Mercurial > repos > dereeper > mlmm
comparison source_library/mlmm1.r @ 1:380b364980f9 draft default tip
planemo upload commit 475f4d7d8442a0d75e103af326ae5881c4d2a4ac
author | dereeper |
---|---|
date | Mon, 16 Apr 2018 08:50:05 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:6b7107812931 | 1:380b364980f9 |
---|---|
1 ############################################################################################################################################## | |
2 ###MLMM - Multi-Locus Mixed Model | |
3 ###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH | |
4 ####### | |
5 # | |
6 ##note: require EMMA | |
7 #library(emma) | |
8 #source('emma.r') | |
9 # | |
10 ##REQUIRED DATA & FORMAT | |
11 # | |
12 #PHENOTYPE - Y: a vector of length m, with names(Y)=individual names | |
13 #GENOTYPE - X: a n by m matrix, where n=number of individuals, m=n umber of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names | |
14 #KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names | |
15 #each of these data being sorted in the same way, according to the individual name | |
16 # | |
17 ##FOR PLOTING THE GWAS RESULTS | |
18 #SNP INFORMATION - snp_info: a data frame having at least 3 columns: | |
19 # - 1 named 'SNP', with SNP names (same as colnames(X)), | |
20 # - 1 named 'Chr', with the chromosome number to which belong each SNP | |
21 # - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to. | |
22 ####### | |
23 # | |
24 ##FUNCTIONS USE | |
25 #save this file somewhere on your computer and source it! | |
26 #source('path/mlmm.r') | |
27 # | |
28 ###FORWARD + BACKWARD ANALYSES | |
29 #mygwas<-mlmm(Y,X,K,nbchunks,maxsteps) | |
30 #X,Y,K as described above | |
31 #nbchunks: an integer defining the number of chunks of to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory | |
32 #maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, | |
33 # however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. | |
34 # It's value must be specified as an integer >= 3 | |
35 # | |
36 ###RESULTS | |
37 # | |
38 ##STEPWISE TABLE | |
39 #mygwas$step_table | |
40 # | |
41 ##PLOTS | |
42 # | |
43 ##PLOTS FORM THE FORWARD TABLE | |
44 #plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC')) | |
45 # | |
46 ##RSS PLOT | |
47 #plot_step_RSS(mygwas) | |
48 # | |
49 ##GWAS MANHATTAN PLOTS | |
50 # | |
51 #FORWARD STEPS | |
52 #plot_fwd_GWAS(mygwas,step,snp_info,pval_filt) | |
53 #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) | |
54 #snp_info as described above | |
55 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot | |
56 # | |
57 #OPTIMAL MODELS | |
58 #Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria | |
59 # | |
60 #plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt) | |
61 #snp_info as described above | |
62 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot | |
63 # | |
64 ##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST | |
65 #plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2) | |
66 #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) | |
67 #snp_info as described above | |
68 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot | |
69 #chrom is an integer specifying the chromosome on which the region of interest is | |
70 #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info | |
71 # | |
72 #plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2) | |
73 #snp_info as described above | |
74 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot | |
75 #chrom is an integer specifying the chromosome on which the region of interest is | |
76 #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info | |
77 # | |
78 ##QQPLOTS of pvalues | |
79 #qqplot_fwd_GWAS(mygwas,nsteps) | |
80 #nsteps=maximum number of forward steps to be displayed | |
81 # | |
82 #qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf')) | |
83 # | |
84 ############################################################################################################################################## | |
85 | |
86 mlmm<-function(Y,X,K,nbchunks,maxsteps) { | |
87 | |
88 n<-length(Y) | |
89 m<-ncol(X) | |
90 | |
91 stopifnot(ncol(K) == n) | |
92 stopifnot(nrow(K) == n) | |
93 stopifnot(nrow(X) == n) | |
94 stopifnot(nbchunks >= 2) | |
95 stopifnot(maxsteps >= 3) | |
96 | |
97 #INTERCEPT | |
98 | |
99 Xo<-rep(1,n) | |
100 | |
101 #K MATRIX NORMALISATION | |
102 | |
103 K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K | |
104 rm(K) | |
105 | |
106 #step 0 : NULL MODEL | |
107 cof_fwd<-list() | |
108 cof_fwd[[1]]<-as.matrix(Xo) | |
109 colnames(cof_fwd[[1]])<-'Xo' | |
110 | |
111 mod_fwd<-list() | |
112 mod_fwd[[1]]<-emma.REMLE(Y,cof_fwd[[1]],K_norm) | |
113 | |
114 herit_fwd<-list() | |
115 herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve) | |
116 | |
117 RSSf<-list() | |
118 RSSf[[1]]<-'NA' | |
119 | |
120 RSS_H0<-list() | |
121 RSS_H0[[1]]<-'NA' | |
122 | |
123 df1<-1 | |
124 df2<-list() | |
125 df2[[1]]<-'NA' | |
126 | |
127 Ftest<-list() | |
128 Ftest[[1]]<-'NA' | |
129 | |
130 pval<-list() | |
131 pval[[1]]<-'NA' | |
132 | |
133 fwd_lm<-list() | |
134 | |
135 cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n') | |
136 | |
137 #step 1 : EMMAX | |
138 | |
139 M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n))) | |
140 Y_t<-crossprod(M,Y) | |
141 cof_fwd_t<-crossprod(M,cof_fwd[[1]]) | |
142 fwd_lm[[1]]<-summary(lm(Y_t~0+cof_fwd_t)) | |
143 Res_H0<-fwd_lm[[1]]$residuals | |
144 Q_<-qr.Q(qr(cof_fwd_t)) | |
145 | |
146 RSS<-list() | |
147 for (j in 1:(nbchunks-1)) { | |
148 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) | |
149 RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
150 rm(X_t)} | |
151 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])-1))]) | |
152 RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
153 rm(X_t,j) | |
154 | |
155 RSSf[[2]]<-unlist(RSS) | |
156 RSS_H0[[2]]<-sum(Res_H0^2) | |
157 df2[[2]]<-n-df1-ncol(cof_fwd[[1]]) | |
158 Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1 | |
159 pval[[2]]<-pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE) | |
160 | |
161 cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% names(which(RSSf[[2]]==min(RSSf[[2]]))[1])]) | |
162 colnames(cof_fwd[[2]])<-c(colnames(cof_fwd[[1]]),names(which(RSSf[[2]]==min(RSSf[[2]]))[1])) | |
163 mod_fwd[[2]]<-emma.REMLE(Y,cof_fwd[[2]],K_norm) | |
164 herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve) | |
165 rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) | |
166 | |
167 cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n') | |
168 | |
169 #FORWARD | |
170 | |
171 for (i in 3:(maxsteps)) { | |
172 if (herit_fwd[[i-2]] < 0.01) break else { | |
173 | |
174 M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n))) | |
175 Y_t<-crossprod(M,Y) | |
176 cof_fwd_t<-crossprod(M,cof_fwd[[i-1]]) | |
177 fwd_lm[[i-1]]<-summary(lm(Y_t~0+cof_fwd_t)) | |
178 Res_H0<-fwd_lm[[i-1]]$residuals | |
179 Q_ <- qr.Q(qr(cof_fwd_t)) | |
180 | |
181 RSS<-list() | |
182 for (j in 1:(nbchunks-1)) { | |
183 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) | |
184 RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
185 rm(X_t)} | |
186 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])-1))]) | |
187 RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
188 rm(X_t,j) | |
189 | |
190 RSSf[[i]]<-unlist(RSS) | |
191 RSS_H0[[i]]<-sum(Res_H0^2) | |
192 df2[[i]]<-n-df1-ncol(cof_fwd[[i-1]]) | |
193 Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1 | |
194 pval[[i]]<-pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE) | |
195 | |
196 cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% names(which(RSSf[[i]]==min(RSSf[[i]]))[1])]) | |
197 colnames(cof_fwd[[i]])<-c(colnames(cof_fwd[[i-1]]),names(which(RSSf[[i]]==min(RSSf[[i]]))[1])) | |
198 mod_fwd[[i]]<-emma.REMLE(Y,cof_fwd[[i]],K_norm) | |
199 herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve) | |
200 rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)} | |
201 cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')} | |
202 rm(i) | |
203 | |
204 ##gls at last forward step | |
205 M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n))) | |
206 Y_t<-crossprod(M,Y) | |
207 cof_fwd_t<-crossprod(M,cof_fwd[[length(mod_fwd)]]) | |
208 fwd_lm[[length(mod_fwd)]]<-summary(lm(Y_t~0+cof_fwd_t)) | |
209 | |
210 Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals | |
211 Q_ <- qr.Q(qr(cof_fwd_t)) | |
212 | |
213 RSS<-list() | |
214 for (j in 1:(nbchunks-1)) { | |
215 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) | |
216 RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
217 rm(X_t)} | |
218 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])-1))]) | |
219 RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
220 rm(X_t,j) | |
221 | |
222 RSSf[[length(mod_fwd)+1]]<-unlist(RSS) | |
223 RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2) | |
224 df2[[length(mod_fwd)+1]]<-n-df1-ncol(cof_fwd[[length(mod_fwd)]]) | |
225 Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1 | |
226 pval[[length(mod_fwd)+1]]<-pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE) | |
227 rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) | |
228 | |
229 ##get max pval at each forward step | |
230 max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm)) | |
231 max_pval_fwd[1]<-0 | |
232 for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[2:i,4])} | |
233 rm(i) | |
234 | |
235 ##get the number of parameters & Loglikelihood from ML at each step | |
236 mod_fwd_LL<-list() | |
237 mod_fwd_LL[[1]]<-list(nfixed=ncol(cof_fwd[[1]]),LL=emma.MLE(Y,cof_fwd[[1]],K_norm)$ML) | |
238 for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cof_fwd[[i]]),LL=emma.MLE(Y,cof_fwd[[i]],K_norm)$ML)} | |
239 rm(i) | |
240 | |
241 cat('backward analysis','\n') | |
242 | |
243 ##BACKWARD (1st step == last fwd step) | |
244 | |
245 dropcof_bwd<-list() | |
246 cof_bwd<-list() | |
247 mod_bwd <- list() | |
248 bwd_lm<-list() | |
249 herit_bwd<-list() | |
250 | |
251 dropcof_bwd[[1]]<-'NA' | |
252 cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]) | |
253 colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]] | |
254 mod_bwd[[1]]<-emma.REMLE(Y,cof_bwd[[1]],K_norm) | |
255 herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve) | |
256 M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n))) | |
257 Y_t<-crossprod(M,Y) | |
258 cof_bwd_t<-crossprod(M,cof_bwd[[1]]) | |
259 bwd_lm[[1]]<-summary(lm(Y_t~0+cof_bwd_t)) | |
260 | |
261 rm(M,Y_t,cof_bwd_t) | |
262 | |
263 for (i in 2:length(mod_fwd)) { | |
264 dropcof_bwd[[i]]<-(colnames(cof_bwd[[i-1]])[2:ncol(cof_bwd[[i-1]])])[which(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])))] | |
265 cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]) | |
266 colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]] | |
267 mod_bwd[[i]]<-emma.REMLE(Y,cof_bwd[[i]],K_norm) | |
268 herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve) | |
269 M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n))) | |
270 Y_t<-crossprod(M,Y) | |
271 cof_bwd_t<-crossprod(M,cof_bwd[[i]]) | |
272 bwd_lm[[i]]<-summary(lm(Y_t~0+cof_bwd_t)) | |
273 rm(M,Y_t,cof_bwd_t)} | |
274 | |
275 rm(i) | |
276 | |
277 ##get max pval at each backward step | |
278 max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm)) | |
279 for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[2:(length(bwd_lm)+1-i),4])} | |
280 max_pval_bwd[length(bwd_lm)]<-0 | |
281 | |
282 ##get the number of parameters & Loglikelihood from ML at each step | |
283 mod_bwd_LL<-list() | |
284 mod_bwd_LL[[1]]<-list(nfixed=ncol(cof_bwd[[1]]),LL=emma.MLE(Y,cof_bwd[[1]],K_norm)$ML) | |
285 for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cof_bwd[[i]]),LL=emma.MLE(Y,cof_bwd[[i]],K_norm)$ML)} | |
286 rm(i) | |
287 | |
288 cat('creating output','\n') | |
289 | |
290 ##Forward Table: Fwd + Bwd Tables | |
291 #Compute parameters for model criteria | |
292 BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)} | |
293 extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)} | |
294 | |
295 fwd_table<-data.frame(step=ncol(cof_fwd[[1]])-1,step_=paste('fwd',ncol(cof_fwd[[1]])-1,sep=''),cof='NA',ncof=ncol(cof_fwd[[1]])-1,h2=herit_fwd[[1]] | |
296 ,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]])) | |
297 for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table, | |
298 data.frame(step=ncol(cof_fwd[[i]])-1,step_=paste('fwd',ncol(cof_fwd[[i]])-1,sep=''),cof=paste('+',colnames(cof_fwd[[i]])[i],sep=''),ncof=ncol(cof_fwd[[i]])-1,h2=herit_fwd[[i]] | |
299 ,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))} | |
300 | |
301 rm(i) | |
302 | |
303 bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]])-1,h2=herit_bwd[[1]] | |
304 ,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]])) | |
305 for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table, | |
306 data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]])-1,h2=herit_bwd[[i]] | |
307 ,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))} | |
308 | |
309 rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd) | |
310 | |
311 fwdbwd_table<-rbind(fwd_table,bwd_table) | |
312 | |
313 #RSS for plot | |
314 mod_fwd_RSS<-vector() | |
315 mod_fwd_RSS[1]<-sum((Y-cof_fwd[[1]]%*%fwd_lm[[1]]$coef[,1])^2) | |
316 for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cof_fwd[[i]]%*%fwd_lm[[i]]$coef[,1])^2)} | |
317 mod_bwd_RSS<-vector() | |
318 mod_bwd_RSS[1]<-sum((Y-cof_bwd[[1]]%*%bwd_lm[[1]]$coef[,1])^2) | |
319 for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cof_bwd[[i]]%*%bwd_lm[[i]]$coef[,1])^2)} | |
320 expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/mod_fwd_RSS[1]}),1-sapply(mod_bwd_RSS,function(x){x/mod_bwd_RSS[length(mod_bwd_RSS)]})) | |
321 h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS) | |
322 unexpl_RSS<-1-expl_RSS-h2_RSS | |
323 plot_RSS<-t(apply(cbind(expl_RSS,h2_RSS,unexpl_RSS),1,cumsum)) | |
324 | |
325 #GLS pvals at each step | |
326 pval_step<-list() | |
327 pval_step[[1]]<-list(out=data.frame('SNP'=colnames(X),'pval'=pval[[2]]),cof='') | |
328 for (i in 2:(length(mod_fwd))) {pval_step[[i]]<-list(out=rbind(data.frame(SNP=colnames(cof_fwd[[i]])[-1],'pval'=fwd_lm[[i]]$coef[2:i,4]), | |
329 data.frame(SNP=colnames(X)[-which(colnames(X) %in% colnames(cof_fwd[[i]]))],'pval'=pval[[i+1]])),cof=colnames(cof_fwd[[i]])[-1])} | |
330 | |
331 #GLS pvals for best models according to extBIC and mbonf | |
332 | |
333 opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],] | |
334 opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],] | |
335 bestmodel_pvals<-function(model) {if(substr(model$step_,start=0,stop=3)=='fwd') { | |
336 pval_step[[as.integer(substring(model$step_,first=4))+1]]} else if (substr(model$step_,start=0,stop=3)=='bwd') { | |
337 cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]] | |
338 mixedmod<-emma.REMLE(Y,cof,K_norm) | |
339 M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n))) | |
340 Y_t<-crossprod(M,Y) | |
341 cof_t<-crossprod(M,cof) | |
342 GLS_lm<-summary(lm(Y_t~0+cof_t)) | |
343 Res_H0<-GLS_lm$residuals | |
344 Q_ <- qr.Q(qr(cof_t)) | |
345 RSS<-list() | |
346 for (j in 1:(nbchunks-1)) { | |
347 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) | |
348 RSS[[j]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
349 rm(X_t)} | |
350 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof)-1))]) | |
351 RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) | |
352 rm(X_t,j) | |
353 RSSf<-unlist(RSS) | |
354 RSS_H0<-sum(Res_H0^2) | |
355 df2<-n-df1-ncol(cof) | |
356 Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1 | |
357 pval<-pf(Ftest,df1,df2,lower.tail=FALSE) | |
358 list(out=rbind(data.frame(SNP=colnames(cof)[-1],'pval'=GLS_lm$coef[2:(ncol(cof)),4]), | |
359 data.frame('SNP'=colnames(X)[-which(colnames(X) %in% colnames(cof))],'pval'=pval)),cof=colnames(cof)[-1])} else {cat('error \n')}} | |
360 opt_extBIC_out<-bestmodel_pvals(opt_extBIC) | |
361 opt_mbonf_out<-bestmodel_pvals(opt_mbonf) | |
362 | |
363 list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out)} | |
364 | |
365 plot_step_table<-function(x,type){ | |
366 if (type=='h2') {plot(x$step_table$step,x$step_table$h2,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='h2') | |
367 abline(v=(nrow(x$step_table)/2-0.5),lty=2)} | |
368 else if (type=='maxpval'){plot(x$step_table$step,-log10(x$step_table$maxpval),type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='-log10(max_Pval)') | |
369 abline(h=x$bonf_thresh,lty=2) | |
370 abline(v=(nrow(x$step_table)/2-0.5),lty=2)} | |
371 else if (type=='BIC'){plot(x$step_table$step,x$step_table$BIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='BIC') | |
372 abline(v=(nrow(x$step_table)/2-0.5),lty=2)} | |
373 else if (type=='extBIC'){plot(x$step_table$step,x$step_table$extBIC,type='b',lty=2,pch=20,col='darkblue',xlab='step',ylab='EBIC') | |
374 abline(v=(nrow(x$step_table)/2-0.5),lty=2)} | |
375 else {cat('error! \n argument type must be one of h2, maxpval, BIC, extBIC')}} | |
376 | |
377 plot_step_RSS<-function(x){ | |
378 op<-par(mar=c(5, 5, 2, 2)) | |
379 plot(0,0,xlim=c(0,nrow(x$RSSout)-1),ylim=c(0,1),xlab='step',ylab='%var',col=0) | |
380 polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,3],0,0), col='brown1', border=0) | |
381 polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,2],0,0), col='forestgreen', border=0) | |
382 polygon(c(0:(nrow(x$RSSout)-1),(nrow(x$RSSout)-1),0), c(x$RSSout[,1],0,0), col='dodgerblue4', border=0) | |
383 abline(v=(nrow(x$step_table)/2-0.5),lty=2) | |
384 par(op)} | |
385 | |
386 plot_GWAS<-function(x) { | |
387 output_<-x$out[order(x$out$Pos),] | |
388 output_ok<-output_[order(output_$Chr),] | |
389 | |
390 maxpos<-c(0,cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x+max(cumsum(as.numeric(aggregate(output_ok$Pos,list(output_ok$Chr),max)$x)))/200))) | |
391 plot_col<-rep(c('gray10','gray60'),ceiling(max(unique(output_ok$Chr))/2)) | |
392 # plot_col<-c('blue','darkgreen','red','cyan','purple') | |
393 size<-aggregate(output_ok$Pos,list(output_ok$Chr),length)$x | |
394 a<-rep(maxpos[1],size[1]) | |
395 b<-rep(plot_col[1],size[1]) | |
396 for (i in 2:max(unique(output_ok$Chr))){ | |
397 a<-c(a,rep(maxpos[i],size[i])) | |
398 b<-c(b,rep(plot_col[i],size[i]))} | |
399 | |
400 output_ok$xpos<-output_ok$Pos+a | |
401 output_ok$col<-b | |
402 output_ok$col[output_ok$SNP %in% x$cof]<-'red' | |
403 | |
404 d<-(aggregate(output_ok$xpos,list(output_ok$Chr),min)$x+aggregate(output_ok$xpos,list(output_ok$Chr),max)$x)/2 | |
405 | |
406 plot(output_ok$xpos,-log10(output_ok$pval),col=output_ok$col,pch=20,ylab='-log10(pval)',xaxt='n',xlab='chromosome') | |
407 axis(1,tick=FALSE,at=d,labels=c(1:max(unique(output_ok$Chr)))) | |
408 abline(h=x$bonf_thresh,lty=3,col='black') | |
409 | |
410 | |
411 if (length(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]) > 0) { | |
412 text(output_ok$xpos[-log10(output_ok$pval) > x$bonf_thresh], -log10(output_ok$pval[-log10(output_ok$pval) > x$bonf_thresh]), output_ok$SNP[-log10(output_ok$pval) > x$bonf_thresh], pos=3, cex=0.7) | |
413 legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" ")) | |
414 } else { | |
415 legend("topright", lty=3, paste("bonf thresh :", x$bonf_thresh ,sep=" ")) | |
416 } | |
417 } | |
418 | |
419 plot_region<-function(x,chrom,pos1,pos2){ | |
420 region<-subset(x$out,Chr==chrom & Pos>=pos1 & Pos <=pos2) | |
421 region$col<- if (chrom %% 2 == 0) {'gray60'} else {'gray10'} | |
422 region$col[which(region$SNP %in% x$cof)]<-'red' | |
423 plot(region$Pos,-log10(region$pval),type='p',pch=20,main=paste('chromosome',chrom,sep=''),xlab='position (bp)',ylab='-log10(pval)',col=region$col,xlim=c(pos1,pos2)) | |
424 abline(h=x$bonf_thresh,lty=3,col='black')} | |
425 | |
426 | |
427 plot_fwd_GWAS<-function(x,step,snp_info,pval_filt) { | |
428 stopifnot(step<=length(x$pval_step)) | |
429 output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh) | |
430 plot_GWAS(output)} | |
431 | |
432 plot_fwd_region<-function(x,step,snp_info,pval_filt,chrom,pos1,pos2) { | |
433 stopifnot(step<=length(x$pval_step)) | |
434 output<-list(out=subset(merge(snp_info,x$pval_step[[step]]$out,by='SNP'),pval<=pval_filt),cof=x$pval_step[[step]]$cof,bonf_thresh=x$bonf_thresh) | |
435 plot_region(output,chrom,pos1,pos2)} | |
436 | |
437 | |
438 plot_opt_GWAS<-function(x,opt,snp_info,pval_filt) { | |
439 if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh) | |
440 plot_GWAS(output)} | |
441 else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh) | |
442 plot_GWAS(output)} | |
443 else {cat('error! \n opt must be extBIC or mbonf')}} | |
444 | |
445 plot_opt_region<-function(x,opt,snp_info,pval_filt,chrom,pos1,pos2) { | |
446 if (opt=='extBIC') {output<-list(out=subset(merge(snp_info,x$opt_extBIC$out,by='SNP'),pval<=pval_filt),cof=x$opt_extBIC$cof,bonf_thresh=x$bonf_thresh) | |
447 plot_region(output,chrom,pos1,pos2)} | |
448 else if (opt=='mbonf') {output<-list(out=subset(merge(snp_info,x$opt_mbonf$out,by='SNP'),pval<=pval_filt),cof=x$opt_mbonf$cof,bonf_thresh=x$bonf_thresh) | |
449 plot_region(output,chrom,pos1,pos2)} | |
450 else {cat('error! \n opt must be extBIC or mbonf')}} | |
451 | |
452 | |
453 qqplot_fwd_GWAS<-function(x,nsteps){ | |
454 stopifnot(nsteps<=length(x$pval_step)) | |
455 e<--log10(ppoints(nrow(x$pval_step[[1]]$out))) | |
456 ostep<-list() | |
457 ostep[[1]]<--log10(sort(x$pval_step[[1]]$out$pval)) | |
458 for (i in 2:nsteps) {ostep[[i]]<--log10(sort(x$pval_step[[i]]$out$pval))} | |
459 | |
460 maxp<-ceiling(max(unlist(ostep))) | |
461 | |
462 plot(e,ostep[[1]],type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp)) | |
463 abline(0,1,col="dark grey") | |
464 | |
465 for (i in 2:nsteps) { | |
466 par(new=T) | |
467 plot(e,ostep[[i]],type='b',pch=20,cex=0.8,col=i,axes='F',xlab='',ylab='',xlim=c(0,max(e)+1),ylim=c(0,maxp))} | |
468 legend(0,maxp,lty=1,pch=20,col=c(1:length(ostep)),paste(c(0:(length(ostep)-1)),'cof',sep=' ')) | |
469 } | |
470 | |
471 qqplot_opt_GWAS<-function(x,opt){ | |
472 if (opt=='extBIC') { | |
473 e<--log10(ppoints(nrow(x$opt_extBIC$out))) | |
474 o<--log10(sort(x$opt_extBIC$out$pval)) | |
475 maxp<-ceiling(max(o)) | |
476 plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to extBIC')) | |
477 abline(0,1,col="dark grey")} | |
478 else if (opt=='mbonf') { | |
479 e<--log10(ppoints(nrow(x$opt_mbonf$out))) | |
480 o<--log10(sort(x$opt_mbonf$out$pval)) | |
481 maxp<-ceiling(max(o)) | |
482 plot(e,o,type='b',pch=20,cex=0.8,col=1,xlab=expression(Expected~~-log[10](italic(p))), ylab=expression(Observed~~-log[10](italic(p))),xlim=c(0,max(e)+1),ylim=c(0,maxp),main=paste('optimal model according to mbonf')) | |
483 abline(0,1,col="dark grey")} | |
484 else {cat('error! \n opt must be extBIC or mbonf')}} | |
485 | |
486 |