comparison srf2fastq/io_lib-1.12.2/io_lib/jenkins_lookup3.c @ 0:d901c9f41a6a default tip

Migrated tool version 1.0.1 from old tool shed archive to new tool shed repository
author dawe
date Tue, 07 Jun 2011 17:48:05 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:d901c9f41a6a
1 /*
2 -------------------------------------------------------------------------------
3 lookup3.c, by Bob Jenkins, May 2006, Public Domain.
4
5 These are functions for producing 32-bit hashes for hash table lookup.
6 hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
7 are externally useful functions. Routines to test the hash are included
8 if SELF_TEST is defined. You can use this free for any purpose. It's in
9 the public domain. It has no warranty.
10
11 You probably want to use hashlittle(). hashlittle() and hashbig()
12 hash byte arrays. hashlittle() is is faster than hashbig() on
13 little-endian machines. Intel and AMD are little-endian machines.
14 On second thought, you probably want hashlittle2(), which is identical to
15 hashlittle() except it returns two 32-bit hashes for the price of one.
16 You could implement hashbig2() if you wanted but I haven't bothered here.
17
18 If you want to find a hash of, say, exactly 7 integers, do
19 a = i1; b = i2; c = i3;
20 mix(a,b,c);
21 a += i4; b += i5; c += i6;
22 mix(a,b,c);
23 a += i7;
24 final(a,b,c);
25 then use c as the hash value. If you have a variable length array of
26 4-byte integers to hash, use hashword(). If you have a byte array (like
27 a character string), use hashlittle(). If you have several byte arrays, or
28 a mix of things, see the comments above hashlittle().
29
30 Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
31 then mix those integers. This is fast (you can do a lot more thorough
32 mixing with 12*3 instructions on 3 integers than you can with 3 instructions
33 on 1 byte), but shoehorning those bytes into integers efficiently is messy.
34 -------------------------------------------------------------------------------
35 */
36 /* #define SELF_TEST 1 */
37
38 #include <stdio.h> /* defines printf for tests */
39 #include <time.h> /* defines time_t for timings in the test */
40 #include <inttypes.h> /* defines uint32_t etc */
41 #include <sys/param.h> /* attempt to define endianness */
42 #ifdef linux
43 # include <endian.h> /* attempt to define endianness */
44 #endif
45
46 #include "io_lib/jenkins_lookup3.h"
47
48 /*
49 * My best guess at if you are big-endian or little-endian. This may
50 * need adjustment.
51 */
52 #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
53 __BYTE_ORDER == __LITTLE_ENDIAN) || \
54 (defined(i386) || defined(__i386__) || defined(__i486__) || \
55 defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
56 # define HASH_LITTLE_ENDIAN 1
57 # define HASH_BIG_ENDIAN 0
58 #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
59 __BYTE_ORDER == __BIG_ENDIAN) || \
60 (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
61 # define HASH_LITTLE_ENDIAN 0
62 # define HASH_BIG_ENDIAN 1
63 #else
64 # define HASH_LITTLE_ENDIAN 0
65 # define HASH_BIG_ENDIAN 0
66 #endif
67
68 #define hashsize(n) ((uint32_t)1<<(n))
69 #define hashmask(n) (hashsize(n)-1)
70 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
71
72 /*
73 -------------------------------------------------------------------------------
74 mix -- mix 3 32-bit values reversibly.
75
76 This is reversible, so any information in (a,b,c) before mix() is
77 still in (a,b,c) after mix().
78
79 If four pairs of (a,b,c) inputs are run through mix(), or through
80 mix() in reverse, there are at least 32 bits of the output that
81 are sometimes the same for one pair and different for another pair.
82 This was tested for:
83 * pairs that differed by one bit, by two bits, in any combination
84 of top bits of (a,b,c), or in any combination of bottom bits of
85 (a,b,c).
86 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
87 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
88 is commonly produced by subtraction) look like a single 1-bit
89 difference.
90 * the base values were pseudorandom, all zero but one bit set, or
91 all zero plus a counter that starts at zero.
92
93 Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
94 satisfy this are
95 4 6 8 16 19 4
96 9 15 3 18 27 15
97 14 9 3 7 17 3
98 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
99 for "differ" defined as + with a one-bit base and a two-bit delta. I
100 used http://burtleburtle.net/bob/hash/avalanche.html to choose
101 the operations, constants, and arrangements of the variables.
102
103 This does not achieve avalanche. There are input bits of (a,b,c)
104 that fail to affect some output bits of (a,b,c), especially of a. The
105 most thoroughly mixed value is c, but it doesn't really even achieve
106 avalanche in c.
107
108 This allows some parallelism. Read-after-writes are good at doubling
109 the number of bits affected, so the goal of mixing pulls in the opposite
110 direction as the goal of parallelism. I did what I could. Rotates
111 seem to cost as much as shifts on every machine I could lay my hands
112 on, and rotates are much kinder to the top and bottom bits, so I used
113 rotates.
114 -------------------------------------------------------------------------------
115 */
116 #define mix(a,b,c) \
117 { \
118 a -= c; a ^= rot(c, 4); c += b; \
119 b -= a; b ^= rot(a, 6); a += c; \
120 c -= b; c ^= rot(b, 8); b += a; \
121 a -= c; a ^= rot(c,16); c += b; \
122 b -= a; b ^= rot(a,19); a += c; \
123 c -= b; c ^= rot(b, 4); b += a; \
124 }
125
126 /*
127 -------------------------------------------------------------------------------
128 final -- final mixing of 3 32-bit values (a,b,c) into c
129
130 Pairs of (a,b,c) values differing in only a few bits will usually
131 produce values of c that look totally different. This was tested for
132 * pairs that differed by one bit, by two bits, in any combination
133 of top bits of (a,b,c), or in any combination of bottom bits of
134 (a,b,c).
135 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
136 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
137 is commonly produced by subtraction) look like a single 1-bit
138 difference.
139 * the base values were pseudorandom, all zero but one bit set, or
140 all zero plus a counter that starts at zero.
141
142 These constants passed:
143 14 11 25 16 4 14 24
144 12 14 25 16 4 14 24
145 and these came close:
146 4 8 15 26 3 22 24
147 10 8 15 26 3 22 24
148 11 8 15 26 3 22 24
149 -------------------------------------------------------------------------------
150 */
151 #define final(a,b,c) \
152 { \
153 c ^= b; c -= rot(b,14); \
154 a ^= c; a -= rot(c,11); \
155 b ^= a; b -= rot(a,25); \
156 c ^= b; c -= rot(b,16); \
157 a ^= c; a -= rot(c,4); \
158 b ^= a; b -= rot(a,14); \
159 c ^= b; c -= rot(b,24); \
160 }
161
162 /*
163 --------------------------------------------------------------------
164 This works on all machines. To be useful, it requires
165 -- that the key be an array of uint32_t's, and
166 -- that the length be the number of uint32_t's in the key
167
168 The function hashword() is identical to hashlittle() on little-endian
169 machines, and identical to hashbig() on big-endian machines,
170 except that the length has to be measured in uint32_ts rather than in
171 bytes. hashlittle() is more complicated than hashword() only because
172 hashlittle() has to dance around fitting the key bytes into registers.
173 --------------------------------------------------------------------
174 */
175 static uint32_t hashword(
176 const uint32_t *k, /* the key, an array of uint32_t values */
177 size_t length, /* the length of the key, in uint32_ts */
178 uint32_t initval) /* the previous hash, or an arbitrary value */
179 {
180 uint32_t a,b,c;
181
182 /* Set up the internal state */
183 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
184
185 /*------------------------------------------------- handle most of the key */
186 while (length > 3)
187 {
188 a += k[0];
189 b += k[1];
190 c += k[2];
191 mix(a,b,c);
192 length -= 3;
193 k += 3;
194 }
195
196 /*------------------------------------------- handle the last 3 uint32_t's */
197 switch(length) /* all the case statements fall through */
198 {
199 case 3 : c+=k[2];
200 case 2 : b+=k[1];
201 case 1 : a+=k[0];
202 final(a,b,c);
203 case 0: /* case 0: nothing left to add */
204 break;
205 }
206 /*------------------------------------------------------ report the result */
207 return c;
208 }
209
210
211 /*
212 --------------------------------------------------------------------
213 hashword2() -- same as hashword(), but take two seeds and return two
214 32-bit values. pc and pb must both be nonnull, and *pc and *pb must
215 both be initialized with seeds. If you pass in (*pb)==0, the output
216 (*pc) will be the same as the return value from hashword().
217 --------------------------------------------------------------------
218 */
219 static void hashword2 (
220 const uint32_t *k, /* the key, an array of uint32_t values */
221 size_t length, /* the length of the key, in uint32_ts */
222 uint32_t *pc, /* IN: seed OUT: primary hash value */
223 uint32_t *pb) /* IN: more seed OUT: secondary hash value */
224 {
225 uint32_t a,b,c;
226
227 /* Set up the internal state */
228 a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
229 c += *pb;
230
231 /*------------------------------------------------- handle most of the key */
232 while (length > 3)
233 {
234 a += k[0];
235 b += k[1];
236 c += k[2];
237 mix(a,b,c);
238 length -= 3;
239 k += 3;
240 }
241
242 /*------------------------------------------- handle the last 3 uint32_t's */
243 switch(length) /* all the case statements fall through */
244 {
245 case 3 : c+=k[2];
246 case 2 : b+=k[1];
247 case 1 : a+=k[0];
248 final(a,b,c);
249 case 0: /* case 0: nothing left to add */
250 break;
251 }
252 /*------------------------------------------------------ report the result */
253 *pc=c; *pb=b;
254 }
255
256
257 /*
258 -------------------------------------------------------------------------------
259 hashlittle() -- hash a variable-length key into a 32-bit value
260 k : the key (the unaligned variable-length array of bytes)
261 length : the length of the key, counting by bytes
262 initval : can be any 4-byte value
263 Returns a 32-bit value. Every bit of the key affects every bit of
264 the return value. Two keys differing by one or two bits will have
265 totally different hash values.
266
267 The best hash table sizes are powers of 2. There is no need to do
268 mod a prime (mod is sooo slow!). If you need less than 32 bits,
269 use a bitmask. For example, if you need only 10 bits, do
270 h = (h & hashmask(10));
271 In which case, the hash table should have hashsize(10) elements.
272
273 If you are hashing n strings (uint8_t **)k, do it like this:
274 for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
275
276 By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
277 code any way you wish, private, educational, or commercial. It's free.
278
279 Use for hash table lookup, or anything where one collision in 2^^32 is
280 acceptable. Do NOT use for cryptographic purposes.
281 -------------------------------------------------------------------------------
282 */
283
284 static uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
285 {
286 uint32_t a,b,c; /* internal state */
287 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
288
289 /* Set up the internal state */
290 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
291
292 u.ptr = key;
293 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
294 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
295 #ifdef VALGRIND
296 const uint8_t *k8;
297 #endif
298
299 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
300 while (length > 12)
301 {
302 a += k[0];
303 b += k[1];
304 c += k[2];
305 mix(a,b,c);
306 length -= 12;
307 k += 3;
308 }
309
310 /*----------------------------- handle the last (probably partial) block */
311 /*
312 * "k[2]&0xffffff" actually reads beyond the end of the string, but
313 * then masks off the part it's not allowed to read. Because the
314 * string is aligned, the masked-off tail is in the same word as the
315 * rest of the string. Every machine with memory protection I've seen
316 * does it on word boundaries, so is OK with this. But VALGRIND will
317 * still catch it and complain. The masking trick does make the hash
318 * noticably faster for short strings (like English words).
319 */
320 #ifndef VALGRIND
321
322 switch(length)
323 {
324 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
325 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
326 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
327 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
328 case 8 : b+=k[1]; a+=k[0]; break;
329 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
330 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
331 case 5 : b+=k[1]&0xff; a+=k[0]; break;
332 case 4 : a+=k[0]; break;
333 case 3 : a+=k[0]&0xffffff; break;
334 case 2 : a+=k[0]&0xffff; break;
335 case 1 : a+=k[0]&0xff; break;
336 case 0 : return c; /* zero length strings require no mixing */
337 }
338
339 #else /* make valgrind happy */
340
341 k8 = (const uint8_t *)k;
342 switch(length)
343 {
344 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
345 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
346 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
347 case 9 : c+=k8[8]; /* fall through */
348 case 8 : b+=k[1]; a+=k[0]; break;
349 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
350 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
351 case 5 : b+=k8[4]; /* fall through */
352 case 4 : a+=k[0]; break;
353 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
354 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
355 case 1 : a+=k8[0]; break;
356 case 0 : return c;
357 }
358
359 #endif /* !valgrind */
360
361 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
362 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
363 const uint8_t *k8;
364
365 /*--------------- all but last block: aligned reads and different mixing */
366 while (length > 12)
367 {
368 a += k[0] + (((uint32_t)k[1])<<16);
369 b += k[2] + (((uint32_t)k[3])<<16);
370 c += k[4] + (((uint32_t)k[5])<<16);
371 mix(a,b,c);
372 length -= 12;
373 k += 6;
374 }
375
376 /*----------------------------- handle the last (probably partial) block */
377 k8 = (const uint8_t *)k;
378 switch(length)
379 {
380 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
381 b+=k[2]+(((uint32_t)k[3])<<16);
382 a+=k[0]+(((uint32_t)k[1])<<16);
383 break;
384 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
385 case 10: c+=k[4];
386 b+=k[2]+(((uint32_t)k[3])<<16);
387 a+=k[0]+(((uint32_t)k[1])<<16);
388 break;
389 case 9 : c+=k8[8]; /* fall through */
390 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
391 a+=k[0]+(((uint32_t)k[1])<<16);
392 break;
393 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
394 case 6 : b+=k[2];
395 a+=k[0]+(((uint32_t)k[1])<<16);
396 break;
397 case 5 : b+=k8[4]; /* fall through */
398 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
399 break;
400 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
401 case 2 : a+=k[0];
402 break;
403 case 1 : a+=k8[0];
404 break;
405 case 0 : return c; /* zero length requires no mixing */
406 }
407
408 } else { /* need to read the key one byte at a time */
409 const uint8_t *k = (const uint8_t *)key;
410
411 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
412 while (length > 12)
413 {
414 a += k[0];
415 a += ((uint32_t)k[1])<<8;
416 a += ((uint32_t)k[2])<<16;
417 a += ((uint32_t)k[3])<<24;
418 b += k[4];
419 b += ((uint32_t)k[5])<<8;
420 b += ((uint32_t)k[6])<<16;
421 b += ((uint32_t)k[7])<<24;
422 c += k[8];
423 c += ((uint32_t)k[9])<<8;
424 c += ((uint32_t)k[10])<<16;
425 c += ((uint32_t)k[11])<<24;
426 mix(a,b,c);
427 length -= 12;
428 k += 12;
429 }
430
431 /*-------------------------------- last block: affect all 32 bits of (c) */
432 switch(length) /* all the case statements fall through */
433 {
434 case 12: c+=((uint32_t)k[11])<<24;
435 case 11: c+=((uint32_t)k[10])<<16;
436 case 10: c+=((uint32_t)k[9])<<8;
437 case 9 : c+=k[8];
438 case 8 : b+=((uint32_t)k[7])<<24;
439 case 7 : b+=((uint32_t)k[6])<<16;
440 case 6 : b+=((uint32_t)k[5])<<8;
441 case 5 : b+=k[4];
442 case 4 : a+=((uint32_t)k[3])<<24;
443 case 3 : a+=((uint32_t)k[2])<<16;
444 case 2 : a+=((uint32_t)k[1])<<8;
445 case 1 : a+=k[0];
446 break;
447 case 0 : return c;
448 }
449 }
450
451 final(a,b,c);
452 return c;
453 }
454
455
456 /*
457 * hashlittle2: return 2 32-bit hash values
458 *
459 * This is identical to hashlittle(), except it returns two 32-bit hash
460 * values instead of just one. This is good enough for hash table
461 * lookup with 2^^64 buckets, or if you want a second hash if you're not
462 * happy with the first, or if you want a probably-unique 64-bit ID for
463 * the key. *pc is better mixed than *pb, so use *pc first. If you want
464 * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
465 */
466 void HashJenkins3(
467 const void *key, /* the key to hash */
468 size_t length, /* length of the key */
469 uint32_t *pc, /* IN: primary initval, OUT: primary hash */
470 uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
471 {
472 uint32_t a,b,c; /* internal state */
473 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
474
475 /* Set up the internal state */
476 a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
477 c += *pb;
478
479 u.ptr = key;
480 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
481 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
482 #ifdef VALGRIND
483 const uint8_t *k8;
484 #endif
485
486 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
487 while (length > 12)
488 {
489 a += k[0];
490 b += k[1];
491 c += k[2];
492 mix(a,b,c);
493 length -= 12;
494 k += 3;
495 }
496
497 /*----------------------------- handle the last (probably partial) block */
498 /*
499 * "k[2]&0xffffff" actually reads beyond the end of the string, but
500 * then masks off the part it's not allowed to read. Because the
501 * string is aligned, the masked-off tail is in the same word as the
502 * rest of the string. Every machine with memory protection I've seen
503 * does it on word boundaries, so is OK with this. But VALGRIND will
504 * still catch it and complain. The masking trick does make the hash
505 * noticably faster for short strings (like English words).
506 */
507 #ifndef VALGRIND
508
509 switch(length)
510 {
511 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
512 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
513 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
514 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
515 case 8 : b+=k[1]; a+=k[0]; break;
516 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
517 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
518 case 5 : b+=k[1]&0xff; a+=k[0]; break;
519 case 4 : a+=k[0]; break;
520 case 3 : a+=k[0]&0xffffff; break;
521 case 2 : a+=k[0]&0xffff; break;
522 case 1 : a+=k[0]&0xff; break;
523 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
524 }
525
526 #else /* make valgrind happy */
527
528 k8 = (const uint8_t *)k;
529 switch(length)
530 {
531 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
532 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
533 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
534 case 9 : c+=k8[8]; /* fall through */
535 case 8 : b+=k[1]; a+=k[0]; break;
536 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
537 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
538 case 5 : b+=k8[4]; /* fall through */
539 case 4 : a+=k[0]; break;
540 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
541 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
542 case 1 : a+=k8[0]; break;
543 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
544 }
545
546 #endif /* !valgrind */
547
548 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
549 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
550 const uint8_t *k8;
551
552 /*--------------- all but last block: aligned reads and different mixing */
553 while (length > 12)
554 {
555 a += k[0] + (((uint32_t)k[1])<<16);
556 b += k[2] + (((uint32_t)k[3])<<16);
557 c += k[4] + (((uint32_t)k[5])<<16);
558 mix(a,b,c);
559 length -= 12;
560 k += 6;
561 }
562
563 /*----------------------------- handle the last (probably partial) block */
564 k8 = (const uint8_t *)k;
565 switch(length)
566 {
567 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
568 b+=k[2]+(((uint32_t)k[3])<<16);
569 a+=k[0]+(((uint32_t)k[1])<<16);
570 break;
571 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
572 case 10: c+=k[4];
573 b+=k[2]+(((uint32_t)k[3])<<16);
574 a+=k[0]+(((uint32_t)k[1])<<16);
575 break;
576 case 9 : c+=k8[8]; /* fall through */
577 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
578 a+=k[0]+(((uint32_t)k[1])<<16);
579 break;
580 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
581 case 6 : b+=k[2];
582 a+=k[0]+(((uint32_t)k[1])<<16);
583 break;
584 case 5 : b+=k8[4]; /* fall through */
585 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
586 break;
587 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
588 case 2 : a+=k[0];
589 break;
590 case 1 : a+=k8[0];
591 break;
592 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
593 }
594
595 } else { /* need to read the key one byte at a time */
596 const uint8_t *k = (const uint8_t *)key;
597
598 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
599 while (length > 12)
600 {
601 a += k[0];
602 a += ((uint32_t)k[1])<<8;
603 a += ((uint32_t)k[2])<<16;
604 a += ((uint32_t)k[3])<<24;
605 b += k[4];
606 b += ((uint32_t)k[5])<<8;
607 b += ((uint32_t)k[6])<<16;
608 b += ((uint32_t)k[7])<<24;
609 c += k[8];
610 c += ((uint32_t)k[9])<<8;
611 c += ((uint32_t)k[10])<<16;
612 c += ((uint32_t)k[11])<<24;
613 mix(a,b,c);
614 length -= 12;
615 k += 12;
616 }
617
618 /*-------------------------------- last block: affect all 32 bits of (c) */
619 switch(length) /* all the case statements fall through */
620 {
621 case 12: c+=((uint32_t)k[11])<<24;
622 case 11: c+=((uint32_t)k[10])<<16;
623 case 10: c+=((uint32_t)k[9])<<8;
624 case 9 : c+=k[8];
625 case 8 : b+=((uint32_t)k[7])<<24;
626 case 7 : b+=((uint32_t)k[6])<<16;
627 case 6 : b+=((uint32_t)k[5])<<8;
628 case 5 : b+=k[4];
629 case 4 : a+=((uint32_t)k[3])<<24;
630 case 3 : a+=((uint32_t)k[2])<<16;
631 case 2 : a+=((uint32_t)k[1])<<8;
632 case 1 : a+=k[0];
633 break;
634 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
635 }
636 }
637
638 final(a,b,c);
639 *pc=c; *pb=b;
640 }
641
642
643
644 /*
645 * hashbig():
646 * This is the same as hashword() on big-endian machines. It is different
647 * from hashlittle() on all machines. hashbig() takes advantage of
648 * big-endian byte ordering.
649 */
650 static uint32_t hashbig( const void *key, size_t length, uint32_t initval)
651 {
652 uint32_t a,b,c;
653 union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
654
655 /* Set up the internal state */
656 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
657
658 u.ptr = key;
659 if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
660 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
661 #ifdef VALGRIND
662 const uint8_t *k8;
663 #endif
664
665 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
666 while (length > 12)
667 {
668 a += k[0];
669 b += k[1];
670 c += k[2];
671 mix(a,b,c);
672 length -= 12;
673 k += 3;
674 }
675
676 /*----------------------------- handle the last (probably partial) block */
677 /*
678 * "k[2]<<8" actually reads beyond the end of the string, but
679 * then shifts out the part it's not allowed to read. Because the
680 * string is aligned, the illegal read is in the same word as the
681 * rest of the string. Every machine with memory protection I've seen
682 * does it on word boundaries, so is OK with this. But VALGRIND will
683 * still catch it and complain. The masking trick does make the hash
684 * noticably faster for short strings (like English words).
685 */
686 #ifndef VALGRIND
687
688 switch(length)
689 {
690 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
691 case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
692 case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
693 case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
694 case 8 : b+=k[1]; a+=k[0]; break;
695 case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
696 case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
697 case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
698 case 4 : a+=k[0]; break;
699 case 3 : a+=k[0]&0xffffff00; break;
700 case 2 : a+=k[0]&0xffff0000; break;
701 case 1 : a+=k[0]&0xff000000; break;
702 case 0 : return c; /* zero length strings require no mixing */
703 }
704
705 #else /* make valgrind happy */
706
707 k8 = (const uint8_t *)k;
708 switch(length) /* all the case statements fall through */
709 {
710 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
711 case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
712 case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
713 case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
714 case 8 : b+=k[1]; a+=k[0]; break;
715 case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
716 case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
717 case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
718 case 4 : a+=k[0]; break;
719 case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
720 case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
721 case 1 : a+=((uint32_t)k8[0])<<24; break;
722 case 0 : return c;
723 }
724
725 #endif /* !VALGRIND */
726
727 } else { /* need to read the key one byte at a time */
728 const uint8_t *k = (const uint8_t *)key;
729
730 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
731 while (length > 12)
732 {
733 a += ((uint32_t)k[0])<<24;
734 a += ((uint32_t)k[1])<<16;
735 a += ((uint32_t)k[2])<<8;
736 a += ((uint32_t)k[3]);
737 b += ((uint32_t)k[4])<<24;
738 b += ((uint32_t)k[5])<<16;
739 b += ((uint32_t)k[6])<<8;
740 b += ((uint32_t)k[7]);
741 c += ((uint32_t)k[8])<<24;
742 c += ((uint32_t)k[9])<<16;
743 c += ((uint32_t)k[10])<<8;
744 c += ((uint32_t)k[11]);
745 mix(a,b,c);
746 length -= 12;
747 k += 12;
748 }
749
750 /*-------------------------------- last block: affect all 32 bits of (c) */
751 switch(length) /* all the case statements fall through */
752 {
753 case 12: c+=k[11];
754 case 11: c+=((uint32_t)k[10])<<8;
755 case 10: c+=((uint32_t)k[9])<<16;
756 case 9 : c+=((uint32_t)k[8])<<24;
757 case 8 : b+=k[7];
758 case 7 : b+=((uint32_t)k[6])<<8;
759 case 6 : b+=((uint32_t)k[5])<<16;
760 case 5 : b+=((uint32_t)k[4])<<24;
761 case 4 : a+=k[3];
762 case 3 : a+=((uint32_t)k[2])<<8;
763 case 2 : a+=((uint32_t)k[1])<<16;
764 case 1 : a+=((uint32_t)k[0])<<24;
765 break;
766 case 0 : return c;
767 }
768 }
769
770 final(a,b,c);
771 return c;
772 }
773
774
775 #ifdef SELF_TEST
776
777 /* used for timings */
778 void driver1()
779 {
780 uint8_t buf[256];
781 uint32_t i;
782 uint32_t h=0;
783 time_t a,z;
784
785 time(&a);
786 for (i=0; i<256; ++i) buf[i] = 'x';
787 for (i=0; i<1; ++i)
788 {
789 h = hashlittle(&buf[0],1,h);
790 }
791 time(&z);
792 if (z-a > 0) printf("time %d %.8x\n", z-a, h);
793 }
794
795 /* check that every input bit changes every output bit half the time */
796 #define HASHSTATE 1
797 #define HASHLEN 1
798 #define MAXPAIR 60
799 #define MAXLEN 70
800 void driver2()
801 {
802 uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
803 uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
804 uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
805 uint32_t x[HASHSTATE],y[HASHSTATE];
806 uint32_t hlen;
807
808 printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
809 for (hlen=0; hlen < MAXLEN; ++hlen)
810 {
811 z=0;
812 for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
813 {
814 for (j=0; j<8; ++j) /*------------------------ for each input bit, */
815 {
816 for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */
817 {
818 for (l=0; l<HASHSTATE; ++l)
819 e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
820
821 /*---- check that every output bit is affected by that input bit */
822 for (k=0; k<MAXPAIR; k+=2)
823 {
824 uint32_t finished=1;
825 /* keys have one bit different */
826 for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
827 /* have a and b be two keys differing in only one bit */
828 a[i] ^= (k<<j);
829 a[i] ^= (k>>(8-j));
830 c[0] = hashlittle(a, hlen, m);
831 b[i] ^= ((k+1)<<j);
832 b[i] ^= ((k+1)>>(8-j));
833 d[0] = hashlittle(b, hlen, m);
834 /* check every bit is 1, 0, set, and not set at least once */
835 for (l=0; l<HASHSTATE; ++l)
836 {
837 e[l] &= (c[l]^d[l]);
838 f[l] &= ~(c[l]^d[l]);
839 g[l] &= c[l];
840 h[l] &= ~c[l];
841 x[l] &= d[l];
842 y[l] &= ~d[l];
843 if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
844 }
845 if (finished) break;
846 }
847 if (k>z) z=k;
848 if (k==MAXPAIR)
849 {
850 printf("Some bit didn't change: ");
851 printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
852 e[0],f[0],g[0],h[0],x[0],y[0]);
853 printf("i %d j %d m %d len %d\n", i, j, m, hlen);
854 }
855 if (z==MAXPAIR) goto done;
856 }
857 }
858 }
859 done:
860 if (z < MAXPAIR)
861 {
862 printf("Mix success %2d bytes %2d initvals ",i,m);
863 printf("required %d trials\n", z/2);
864 }
865 }
866 printf("\n");
867 }
868
869 /* Check for reading beyond the end of the buffer and alignment problems */
870 void driver3()
871 {
872 uint8_t buf[MAXLEN+20], *b;
873 uint32_t len;
874 uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
875 uint32_t h;
876 uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
877 uint32_t i;
878 uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
879 uint32_t j;
880 uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
881 uint32_t ref,x,y;
882 uint8_t *p;
883
884 printf("Endianness. These lines should all be the same (for values filled in):\n");
885 printf("%.8x %.8x %.8x\n",
886 hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13),
887 hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13),
888 hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13));
889 p = q;
890 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
891 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
892 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
893 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
894 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
895 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
896 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
897 p = &qq[1];
898 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
899 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
900 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
901 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
902 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
903 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
904 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
905 p = &qqq[2];
906 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
907 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
908 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
909 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
910 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
911 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
912 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
913 p = &qqqq[3];
914 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
915 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
916 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
917 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
918 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
919 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
920 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
921 printf("\n");
922
923 /* check that hashlittle2 and hashlittle produce the same results */
924 i=47; j=0;
925 hashlittle2(q, sizeof(q), &i, &j);
926 if (hashlittle(q, sizeof(q), 47) != i)
927 printf("hashlittle2 and hashlittle mismatch\n");
928
929 /* check that hashword2 and hashword produce the same results */
930 len = 0xdeadbeef;
931 i=47, j=0;
932 hashword2(&len, 1, &i, &j);
933 if (hashword(&len, 1, 47) != i)
934 printf("hashword2 and hashword mismatch %x %x\n",
935 i, hashword(&len, 1, 47));
936
937 /* check hashlittle doesn't read before or after the ends of the string */
938 for (h=0, b=buf+1; h<8; ++h, ++b)
939 {
940 for (i=0; i<MAXLEN; ++i)
941 {
942 len = i;
943 for (j=0; j<i; ++j) *(b+j)=0;
944
945 /* these should all be equal */
946 ref = hashlittle(b, len, (uint32_t)1);
947 *(b+i)=(uint8_t)~0;
948 *(b-1)=(uint8_t)~0;
949 x = hashlittle(b, len, (uint32_t)1);
950 y = hashlittle(b, len, (uint32_t)1);
951 if ((ref != x) || (ref != y))
952 {
953 printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
954 h, i);
955 }
956 }
957 }
958 }
959
960 /* check for problems with nulls */
961 void driver4()
962 {
963 uint8_t buf[1];
964 uint32_t h,i,state[HASHSTATE];
965
966
967 buf[0] = ~0;
968 for (i=0; i<HASHSTATE; ++i) state[i] = 1;
969 printf("These should all be different\n");
970 for (i=0, h=0; i<8; ++i)
971 {
972 h = hashlittle(buf, 0, h);
973 printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
974 }
975 }
976
977
978 int main()
979 {
980 driver1(); /* test that the key is hashed: used for timings */
981 driver2(); /* test that whole key is hashed thoroughly */
982 driver3(); /* test that nothing but the key is hashed */
983 driver4(); /* test hashing multiple buffers (all buffers are null) */
984 return 1;
985 }
986
987 #endif /* SELF_TEST */