span lang=NL
-style='font-family:UICTFontTextStyleBody;color:black'>FR2:&nbsp;27:27:38:55:65:104:-</span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+@font-face
+	{font-family:UICTFontTextStyleBody;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+.MsoChpDefault
+	{font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>References</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:black'>Yaari, G. and Uduman, M. and Kleinstein, S. H. (2012). Quantifying
+selection in high-throughput Immunoglobulin sequencing data sets. In<span
+class=apple-converted-space>&nbsp;</span><em>Nucleic Acids Research, 40 (17),
+pp. e134–e134.</em><span class=apple-converted-space><i>&nbsp;</i></span>[</span><span
+lang=EN-GB><a href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:#303030'>doi:10.1093/nar/gks457</span></a></span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:black'>][</span><span lang=EN-GB><a
+href="http://dx.doi.org/10.1093/nar/gks457" target="_blank"><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif";
+color:#303030'>Link</span></a></span><span lang=EN-GB style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif";color:black'>]</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>AA
+mutation frequency</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>For
+each class, the frequency of replacement mutations at each amino acid position
+is shown, which is calculated by dividing the number of replacement mutations
+at a particular amino acid position/the number sequences that have an amino
+acid at that particular position. Since the length of the CDR1 and CDR2 region
+is not the same for every VH gene, some amino acids positions are absent.
+Therefore we calculate the frequency using the number of amino acids present at
+that that particular location. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Antigen
+selection (BASELINe)</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Shows
+the results of the analysis of antigen selection as performed using BASELINe.
+Details on the analysis performed by BASELINe can be found in Yaari et al,
+PMID: 22641856. The settings used for the analysis are</span><span lang=EN-GB
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>:
+focused, SHM targeting model: human Tri-nucleotide, custom bounderies. The
+custom boundries are dependent on the ‘sequence starts at filter’. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>Leader:
+1:26:38:55:65:104:-</span></p>
+
+<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>FR1: 27:27:38:55:65:104:-</span></p>
+
+<p class=MsoNormalCxSpMiddle style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>CDR1:&nbsp;27:27:38:55:65:104:-</span></p>
+
+<p class=MsoNormalCxSpLast style='line-height:normal'><span lang=NL
+style='font-family:UICTFontTextStyleBody;color:black'>FR2:&nbsp;27:27:38:55:65:104:-</span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>
--- a/shm_transition.htm	Thu Dec 07 03:44:38 2017 -0500
+++ b/shm_transition.htm	Tue Jan 29 03:54:09 2019 -0500
@@ -1,120 +1,120 @@
-<html>
-
-<head>
-<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
-<meta name=Generator content="Microsoft Word 14 (filtered)">
-<style>
-<!--
- /* Font Definitions */
- @font-face
-	{font-family:Calibri;
-	panose-1:2 15 5 2 2 2 4 3 2 4;}
- /* Style Definitions */
- p.MsoNormal, li.MsoNormal, div.MsoNormal
-	{margin-top:0in;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:11.0pt;
-	font-family:"Calibri","sans-serif";}
-a:link, span.MsoHyperlink
-	{color:blue;
-	text-decoration:underline;}
-a:visited, span.MsoHyperlinkFollowed
-	{color:purple;
-	text-decoration:underline;}
-p.msochpdefault, li.msochpdefault, div.msochpdefault
-	{mso-style-name:msochpdefault;
-	margin-right:0in;
-	margin-left:0in;
-	font-size:12.0pt;
-	font-family:"Calibri","sans-serif";}
-p.msopapdefault, li.msopapdefault, div.msopapdefault
-	{mso-style-name:msopapdefault;
-	margin-right:0in;
-	margin-bottom:10.0pt;
-	margin-left:0in;
-	line-height:115%;
-	font-size:12.0pt;
-	font-family:"Times New Roman","serif";}
-span.apple-converted-space
-	{mso-style-name:apple-converted-space;}
-.MsoChpDefault
-	{font-size:10.0pt;
-	font-family:"Calibri","sans-serif";}
-.MsoPapDefault
-	{margin-bottom:10.0pt;
-	line-height:115%;}
-@page WordSection1
-	{size:8.5in 11.0in;
-	margin:1.0in 1.0in 1.0in 1.0in;}
-div.WordSection1
-	{page:WordSection1;}
--->
-</style>
-
-</head>
-
-<body lang=EN-US link=blue vlink=purple>
-
-<div class=WordSection1>
-
-<p class=MsoNormalCxSpFirst style='text-align:justify'><span style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs and
-tables give insight into the targeting and patterns of SHM. This can give
-insight into the DNA repair pathways used to solve the U:G mismatches
-introduced by AID. More information on the values found in healthy individuals
-of different ages can be found in IJspeert and van Schouwenburg et al, PMID:
-27799928.</span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs
-</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK93"></a><a
-name="OLE_LINK92"></a><a name="OLE_LINK91"><u><span style='font-size:12.0pt;
-line-height:115%;font-family:"Times New Roman","serif"'>Heatmap transition
-information</span></u></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK98"></a><a
-name="OLE_LINK97"><span style='font-size:12.0pt;line-height:115%;font-family:
-"Times New Roman","serif"'>Heatmaps visualizing for each subclass the frequency
-of all possible substitutions. On the x-axes the original base is shown, while
-the y-axes shows the new base. The darker the shade of blue, the more frequent
-this type of substitution is occurring.  </span></a></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bargraph
-transition information</span></u></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bar graph
-visualizing for each original base the distribution of substitutions into the other
-bases. A graph is included for each (sub)class. </span></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Tables</span></b></p>
-
-<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
-12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transition
-tables are shown for each (sub)class. All the original bases are listed
-horizontally, while the new bases are listed vertically. </span></p>
-
-<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
-font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
-Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
-Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
-style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
-of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
-Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
-href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
-style='color:windowtext'>Link</span></a>]</span></p>
-
-</div>
-
-</body>
-
-</html>
+<html>
+
+<head>
+<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
+<meta name=Generator content="Microsoft Word 14 (filtered)">
+<style>
+<!--
+ /* Font Definitions */
+ @font-face
+	{font-family:Calibri;
+	panose-1:2 15 5 2 2 2 4 3 2 4;}
+ /* Style Definitions */
+ p.MsoNormal, li.MsoNormal, div.MsoNormal
+	{margin-top:0in;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:11.0pt;
+	font-family:"Calibri","sans-serif";}
+a:link, span.MsoHyperlink
+	{color:blue;
+	text-decoration:underline;}
+a:visited, span.MsoHyperlinkFollowed
+	{color:purple;
+	text-decoration:underline;}
+p.msochpdefault, li.msochpdefault, div.msochpdefault
+	{mso-style-name:msochpdefault;
+	margin-right:0in;
+	margin-left:0in;
+	font-size:12.0pt;
+	font-family:"Calibri","sans-serif";}
+p.msopapdefault, li.msopapdefault, div.msopapdefault
+	{mso-style-name:msopapdefault;
+	margin-right:0in;
+	margin-bottom:10.0pt;
+	margin-left:0in;
+	line-height:115%;
+	font-size:12.0pt;
+	font-family:"Times New Roman","serif";}
+span.apple-converted-space
+	{mso-style-name:apple-converted-space;}
+.MsoChpDefault
+	{font-size:10.0pt;
+	font-family:"Calibri","sans-serif";}
+.MsoPapDefault
+	{margin-bottom:10.0pt;
+	line-height:115%;}
+@page WordSection1
+	{size:8.5in 11.0in;
+	margin:1.0in 1.0in 1.0in 1.0in;}
+div.WordSection1
+	{page:WordSection1;}
+-->
+</style>
+
+</head>
+
+<body lang=EN-US link=blue vlink=purple>
+
+<div class=WordSection1>
+
+<p class=MsoNormalCxSpFirst style='text-align:justify'><span style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>These graphs and
+tables give insight into the targeting and patterns of SHM. This can give
+insight into the DNA repair pathways used to solve the U:G mismatches
+introduced by AID. More information on the values found in healthy individuals
+of different ages can be found in IJspeert and van Schouwenburg et al, PMID:
+27799928.</span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Graphs
+</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK93"></a><a
+name="OLE_LINK92"></a><a name="OLE_LINK91"><u><span style='font-size:12.0pt;
+line-height:115%;font-family:"Times New Roman","serif"'>Heatmap transition
+information</span></u></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><a name="OLE_LINK98"></a><a
+name="OLE_LINK97"><span style='font-size:12.0pt;line-height:115%;font-family:
+"Times New Roman","serif"'>Heatmaps visualizing for each subclass the frequency
+of all possible substitutions. On the x-axes the original base is shown, while
+the y-axes shows the new base. The darker the shade of blue, the more frequent
+this type of substitution is occurring.  </span></a></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><u><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bargraph
+transition information</span></u></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Bar graph
+visualizing for each original base the distribution of substitutions into the other
+bases. A graph is included for each (sub)class. </span></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><b><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Tables</span></b></p>
+
+<p class=MsoNormalCxSpMiddle style='text-align:justify'><span style='font-size:
+12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Transition
+tables are shown for each (sub)class. All the original bases are listed
+horizontally, while the new bases are listed vertically. </span></p>
+
+<p class=MsoNormal><span lang=NL style='font-size:12.0pt;line-height:115%;
+font-family:"Times New Roman","serif"'>Hanna IJspeert, Pauline A. van
+Schouwenburg, David van Zessen, Ingrid Pico-Knijnenburg, Gertjan J. Driessen,
+Andrew P. Stubbs, and Mirjam van der Burg (2016). </span><span
+style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman","serif"'>Evaluation
+of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and
+Adults. In <i>Frontiers in Immunolog, 7, pp. e410-410. </i>[<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>doi:10.3389/fimmu.2016.00410</span></a>][<a
+href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066086/"><span
+style='color:windowtext'>Link</span></a>]</span></p>
+
+</div>
+
+</body>
+
+</html>